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Abstract

In this paper we propose an algorithm for enumerating diagonal Latin squares
of small order. It relies on specific properties of diagonal Latin squares to
employ symmetry breaking techniques, and on several heuristic optimizations
and bit arithmetic techniques to make use of computational power of state-
of-the-art CPUs. Using this approach we enumerated diagonal Latin squares
of order at most 9, and vertically symmetric diagonal Latin squares of order
at most 10.

Keywords: Latin square, enumeration, symmetry breaking, bit arithmetic,
volunteer computing

1. Introduction

A Latin square of order N is an N × N table, filled with elements from
the set {0, . . . , N − 1} so that in each row and column each element appears
exactly once [1]. If in addition its main diagonal and main antidiagonal
both contain every possible element from 0 to N − 1 then a Latin square is
called diagonal. We call a Latin square vertically symmetric if a sum of two
elements in the same row, positioned symmetrically relative to the virtual
vertical middle line is equal to N − 1. What makes Latin squares interesting
is that they represent a good example of a very well studied combinatorial
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design with numerous applications, for which nevertheless there exist several
exceptionally hard related open problems. Probably the most well known
one is to determine if there exists the set of three mutually orthogonal Latin
squares of order 10 [2]. Due to combinatorial nature of Latin squares, there
naturally arise various enumeration problems, classification problems, etc.
Usually, it is considered unrealistic to perform explicit enumeration of all
Latin squares of a specific order, however, the development of computers
and algorithms made it possible to obtain several results of such kind in
recent years, in particular, to enumerate Latin squares of orders 10 and 11
[3, 4]. However, as far as we are aware, the number of diagonal Latin squares
even for order 8 was not known until the end of 2016. That is why in the
present paper we develop an approach aimed at enumeration of diagonal
Latin squares of small order.

In the context of enumeration, the main difference between diagonal Latin
squares and ordinary Latin squares consists in the fact that diagonal Latin
squares form much smaller equivalence classes, because the uniqueness con-
straints on diagonals essentially restrict most transformations used to form
equivalent Latin squares (mainly, arbitrary row and column permutations).
In this paper we first design a fast algorithm for explicit generation of diag-
onal Latin squares, augment it with the so-called symmetry breaking tech-
niques that make partial use of equivalence classes of diagonal Latin squares,
and apply it to enumerate diagonal and vertically symmetric diagonal Latin
squares of small order.

There are two main contributions in the present paper. The first one is the
optimized brute-force algorithm for enumeration of diagonal Latin squares
and related designs, such as Latin rectangles, etc. Essentially, the algorithm
represents a Latin square as an integer array and uses ≤ N2 nested loops to
traverse all possible variants of Latin square cells values. Its simple struc-
ture can be improved by several heuristic-based optimizations. In particular,
the order, in which the cells are filled, greatly influences the algorithm per-
formance. Also, the implementation details, i.e. how we perform necessary
checks and assignments, how we organize each loop, etc., play an important
role as well. The bit arithmetic techniques greatly aid the performance of
these operations. The resulting version of the algorithm makes it possible to
enumerate up to 7 millions of diagonal Latin squares of order 9 per second
on one CPU core. The symmetry breaking techniques that are based on the
class of transformations which convert diagonal Latin squares into diagonal
Latin squares, allow to reduce the size of the search space by several orders
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of magnitude. We used the constructed algorithm to obtain the second con-
tribution, i.e. to enumerate diagonal Latin squares of order at most 9 and
vertically symmetric diagonal Latin squares of order 10 (the corresponding
numbers were unknown before).

Let us present a brief outline of the paper. In the next section we discuss
possible ways to generate Latin squares. Then we describe the basic structure
of our algorithm that we use as a basis of further optimizations. In Section
3 we show how bit arithmetic techniques make it possible to greatly increase
the performance of the algorithm in practice, and experimentally evaluate
different algorithm versions. In Section 4 we describe how the equivalence
classes of diagonal Latin squares can be constructed and use this informa-
tion to introduce into the proposed algorithm symmetry breaking techniques.
Then we describe our computational experiments, in the course of which we
enumerated diagonal Latin squares of order at most 9, enumerated vertically
symmetric diagonal Latin squares of order 10, and estimated the number of
diagonal Latin squares of order 10. After this we discuss related works and
draw conclusions.

2. Algorithm Description

Hereinafter, without the loss of generality we assume that generation and
enumeration mean the same and treat these terms as interchangeable. Within
the context of enumeration it is sensible to consider only algorithms that
are deterministic and complete, i.e. the ones that can generate all possible
representatives of the desired species which satisfy fixed constraints. Since
we do not intend to store generated diagonal Latin squares, the enumeration
should proceed in a fixed order and should not employ randomization on any
stage, so that we process the whole search space, and at the same time do
not enumerate some diagonal Latin square more than once.

In the next subsection let us consider several algorithmic concepts that
fit the description above. Since our main goal is to enumerate diagonal Latin
squares of order 9, we mainly consider and evaluate possible algorithms in
application to this problem. If not stated otherwise, all performance evalu-
ations are performed on one core of Intel Core i7-6770 CPU, 16 Gb RAM.
All algorithms proposed in the paper were implemented in C++ using Mi-
crosoft Visual Studio 2015 compiler for Windows or gcc (different versions)
for Linux. In pseudocode we will mostly follow the C++ syntax.
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2.1. Approaches to Generating Diagonal Latin Squares

Each row and each column of a Latin square is a permutation of N ele-
ments. It means that for small N one can generate all possible permutations
and construct Latin squares by combining them. For example, it is possible
to fill the square row by row, meanwhile checking that different rows do not
have equal elements in the same positions. However, in this case once several
rows are filled, the number of available variants for the remaining rows drops
very significantly, thus making simple exhaustive search, that tries to put
every possible permutation as the next row, very ineffective. For example,
if we consider Latin squares of order 10, we have 10! = 3 628 800 possible
permutations. We can put each of them as the first row, then for the second
row we loop through the list and test if a permutation number i does not
violate Latin square constraints. For rows after the 5th the number of such
permutations (that can be put as the next row) is in the range of hundreds
at most. Thus if we cycle through all available permutations to put into, say,
8th row, even if we can test if they fit or not very fast - the process is quite
ineffective.

In this context it is sensible to represent the original problem as exact
cover instance [5] and employ relatively sophisticated algorithms, such as
DLX [6], which can restrict the search space ”on-the-fly”. Note, that if we
are interested only in diagonal Latin squares – the case presents two more
uniqueness constraints, that need to be taken into account. Our preliminary
evaluations showed that bit arithmetic-aided exhaustive search and DLX
make it possible to enumerate about 5× 105 diagonal Latin squares of order
9 per second on one CPU core.

In the present paper we follow another simple approach to generating
Latin squares. Within it we represent Latin square of order N as an array of
N2 integer values, corresponding to its cells, and fill their values in a fixed
order. In the most basic variant we implement this enumeration procedure
in the form of N2 nested for loops. On the first glance, it seems that this
approach is too crude and should lose compared to the ones mentioned above.
Indeed, if we fill square elements from left to right from top to bottom, then
the generation speed is very low: about 6 × 103 diagonal Latin squares of
order 9 per second on one CPU core. However, after several optimizations,
that we consider below, this approach significantly outperforms the others.
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2.2. Algorithm Design

Assume that we consider enumeration of diagonal Latin squares of order
N . For this purpose our algorithm uses several auxiliary constructs:

1. Integer array LS[N ][N ] which contains a Latin square.

2. Integer arrays Rows[N ][N ] and Columns[N ][N ], where we reflect which
elements are already ”occupied” in each row/column.

3. Integer arrays MD[N ] and AD[N ] where we reflect which elements are
”occupied” on main diagonal and main antidiagonal.

4. Integer value SquaresCnt in which we accumulate the number of squares.

As we mentioned above, the order, in which we fill cells greatly influences
the performance of the algorithm. However, for now, let us introduce the
general outline of the algorithm for enumerating diagonal Latin squares with
simple order when we fill the square from the first (topmost leftmost) element
to the last. Its pseudocode is presented as Algorithm 1.

Note, that we can already make one simple optimization. It is clear that
each non-diagonal Latin square can be effectively transformed (by means of
row and column permutations) to a Latin square, in which the first row and
the first column appear in ascending order 0, 1, . . . , N−1 (the corresponding
procedure is usually referred to as normalization [1]). It means that we can
safely fix the values of corresponding variables in the array LS[N ][N ] and
modify the initialization stage. As a result we have (N − 1)2 inner loops
instead of N2. For diagonal Latin squares we fix either the first row, the first
column or the main diagonal to 0, 1, . . . , N − 1, thus having N2 − N inner
loops. Hereinafter we assume that the first row is fixed in all algorithms and
experiments.

To make further constructions easier it is natural to represent the algo-
rithm as a sequence of loops. The order in which the cells values are filled is
then reflected by the order of these loops. The structure of a loop is presented
as Algorithm 2.

So within inner loop we cycle over all possible values from 0 to N − 1 to
put into cell LS[i][j]. We use auxiliary arrays to store information whether
the value l was already used within row/column/main diagonal/main antidi-
agonal. In particular, Rows[i][l] = 1 if and only if the value l is assigned to
some cell within the i-th row, and Columns[j][l] = 1 if the value l is assigned
to some cell within the j-th column. The same goes for MD[l] = 1 and
AD[l] = 1 for main diagonal and main antidiagonal. Once we find the value
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Data: LS[N ][N ], Rows[N ][N ], Columns[N ][N ], MD[N ], AD[N ],
SquaresCnt

/* All variables are initialized by 0. */

/* Iterate over all possible values of cell [0][0] */

for LS[0][0] = 0; LS[0][0] < N ; LS[0][0] = LS[0][0] + 1 do

/* If value is occupied within the row, column or

diagonals - continue to the next value of loop

variable */

if Rows[0][LS[0][0]]||Columns[0][LS[0][0]]||MD[LS[0][0]] then
continue;
/* Otherwise mark the value as occupied and proceed */

Rows[0][LS[0][0]] = 1;
Columns[0][LS[0][0]] = 1;
MD[LS[0][0]] = 1;
for LS[0][1] = 0; LS[0][1] < N ; LS[0][1] = LS[0][1] + 1 do

if Rows[0][LS[0][1]]||Columns[1][LS[0][1]] then continue;
Rows[0][LS[0][1]] = 1;
Columns[1][LS[0][1]] = 1;
...
/* Increment SquaresCnt if reached the last element

*/

for LS[N − 1][N − 1] = 0; LS[N − 1][N − 1] < N ;
LS[N − 1][N − 1] = LS[N − 1][N − 1] + 1 do

if Rows[N − 1][LS[N − 1][N − 1]]||Columns[N − 1][LS[N −
1][N − 1]]||MD[LS[N − 1][N − 1]] then continue;
SquaresCnt = SquaresCnt+ 1;

end

...
Rows[0][LS[0][1]] = 0;
Columns[1][LS[0][1]] = 0;

end

/* On exit from the loop mark value as ‘free’ */

Rows[0][LS[0][0]] = 0;
Columns[0][LS[0][0]] = 0;
MD[LS[0][0]] = 0;

end

Algorithm 1: General outline of the algorithm
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Data: LS[N ][N ], Rows[N ][N ], Columns[N ][N ], MD[N ], AD[N ],
SquaresCnt, i, j

/* Iterate over all possible values of cell [i][j] */

for LS[i][j] = 0; LS[i][j] < N ; LS[i][j] = LS[i][j] + 1 do

/* Check if the value is occupied in the current row,

column or diagonals */

/* Without the loss of generality, we assume that the

element lies on the intersection of Main diagonal

and Main antidiagonal. If it does not, then we omit

corresponding entries (MD[LS[i][j]] and/or AD[LS[i][j]]
when computing the value of Conditioni,j) */

bool Conditioni,j =
Rows[i][LS[i][j]]||Columns[j][LS[i][j]]||MD[LS[i][j]]||AD[LS[i][j]];

if Conditioni,j then

/* If Conditioni,j = True it means that the value

LS[i][j] is already occupied. In this case we

proceed to next value of LS[i][j] */

continue;

/* Otherwise mark the value as occupied and proceed */

Rows[i][LS[i][j]] = 1;
Columns[j][LS[i][j]] = 1;
/* Important: entries for diagonals are included only

if i = j and/or i+ j = N − 1 */

MD[LS[i][j]] = 1;
AD[LS[i][j]] = 1;
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i][LS[i][j]] = 0;
Columns[j][LS[i][j]] = 0;
/* Important: entries for diagonals are included only

if i = j and/or i+ j = N − 1 */

MD[LS[i][j]] = 0;
AD[LS[i][j]] = 0;

end

Algorithm 2: Inner loop structure
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that can be put into LS[i][j] without violating any constraint, we do it and
refresh the information about occupied values within Rows[i], Columns[j]
and arrays for diagonals MD, AD, if applicable. After this we proceed to
the inner loop for next cell LS[i′][j′]. On exit from the loop, we clear values
corresponding to LS[i][j] in Rows[i], Columns[j], MD and AD to prepare
for the next iteration.

In the body of the loop for the last cell according to specified order we
only increment the counter SquaresCnt (since if we reached it, it means that
we successfully constructed a Latin square). Now let us consider the question
of the optimal order of cells.

2.3. On the Optimal Order of Cells

In our experiments we noticed a very interesting pattern. It turned out,
that the algorithm performance, especially, if we consider diagonal Latin
squares, greatly depends on the order, in which the cells are filled. In par-
ticular, when we change only the order of cells, and do not touch any other
parameters, the average generation speed may vary from several thousand
to several hundred thousand diagonal Latin squares of order 9 per second.
After detailed empirical evaluation, we figured the strategy that works best.
In essence, it implements the ideas suggested in [7], that in the backtrack
search one should narrow the search space as much as possible on each step.

Let us now consider our implementation of the strategy that yields the
order, with which the proposed algorithm shows the best performance. Let
us consider how it works for diagonal Latin squares of order 9. In accordance
with the general outline of the algorithm, we fill the cells of a Latin square
LS = {LS[i][j]}. The first row of this square is fixed: LS[0][j] = j, j =
0, . . . , 8. We use the iterative process to choose the cell to be assigned next.
It is important to note, that in this process we use only the information
whether the cell is already assigned, and do not know exact value stored by
any cell. It is easy to see, that each cell LS[i][j] is involved in at least two and
at most four ”uniqueness constraints”: one for the i-th row, one for the j-th
column, and two more for the main diagonal and main antidiagonal if i = j
and/or i = 8−j. Let us consider the value V k

i,j = rki +ckj+mdk(i, j)+adk(i, j).
Here k is the iteration number, rki is the number of assigned cells in the i-th
row on the k-th step, ckj – the number of assigned cells in the j-th column on
the k-th step, mdk(i, j) is the number of assigned cells on the main diagonal
if i = j and 0 otherwise, and adk(i, j) is the number of assigned cells on the
main antidiagonal if i = 8− j, and 0, otherwise. In a sense, the number V k

i,j
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reflects how ”constrained” is a cell with indexes i, j. On each iteration step
we choose the cell that has the largest V k

i,j. If several cells have the same
value of V , we choose the first of them when ordered in lexicographic order.

It also makes sense to use an additional simple heuristics: if after choosing
a new cell at some step k′ the number of assigned cells in some row, column,
main diagonal or main antidiagonal becomes N − 1, then the remaining cell
is automatically assigned next because we can compute it directly thanks to
corresponding uniqueness constraints. Now let us return to the case of diag-
onal Latin squares of order 9. On the 0-th iteration only the cells in the first
row are assigned. It means that the most constrained (in the aforementioned
sense) cell is the one that lies on the intersection of main diagonal and main
antidiagonal, it has V4,4 = 3, while for all other cells it is at most 2. Then we
proceed as outlined above. As a result, we obtain the order of cells presented
in Figure 1.

- - - - - - - - -
20 2 16 17 21 18 19 3 22
25 26 6 23 27 24 7 28 29
55 56 57 10 53 11 58 59 60
61 63 65 45 1 47 67 69 70
62 64 66 12 54 14 68 71 72
32 33 8 30 34 31 9 35 36
39 4 42 37 40 38 43 5 41
13 49 50 44 48 46 51 52 15

Figure 1: Order of cells for generation of diagonal Latin squares of order 9 (the first row
is fixed a priori, so it is omitted)

In essence, as a result of the outlined procedure for diagonal Latin squares
of order 9 we start with diagonal elements, and then fill the rest. When we
embed this order into the algorithm, it can enumerate about 1.2 million
diagonal Latin squares of order 9 per second on one CPU core. It is interest-
ing, that when applied to constructing the optimal order for ordinary Latin
squares, the proposed heuristics constructs the trivial order of cells: row by
row, column by column. Let us now proceed to other optimizations.
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2.4. Optimizations

The following two techniques, while quite simple, make it possible to
increase the performance of the above algorithm to about 1.8 million squares
per second.

2.4.1. Use formula to compute the last element in a row/column/diagonal

At certain point within the algorithm, there appear situations, when in
some row, column or main diagonal/antidiagonal, there are N − 1 assigned
cells out of N . Due to the fact that these elements are the subject of ”unique-
ness” constraints, in these cases it is possible to compute the value of a re-
maining cell directly, thus eliminating the need to introduce a loop for this
purpose. Without the loss of generality, let us assume that we assigned the
first N−1 of N elements in the j-th row. Then the formula for the remaining
element looks as follows:

LS[j, N − 1] = N × (N − 1)/2−

N−2
∑

l=0

LS[l, j].

Of course, we need to make sure that the obtained value does not violate
other uniqueness constraints before proceeding deeper into the search space.

2.4.2. Lookahead heuristic

We borrowed the next technique from the area of combinatorial search. It
represents a kind of a lookahead heuristic [8]. The basic idea is that on some
levels of the search (i.e. in some of the loops) there arise situations, when
as a result of assigning value to a current cell the amount of constraints on
some other cells within the same row/column/diagonal may exceed N , thus
there is a possibility that there are no possible assignments for these ”over-
constrained” cells. So we can spend some resources and look ahead before
branching further, spending a little more computational resources now, so
that we avoid spending much more of them later.

For simplicity, assume that for non-diagonal element LS[i][j] the following
situation arises (remind that Rows[i][l] = 1 if and only if the value l is
assigned to some cell within the i-th row, and Columns[j][l] = 1 if the value
l is assigned to some cell within the j-th column):

N−1
∑

l=0

(Rows[i][l] ∨ Columns[j][l]) = N.
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It is clear, that in this case we can stop looking further, since the currently
examined portion of the search space is reduced to empty set. Thus we revert
the last assignment of Latin square cell and proceed.

It is important, that this heuristic should be used with care. Conditional
operators in large quantities can easily slow the search down, making any
performance gain disappear. Therefore, there should be found a tradeoff, by
choosing on which levels to apply it. After empirical evaluation and testing,
for enumeration of diagonal Latin squares of order 9 we determined, that it
works best when we apply lookahead within inner loops from number 51 to
60.

Now let us consider how to apply bit arithmetic techniques to improve
the algorithm performance further.

3. Bit Arithmetic Implementation

In order to improve the performance of the suggested algorithm we can
do several things: merge/remove repeated actions, do the same things faster
and reduce the number of conditional operators involved. In this section we
show that it is possible to do all this thanks to employing bit arithmetic
techniques. Hereinafter, without the loss of generality, we assume that all
integer values contain at least 16 bits.

Let us describe the modifications we introduce to the algorithm outlined
above in order to transition to using bit arithmetic. First, we drop one
dimension from arrays Rows, Columns, MD, AD since we fuse it within
one integer value with ≥ N bits. Second, we represent the values of Latin
square cells in a different manner: instead of LS[i][j] = k we now write
LS[i][j] = 1 << k, where << k means left bit shift for k positions. We
also introduce an array of auxiliary variables CR[N ][N ] to keep track of the
number of current constraints on each Latin square element.

The modified inner loop structure is presented as Algorithm 3. without
the loss of generality we assume that the considered element lies on the
intersection of main diagonal and main antidiagonal. In case it does not,
the corresponding entries are simply removed (i.e. for the most simple case
CR[i][j] = Rows[i]|Columns[j]) together with operators marking the new
value occupied/free in MD and AD.

Here the main performance gain is thanks to the use of an array CR[i][j].
By definition it contains 1-bits in all positions in which LS[i][j] can not take
the value of 1. Therefore, we can obtain at once the spectrum of available
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Data: LS[N ][N ], CR[N ][N ], Rows[N ], Columns[N ], MD, AD,
SquaresCnt,i,j

/* Compute vector of possible values for cell [i][j] */

CR[i][j] = Rows[i]|Columns[j]|MD|AD;
/* Iterate over all possible values of cell [i][j] */

for LS[i][j] = 1; LS[i][j] < (1 << N); LS[i][j] = LS[i][j] << 1 do

/* Check if the value is occupied */

if (CR[i][j]&LS[i][j])! = 0 then continue ;
/* Otherwise mark the value as occupied and proceed */

Rows[i] = Rows[i]|LS[i][j];
Columns[j] = Columns[j]|LS[i][j];
MD = MD|LS[i][j];
AD = AD|LS[i][j];
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i] = Rows[i]⊕ LS[i][j];
Columns[j] = Columns[j]⊕ LS[i][j];
MD = MD ⊕ LS[i][j];
AD = AD ⊕ LS[i][j];

end

Algorithm 3: Inner loop structure with bit arithmetic

values, instead of checking the availability of each cell value by iterating over
them. When implemented in the proposed manner, the algorithm is able
to generate about 2.6 × 106 diagonal Latin squares of order 9 per second
even without employing optimizations from the end of the previous section.
Nevertheless, there is still a room for improvement. Despite the fact that we
now compute the vector of possible values for each particular element only
once, we still need to iterate over all N values of LS[i][j]. Is there a way to
make proper use of this information?

Fortunately, yes. In particular, we can reconstruct the for loop in or-
der to iterate over only such values of LS[i][j] that satisfy the condition
CR[i][j]&LS[i][j] = 0, thus eliminating the need for if block in the inner
loop body in Algorithm 3. For this purpose we introduce a new constant
AllN = 1 << (N − 1) that has exactly N 1-bits in the beginning. The next
version of the algorithm heavily relies on the bit twiddling tricks that make
it possible to isolate the rightmost 1-bit (y = x&(−x)) and to turn off the
rightmost 1-bit (y = x&(x − 1)). Let us present the modified inner loop
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structure in the pseudocode as Algorithm 4.

Data: LS[N ][N ], CR[N ][N ], L[N ][N ], Rows[N ], Columns[N ], MD,
AD, SquaresCnt,i,j

/* Compute vector of possible values for cell [i][j] */

CR[i][j] = Rows[i]|Columns[j]|MD|AD;
/* Iterate over values of cell [i][j] that do not violate

any uniqueness constraint. */

for L[i][j] = AllN ⊕ CR[i][j]; L[i][j]! = 0;
L[i][j] = L[i][j]&(L[i][j] − 1) do

LS[i][j] = L[i][j]&(−L[i][j]);
/* Mark the value as occupied and proceed */

Rows[i] = Rows[i]|LS[i][j];
Columns[j] = Columns[j]|LS[i][j];
MD = MD|LS[i][j];
AD = AD|LS[i][j];
BODY OF INNER LOOP FOR NEXT CELL LS[i′][j′];
Rows[i] = Rows[i]⊕ LS[i][j];
Columns[j] = Columns[j]⊕ LS[i][j];
MD = MD ⊕ LS[i][j];
AD = AD ⊕ LS[i][j];

end

Algorithm 4: Optimized inner loop structure with the bit arithmetic

The first major achievement in the improved inner loop design is that we
got rid of one of the two conditional operators (the remaining one is incor-
porated into the for cycle construction and it is unlikely that we can get
rid of it). So, we first compute the value of CR[i][j]. It contains the bit
vector with 1 bits in positions corresponding to values of LS[i][j] that vio-
late any of uniqueness constraints. Then we use additional auxiliary integer
array L[N ][N ]. In the for cycle we initialize L[i][j] with possible values of
LS[i][j] that do not violate any constraint and iterate over them by switch-
ing off the rightmost 1 bit until L[i][j] becomes 0. For each value of L[i][j]
we produce the value of LS[i][j] by isolating the rightmost 1-bit in L[i][j].
Once L[i][j] becomes 0 it means that we processed all available alternatives.
This improved algorithm version makes it possible to generate about 6× 106

diagonal Latin squares of order 9 per second without heuristic optimizations.
Note, that we can use the BMI1 instruction set, supported in the state-

13



of-the-art CPUs, via the corresponding intrinsics1 to switch off the rightmost
1 bit ( blsr u64) and isolate the rightmost 1 bit ( blsi u64) faster. On
average, it leads to a performance increase of 5-10%.

Table 1: Performance of the proposed versions of the algorithm for generation of Latin
squares of small order.

Version Problem Squares per second

Standard (Algorithms 1 and 2) DLS9 1.8× 106

Bit arithmetic (Algorithm 3) DLS9 2.6× 106

DLS9 6.8× 106

LS8 9× 106

Optimized bit arithmetic DLS8 5.8× 106

(Algorithm 4) LS9 8.0× 106

LS10 6.3× 106

DLS10 6.0× 106

In Table 1 we show the generation speed for different classes of Latin
squares. Here for diagonal Latin squares we fixed the first row (in an as-
cending order) and for ordinary Latin squares we fixed both the first row
and the first column (in an ascending order) because if we know the number
of normalized (diagonal) Latin squares – it is easy to compute the corre-
sponding number of non-normalized squares. Table entry (D)LS followed by
number stands for (diagonal) Latin squares of specific order. The order of
cells in each case was determined according to heuristic procedure outlined
in Subsection 2.3. The performance of Algorithm 4 for DLS9 was measured
for the algorithm versions that use Lookahead heuristic (in other cases the
corresponding optimization requires a lot of empirical evaluation and testing,
so for other entries the lookahead heuristic is not used).

It is clear that bit arithmetic techniques make it possible to significantly
increase the performance of the algorithm. Note, that nor here, nor in the
next section we did not use processor intrinsics to boost the performance
because we mainly employed the computers and clusters that did not support
BMI1 instruction set.

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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4. Equivalence Classes for Diagonal Latin squares

The so-called symmetry breaking techniques [9] are often used in algo-
rithms dealing with combinatorial objects in order to avoid visiting the parts
of the search space that are in some way similar to that already processed.
In the case of Latin squares when all possible species representatives are to
be processed, their space is usually divided into the so-called main classes
and then only one representative for each class is considered. This ques-
tion is covered in more detail, for example, in [1, 4]. Informally speaking,
a main class is mainly formed by Latin squares that can be produced from
each other by all possible transpositions of rows and columns, since these
transformations do not lead to violation of any constraints. However, the
diagonal Latin squares represent a special case, because in their case most
transpositions lead to violation of uniqueness constraints on elements from
the main diagonal and the main antidiagonal. Below we present the class of
symmetric row-column transpositions which transform diagonal Latin square
to a diagonal Latin square.

4.1. Transformations That Preserve Elements on Diagonals

The roots of the corresponding class of transformations lie in the area
of Magic squares [10], thus the transformations themselves are called M-
transformations. A magic square is an n×n table filled with integer numbers
in such a way that the sums of numbers in each row, each column and also in
the main diagonal and main antidiagonal are all equal to the same so-called
“magic constant”. It is clear that each diagonal Latin square is a Magic
square. To the best of our knowledge, the M-transformations, while widely
known, have not been published in any one paper to be cited, thus we will
briefly present them below. There are three types of basic M-transformations.

• The first type is formed by mirroring a diagonal Latin square horizon-
tally (or vertically) and relative to the main diagonal (or antidiagonal).
There are 4 variants of this transformations.

• The second type contains all transpositions of at least two columns that
are positioned symmetrically with respect to the middle with simulta-
neous transposition of two symmetrically positioned rows, for example,
transposition of 0-th and (n−1)-th columns with simultaneous transpo-
sition of 0-th and (n− 1)-th row. The number of such transformations
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for diagonal Latin squares of order n is 2⌊
n

2
⌋ (equal to the number of

all subsets of a set with ⌊n
2
⌋ elements).

• In the third type there are all transpositions where we simultaneously
transpose at least two columns in the left half of a Latin square and at
least two columns positioned symmetrically with respect to the middle
in the right half of a square with simultaneous similar transposition
of rows, for example transposition of 0-th column with 1-th column,
(n− 2)-th column with (n− 1)-th column, 0-th row with 1-th row and
(n−2)-th row with (n−1)-th row. The number of these transformations
for diagonal Latin square of order n is ⌊n

2
⌋! (equal to the number of

permutations of a set with ⌊n
2
⌋ elements).

The intuition behind basic M-transformations is relatively simple: each
time we transpose rows or columns, we do it in such a way, that the elements
from both main diagonal and main antidiagonal, positioned within these
rows or columns, are only transposed within their diagonal. Because of this
reason, any combination of basic M-transformations, to which we refer as M-
transformation, also preserves elements on diagonals. Hereinafter we assume
that after each M-transformation we fix the first row of a constructed diagonal
Latin square to ascending order by renaming elements.

As a result, we can form an equivalence class for (normalized) diagonal

Latin squares of order N of size at most 4 × 2⌊
N

2
⌋ × ⌊N

2
⌋!. Meanwhile for

ordinary Latin squares a main class can contain up to 6×N×N ! (normalized)
Latin squares. The difference is drastic: for N = 9 it is 1 536 normalized
diagonal Latin squares vs 19 595 520. For N = 10 it is 15 360 vs 217 728
000.

It is currently not clear if it is possible to generate/enumerate only unique
representatives of equivalence classes of diagonal Latin squares without sig-
nificantly sacrificing the generation performance, especially if we take into
account the fact that in the context of enumeration for each equivalence class
representative we have to find the power of its equivalence class. We found
that for our purposes of enumeration of diagonal Latin squares of small or-
der there is a relatively easy workaround that makes it possible to mostly
preserve the achieved algorithm effectiveness.

4.2. Symmetry Breaking

The interesting observation consists in the following: we can apply M-
transformations to partial diagonal Latin squares. Assume that we have an
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incomplete diagonal Latin square, in which only elements from the first and
last row, and from the main diagonal and main antidiagonal are present.
Let us informally refer to such an incomplete diagonal Latin square as to
hourglass design. In Figure 2 we show an example of hourglass design for
N = 10. How do we apply M-transformations to an incomplete diagonal
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Figure 2: Example of hourglass design for N = 10. The design on the right is a vertically
mirrored version of the one on the left.

Latin square? The same way we do it to an ordinary diagonal Latin square,
however, we only set values to elements which are known. Similarly, when
renaming elements to fix the first row in ascending order, we rename only
known elements. For example, if we mirror the hourglass design from the left
part of Figure 2 vertically, we will produce a hourglass design from the right
part of Figure 2.

It is easy to see, that M-transformations, that do not transpose the first
row with any other row besides the last one, and do not mirror the square
relative to its diagonals, transform hourglass design into hourglass design.
Assume that H1 and H2 are two distinct hourglass designs of order N , and
H2 is produced from H1 by applying to it some M-transformation, to which
we refer to as µ, i.e. H2 = µ(H1).

Proposition 1. The number of diagonal Latin squares of order N that
share H1 is equal to the number of diagonal Latin squares of order N that
share H2 = µ(H1).

Sketch Proof.

When we apply µ to a hourglass design H1, we implicitly apply it to
every single diagonal Latin square which shares cell values with H1. Since
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µ(H1) = H2 it means that any diagonal Latin square that shares cell values
with H1 will be transformed to a diagonal Latin square that shares cell values
with H2.

An interesting and quite obvious property of M-transformations is that
for each transformation there is an inverse transformation. It means that
for any combination of basic M-transformations µ there is a combination of
basic M-transformations (which cancel them) µ−1 such that for an arbitrary
diagonal Latin square A the following holds µ(µ−1(A)) = µ−1(µ(A)) = A.
That is why, the situation, when there are two distinct Latin squares A and
B that share H1 and µ(A) = µ(B), is impossible.

From the above it follows that the sets of diagonal Latin squares that
share H1 and H2 have the same power.

Corollary 1. It is possible to transform the proposed enumeration algo-
rithm for diagonal Latin squares of order N in the following way:

1. Construct all possible hourglass designs of order N .

2. Split the space of hourglass designs of order N into equivalence classes
using applicable M-transformation. Compute the power of each equiv-
alence class.

3. Process each constructed equivalence class as follows.

(a) Choose one representative of an equivalence class and enumerate
all diagonal Latin squares of order N that share cell values with
this representative.

(b) Multiply the result of enumeration by the power of the equivalence
class.

4. Summarize the results.

4.3. Embedding Symmetry Breaking into the Algorithm

The proposed symmetry breaking technique fits well into the general idea
of our algorithm: we fill Latin square cells in specific order, so we can with
little effort fill in hourglass design elements before everything else. For this
purpose we do not even need to change the constructed optimal cells order
that much: the first row is fixed beforehand, and the diagonals are filled
before everything else. Thus to produce hourglass designs we need only to
fill the last row of cells right after filling diagonals.

However, things stop being simple at this point because the number of
hourglass designs can be very large. Indeed, for diagonal Latin squares of
order N = 8 it is equal to 22 192 248. One equivalence class for hourglass
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Function Canonize(Hourglass):

Input: Hourglass[N ][N ], TR0[2], TR1[2
⌊N

2
⌋, TR2[(⌊N

2
⌋ − 1)!]

/* Hourglass[N][N] -- Hourglass design */

/* TR0[2], TR1[2
⌊N

2
⌋−1], TR2[(

N
2
− 1)!] -- arrays of

M-transformations of three types. */

/* EQC - container for constructed hourglass designs */

int EQC[2× 2⌊
N

2
⌋ × (⌊N

2
⌋ − 1)!][N ][N ]);

/* K - counter for constructed hourglass designs */

int K = 0;
/* F -- flag indicating if Hourglass is canonic form */

bool F = True;
/* Iterate over equivalent hourglass designs. */

for i1 = 0; i1 < 2; i1 = i1 + 1 do

for i2 = 0; i2 < 2⌊
N

2
⌋; i2 = i2 + 1 do

for i3 = 0; i3 < (⌊N
2
⌋ − 1)!; i3 = i3 + 1 do

int T [N ][N ]; // Apply M-transformations.

T = Transform(Hourglass, TR0[i1], TR1[i2], TR2[i3]);
/* Normalize constructed hourglass design. */

Normalize(T );
if T < Hourglass then

F=false;
break;

else

K = K + 1;
EQC[K] = T ;

end

end

end

if F = True then

/* Compute the number of distinct hourglass designs

in EQC. */

int R = ComputeDistinct(EQClass,K);
return R;

else

return 0 ;
Algorithm 5: Algorithm for computing canonic form of hourglass design

19



designs of order 8 contains at most 192 designs, so as a result we still need to
store about 100 000 (116 857) classes representatives. For larger dimensions
the number of hourglass designs is far too large to store it in a memory of a
state-of-the-art computer.

However, there is a computational way to choose unique class representa-
tives, which, while presenting overhead in terms of computational resources,
uses very little memory. We can embed equivalence checking right into the
general algorithm. Hereinafter we assume that a canonic form of a hourglass
design is a hourglass design from its equivalence class which is lexicographi-
cally the first for a fixed ordering of elements (for example, in natural order
from left to right from top to bottom). It means that once we generated
a hourglass design H , we can apply to it the procedure, that determines if
it is equal to its canonic form. This procedure applies to H all applicable
M-transformations and if some equivalent design H ′ is lexicographically less,
H ′ < H , then it means that H is not a canonic form. In this case the pro-
cedure terminates and returns zero. Otherwise, if the procedure applied all
possible combinations of M-transformations and H is still the least of them,
then we know exactly the power of H ’s equivalence class, and the procedure
returns this number. Note, that in practice for different reasons, the hour-
glass designs H1, H2 produced by applying different M-transformations µ1,
µ2, µ1 6= µ2 to hourglass designH can be equal (H1 = µ1(H) = µ2(H) = H2),
thus we in fact need to store all constructed hourglass designs and, in case our
H is a canonic form, to compute the number of distinct designs in the equiv-
alence class. The pseudocode of this algorithm is presented as Algorithm
5.

Now that we introduced the function to canonize hourglass designs, we
can embed it into the general algorithm. Informally speaking, we split the
algorithm into two parts: the first (outer loops) that generates a hourglass
design, and the second (inner loops) that enumerates all possible diagonal
Latin squares that share generated hourglass design if it coincides with its
canonic form. The general outline of the corresponding algorithm is presented
as Algorithm 6

In total the proposed scheme makes it possible to reduce the search space
for N = 8 and N = 9 by almost 200 times.
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Data: LS[N ][N ], Rows[N ], Columns[N ], MD, AD,
SquaresCnt,TotalCnt

TotalCnt = 0;
for ... do

/* Inner loops generating hourglass design */

/* Once a hourglass design is generated check if it is

equal to canonic form */

int multiple = Canonize(LS);
SquaresCnt=0;
if multiple 6= 0 then

for ... do
/* If a hourglass design is equal to canonic

form, then we enumerate all diagonal Latin

squares that share it, otherwise we generate

next hourglass design */

end

TotalCnt = TotalCnt + SquaresCnt×multiple;
...
/* ends of inner loops generating hourglass designs */

end

Algorithm 6: General outline of enumeration algorithm with symmetry
breaking

5. Computational Experiments

We applied the proposed algorithm to solve three problems: enumera-
tion of diagonal Latin squares of orders 8 and 9, enumeration of vertically
symmetric diagonal Latin squares of order 10, and estimation of the num-
ber of diagonal Latin squares of order 10. Note, that we first applied the
algorithm in its pure form (without symmetry breaking techniques) to enu-
merate diagonal Latin squares of order 9 in two large scale computational
experiments and to estimate the number of diagonal Latin squares of order
10. Later, using new version of the algorithm we verified the achieved result
and enumerated vertically symmetric diagonal Latin squares of order 10.

5.1. Enumeration of diagonal Latin squares of order 8

We used the preliminary version of the presented algorithm (in the form
outlined in Section 2, i.e. without bit arithmetic-related optimizations) to
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enumerate diagonal Latin squares of order 8 (7 447 587 840) [11], which
is reflected in the sequence A274171 [12] in the On-Line Encyclopedia of
Integer Sequences. At the time of experiment it took about 30 CPU hours.
Our current algorithm implementation achieves this result in 21 minutes on
one CPU core. If we augment it with symmetry breaking techniques, this
time is even less - about 90 seconds on one CPU core. Theoretical speedup
must be about 200 times, but in practice it is only 14. The explanation lies
in the fact that symmetry breaking presents computational overhead, and
for simple problems its impact is significant. If we exclude the time required
to split hourglass designs of order 8 into equivalence classes, then the actual
enumeration process takes about 6 seconds.

5.2. Enumeration of diagonal Latin squares of order 9

At first we performed two separate experiments to enumerate diagonal
Latin squares of order 9. The first one was held in the volunteer comput-
ing project Gerasim@home [13], while the second was performed within the
computing cluster “Academician V.M. Matrosov” of Irkutsk supercomputing
center SB RAS2.

In both cases we decomposed the problem in the following way. Note,
that we fix the first Latin square row in an ascending order. Since we fill in
the cells of Latin square in a specific order (presented at Fig. 1), it means
that we can choose small number of the first cells to be filled and process
their correct assignments separately. In our experiments we used in the role
of ”decomposition set” the first 10 cells (according to the aforementioned
order). There are 1 225 884 possible correct assignments of these cells. We
constructed a workunit for each of these assignments. In volunteer computing
a workunit is a batch of computational tasks. In each workunit the problem
was to enumerate all possible diagonal Latin squares of order 9 with the fixed
values of the cells in the first row and 10 more cells (in total 19 cells fixed
out of 81).

Since the proposed workunits do not depend on each other in any way, it
means that we can process them according to the embarrassing parallelism
concept [14]. In particular, it allows us to employ both parallel and dis-
tributed computing systems for this purpose. As a result we obtain an array
of 1 225 884 integer numbers. Their total sum is equal to the number of

2http://www.hpc.icc.ru
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diagonal Latin squares of order 9 with fixed first row.

5.2.1. Experiment in a volunteer computing project

The volunteer computing project Gerasim@home [13] is based on BOINC
(Berkeley Open Infrastructure for Network Computing [15]) platform. One
of the goals of this experiment was to prove that volunteer computing can
be used to compute the number of specific combinatorial designs because
usually, there are relatively high demands to such experiments. The scheme
of this experiment is showed at Fig. 3.
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Results post-processing

Figure 3: Scheme of the Gerasim@home experiment

Let us comment on this scheme. There is a project server, which dis-
tributes workunits and processes their results. On each host (usually a per-
sonal computer of a volunteer) the client application processes the input
data. In our case as an input data the application takes the file containing
the workunit description in the form of values of specified 10 cells (as it was
outlined above). The number of diagonal Latin squares, obtained as a result
of enumeration process, is written to an output file and sent back to server.
In order to decrease the influence of possible software and hardware errors
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we used the so called quorum of 2. It means that, according to the BOINC
redundancy technique, two copies of each workunit are sent to different vol-
unteers. After processing the results are compared and if they coincide, then
the result of the corresponding workunit is marked as correct. If not, then
two new copies of the workunit are generated.

The computational experiment aimed at enumeration of diagonal Latin
squares of order 9 was launched on 18 June, 2016. At that moment the
performance of the project was about 2.5 teraflops. In the experiment we used
only x86 and x64 client applications for Windows OS. The experiment took
3 months and ended on 17 September, 2016. In total, about 500 volunteers
from 51 countries participated in this experiment. They connected to the
project about 1000 hosts with the peak performance of 5 teraflops (an average
performance was about 3 teraflops).

As a result of post-processing, we determined the number of diagonal
Latin squares of order 9 with first row fixed in ascending order: 5 056 994
653 507 584. If we multiply it to 9! we obtain the number of diagonal Latin
squares of order 9. It should be noted, that if we didn’t improve the algorithm
performance by means, described in Sections 2 and 3, the corresponding
experiment in Gerasim@home would take about 10 years.

5.2.2. Experiment on a Computing Cluster

In application to hard enumeration problems it is crucial to cross-check
the results, since it is possible that small errors remain undetected in specific
circumstances and ruin the correctness. One might say that it is especially
so when using volunteer computing, however, our empirical results prove
otherwise. In any case, we decided to check ourselves and launched one
more experiment aimed at solving the same problem. This experiment was
performed within the computing cluster “Academician V.M. Matrosov” of
Irkutsk supercomputing center SB RAS. Each node of this cluster is equipped
with two 16-core AMD Opteron 6276 CPUs and 64 gigabytes of RAM. We
used the same approach to decomposition as in Gerasim@home experiment.
However, we did not use any redundant calculations, so each workunit was
processed exactly once.

We developed an MPI-program (here MPI stands for Message Passing In-
terface) based on our algorithm. In this program one process is a control pro-
cess, and all the remaining processes are computing processes. The control
process creates and maintains the pool of workunits to be processed by com-
puting processes. It also accumulates and processes their results. Overall, the

24



organization of the experiment was quite similar to that in Gerasim@home
(see Fig. 3).

The experiment was launched on 17 July, 2016. It took several launches
of the MPI-program to finish it. In these launches the number of employed
cluster nodes varied from 10 to 15, and the duration varied from 2 hours to 7
days. The majority of launches used 15 nodes with a duration of 7 days. The
experiment ended on 17 October, 2016. On average, the experiment took 2
months of computing time with 15 nodes. As a result we verified that the
number computed in Gerasim@home was correct.

5.2.3. Experiment With Symmetry Breaking

We developed the symmetry breaking technique after two experiments
described above already ended, but decided to check the correctness of the
result and the technique. We performed the experiment with symmetry
breaking on a new part of the computing cluster with performance of about
15 previously used cluster nodes. The experiment ended after six and a half
hours and proved the result obtained before.

5.3. Estimation of the Number of Diagonal Latin Squares of Order 10

After enumerating diagonal Latin squares of order 9, we naturally decided
to apply our algorithm to diagonal Latin squares of order 10. However, it
became clear quite fast, that their number is very large. To estimate it we
employed the Monte Carlo method [16] in the following form. If we specify
some order, in which we fill the cells of a diagonal Latin square, we, in fact,
can consider an incomplete diagonal Latin square, formed by the first k cells
according to the specified order. It is natural to consider the trivial order: the
first k elements of a Latin square from left to right from top to bottom. Let
us refer to such incomplete diagonal Latin squares of order 10 as to DLSk

10.
First, for a specific k we compute the number of possible DLSk

10, to which we
refer as Nk

10. Then we form a random sample of DLSk
10. For each incomplete

diagonal Latin square from the sample we enumerate all possible diagonal
Latin squares of order 10 that can be constructed by filling unassigned cells
of this DLSk

10. As a result of processing of the random sample we construct
an estimation of an expected value of the number of diagonal Latin squares
of order 10 that share the same DLSk

10. By multiplying this estimation of
expected value to Nk

10 we construct the estimation of the number of diagonal
Latin squares of order 10.
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First we need to choose k in such a way that we can compute the number
of DLSk

10 in reasonable time, and then be able to process the sample of
DLSk

10 of a sufficient size. We fix the elements of the first row of a Latin
square in an ascending order for simplicity. We started from value k = 30.
The corresponding N30

10 is 284 086 571 712. However, for each DLS30
10 it takes

several days on one core of state-of-the-art CPU to enumerate all possible
diagonal Latin squares that share some DLS30

10 . Thus we chose k = 32
and computed the estimation for this value. The number of corresponding
incomplete diagonal Latin squares N32

10 is 12 611 543 636 160. We generated
a random sample of size 10 000 DLS32

10 instances and used it to estimate
the expected value of the number of diagonal Latin squares of order 10 with
fixed DLS32

10 . The corresponding expected value was equal to 11 931 268 344.
Thus the estimated number of diagonal Latin squares of order 10 is about
1.5× 1023.

5.4. Enumeration of Vertically Symmetric Diagonal Latin Squares of Order
10

Since the estimated number of diagonal Latin squares of order 10 turned
out to be too large to enumerate them in affordable time given available
resources, even with symmetry breaking techniques, we decided to apply our
approach to enumeration of a much smaller class of diagonal Latin squares
of order 10, in particular, of vertically symmetric diagonal Latin squares.
A vertically symmetric diagonal Latin square is a diagonal Latin square for
which the following holds:

∀i, j ∈ {0, . . . , N − 1}LS[i][j] = N − 1− LS[i][N − 1− j]

It is clear, that the algorithm for enumerating such squares is much more
simple than that for DLS of order 10: we basically can fill only the left
half of the Latin square, because the values of elements in the right half
are derived explicitly from the left one. Our algorithm when modified to
take vertical symmetry into account makes it possible to enumerate up to 30
million diagonal Latin squares of order 10 per second on one CPU core.

Note, that M-transformations described above actually preserve vertical
symmetry. It means that we can apply the proposed symmetry breaking
techniques to this problem as well. The equivalence class for vertically sym-
metric hourglass designs of order 10 contains up to 25 × 4! = 768 entries
because mirroring vertically is neutralized by vertical symmetry. Thanks to
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this it was possible to enumerate vertically symmetric diagonal Latin squares
of order 10 quite fast: it took 735 seconds when launched on 8 threads of
Intel Core i7-6770 CPU. The resulting number is 82 731 715 264 5123.

6. Related Work

Authors are not aware of algorithms developed specifically for enumera-
tion of diagonal Latin squares. Papers [17, 3, 4] describe the approaches that
led to enumeration of Latin squares of orders 9, 10 and 11. The correspond-
ing algorithms heavily rely on the ability to permute rows and columns to
construct equivalence classes and evaluate their properties. To the best of
our knowledge the results of these papers are not applicable to diagonal Latin
squares because the vast majority of row-column permutations break diago-
nal property. Also, diagonal Latin squares form relatively small equivalence
classes.

There are several examples of application of parallel and volunteer com-
puting to the search for combinatorial designs based on Latin squares. With
the help of a computing cluster there was proven that there is no finite pro-
jective plane of order 10 [18]. In the volunteer computing project SAT@home
several dozen pairs of mutually orthogonal diagonal Latin squares were found
[19].

Quite similar approach to the one used in our paper was employed in
[20]. In that paper the hypothesis about the minimal number of clues in
Sudoku was proven. The authors developed the fast algorithm to enumer-
ate and check all possible Sudoku variants. The algorithm was implemented
and launched on a modern computing cluster. It took about 11 months
for this cluster to check all variants. The volunteer computing project Su-
doku@vtaiwan [21] was used to confirm the solution of this problem.

7. Conclusions and Future Work

In this paper we presented the fast algorithm for enumeration of diagonal
Latin squares of small order. We developed the fast implementation of the
algorithm that exploits the features of state-of-the-art CPUs. Using the
proposed symmetry breaking techniques it is possible to significantly reduce

3https://oeis.org/A287649
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the search space. In future we plan to study if the proposed algorithms can
be extended to GPUs and used to solve other open problems in related areas.

The present article is a significantly reworked and extended variant of the
paper [22]. The modifications include (but not limited to) new section on
symmetry breaking and applications of the corresponding techniques (Section
4), thanks to which the main result of [22] was improved by approximately
200 times, and the related experiments described in subsections 5.1, 5.2.3,
5.3, 5.4).
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