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Abstract

The work that consists of two parts is devoted to the problem of enumerating unrooted
r-regular maps on the torus up to all its symmetries. We begin with enumerating near-r-regular
rooted maps on the torus, projective plane and the Klein bottle. We also present the results of
enumerating some special kinds of maps on the sphere: near-r-regular maps, maps with multiple
leaves and maps with multiple root semi-edges. For r = 3 and r = 4 we obtain exact analytical
formulas. For larger r we derive recurrence relations. Then using these results we enumerate
r-regular maps on the torus up to homeomorphisms that preserve its orientation — so-called
sensed maps. Using the concept of a quotient map on an orbifold we reduce this problem to
enumeration of certain classes of rooted maps. For r = 3 and r = 4 we obtain closed-form
expressions for the numbers of r-regular sensed maps by edges. All these results will be used in
the second part of the work to enumerate r-regular maps on the torus up to all homeomorphisms
— so-called unsensed maps.
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Introduction

By a (topological) map M on a surface we will mean an embedding of a connected graph G, loops
and multiple edges allowed, into a compact 2-dimensional surface S, such that G is as a subset of S,
and its complement S \ G is homeomorphic to a set of topological polygons. These f polygons are
the faces of the map M which also has some amount v of vertices (points on the surface S) and n of
edges (nonintersecting curves on the surface that have no common points other than the vertices of
the graph). A map is rooted if one of its semi-edges is distinguished and one of two possible local
orientations of the surface in the neighborhood of this semi-edge is chosen. The vertex this semi-edge
is incident to will often be referred to as the root vertex. A map is called r-regular if the degree
of each vertex is equal to r, and near-r-regular if all its vertices except possibly the root one have
degree r. The notion of a dual map allows to consider an r-angulation of the surface instead of a
r-regular map on it.

Two topological maps M1 and M2 on a surface are said to be equivalent if there exists a home-
omorphism h of the surface into itself that transforms the edges, vertices and faces of one map
into the corresponding elements of the other. For rooted maps we require in addition that such
homeomorphism transforms the root semi-edge of M1 into the root semi-edge of M2 preserving local
orientation of the surface. Two homeomorphisms h1 and h2 of a topological map M onto itself are
considered equivalent if h1 · h−1

2 acts as identity on semi-edges of M. By sensed (unsensed) map
we mean an equivalence class of maps where the equivalence relation is defined by sense-preserving
(sense-preserving or sense-reversing) homeomorphisms.

William Tutte noted (see, for example [1]) that a map with a distinguished root semi-edge always has
a trivial symmetry group. In the series of his “census” papers he derived formulas for enumerating
rooted planar maps with n edges [1], rooted 3-regular maps [2], rooted eulerian maps [3], and some
other classes maps on the sphere. In the paper [4] Tutte derived a recurrence that expresses the
number of rooted maps with some given numbers of vertices, faces and the degree of the root vertex
through the numbers of analogous maps for smaller parameter values. He provided its solution in the
form of a generating function and calculated the corresponding numbers of rooted planar maps with
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v vertices and f faces. At approximately the same time the papers [5], [6] and [7] appeared, devoted
to the problem of enumerating 3-regular rooted maps on the sphere. The paper [8] considered some
class of 4-regular maps. In [9] Brown applied Tutte’s technique to obtain the numbers of rooted
non-separable maps on the sphere and rooted maps on the projective plane.

The first work devoted to enumeration of rooted maps on surfaces of arbitrary genus g > 0 was the
paper [10] of Walsh and Lehman. Using Tutte’s approach for enumerating planar maps, the authors
derived a recurrence relation for the numbers of rooted maps and calculated the first terms of the
corresponding sequences. In addition, they provided an explicit expression for the number of one-face
(or unicellular) maps with n edges on a surface of genus g, as well as a formula for the number of
such maps with a prescribed list of vertex degrees.

The next step in enumerating rooted maps on surfaces was done by Bender and Canfield. In [11] they
derived a system of equations for generation functions that enumerates rooted maps on orientable
and non-orientable surfaces, and found the asymptotics of the corresponding sequences. In [12] D.
Arques used the method of [11] to obtain closed-form formulas for the number of rooted toroidal
maps with n edges and for the number of rooted toroidal maps with v vertices and f faces. In
[13] Bender, Canfield and Robinson independently from Arques enumerated rooted maps on the
torus and the projective plane, derived some explicit expressions for the corresponding generation
functions and analyzed the asymptotic behavior of their coefficients. In [14] a generation function
was obtained for the number of rooted maps of genera 2 and 3 with n edges. Some recent results
regarding enumeration of rooted maps on surfaces of higher genera can be found in [15] and [16].
In 2000 appeared the Atlas [17] which gives a complete list of unrooted maps and hypermaps with
small number of edges on both orientable and nonorientable surfaces. For each unlabelled object the
number of different rootings is also given.

Along with counting arbitrary maps, a series of works devoted to enumerating 3- and 4-regular
rooted maps on surfaces (or their duals — triangulations and quadrangulations) appeared in the
nineties and in the beginning of the two thousandth. In 1991 Gao [18] used the approach of [11] to
enumerate rooted triangular maps on genus g surfaces. In particular, he obtained a list of parametric
expressions for the numbers of such maps on the sphere, torus and the projective plane. Lately Gao
extended these results to some special classes of 3-regular maps (see, for example, [19]). Furthermore,
there exists a series of recent papers [20], [21], [22], [23] devoted to enumeration of 4-regular maps.
Unfortunately, explicit formulas obtained in these papers for arbitrary 4-regular maps on the torus
and on the Klein bottle contain some mistakes and do not align with the results of explicit generation
of the corresponding structures.

A general technique for counting planar maps up to orientation-preserving homeomorphisms was
developed by Liskovets [24] in the early eighties. His approach reduces the enumerating problem for
sensed maps on the sphere to counting quotient maps on orbifolds, maps on quotients of a surface
under a finite group of automorphisms. His ideas were further developed by Mednykh and Nedela
in a series of papers devoted to enumerating sensed maps and hypermaps on orientable surfaces (see
[25], [26], [27]). They employ a geometric approach based on reducing the problem for sensed and
unsensed maps to enumeration of rooted maps on cyclic orbifolds. Coefficients in the formulas are
determined in terms of numbers of order-preserving epimorphisms from orbifold fundamental groups
to cyclic groups.

The present paper generalizes the results of the article [28] devoted to enumeration of regular rooted
and sensed one-face maps on surfaces of a given genus. The first part of the present paper is
devoted to building analytical formulas for enumerating near-r-regular rooted maps on the torus



(the numbers τn), on the projective plane (πn) and on the Klein bottle (κn). For this problem we
use the technique described in papers [4], [10] and [13]. For r = 3 and r = 4 we obtain simple exact
analytical expressions for the corresponding numbers. For other values of r we derive a system of
generating functions as well as a system of recurrence relations that allows us to determine coefficients
numerically. In the second part of the present article we will use the technique developed by Mednykh
and Nedela to enumerate sensed r-regular maps on the torus. For r = 3 and r = 4 we provide explicit
enumerating formulas. For r = 5 and r = 6 we give the numerical results.

1 Counting rooted r-regular maps on the torus, the projec-

tive plane and the Klein bottle

Let tn,d be the number of near-r-regular maps with n edges on the torus with the root semi-edge
incident to a vertex of degree d. To obtain recurrence relations for the numbers tn,d we will use the
approach of Tutte [1], [4]. For the problem in question it is more convenient to use not the operation
of deleting an edge, but the operation of contracting one, as it retains the near-r-regularity property.
We show that

tn,d = tn−1,d+r−2 + dn−1,d−2 + 2

n−1∑

i=0

d−2∑

j=0

sn−i−1,d−j−2 · ti,j , n > 1, d > 1, (1)

t0,0 = 1, tn,d = 0 ∀ n < 0 or d < 0.

Here sn,d is the number of near-r-regular rooted maps with n edges and the degree of the root vertex
equal to d. The numbers dn,d correspond to maps on the sphere with two distinct root vertices having
total degree d.

Indeed, let the root edge be a non-loop (see Figure 1(a)). After contracting such an edge we obtain
some new rooted map with n− 1 edges and the degree of its root vertex increased by two (summand
tn−1,d+r−2). Now suppose that the root edge is a loop. Two cases are possible: the root edge either
encloses some region homeomorphic to a disc on the torus’ surface or wraps the torus like a meridian
or parallel (Figure 1(b)).

(a) (b)

Figure 1: Toroidal maps



In the first case contracting the root edge splits the torus into a new torus and a sphere, and the
total degree of the root vertices of maps on these surfaces becomes equal to d − 2. If the number
of semi-edges incident to the root vertex and lying outside of the loop is j, then the number of
semi-edges lying inside the loop is d − j − 2. Similarly, if there are i edges in total outside of the
loop, then inside of it there are n− i− 1 edges. Multiplying the number ti,j of ways to build a map
on the torus with i edges and j semi-edges incident to the root vertex by the number sn−1−i,d−j−2

of ways to build a map on the sphere with n − 1 − i edges and a root vertex of degree d − j − 2,
we obtain the term 2

∑n−1
i=0

∑d−2
j=0 sn−i−1,d−j−2 · ti,j in the right side of (1). The factor 2 in this term

arises from the fact that the sphere and the torus may be positioned in two ways with respect to the
loop: the sphere outside and the torus inside or vice versa.

In the second case the root edge is a loop that wraps the torus (see Figure 1(b)). By contracting
such edge we obtain a surface homeomorphic to a sphere with a map embedded into it. This map
has n−1 edges, two distinct root vertices with a total degree d−2 and remaining vertices of degree r
(the term dn−1,d−2 in (1)). Positions of roots at the root vertices allow us to reconstruct the original
toroidal map in a unique way.

A similar technique can be used to derive recurrence relations describing the number of maps on the
projective plane and the Klein bottle. Let pn,d and bn,d be the numbers of near-r-regular maps on
the projective plane and the Klein bottle, respectively. Arguments similar to those for maps on the
torus allow us to write out the following recurrence relations for the numbers pn,d and bn,d:

pn,d = pn−1,d+r−2 + (d− 1) · sn−1,d−2 + 2

n−1∑

i=0

d−2∑

j=0

sn−i−1,d−j−2 · pi,j, (2)

bn,d = bn−1,d+r−2+(d− 1) · pn−1,d−2+ dn−1,d−2+
n−1∑

i=0

d−2∑

j=0

(
pn−i−1,d−j−2 · pi,j +2 · sn−i−1,d−j−2 · bi,j

)
. (3)

To obtain a closed system of equations in addition to (1), (2) and (3) we should also derive recur-
rence relations for sn,d and dn,d. Using similar considerations one can show that the corresponding
recurrence relations take the form

sn,d = sn−1,d+r−2 +
n−1∑

i=0

d−2∑

j=0

sn−i−1,d−j−2 · si,j, (4)

dn,d = dn−1,d+r−2 −
r−2∑

i=1

q
(i)
n−1,d+r−2−i +

d(d− 1)

2
sn−1,d−2 + 2

n−1∑

i=0

d−2∑

j=0

sn−i−1,d−j−2 · di,j. (5)

Here q
(i)
n,d is the number of maps with n edges, two distinct root vertices of the degrees d and i, and

with all the other vertices having the degree r, satisfying the following recurrence relation:

q
(i)
n,d = q

(i)
n−1,d+r−2 + i · sn−1,d+i−2 + 2

n−1∑

j=0

d−2∑

k=0

q
(i)
j,k · sn−j−1,d−k−2. (6)

To derive analytic solutions for these recurrence relations we should rewrite them in a form of a
system of equations for generating functions. We begin with the numbers sn,d and introduce the
generating functions

Sn(x) =

2n∑

d=0

sn,d x
d, S(x, t) =

+∞∑

n=0

Sn(x) t
n.



In terms of generating functions, equation (4) can be rewritten as follows:

S(x, t)− 1 =
t

xr−2

[
S(x, t)− 1−

r−2∑

i=1

xi Si(t)

]
+ t x2 S2(x, t), Si(t) :=

∞∑

j=0

sn,j t
j . (7)

The possibility of deriving explicit expressions for the numbers tn,d, pn,d and bn,d heavily depends on
the possibility of obtaining an analytic solution of (7). This equation is quadratic in S(x, t), but in
addition to S(x, t) it also contains r − 2 functions Si(t) that should be determined.

Our next steps depend on parity of r. For even r from the handshaking lemma it follows that the
root vertex must be of an even degree too. Consequently, sn,j = 0 for all odd j. This circumstance,
in its turn, allows to reduce the number of unknown functions Si(t) by a factor of two. Moreover,
for even r it is convenient to rewrite the equations using a new variable z = x2. Consequently we
obtain the following equation for determining the generating function S(z, t):

S(z, t)− 1 =
t

z


S(z, t)− 1−

r/2−1∑

i=1

zi S2i(t)


+ t z S2(z, t). (8)

Note that in one of his first papers [3] devoted to spherical map enumeration Tutte obtained an
analytic expression for the numbers sn,j for even r. In the same paper Tutte noted that for odd r he
faced some difficulties. Further analysis conducted in [29], [30] showed the theoretical possibility of
obtaining an analytic solution of (8) for all even values of r. However, in practice, the corresponding
solution is known only for r = 4, when the equation (8) contains in addition to S(z, t) only one
unknown function S2(t). As a consequence, for now some explicit forms for the numbers tn,k, pn,k
and bn,k can only be obtained for 4-regular maps.

For odd values of r the only case in which an analytic expression for (7) is known is the case of
r = 3. For larger r the equation (7) has too many additional unknown functions Si(t), and even a
theoretical possibility of deriving an explicit solution of (7) for such r remains unclear [29], [30].

In the next section we will use the technique described in paper [13] to obtain analytical solutions of
this system for r = 4. Then we will briefly describe the analogous results for r = 3.

2 Enumeration of 4-regular rooted maps

For r = 4 the equation (8) can be rewritten as

(z − t) · S(z, t)− t · z2 · S2(z, t) = (z − t)− t · z · S2(t).

For further reasoning it will be convenient to complete the square in the left hand side and rewrite
this equation as

A2(z, t) = B(z, t). (9)

Here

A(z, t) := (z − t)− 2t z2 S(z, t), B(z, t) = (z − t)2 − 4tz2(z − t) + 4t2z3 S2(t).

In these terms the recurrence relations (1)–(3) corresponding to the generating functions T (z, t),
P (z, t), B(z, t) take the form

T (z, t) ·A(z, t) = t z [z D(z, t)− T2(t)] , (10)



P (z, t) · A(z, t) = t z

[
z S(z, t) + 2 z2

∂S

∂z
− P2(t)

]
, (11)

K(z, t) ·A(z, t) = t z

[
z P (z, t) (P (z, t) + 1) + z D(z, t) + 2 z2

∂P

∂z
−K2(t)

]
. (12)

To find the unknown function S2(t) we use a method suggested by Brown [31] (see also [13], [30]).
Let z = za(t) be the formal power series that zeroes out the value of A(t, za(t), S(za(t), t)). From the
equality A2(z, t) = B(z, t) it follows that for z = za(t)

B(za(t), t) = 0,
∂B(z, t)

∂z

∣∣∣∣
z=za(t)

= 0.

The two latter relations together with the equality A(t, za(t), a(t)) = 0, a(t) := S(za(t), t), allow us
to obtain an algebraic system of equations

tz2a2 − (z − t)a + (z − t)− tzS2(t) = 0,

2tz2a+ t− z = 0,

2tza2 − a+ 1− tS2(t) = 0

(13)

for determining the functions za(t), a(t), S2(t). It can be rewritten in the following parametric form:

t =

√
a− 1

3a− 2
, S2(t) =

√
a− 1(2− a), za(t) =

√
a− 1

a
. (14)

Then we can obtain an explicit expression for S2(t):

S2(t) =
18 t2 − 1 + (1− 12 t2)3/2

54 t3
= t+ 2t3 + 9t5 + 54t7 + . . . =

∞∑

n=0

σ
(4)
2n · t2n+1.

The numbers σ
(4)
2n of 4-regular maps with n vertices and 2n edges of the sphere can be calculated by

the formula

σ
(4)
2n =

2 · 3n · (2n)!
n! · (n+ 2)!

(15)

(sequence A000168 on oeis.org). The function S(z, t) is given by

S(z, t) =
z − t +

√
(z − t)2 − 4 t z2(z − t− z t S2(t))

2 t z2
.

From the formulas (10)–(12) we are essentially interested in finding explicit expressions for the
functions T2(t), P2(t) and B2(t). They determine numbers of near-4-regular maps with the root of
degree two and n edges which are in bijection with rooted 4-regular maps with n−1 edges. Since for
z = za(t) the function A(z, t) in the left hand sides of (10)–(12) zeroes out, we obtain the following
set of expressions:

T2(t) = za(t) ·D(za(t), t), (16)

P2(t) = a za(t) + 2 z2a(t)
∂S(z, t)

∂z

∣∣∣∣
za(t)

, (17)

K2(t) =

(
z P (z, t) (P (z, t) + 1) + z D(z, t) + 2 z2

∂P

∂z

)∣∣∣∣
za(t)

. (18)



To find an explicit form of T2(t) we need to know the value of D(z, t) for z = za(t). The equality (5)
implies the following expression for D(x, t) written in terms of the initial variables (x, t):

D(x, t) ·
[
x2 − t− 2tx4S(x, t)

]
=

tx4

2

∂2

∂x2

(
x2S(x, t)

)
− t xQ(1)(x, t)− t x2 Q(2)(x, t).

Equations for the functions Q(i)(x, t), i = 1, 2 can be derived from the recurrence relations (6):

Q(1)(x, t) =
t

x2

[
Q(1)(x, t)− xQ

(1)
1 (t)

]
+ t x S(x, t) + 2 t x2 S(x, t)Q(1)(x, t),

Q(2)(x, t) =
t

x2

[
Q(2)(x, t)− x2 Q

(2)
2 (t)

]
+ 2 t S(x, t) + 2 t x2 S(x, t)Q(2)(x, t).

We rewrite these equations using instead of the variable x and the functions D(x, t), S(x, t), Q(1)(x, t)

and Q(2)(x, t) the variable z = x2 and the functions D(z, t), A(z, t), Q̃(1)(z, t) = x(z)Q(1)(x(z), t)
and Q(2)(z, t). That results in the following set of equations:

D(z, t) · A(z, t) = −3

2
A(z, t) +

3

2
z
∂A(z, t)

∂z
− z2

∂2A(z, t)

∂z2
− 3

2
t− t Q̃(1)(z, t)− t z Q(2)(z, t), (19)

Q̃(1)(z, t) ·A(z, t) = 1

2
(z − t− A(z, t))− t z Q

(1)
1 (t), (20)

Q̃(2)(z, t) · A(z, t) = t z
[
2S(z, t)−Q

(2)
2 (t)

]
. (21)

To determine the value of D(z, t) for z = za(t) we should take the derivative of (19) with respect to
z and find the limit as z → za(t):

D(z, t)|z=za(t)
=

[
−1

2
z
∂2A(z, t)

∂z2
− z2

∂3A(z, t)

∂z3
− t

∂Q̃(1)(z, t)

∂z
− tQ(2)(z, t)− t z

∂Q(2)(z, t)

∂z

]∣∣∣∣∣
z=za(t)

∂A(z, t)

∂z

∣∣∣∣
z=za(t)

.

(22)
Consequently, to obtain the value of D(z, t)|z=za(t)

we need to know the values of the functions

Q̃(1)(z, t), Q̃(2)(z, t), their first derivatives, as well as the derivatives of A(z, t) up to the third order
inclusively at z = za(t).

The derivatives of A(z, t) at z = za(t) can be obtained by sequential differentiation of the equality
(9) with respect to z taking into account that A(z, t) = 0 when S(z, t) = a:

∂A

∂z

∣∣∣∣
za(t)

=

√
a (4− 3a)

2− 3a
,

∂2A

∂z2

∣∣∣∣
za(t)

=
4 a2

√
a− 1

(2− 3a)
√
a (4− 3a)

,
∂3A

∂z3

∣∣∣∣
za(t)

=
12 a3 (a− 1)

(2− 3a) (4− 3a)
√
a (4− 3a)

.

To determine Q̃(1)(z, t) we need the value of Q
(1)
1 (t) from the right hand side of (20). At z = za(t)

the left hand side of (20) is equal to zero, so for Q
(1)
1 (t) the following equality holds:

Q
(1)
1 (t) = a · z(a) =

√
a− 1 =

1−
√
1− 12t2

6t
=

∞∑

n=0

ρ
(4)
2n · t2n+1 =

∞∑

n=0

3n

n+ 1
·
(
2n

n

)
· t2n+1.



Now take the derivative of the right hand side of (20) with respect to z and divide it by ∂A/∂z at
z = za(t):

Q̃(1)(z, t)
∣∣∣
z=za(t)

= −1

2
+

1

2
− tQ

(1)
1 (t)

∂A

∂z

∣∣∣∣
z=za(t)

= −1

2
+

√
a

2
√
4− 3a

.

Finally, to determine the derivative of Q̃(1)(z, t) at z = za(t) we differentiate the equation (20) by z
one more time:

∂2Q̃(1)(z, t)

∂z2
A(z, t) + 2

∂Q̃(1)(z, t)

∂z

∂A(z, t)

∂z
+ Q̃(1)(z, t)

∂2A(z, t)

∂z2
= −1

2

∂2A(z, t)

∂z2
.

Thus, for the derivative of Q̃(1)(z, t) at z = za(t) the following equality holds:

∂Q̃(1)(z, t)

∂z

∣∣∣∣∣
z=za(t)

= −1

4

∂2A

∂z2

∣∣∣∣
z=za(t)

+ 2 D̃(1)(z, t)
∣∣∣
z=za(t)

∂A

∂z

∣∣∣∣
z=za(t)

=
a
√
a (a− 1) (4− 3a)

(4− 3a)2
.

Using analogous considerations one can obtain the expressions for the function Q(2)(z, t) and for its
derivative with respect to z at z = za(t):

Q(2)
∣∣
z=za(t)

=

√
a

a− 1

[
2− a√
4− 3a

− 1

]
,

∂Q(2)(z, t)

∂z

∣∣∣∣
z=za(t)

=
a2

a− 1
+

a
√
a (a2 + 2a− 4)

(a− 1) (4− 3a)
√
4− 3a

.

Substituting these expressions into the formula (22), we obtain an equality of the form

D(z, t)|z=za(t)
=

a (a− 1)

(3a− 4)2
,

which allows us to use (16) to find the value of T2(t):

T2(t) = z(a) D(z, t)|a =
t

6

[
1

1− 12 t2
− 1√

1− 12 t2

]
=

∞∑

n=0

τ
(4)
2n ·t2n+1 = t3+15t5+198t7+2511t9+. . .

The numbers τ
(4)
2n enumerate 4-regular maps with n vertices and 2n edges on the torus. They can be

written in an explicit form:

τ
(4)
2n = 6n−1

[
2n − (2n− 1)!!

n!

]
, n = 1, 2, . . . (23)

Using the relations derived above one can also apply the formula (17) to obtain the following ex-

pression for the function P2(t) which defines the numbers π
(4)
2n of 4-regular maps on the projective

plane:

P2(t) =
1−

√
a (4− 3a)√
a− 1

= t+

∞∑

n=1

π
(4)
2n · t2n+1 = t+ 5 t3 + 38 t5 + 331 t7 + 3098 t9 + . . .



Unfortunately, an explicit expression for π
(4)
2n is quite cumbersome: using Lagrange-Bürmann formula

results in

π
(4)
2n =

3n · (2n)!
(n + 1)! · n! +

3n+1

(2n+ 1)

n−1∑

k=0

(
2n+ 1

k

)
· 22k−2n ·

[
1

4
· f(n + 1− k) +

4

3
· f(n− 1− k)

]
,

where

f(n) =

n∑

i=0

(
2i

i

)
·
(
2n− 2i

n− i

)
· (−1)i

3i
= 2F1

(
−n,

1

2
;−n +

1

2
;−1

3

)
·
(
2n

n

)
.

From the formula (18) it follows that to determine the numbers of 4-regular maps on the Klein bottle
we also need the values of P (z, t) and its derivative with respect to z at z = za(t). Simple calculations
show that

P (z, t)|z=za(t)
= −3

√
a (4a− 3) + a− 4

2 (4− 3a)
,

∂P (z, t)

∂z

∣∣∣∣
z=za(t)

=
−a

√
a− 1 (2 + 2a+ 3

√
a(4− 3a))

(4− 3a)2
.

Substituting these expressions into the right hand side of (18), we obtain the generating function

K2(t) =
2
√
a− 1 (4− a− 3

√
a(4− 3a)

a (4− 3a)2
=

∞∑

n=0

κ
(4)
2n · t2n+1 = 4 t3 + 68 t5 + 964 t7 + 12836 t9 + . . .

which determines the numbers κ
(4)
2n of 4-regular maps with n vertices and 2n edges on the Klein

bottle.

To enumerate unsensed 4-regular maps on the torus we will also need some formulas for spherical
maps with the root of degree j, two (the numbers q̂

(2)
i,j ) or three (the numbers q̂

(3)
i,j ) additional leaves

and the remaining vertices of degree 4. The corresponding recurrence relations take the form:

q̂
(2)
i,j = q̂

(2)
i−1,j+2 + q

(1)
i−1,j−1 +

n−1∑

i=0

d−2∑

j=0

(
2 q̂

(2)
i,j · sn−i−1,d−j−2 + q

(1)
i,j · q(1)n−i−1,d−j−2

)
,

q̂
(3)
i,j = q̂

(3)
i−1,j+2 + q̂

(2)
i−1,j−1 + 2

n−1∑

i=0

d−2∑

j=0

(
q̂
(3)
i,j · sn−i−1,d−j−2 + q

(1)
i,j · q̂(2)n−i−1,d−j−2

)
,

q̂
(2)
i,j = 1 for i = j = 2, q̂

(3)
i,j = 1 for i = j = 3.

These recurrence relations can be transformed into the following equations for the generating func-
tions Q̂(2)(z, t) and Q̂(3)(z, t):

Q̂(2)(z, t) · A(z, t) = z t
[
D̃(1)(z, t) + [D̃(1)(z, t)]2 − Q̂

(2)
2 (t)

]
,

Q̂(3)(z, t) · A(z, t) = t z2 Q̂(2)(z, t) + 2 t z2 D̃(1)(z, t) · Q̂(2)(z, t)− t z Q̂
(3)
1 (t).

From the first equation one can find the following expression for the function Q̂(2) at a:

Q̂(2)
∣∣∣
a
= t z

∂D̃(1)

∂z

∣∣∣∣
a

· (1 + 2 D̃(1)
∣∣∣
a
)

∂A

∂z

∣∣∣∣
a

=
(a− 1)3/2

√
a

(4− 3a)3/2
.



From the second equation an explicit expression for the function Q̂
(3)
1 (t) follows:

Q̂
(3)
1 (t) = Q̂(2)

∣∣∣
a
· z ·

(
1 + 2 D̃(1)

∣∣∣
a

)
=

(a− 1)2

(4− 3a)3
.

Expressing a through t we finally obtain a formula for the numbers ωn describing spherical maps
with n vertices of degree 4 and four leaves, one of which is the root:

Q̂
(3)
1 (t) =

t2

6

[
1

(1− 12t2)3/2
− 1

1− 12t2

]
=⇒ ωn = 6n−1

[
(2n + 1)!!

n!
− 2n

]
= 1, 21, 342, 5049, . . .

3 Enumeration of 3-regular maps

In this section we briefly describe the solutions of analogous problems for 3-regular maps on surfaces.
Instead of the equation (9) we have

A2(x, t) = B(x, t) (24)

for

A(x, t) := (x− t)− 2t x3 S(x, t), B(z, t) = (x− t)2 − 4tx3(x− t) + 4t2x4 S1(t),

and instead of (13) we have the system

tx3a2 − (x− t)a + (x− t)− txS1(t) = 0,

2tx3a + t− x = 0,

3tx2a2 − a+ 1− tS1(t) = 0

(25)

with the parametric solution

x3
a =

a− 1

2a2
, t =

a(1− a)

2(1− 2a)3
, S1(t) =

(2− a)(1− 2a)2

a
.

To determine an explicit form of the coefficients sn of the series expansion of S1(t) we introduce the
parameter ϑ related to t by

ϑ = −t3 r(ϑ) for r(ϑ) =
1

(1− 2ϑ)(1− 4ϑ)

and use the Lagrange-Bürmann inversion formula. As a consequence we obtain that

−[tn]ϑ =
22n (3n)!!

(n + 1)!n!!
,

so the number σ
(3)
3n of 3-regular maps with 2n vertices and 3n edges can be calculated by the formula

σ
(3)
3n = − 2

n + 2
[tn]ϑ =

2 · 4n · (3n)!!
n!! (n+ 2)!

= 1, 4, 32, 336, . . .

(sequence A002005 on oeis.org).

For r = 3 instead of the equation (16) we have the following system:

T (x, t) ·A(x, t) = t x
[
x2D(x, t)− T1(t)

]
, (26)



P (x, t) · A(x, t) = t x

[
x2 ∂

∂x
(xS(x, t))− P1(t)

]
, (27)

K(x, t) · A(x, t) = t x

[
x2 D(x, t) + x2 P (x, t) (P (x, t) + 1) + x3∂P

∂x
−K1(t)

]
. (28)

Since the left hand side of (26) zeroes out at x = xa(t), so the right hand side does. Consequently,
the generating function T1(t) for the numbers tn can be expressed through the function a = a(t) by
the formula

T1(t) = x2D(x, t)
∣∣
x=xa(t)

=
t5 (2a− 1)5

(1 + 2a− 2a2)2
=

1

(1− 12ϑ(1− 2ϑ))2
· 1

1− 4ϑ
.

Applying the Lagrange-Bürmann formula we conclude that the numbers τ
(3)
3n of 3-regular maps having

2n vertices and 3n edges on the torus are equal to

τ
(3)
3n = [λn]

1

1− 12λ(1− 2λ)
· 1

(1− 4λ)n+2(1− 2λ)n+1
=

=
2n

(n+ 1)!

n∑

k=0

6k

(n− k)!

n−k∑

i=0

2i
(n+ i+ 1)!

i!

(2n− 2k − i)!

(n− k − i)!
=

=
22n n!!

(n + 1)!

n∑

k=0

3k (3n− 2k + 1)!!

(n− k)!
= 1, 28, 664, 14912, 326496, . . .

By analogous means from the formula (27) we obtain the following expression for the numbers π
(3)
3n

of maps having 2n vertices and 3n edges on the projective plane:

P1(t) =

[
x2 S(x, t) + x3 ∂S

∂x

]∣∣∣∣
x=xa(t)

=
1−

√
1 + 2a− 2a2

2 (2a− 1) t
=

= t2 +

∞∑

n=1

π
(3)
3n · t3n+2 = t2 + 9 t5 + 118 t8 + 1773 t11 + . . .

Applying the Lagrange-Bürmann formula yields

π
(3)
3n = −22n+1 · (3n)!!

(n + 1)! · n!! +
3 · 22n

(n + 1)!!

n∑

k=0

3k · (2k − 1)!! · (3n− 2k − 1)!!

2k · k! · (n− k)!
.

Finally, for the numbers κ
(3)
3n describing 3-regular maps with 2n vertices on the Klein bottle we obtain

the generating function

K1(t) =
3 t2 (2a− 1)2 (1−

√
1 + 2a− 2a2)

(1 + 2a− 2a2)2
=

∞∑

n=1

κ
(3)
3n · t3n+2 = 6 t5 + 174 t8 + 4236 t11 + . . . ,

κ
(3)
3n = (n + 1) · (2ϑn − π

(3)
3n ) +

3 · 22n
(n− 2)!!

n∑

k=0

3k · (3n− 2k − 2)!!

(n− k)!
.



4 The basic principles of enumerating r-regular sensed maps

To enumerate r-regular maps up to orientation-preserving homeomorphisms we will use the technique
developed in the article [25]. In that paper authors derived the following formula for the number τ̃n
of sensed maps with n edges on the surface S of a given genus g:

τ̃n =
1

2n

∑

L|2n
L·m=2n

∑

O∈Orb(Sg/ZL)

hO(m) · Epio(π1(O),ZL). (29)

Here hO(m) is the number of rooted quotient maps withm semi-edges on an orbifold O, corresponding
to maps on S with some predefined properties, O runs over all orientation-preserving cyclic orbifolds
Orb(S/ZL) of the surface S with period L, and Epi+o (π1(O),ZL) is the number of order-preserving
epimorphisms from the fundamental group of the orbifold O onto the cyclic group ZL.

To illustrate these concepts consider the representation of a torus T as a square with its opposite
sides identified pairwise (Figure 2 (a)). Rotation of this square by 90◦ (L = 4) splits the set of its
points into two subsets, an infinite set of points in the general position and a finite set of singular
points (see Figure 2 (a)). Points in the general position are those that lie on an orbit of length 4.
Singular points are the remaining ones, and they necessary lie on an orbit of smaller length. For our
example there are four singular points: a, c, b1 and b2. The former two of them are fixed, and the
latter two are transformed into each other by the rotation by 90◦. Identifying points of each orbit
of this action, we obtain a sphere (Figure 2 (b)). Critical points on the torus get transformed into
branch points on the sphere (points a, b, c on Figure 2 (b)). From the topological point of view this
construction can be viewed as a 4-fold branched covering of the sphere O by the torus T .
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Figure 2: An automorphism of the torus and the corresponding orbifold

For a general case of an orientation-preserving homeomorphism the corresponding manifold O of
genus g with a finite number r of branch points is called an orbifold with a signature

O(g, [m1, . . . , mr]), 1 < m1 6 . . . 6 mr.

Here mi are the branch indices of the corresponding branch points; each mi is equal to the period
L of the homeomorphism divided by the number of preimages of the corresponding branch point.
For the example described above the branch points a and c have branch indices equal to 4 and the
branch index of b is equal to 2. Consequently, the signature of the corresponding orbifold takes the
form

O(0; [2, 4, 4]) ≡ O(0; [2, 42]).

Rotation of the square by 270◦ has an analogous description.



For the case of the torus there are five more periodic homeomorphisms that preserve its orientation
and yield a sphere as an orbifold. The first of them corresponds to the rotation of the square by an
angle of 180◦. The remaining four are the rotations of a hexagon representing the torus by the angles
of 60◦, 120◦, 240◦ and 300◦. The corresponding signatures have the form

O(0; [24]), O(0; [2, 3, 6]), O(0; [33]), O(0; [33]), O(0; [2, 3, 6]).

There also exists an infinite series of periodic homeomorphisms generated by two independent ro-
tations of the torus, along its parallel and along its meridian. For a fixed period L the number of
such homeomorphisms is equal to J2(L), the second Jordan’s function of L. As a consequence, the
formula (29) in the case of torus can be rewritten as

τ̃ (r)n =
1

2n

[
s̃[24](n) + 2 · s̃[2,42](n/2) + 2 · s̃[33](2n/3) + 2 · s̃[2,3,6](n/3) +

∑

L|n

J2(L) · τ (r)(n/L)
]
. (30)

Here s̃[m1,...,ml](i) is the number of quotient maps with i semi-edges on the sphere with branch points
of indices m1, . . . , ml, τ

(r)(i) is the number of rooted r-regular maps with i edges on the torus. The
latter numbers can be found using the formulas from the previous part of the present article. Hence
the problem of enumerating sensed maps on the torus reduces to the problem of enumerating quotient
maps on the corresponding orbifolds O.

As an example of such map consider a map M on the torus which is symmetric under the rotation
of the square by 90◦ (Figure 3 (a)). As before, we identify the points lying on each orbit of the
rotation, and instead of the map M obtain some quotient map M on the orbifold O (Figure 3 (b)).
This quotient map would be a map on the sphere with the numbers of vertices, edges and faces equal
to those of the original map M diveded by 4 if the orbifold O had no branch points and the surface X
had no corresponding critical points. The existence of such points makes the correspondence between
these numbers more complicated.

Assume that a vertex x of a quotient map M coincides with some branch point of index mi on the
orbifold O (see vertex x on Figure 2(b) which coincides with a). Then this vertex corresponds to
L/mi vertices of the map M on the original surface X . The degree d of x in this case gets multiplied
by mi on X and becomes equal to mid. For example, the vertex x of degree 1 of the quotient map
M shown on Figure 2 (b) corresponds to a single vertex x̄ of degree 4 for the map M on Figure 2(a).

ab
2

c c

cc

b
2

b
1

b
1

y1

y2

y3

y4 x

(a)

a

b

c

x

y

(b)

Figure 3

Now assume that a branch point of an orbifold O falls into some face f on the quotient map M (see
branch point c on Figure 3(b)). This point will correspond to L/mi points on the torus X , mi being
the corresponding branch index. The remaining points of f are not branch points, so each of them
corresponds to L points on X . Hence, as in the case of a vertex, the degree of the face f is multiplied



by mi when this face is lifted to the manifold X . For example, the degree of the face that contains
the branch point c on Figure 3(b) is multiplied by 4 on the torus.

One more peculiarity of quotient maps is the possibility of having dangling semi-edges which end not
in vertices but in branch points of degree 2 (see branch point b on Figure 3(b)). When lifted to the
torus, any such edge gets transformed into L/2 edges of the map M. These edges on the manifold
X contain critical points bi corresponding to the branch point b (see critical points b1, b2 on Figure
3 (a)). If an orbifold O has no branch points of index 2, then there are no dangling semi-edges for
any quotient map M on O.

Thus to determine the functions s̃[m1,...,ml](i), where i is the number of semi-edges, we need to iterate
over all possible ways to distribute branch points of indices m1, . . . , ml over the faces, edges and
vertices of a map, and for each of them determine the corresponding number of quotient maps on
the sphere. As an example, in the next section we will perform these calculations for 4-regular maps.

5 Enumeration of quotient maps of 4-regular maps

In the simplest case all branch points fall into faces of some quotient map M. This case can be
realized for all four orbifolds:

O(0; [24]), O(0; [2, 42]), O(0; [33]), O(0; [2, 3, 6]).

The corresponding quotient maps have v′ = v/L vertices of the degree 4 that lift to v vertices of
degree 4 of some map M on the torus. According to the Handshaking lemma, the number n′ of edges
of a quotient map M satisfies the equality

∑

x∈V (M)

deg(x) = 2n′ (31)

and hence is equal to 2v′. The number of faces f ′ of a quotient mapM is defined by the Euler-Poincare
formula

v′ − n′ + f ′ = 2. (32)

Substituting v′ = v/L, n′ = 2v/L, we find that f ′ = 2 + v/L.

Now we can count the number of such quotient maps M: it is the number σ(v′) of 4-regular maps
on the sphere with v′ vertices multiplied by the number of ways to distribute branch points over f ′

faces of each map M. This number should be calculated assuming that different branch points of
the same index are indistinguishable. The results of the corresponding calculations are summarized
in the following table:

Orbifold L v′ f ′ Number of quotient maps

O(0; [24]) 2 v/2 2 + v/2 σ(4)(v/2) ·
(
2+v/2

4

)

O(0; [2, 42]) 4 v/4 2 + v/4 σ(4)(v/4) · (2 + v/4) ·
(
1+v/4

2

)

O(0; [33]) 3 v/3 2 + v/3 σ(4)(v/3) ·
(
2+v/3

3

)

O(0; [2, 3, 6]) 6 v/6 2 + v/6 σ(4)(v/6) · (2 + v/6) · (1 + v/6) · v/6



A bit more complex is the case when some branch points coincide with vertices of a quotient map M

and the remaining branch points are located in its faces. For the orbifold O(0; [33]) this case can’t
be realized. For the orbifolds O(0; [2, 3, 6]), O(0; [2, 42]) and O(0; [24]) it is possible that one or more
branch points of index 2 coincides with the vertices of degree 2 of a quotient map M. Finally, for the
case of the orbifold O(0; [2, 42]) it is only possible that both of index 4 branch points coincide with
some vertices of M of degree 1. Indeed, if only one of branch points of index 4 coincides with a vertex
of degree 1, the quotient map contains exactly one vertex of an odd degree which is impossible.

First we consider the case when only one branch point of degree 2 coincides with a vertex x of the
degree 2 of a quotient map M, whereas the remaining branch points are located in its faces. As we
noted above, this case is possible for the orbifolds

O(0; [24]), O(0; [2, 42]), O(0; [2, 3, 6]).

On the torus T that covers the sphere O the vertex x corresponds to L/2 vertices of degree 4, and
each remaining vertex of M corresponds to L vertices of degree 4. Consequently, the total number
of vertices of a map M is equal to

v′ =
v − L/2

L
+ 1 =

v + L/2

L
.

The number of its edges is calculated by (31) as

2n′ = 4 · v − L/2

L
+ 2 · 1 =⇒ n′ =

2v

L
,

and the number of its faces follows from the Euler-Poincare formula (32)

f ′ = 2− v′ + n′ = 2 +
v − L/2

L
.

Note that we can replace a quotient map M by some 4-regular map M′ on the sphere by replacing
its vertex x of the degree 2 together with two edges incident to it by a single edge. The number
of 4-regular maps M′ is equal to σ(4)((v − L/2)/L). To count quotient maps M we note that any
quotient map M can be obtained from M′ by choosing one of its edges in n′ − 2 ways and placing a
vertex x of degree 2 in its middle and reassigning the root. Indeed, just placing the vertex x yields
a map that can’t have its root at any of the edges incident to x. Since we should count maps with
the root in an arbitrary position, we should use the double counting principle: dividing the number
of 4-regular maps M′ by 2(n′ − 2) and multiplying the result by 2n′ results in exactly the number
of 4-regular maps with the vertex of degree 2 and the root in an arbitrary position. To obtain the
number of all quotient maps M it remains to multiply the expression

2n′

2(n′ − 2)
· σ(4)((v − L/2)/L)

by the number of ways to distribute branch points among f ′ faces of a quotient map M. As a result,
for quotient maps of the considered type we have the following values:

Orbifold v′ f ′ Number of quotient maps

(0, [24])
v − 1

2

v + 3

2
σ(4)((v − 1)/2) ·

(
(v+3)/2

3

)
· v

(0, [2, 42])
v − 2

4

v + 6

4
σ(4)((v − 2)/4) ·

(
(v+6)/4

2

)
· v
2

(0, [2, 3, 6])
v − 3

6

v + 9

6
σ(4)((v − 3)/6) · v + 9

6
· v + 3

6
· v
3



Next we proceed with the case of at least one branch point of index 2 coinciding with a vertex of a
quotient map M. This is possible only for the orbifold O(0; [24]) and it remains to consider subcases
of two, three and four index 2 branch points coinciding with the vertices of M. Denote by j the
number of such branch points. The numbers of vertices, edges and faces of a quotient map can be
calculated as

v′ =
v + j

2
, n′ = v, f ′ = 2 +

v − j

2
.

Moreover, j vertices have degree 2 and the remaining v′ − j ones are of degree 4. The problem
of counting such maps again can be reduced to counting 4-regular maps by replacing all degree 2
vertices together with pairs of edges incident to them by single edges. The result of this operation
is a 4-regular map with v′ − j vertices and n′ − j edges. Hence to count quotient maps M we start

with the number σ(v′ − j) of 4-regular maps, multiply it by the number
((

n′−j
j

))
of ways to choose j

edges and place vertices on them. Then we use double counting to take into account that semi-edges
incident to the new vertices can be roots too. The latter means multiplying the result by 2n′/(2n′ −
− 2j). Finally, multiplying the result by the number

(
k′

4−j

)
of ways to distribute the remaining 4− j

branch points over f ′ faces we obtain that the number of quotient maps M is equal to

2n′

2n′ − 2j
·
((

n′ − j

j

))
·
(

f ′

4− j

)
· σ(4)(v′ − j) =

(
v

j

)
·
(
(4 + v − j)/2

4− j

)
· σ(4)((v − j)/2).

The final case in the group being considered is the one of both branch points of index 4 on the orbifold
O(0; {2, 42}) coinciding with vertices of degree 1 of a quotient map M, and the branch point of index
2 coinciding with either its face or its edge. In the former sub-case the numbers v′ of vertices, n′ of
edges and f ′ of faces of a quotient map M can be calculated as

v′ =
v − 2

4
+ 2 =

v + 6

4
, n′ =

v

2
, f ′ = 2 + n′ − v′ =

v + 2

4
.

To count such quotient maps we may utilize the fact that the number ρ(4)(v′ − 2) of rooted maps
having v′ − 2 degree 4 vertices and two leaves, one of which is a root, was already calculated in the
third section. Taking all such maps, assigning new roots in them in 2n′ ways instead of initial two
ways and placing the branch point of degree 2 into a face we obtain that the number of quotient
maps M is equal to

ρ(4)(v′ − 2) · 2n
′

2
· f ′ =

v(v + 2)

8
· ρ(4)((v − 2)/4).

Now assume that the branch point of degree 2 coincides with a vertex too, namely with a vertex of
degree 2 of a map M. The numbers of vertices, edges and faces could be expressed as follows:

v′ =
v − 4

4
+ 3, n′ =

v

2
, f ′ = 2 + n′ − v′ =

v

4
.

Note that by replacing the vertex of degree 2 together with the semi-edges incident to it we can
obtain some map M′ with (v − 4)/4 + 2 vertices, namely with (v − 4)/4 degree 4 vertices and two
leaves. Conversely, to transform the map M′ back into M we should choose an edge in n′ − 1 ways
and place a new degree 2 vertex x on it. In the obtained map no semi-edge incident to x could
be its root, so to count the number of possible quotient maps M we should start with the number
ρ(4)(v′ − 3) of maps on the sphere with two leaves (one of which is the root) and v′ − 3 vertices of
degree 4, multiply it by the number n′−1 of ways to choose an edge in M′ and adjust the result using



double counting to take into account that the number of possible rootings should be 2n′ instead of
2. As a result we obtain the number of quotient maps in the form

ρ(4)(v′ − 3) · (n′ − 1) · 2n
′

2
=

v (v − 2)

4
· ρ(4)((v − 4)/4).

In the next group of cases at least one branch point of degree 2 coincides with a dangling semi-edge
of M. For the orbifold O(0; [2, 3, 6]) this case is impossible: it would result in a map of a single
vertex of an odd degree. From the same consideration it follows that for the orbifold O(0; {2, 42})
this sutuation is possible only if one out of two branch points of index 4 coincides with a vertex and
the other is located in a face. To count such quotient maps we consider maps M′ on a sphere with
(v − 1)/4 vertices of degree 4 and two leaves. The number n′ of edges and the number f ′ of faces
follow from the formulas (31) and (32):

2n′ = 4
v − 1

4
+ 2 = v + 1, f ′ = 2 + n′ − v′ =

v + 3

4
.

A quotient map M is obtained from M′ by removing one leaf together with a semi-edge incident to
it. This procedure creates a dangling semi-edge in M. To count quotient maps we start with the
number ρ(4)((v − 1)/4) of spherical maps with two leaves, multiply it by the number f ′ of ways to
place a branch point into a face and use double counting because the quotient map may have its root
in only 2n′ − 1 positions. As a consequence, the number of such quotient maps can be calculated by
the formula

ρ(4)((v − 1)/4)
v (v + 3)

4
.

For the orbifold O(0; {24}) the fact that the number of odd-degree vertices must be even leaves only
two possibilities: either two or four branch points of index 2 fall into dangling semi-edges of a map
M. The first case splits into three sub-cases depending on the placement of the remaining branch
points: they are located in faces, in vertices, or in a face and a vertex of the quotient map M.

In the first sub-case we replace a quotient map M with a combinatorially equivalent map M′ with v′

vertices, n′ edges and f ′ faces,

v′ = v/2 + 2, n′ = v + 1, f ′ =
v + 2

2
,

which has v/2 vertices of degree 4 and two vertices of degree 1 which cannot be roots. To enumerate
such maps we use the number ρ(4)(v/2) of maps with v/2 degree 4 vertices, two leaves and a root in a
leaf. The number of rootings of a quotient map should be recalculated since it’s equal to 2n′−2 = 2v
instead of 2. We should also place two remaining branch points into f ′ faces in

(
f ′

2

)
ways. As a

result, we obtain the number of quotient maps as

ρ(4)(v/2) · v ·
(
(v + 2)/2

2

)
.

In the second sub-case we considers maps M′ which are equivalent to quotient maps M and have the
parameters

v′ =
v − 2

2
+ 4, n′ = v + 1, f ′ =

v

2
.

They have v′ − 4 vertices of degree 4, two vertices of degree 2, and two vertices of degree 1. The
latter ones couldn’t be roots of a map. The number of such maps can be obtained from the number



ρ(4)(v′ − 2) of maps with two leaves, v′ − 2 degree 4 vertices and n′ − 2 edges by multiplying it by((
n′−2
2

))
ways to place two degree 2 vertices on its edges and recalculating the number of ways to

choose a root in such a map using double counting. Note that there are two possible rootings in
maps enumerated by ρ(4)(v′ − 2) but the resulting maps have 2n′ − 2 semi-edges which are incident
to non-leaves and could all be roots. Consequently in this sub-case the number of quotient maps M
can be expressed as

ρ(4)((v − 2)/2) · v ·
((

v − 1

2

))
= ρ(4)((v − 2)/2) · v ·

(
v

2

)
.

In the third sub-case a quotient map M is equivalent to a map M′ with the parameters

v′ =
v − 1

2
+ 3, n′ = v + 1, f ′ =

v + 1

2
,

(v − 1)/2 vertices of degree 4, one vertex of degree 2 and two non-root leaves. Such maps could be
obtained by taking ρ(4)((v − 1)/2) maps with v′ vertices of degree 4, two leaves and v edges, placing
a degree 2 vertex on some edge in v ways, placing a new root in one of 2n′ − 2 semi-edges, removing
the existing root from one of two leaves, and labelling one of f ′ faces with a branch point. As a
consequence, the number of quotient maps M is equal to

ρ(4)((v − 1)/2) · v2 · v + 1

2
.

The last case to consider is the one of the orbifold O(0; {24}) and all four branch points of degree 2
coinciding with the dangling ends of semi-edges of M. Consider a map M′ with the parameters

v′ =
v

2
+ 4, n′ = v + 2, f ′ =

v

2

having v/2 vertices of degree 4 and four non-root leaves. All such maps could be obtained from
ω(v/2) maps with a root in one of their four leaves and v/2 vertices of degree 4 in the following way:
in any given map place a new root in any of 2n′ − 4 semi-edges incident to degree 4 vertices and
remove the old root which was incident to one of the four leaves. The double counting argument
yields that the number of quotient maps M in this case equals to

ω(v/2) · v
2
, ω(v) = 6v−1

[
(2v + 1)!!

v!
− 2v

]
.

Summarizing all these results, we may rewrite the formula (30) for the case of unlabelled 4-regular
maps on the torus as

τ̃ (4)(v) =
1

4v

[[(
2 + v/2

4

)
·σ(4)

(
v

2

)
+

v

2
·ω

(
v

2

)
+ v ·

(
v

2

)
· ρ(4)

(
v − 2

2

)
+

v2 (v + 1)

2
· ρ(4)

(
v − 1

2

)
+

+v ·
(
(v + 2)/2

2

)
· ρ(4)

(
v

2

)
+ v ·

(
(v + 3)/2

3

)
· σ(4)

(
v − 1

2

)
+

(
v

2

)
·
(
(v + 2)/2

2

)
· σ(4)

(
v − 2

2

)
+

+
v + 1

2
·
(
v

3

)
·σ(4)

(
v − 3

2

)
+

(
v

4

)
·σ(4)

(
v − 4

2

)]
+2·

[
v + 8

4
·
(
1 + v/4

2

)
·σ(4)

(
v

4

)
+
v (v + 3)

4
·ρ(4)

(
v − 1

4

)
+



+
v

2
·
(
(v + 6)/4

2

)
· σ(4)

(
v − 2

4

)
+

v(v + 2)

8
· ρ(4)

(
v − 2

4

)
+

v (v − 2)

4
· ρ(4)

(
v − 4

4

)]
+

+2 ·
[(

2 + v/3

3

)
· σ(4)

(
v

3

)]
+ 2 ·

[
v + 12

6
· v + 6

6
· v
6
· σ(4)

(
v

6

)
+

v + 9

6
· v + 3

6
· v
3
· σ(4)

(
v − 3

6

)]
+

+
∑

L|v

J2(L) · τ (4)
(
v

L

)]
.

6 Enumeration of quotient maps of r-regular maps for other

values of r

In this section we briefly describe the corresponding results regarding enumeration of r-regular sensed
maps on the torus for some other values of r. The case r = 3 is very similar to the case r = 4. Using
arguments analogous to those given above, we obtain the following formula for the numbers τ̃ (3)(v)
of sensed maps on the torus:

τ̃ (3)(v) =
1

3v

[[(
2 + v/4

4

)
· σ(3)

(
v

2

)
+

4∑

i=1

3v

2i
·
(
2 + (v − 2i)/4

4− i

)
· q(i)

(
v

2
+ i

)]
+

+2 ·
[(

2 + v/6

3

)
· σ(3)

(
v

3

)
+

3∑

i=1

v

i
·
(
(v + 12− 4i)/6

3− i

)
· q(i)

(
n + 2i

3

)]
+

+2 ·
[
3v

4
·
(
(v + 12)/8

2

)
· q(1)

(
v

4
+ 1

)
+

(
2 +

v

8

)
·
(
1 + v/8

2

)
· σ(3)

(
v

4

)]
+

+2 ·
[(

2 +
v

12

)
·
(
1 +

v

12

)
· v

12
· σ(3)

(
v

6

)
+ v ·

(
(v + 16)/12

2

)
· q(1)

(
v + 4

6

)
+

+
v

2
· v + 10

12
· q(2)

(
v + 10

6

)
+ v ·

(
(v + 18)/12

2

)
· q(1)

(
v

6
+ 1

)]
+
∑

L|v

J2(L) · τ (3)
(
v

L

)]
.

Here the numbers q(i)(v) describe the number of maps with v vertices, i leaves and a root in one of
these leaves and can be calculated from the following recurrence relation:

q(i)(v) =
3v − 2i− 4

i− 1
· q(i−1)(v − 2); q(2)(2) = 1.

For other values of r instead of analytical formulas we have to use the recurrence relations obtained
in the first sections of the article. For a fixed r > 4 any branch point that coincides with a vertex
must have an index dividing r. Branch points that fall into dangling ends of semi edges must be
of index 2, and branch points that fall into vertices may have an arbitrary index. Taking these
restrictions into account one can explicitly enumerate all the ways to distribute the branch points
among vertices, semi-edges and faces of a quotient map.

For a fixed distribution we would have to enumerate maps that have, in addition to degree r vertices,
some fixed amount of special vertices with degrees equal to divisors of r, as well as some amount of



dangling semi-edges. To reduce such quotient maps to normal maps we should replace all dangling
ends of semi-edges by leaves and use double counting to recalculate the number of possible rootings
of a map. Finally, the number of maps on a sphere with some special vertices of degrees different
from r can be computed using Tutte’s recursive approach of edge contraction. Note that contracting
an edge which joins the root with a special vertex should be described by a separate summand for
every possible degree of this special vertex. For the case of the root vertex being a loop, one would
also have to consider all possible ways to distribute special vertices among two spherical maps that
are obtained after the root is contracted.

Conclusion

The results of calculations by the formulas obtained in this part of the article that define the numbers
of rooted r-regular maps on the torus, on the projective plane and on the Klein bottle are given in
the Tables 1, 2 and 3. The first terms of the corresponding sequences coincide with the results of
explicit generation of the corresponding structures. Some of these sequences also match with known
results obtained before by various authors. The results of computations of the numbers τ̃ (r)(v) of
sensed r-regular maps on the torus are given in the Table 4. They were also verified using explicit
generation.

The work was supported by grant 17-01-00212 from the Russian Foundation for Basic Research.

v τ
(3)(2v) τ

(4)(v) τ
(5)(2v) τ

(6)(v)

1 1 1 120 10
2 28 15 125280 800
3 664 198 120800160 58000
4 14912 2511 113579366400 4080000
5 326496 31266 105549958379520 283100000
6 7048192 385398 97452182769223680 19496000000
7 150820608 4721004 89611995665911173120 1336380000000
8 3208396800 57590271 82178813933957614141440 91320000000000
9 67968706048 700465482 75217069050598359088496640 6226591000000000
10 1435486650368 8501284530 68747100051073934332046868480 423871680000000000

Table 1: Rooted r-regular maps on the torus



v π
(3)(2v) π

(4)(v) π
(5)(2v) π

(6)(v)

1 9 5 215 22
2 118 38 106820 864
3 1773 331 65476730 40512
4 28650 3098 44355884860 2075860
5 484578 30330 31871222091735 112225776
6 8457708 306276 23809740820038860 6289396632
7 151054173 3163737 18286634336378438820 361699896960
8 2745685954 33252050 14338651143931504204140 21210328632420
9 50606020854 354312946 11425366917170617116755180 1262859239910000
10 943283037684 3817498004 9221856681066077433854516240 76114899842912520

Table 2: Rooted r-regular maps on the projective plane

v κ
(3)(2v) κ

(4)(v) κ
(5)(2v) κ

(6)(v)

1 6 4 610 42
2 174 68 713230 3846
3 4236 964 730427830 300048
4 97134 12836 714985017230 22171638
5 2163636 165784 684597649115160 1595739432
6 47394444 2103788 647152118916722050 113110095540
7 1027091736 26396416 606713944500089445300 7939173652032
8 22094309934 328621604 565552162701658630787310 553477015433958
9 472740763236 4068021916 524985730432063320579176680 38395171272416568
10 10074173087364 50142879128 485790080943651818443229561080 2653558455501023196

Table 3: Rooted r-regular maps on the Klein bottle

v τ̃
(3)(2v) τ̃

(4)(v) τ̃
(5)(2v) τ̃

(6)(v)

1 1 1 15 3
2 5 4 6423 81
3 46 23 4031952 3313
4 669 185 2839677570 171282
5 11096 1647 2111005408320 9444158
6 196888 16455 1624203259187196 541659909
7 3596104 169734 1280171373413389056 31819176850
8 66867564 1805028 1027235174396893007472 1902508129720
9 1258801076 19472757 835745211680299639976976 115307287484560
10 23925376862 212603589 687471000510964612782875472 7064528615347192

Table 4: Sensed r-regular maps on the torus
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