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Automated Generation of Anomalous Cancellations

Shalosh B. EKHAD

(with a Foreword by Doron Zeilberger)

Foreword (By Doron Zeilberger)

In my last visit to Israel I bought a wonderful “popular” book [Sh], by the great expositor Haim

Shapira, on game theory. There he mentions (p. 156) how clueless students are. Once, during

a course on probability given in the Faculty of Engineering, he solved a problem whose answer

happened to be
16

64
.

He ‘simplified’ it, “cancelling out” the the digit 6:

1 6 6

6 64
=

1

4
,

getting the right answer. Shapira went on to say that he hopes that none of his readers reduces

fractions this way, and raised two questions, one to psychologists and one to mathematicians.

The question to psychologists was: “How come no (engineering!) student commented on this

‘simplification’ for more than a minute a half?”. The question to mathematicians was: “Can you

make up more examples of this phenomenon?”.

Not being a psychologist, I tried to focus on the second question. When I got back home, I asked

Neil Sloane whether he has seen this before, and, sure enough, he knew about this phenomenon, and

referred me to sequence A159975 and a few other related sequences in the On Line Encyclopedia

of Integer Sequences [Sl], that, in turn, referred me to a wonderful article [B] by the great analyst

(who was also a great expositor!) Ralph Philip Boas.

In that article, Boas discusses the problem of finding such examples, in any given base. He derived

some complicated non-linear diophantine equations.

But why think so hard? If, given a base b, and positive integers d1 and d2, as well as the locations

of the ‘cancelled’ digits, i1 and i2, (0 ≤ i1 < d1 and 0 ≤ i2 < d2), you are interested, in finding the

set of all fractions
m

n
,

written in base b, where m and n are with d1 and d2 digits, respectively, and where the illegal

cancellation of the i1-th digit of the numerator and i2-th digit of the denominator gives you the

same ratio, it suffices to generate all (bd1 − bd1−1) (bd2 − bd2−1) such fractions and see which ones

work out. Alas, this takes too long, even nowadays, if you want to go anywhere far.

The compromise between being too clever and being too dumb, is to fix the denominator, n,

and places 0 ≤ i1, i2 ≤ d2 − 1, and ask for a “clever” way to find all numerators m (of any size!)
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such that if you ‘cancel out’ the i1-th digit of the top with the the i2-th digit of the bottom, you

get the same thing. This leads to a linear diophantine equation, that is very easy to solve, thanks

to the Extended Euclidean Algorithm. Don Knuth ([K], p. 318, lines 5-6) calls the (unextended)

Euclidean algorithm the granddaddy of all algorithms, and then goes on to comment, that, most

likely, it is not due to Euclid (he only wrote it up in his textbook), and his ‘proof’ of validity was

not quite up to his usual standards, since he lacked the concept of induction.

The Extended Euclidean Algorithm is a simple by-product of the Euclidean algorithm, and in

addition to supplying the greatest common divisor of A and B

C = gcd(A,B) ,

it also outputs integers x and y such that

Ax + B y = C .

See [K], pp. 325-327, for a very nice and detailed account, in Knuth’s inimitable style. According

to an internet search, the Extended Euclidean Algorithm was first published by Roger Cotes (1682-

1716) who used it to compute continued fractions.

So let’s describe an algorithm that

inputs

• A base b ;

• A positive integer n, written in base b, of d2 digits, say (so bd2−1 ≤ n < bd2) ;

• Integers i1, i2 satisfying 0 ≤ i1, i2 ≤ d2 − 1 ;

and

outputs

• The set of all positive integers m (of any size) such that if m is written in base b, the i1-th digit

of m is the same as the i2-th digit of n, and removing that common digit from both m and n does

not alter the ratio.

Since the denominator n is assumed known, and we are singling out its i2-th digit, let’s call it c

(0 ≤ c ≤ b− 1), we can express it as

n = N1 · b
i2+1 + c · bi2 + N2 , 1 ≤ N1 ≤ bd2−i2−1 − 1 , 0 ≤ N2 ≤ bi2 − 1 .

We are looking for integers m

m = M1 · b
i1+1 + c · bi1 + M2 , 0 ≤ M1 , 0 ≤ M2 ≤ bi1 − 1 ,
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such that
M1 · b

i1+1 + c · bi1 + M2

N1 · bi2+1 + c · bi2 + N2
=

M1 · b
i1 + M2

N1 · bi2 + N2
.

Cross-multiplying, this leads to a certain linear diophantine equation of the form

AM1 + BM2 = C ,

for some specific integers A,B,C (derivable from above), and unknowns M1,M2. If C is not

divisible by gcd(A,B), then there is no solution of course. On the other hand, if C is divisible by

gcd(A,B), let A1 = A
gcd(A,B) , B1 = B

gcd(A,B) , C1 = C
gcd(A,B) , and we get

A1 M1 + B1 M2 = C1 ,

where gcd(A1, B1) = 1. Using the Extended Euclidean algorithm, we manufacture a pair of integers

(M
(0)
1 ,M

(0)
2 ) such that

A1 M
(0)
1 + B1 M

(0)
2 = 1 ,

from which we get the general solution

M1 = C1 M
(0)
1 + B1 t , M2 = C1 M

(0)
2 − A1 t.

We then look for all t that make M2 between 0 and bi1 − 1.

The Maple package

All this is implemented in the Maple package AnomalousCancellation.txt, available directly from

http://sites.math.rutgers.edu/~zeilberg/tokhniot/AnomalousCancellation.txt ,

or via the webpage of this article

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/anomalous.html ,

where there are several input and outputs files. For example, for a list of all such anomalous

cancellations where the denominator is ≤ 9999 (in our own base ten) see

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/ac4.pdf ,

while for an extension of Boas’ tables in pp. 119-122 of [B] see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oAnomalousCancellation2.txt .

The above web-page has other output files, but readers who have Maple can use the Maple package

AnomalousCancellation.txt to get as many more examples as they wish.
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