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Abstract

The 3x+ 1 problem concerns iteration of the map T : Z→ Z given by

T (x) =


x

2
if x ≡ 0 (mod 2),

3x+ 1

2
if x ≡ 1 (mod 2).

The 3x + 1 Conjecture states that every x ≥ 1 has some iterate T s(x) = 1. The
least s ∈ N such that T s(x) < x is called the stopping time of x. It is shown
that the residue classes of the integers x > 1 with a finite stopping time can be
evolved according to a directed rooted tree based on their parity vectors. Each parity
vector represents a unique Diophantine equation whose only positive solutions are
the integers with a finite stopping time. The tree structure is based on a precise
algorithm which allows accurate statements about the solutions x without solving
the Diophantine equations explicitly. As a consequence, the integers x > 1 with a
finite stopping time can be generated algorithmically. It is also shown that the OEIS
sequences A076227 and A100982 related to the residues (mod 2k) can be generated
algorithmically in a Pascal’s triangle-like manner from the two starting values 0
and 1. Summarized, the results of this paper present a fully self-contained theory
of the 3x + 1 stopping time problem. For the results no statistical and probability
theoretical methods were used.

Keywords and phrases: 3x + 1 problem, 3n + 1 conjecture, Collatz conjecture, Ulam conjecture, Kakutani’s
problem, Thwaites conjecture, Hasse’s algorithm, Syracuse problem, hailstone sequence, finite stopping time,
OEIS, A020914, A020915, A022921, A056576, A076227, A100982, A177789
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1 Introduction

The 3x+ 1 function is defined as a function T : Z→ Z given by

T (x) =


x

2
if x ≡ 0 (mod 2),

3x+ 1

2
if x ≡ 1 (mod 2).

(1)

Let T 0(x) = x and T s(x) = T
(
T s−1(x)

)
for s ∈ N. Then we get for each x ∈ N a

sequence C(x) = (T s(x))
∞
s=0.

For example the starting value x = 11 generates the sequence

C(11) = (11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, 2, 1, . . . ).

Any C(x) can only assume two possible forms. Either it falls into a cycle or it grows to in-
finity. The 3x+1 Conjecture states that every C(x) enters the trivial cycle (2, 1, 2, 1, . . . ).

2 The stopping time σ(x) and the residues (mod 2k)

The 3x + 1 Conjecture holds if for each x ∈ N, x > 1, there exists s ∈ N such that
T s(x) < x. The least s ∈ N such that T s(x) < x is called the stopping time of x, which
we will denote by σ(x).

For the further text we define the following:

• Let Ca(x) = (T s(x))
a
s=0 , a ∈ N, a ≥ 1, be a finite subsequence of C(x).

• Let n ≥ 1, n ∈ N, be the number of odd terms in Cσ(x)−1(x), whereby T 0(x) is not
counted.

• Let σn := b1 + (n+ 1) · log2 3c for all n ∈ N.

It is not hard to verify that for specific residue classes of starting values x > 1 only specific
stopping times σ(x) are possible which are determined by the real number log2 3.

Let ri, z ∈ N, i = 1, . . . , z. Then generally applies for each n ≥ 1 that

σ(x) = σn if x ≡ r1, r2, r3, . . . , rz (mod 2σn). (2)

For the first n ≥ 1 there is

σ(x) = σ1 = 4 if x ≡ 3 (mod 16),
σ(x) = σ2 = 5 if x ≡ 11, 23 (mod 32),
σ(x) = σ3 = 7 if x ≡ 7, 15, 59 (mod 128),
σ(x) = σ4 = 8 if x ≡ 39, 79, 95, 123, 175, 199, 219 (mod 256),

and so forth. Appendix 9.2 shows the above list up to σ(x) = 15.

Let z(n) ≥ 1 for each n ≥ 1 be the number of residue classes (mod 2σn), respectively the
number of congruences ri, as listed in A100982.

3
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Theorem 1. There exists for each n ≥ 1 a set of z(n) ≥ 1 residue classes (mod 2σn) with
the property that all integers x > 1 of one of these residue classes have finite stopping
time σ(x) = σn.

Proof. All essential references are given in the OEIS [5]. The possible stopping times
σn are listed in A020914. The congruences ri of the associated residue classes (mod 2σn)
are listed in A177789. But the proof of Theorem 2 is also a proof of Theorem 1. �

Remarkably, as we shall see in the course of the next pages, the residue classes (mod 2σn)
as mentioned in Theorem 1 can be generated algorithmically according to a directed
rooted tree. (cf. Chapter 8)

Theorem 2. For each n ≥ 3 the number of residue classes (mod 2σn) as listed in A100982
and the number of the remaining residue classes (mod 2k) as listed in A076227 can be
generated algorithmically in a Pascal’s triangle-like manner from the two starting values
0 and 1.

Proof. The residues (mod 2k) can be evolved according to a binary tree. For the
residues (mod 2k) in each case, k steps can be calculated. As long as a factor 2 is
included, only the residue decides whether the next number is even or odd, and this step
can be performed. If the powers of 2 are dissipated, they are replaced by a certain number
of factors 3, which is less than or equal to the initial k, depending on how many 3x+1

2
and 1

2 steps have occurred.
Let r, q ∈ N, then in general r (mod 2k) leads to q (mod 3n) with k ≥ n. Whereby

it is k = n exactly for r = 2k − 1, which is also the deeper reason for the fact that more
and more residues remain, specifically the residues of the form 2k − 1. If 2k > 3n then
the sequence can be sorted out, because the stopping time is reached.

If we now pass from a specific value k to the value k+ 1, always two new values arise
from the remaining candidates, so r (mod 2k) became r (mod 2k+1) or (r+2k) (mod 2k+1).
For one of them the result in the k-th step is even, for the other it is odd. Which is what,
we did not know before doubling the base, which is why we had to stop. And accordingly
one continues with the 3x+1

2 step and thus to a value of the power of 3 increased by one,
and the other with the 1

2 step while maintaining the power of 3.
Now we consider the number of residues that lead to a specific power of 3. Let

R(k, n) be the number of residues (mod 2k) which meet the condition 2k < 3n and lead
to a residue (mod 3n). Each residue (mod 2k+1) comes from a residue (mod 2k), and
either n is increased or n is retained, depending on the type of step performed. Thus we
have

R(k + 1, n) = R(k, n) +R(k, n− 1) (3)

with the starting condition R(2, 2) = 1 and R(2, 1) = 0. Because 3 (mod 22) is the
only non-trivial staring value and leads to 8 (mod 32). As a consequence, the number of
residues (mod 2k) can be calculated in a Pascal’s triangle-like manner or form, whose left
side is cut off by the stopping time condition 2k > 3n. The number of 2k between 3n−1

and 3n, as listed in A022921, we will denote by d(n), is given by

d(n) = bn · log2 3c − b(n− 1) · log2 3c. (4)

The highest k such that 2k < 3n, as listed in A056576, we will denote by κ(n) for each
n ≥ 2. Then with equation (4) it is

κ(n) =

n∑
i=1

d(i) =

n∑
i=1

(
bi · log2 3c − b(i− 1) · log2 3c

)
, (5)

and from the above definition of κ(n) it follows also directly that

κ(n) = bn · log2 3c. (6)

4
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Further it is κ(n) + 1 = b1 + n · log2 3c = b1 + ((n − 1) + 1) · log2 3c. Then with
σn = b1 + (n+ 1) · log2 3c we get κ(n) + 1 = σn−1 with is equivalent to

κ(n+ 1) + 1 = σn. (7)

Equation (7) states that κ(n+ 1) + 1 is the stopping time for x > 1 for each n ∈ N, which
completes the circle to (2) and Theorem 1. Remember that n ≥ 1 is the number of odd
terms in Cσ(x)−1(x), whereby T 0(x) is not counted. Therefore the stopping time σ(x)
for each n ≥ 1 is given exactly by k+1 of the highest k such that 2k < 3n+1 or κ(n+1)+1.

Back to the left sided bounding condition: For each n ≥ 2 the last value R(k + 1, n)
of equation (3) is given by

k + 1 = κ(n). (8)

With the use of (3), (4), (5) and (8) now we are able to create an algorithm which gen-
erates A100982 and A076227 from the two starting values 0 and 1 for each n ≥ 3. �

Appendix 9.1.1 and 9.1.2 show a program for the algorithm of Theorem 2. Appendix
9.3 shows a detailed list for the expansion of the first residue classes (mod 2k).

Table 1 will make the algorithm of Theorem 2 more clear, no entry is equal to 0.

d(n) = 1 2 1 2 1 2 2 1 2 1 2 · · ·
n = 1 2 3 4 5 6 7 8 9 10 11 · · ·
k = w(k) =

2 1 1

3 1 1 2

4 2 1 3

5 3 1 4

6 3 4 1 8

7 7 5 1 13

8 12 6 1 19

9 12 18 7 1 38

10 30 25 8 1 64

11 30 55 33 9 1 128
...

...
...

...
...

. . .
...

z(n) = 2 3 7 12 30 85 173 476 961 2652 · · ·

Table 1: Triangle expansion of the number of residues (mod 2k).

From Table 1 it can be seen that the sum of the values in each row k is equal to the
number of the surviving residues (mod 2k) as listed in A076227, which we will denote by
w(k) for each k ≥ 2. Then there is

w(k) =

k∑
n=b1+k·log3 2c

R(k, n). (9)

The values for b1 + k · log3 2c are listed in A020915. For example in the row for k = 6 it
can be seen that relating to 26 = 64 there exist exactly 3 + 4 + 1 = 8 remaining residues
from which three lead to 34, four lead to 35 and one leads to 36. The values with smaller
powers of 3 are cut off by the condition 26 = 64 > 33 = 27.

The sum of the values in each column n is equal to the number of residue classes z(n)
as listed in A100982. With the use of equation (5) there is

z(n) =

κ(n)∑
k=n

R(k, n). (10)

5
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For example in the column for n = 4 it can be seen that there exists exactly 3 + 3 + 1 = 7
residues classes (mod 2σn) which have stopping time σ4 = b1 + (4 + 1) · log2 3c = 8.

The exact values for k of the number of 2k between 3n−1 and 3n as listed in A022921
are given by the largest values in each column n, precisely by κ(n) and κ(n) − 1. For
example in the column for n = 4 the largest values are 3 for k = 5 and k = 6. So, the
powers of 2 existing between 33 and 34 are 25 and 26. For n = 5 the largest value is 7 for
k = 7. Also exists only one power of 2 between 34 and 35 and that is 27.

3 Subsequences Cκ(n)(x) and a stopping time term formula for
odd x

If an odd starting value x > 1 has stopping time σ(x) = σn (cf. Theorem 1) then it is
shown in the proof of Theorem 2 that for each n ≥ 1 the subsequence Cκ(n)(x) represents
sufficiently the stopping time of x. Because Cκ(n)(x) consists of n + 1 odd terms and
therefore all terms T s(x) with κ(n) < s < σ(x) are even.

If the succession of the even and odd terms in Cκ(n)(x) is known, it is quite easy to
develop a formula for the exact value of Tσ(x)(x) with σ(x) = σn.

Theorem 3. Given Cκ(n)(x) consisting of n + 1 odd terms. Let αi ∈ N, αi ≥ 0, i =
1, . . . , n+ 1. Now let αi = s, if and only if T s(x) in Cκ(n)(x) is odd. Then there is

Tσn(x) =
3n+1

2σn
· x+

n+1∑
i=1

3n+1−i2αi

2σn
< x. (11)

Proof. With the use of Theorem 1 and 2, Theorem 3 follows almost directly from
the 3x+ 1 function (1). A detailed proof is given by the author in an earlier article [14,
pp.3-4,p.9]. A similar formula is also mentioned by Garner [2, p.2]. �

Example: For n = 3 there is σ3 = b1 + (3 + 1) · log2 3c = 7. Then for x = 59 we
get by equation (11)

T 7(59) =
34

27
· 59 +

3320 + 3221 + 3123 + 3024

27
= 38 < 59.

Explanation: For n = 3 there is κ(3) = 4 and C4(59) = (59, 89, 134, 67, 101) consists of
3 + 1 = 4 odd terms 59, 89, 67, 101. The powers of two αi yield as follows: T 0 = 59 is
odd, so α1 = 0. T 1 = 89 is odd, so α2 = 1. T 2 = 134 is even, so nothing happen.
T 3 = 67 is odd, so α3 = 3. T 4 = 101 is odd, so α4 = 4. And a comparison with
C7(59) = (59, 89, 134, 67, 101, 152, 76, 38) confirms the solution T 7(59) = 38. Note that
there is σ(x) = 7 not only for x = 59, but also for every x ≡ 59 (mod 27).

4 Parity vectors vn(x) and parity vector sets V(n) for each n ≥ 1

To simplify the distribution of the even and odd terms in Cκ(n)(x) we define a zero-one
sequence vn(x) by

vn(x) = Cκ(n)(x) with T s(x) =

 0 if T s(x) ≡ 0 (mod 2),

1 if T s(x) ≡ 1 (mod 2),
(12)

which we will denote as the parity vector of x. In other words, vn(x) is a vector of κ(n)+1
elements, where ”0” represents an even term and ”1” represents an odd term in Cκ(n)(x).

6
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And for each n ≥ 1 we will define the parity vector set V(n) as the set of z(n) ≥ 1 parity
vectors vn(x), whereby σ(x) = σn for each parity vector of the set. (cf. Theorem 1)

Example: For n = 3 there is κ(3) = 4. Then for x = 7, x = 15 and x = 59 the
subsequences Cκ(n)(x) and its appropriate parity vectors vn(x) are

C4(7) = (7, 11, 17, 26, 13) has perity vector v3(7) = (1, 1, 1, 0, 1),

C4(15) = (15, 23, 35, 53, 80) has perity vector v3(15) = (1, 1, 1, 1, 0),

C4(59) = (59, 89, 134, 67, 101) has perity vector v3(59) = (1, 1, 0, 1, 1).

The parity vector set V(3) then consists of these three parity vectors, because for n = 3
there is σ(x) = σ3 = 7 only for the z(3) = 3 residue classes 7, 15, 59 (mod 27). So we have

V(3) :=

 (1, 1, 0, 1, 1)
(1, 1, 1, 0, 1)
(1, 1, 1, 1, 0)

 .

Remark 4. According to Theorem 3, for each n ≥ 1 there exists for each parity vector
of V(n) with equation (11) a unique Diophantine equation

y =
3n+1

2σn
· x+

n+1∑
i=1

3n+1−i2αi

2σn
, (13)

whose only positive integer solutions (x, y) are for x the residue classes (mod 2σn) men-
tioned in Theorem 1. Note that the positive integer solutions x < 2σn of equation (13)
for each parity vector of V(n) are equal to the congruences ri as listed in A177789.

Appendix 9.4 shows the first parity vector sets V(n) with its integer solution (x, y).

5 Generating the parity vectors of V(n) for each n ≥ 2

With our results so far we are able to build the parity vectors of V(n) for each n ≥ 2.

Theorem 5. For each n ≥ 2 the parity vectors of V(n) can be evolved algorithmically
according to a directed rooted tree from the parity vector of V(1).

Proof. The initial value is the parity vector of V(1). Each parity vector of V(n)
consists of (n + 1) 1-elements and

(
κ(n) − n

)
0-elements. As mentioned in the proof of

Theorem 2 for each further n there will be d(n) steps added. Because d(n) can only attain
two different values, 1 or 2, the possibilities for the further parity vectors are precisely
defined by these three-step-algorithm:

1. Build one new vector of V(n) by adding the vector of V(n− 1) on the right side by
”1” if d(n) = 1 and ”0, 1” if d(n) = 2.

2. Build j ≥ 1 new vectors of V(n), if the new vector in step 1 contains j ≥ 1
0-elements in direct progression from the right-sided penultimate position to the
left. In this case the last right-sided 1-element will change its position with each of
its j ≥ 1 left-sided 0-elements in direct progression, only one change for each new
vector from the right to the left.

3. Repeat step 1 and step 2 until the new vector of V(n) begins with (n+1) 1-elements
followed by

(
κ(n)− n

)
0-elements.

7
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The above algorithm produces a directed rooted tree with two different directions, a hor-
izontal and vertical, as seen in Figure 1. This construction principle gives the tree a
triangular form which extends ever more downwards with each column.

vn−1(x) vn(x)

vn(x)

step 1

step 2

Figure 1: Tree construction principle

Figure 2 shows the beginning of the tree produced by the algorithm of Theorem 5 using
the above construction principle. Each column of this tree show the parity vectors of
V(n).

(1, 1) (1, 1, 0, 1) (1, 1, 0, 1, 1) (1, 1, 0, 1, 1, 0, 1)

(1, 1, 1, 0) (1, 1, 1, 0, 1)

(1, 1, 1, 1, 0)

(1, 1, 0, 1, 1, 1, 0)

(1, 1, 1, 0, 1, 0, 1)

(1, 1, 1, 0, 1, 1, 0)

(1, 1, 1, 1, 0, 0, 1)

(1, 1, 1, 1, 0, 1, 0)

(1, 1, 1, 1, 1, 0, 0)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2: Directed rooted tree for the parity vectors up to V(4).

Appendix 9.1.3 and 9.1.4 show a program for the algorithm of Theorem 5. Appendix 9.5
shows the tree of Figure 2 up to V(6). Appendix 9.6 shows an ordered list of the parity
vectors of V(6) with its integer solution (x, y) and h. �

Now let h ≥ 2 be the number of the first 1-elements in direct progression in a parity
vector and let P(h, n) be the number of parity vectors for each n ≥ 1 with h ≥ 2 first
1-elements in direct progression. Table 2 shows the values for P(h, n) as generated by
the algorithm of Theorem 5. The triangle structure follows directly from the construction
principle of the tree. Note the peculiarity here that the first three rows are identical
for each n ≥ 3. The values of Table 2 or P(h, n) can also be generated in a slightly
complicated Pascal’s triangle-like manner as shown by the program in Appendix 9.1.5.

8
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n = 1 2 3 4 5 6 7 8 9 10 11 · · ·
h =

2 1 1 1 2 3 7 19 37 99 194 525 · · ·
3 1 1 2 3 7 19 37 99 194 525 · · ·
4 1 2 3 7 19 37 99 194 525 · · ·
5 1 2 5 14 28 76 151 412 · · ·
6 1 3 9 19 53 108 299 · · ·
7 1 4 10 30 65 186 · · ·
8 1 4 14 34 103 · · ·
9 1 5 15 50 · · ·

10 1 5 20 · · ·
11 1 6 · · ·
12 1 · · ·

...
. . .

z(n) = 1 2 3 7 12 30 85 173 476 961 2652 · · ·

Table 2: Triangle expansion of the number of parity vectors regarding to their first 1-
elements in direct progression.

From Table 2 it can be seen that the sum of the values in each column n is equal to
the number of residue classes z(n) as listed in A100982. Therefore it is

z(n) =

n+1∑
h=2

P(h, n). (14)

For example in the column for n = 6 it can be seen that there exists exactly 7+7+7+5+3+
1 = 30 residues classes (mod 2σn) which have stopping time σ6 = b1+(6+1)·log2 3c = 12.

The ”1” entries at the lower end of each column refer to the ”one” parity vector be-
ginning with (n + 1) 1-elements followed by

(
κ(n) − n

)
0-elements as mentioned in the

third step of the algorithm of Theorem 5.

6 The order of the generated parity vectors

The way how the algorithm of Theorem 5 is generating the parity vectors represents the
exact order as it is given by all permutations in lexicographic ordering1 of a zero-one
tuple2 with

(
κ(n)− n

)
0-elements and (n− 1) 1-elements given as

(0, · · · , 0︸ ︷︷ ︸ , 1, · · · , 1︸ ︷︷ ︸), (15)

κ(n)− n n− 1

whereby at the left side the first two 1-elements must be added. Let L(n) for each n ≥ 1
be the number of all permutations in lexicographic ordering of a tuple (15) then it is

L(n) =
(κ(n)− 1)!(

κ(n)− n
)
! · (n− 1)!

, (16)

which generates the sequence

1, 2, 3, 10, 15, 56, 210, 330, 1287, 2002, 8008, . . . . (17)

In regard to Theorem 3 and Chapter 4, by interpreting these tuples with the first two
added 1-elements at the left as such a simplification for the even and odd terms in Cκ(n)(x)

1As given by the algorithm in Appendix 9.1.6.
2We use the word ”tuple” instead of ”vector” to exclude confusion regarding to Chapter 4.

9
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as same as the parity vectors, only for the L(n) ≥ 1 tuples the conditions of Theorem 3
and equation (13) are complied. Note that there are no other possibilities for an integer
solution (x, y), but not for all of them is σ(x) = σn. This applies only to the tuples which
are identical to the parity vectors of V(n).

Example: For n = 5 there is κ(5) = 7 and L(5) = 15. The left side in Table 3 shows the
15 permutations in lexicographic ordering of the tuple (15). The right side shows these
tuples added by the first two 1-elements and their integer solution (x, y) for equation
(13).

1 (0, 0, 1, 1, 1, 1) (1, 1, 0, 0, 1, 1, 1, 1) (595, 425)

2 (0, 1, 0, 1, 1, 1) (1, 1, 0, 1, 0, 1, 1, 1) (747, 533)

3 (0, 1, 1, 0, 1, 1) (1, 1, 0, 1, 1, 0, 1, 1) (507, 362)

4 (0, 1, 1, 1, 0, 1) (1, 1, 0, 1, 1, 1, 0, 1) (347, 248)

5 (0, 1, 1, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 0) (923, 658)

6 (1, 0, 0, 1, 1, 1) (1, 1, 1, 0, 0, 1, 1, 1) (823, 587)

7 (1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 0, 1, 1) (583, 416)

8 (1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 1, 1, 0, 1) (423, 302)

9 (1, 0, 1, 1, 1, 0) (1, 1, 1, 0, 1, 1, 1, 0) (999, 712)

10 (1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 0, 0, 1, 1) (975, 695)

11 (1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 0, 1, 0, 1) (815, 581)

12 (1, 1, 0, 1, 1, 0) (1, 1, 1, 1, 0, 1, 1, 0) (367, 262)

13 (1, 1, 1, 0, 0, 1) (1, 1, 1, 1, 1, 0, 0, 1) (735, 524)

14 (1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 1, 0, 1, 0) (287, 205)

15 (1, 1, 1, 1, 0, 0) (1, 1, 1, 1, 1, 1, 0, 0) (575, 410)

Table 3: The 15 tuples for n = 5.

Note that the right sided tuples or parity vectors 1, 2 and 6 are not in V(5), but the order
of the other tuples or parity vectors is exactly the same as the algorithm of Theorem 5
is generating the parity vectors. See also Appendix 9.4, 9.5 and 9.6.

7 The Diophantine equations and its integer solutions

As mentioned in Chapter 4, with the algorithm of Theorem 5 now we are able to create
an infinite set of unique Diophantine equations (13) whose only positive integer solutions
(x, y) are for x the residue classes (mod 2σn) as mentioned in Theorem 1. In other words:
Each parity vector of V(n) represents a residue class (mod 2σn) with the property that all
starting values x > 1 of one of these residue classes have finite stopping time σ(x) = σn.
So we have changed the 3x + 1 problem into a Diophantine equation problem, because
the 3x+ 1 Conjecture holds, if these residues (mod 2σn) and the residues 0 (mod 2) and
1 (mod 4) build the set of the natural numbers.

Remark 6. The x < 2σn of the integer solution (x, y) in equation (13) for a parity vector
of V(n) we will denote simply as ”the solution x for a parity vector”.

In regard to equation (13) their is a direct connectedness between the elements in direct
progression in a parity vector and its solution x. Thus the algorithm of Theorem 5 allows
us to make accurate statements about the solutions x without solving the Diophantine
equations explicitly. The following four Corollaries are precise implications from Theorem
3, Theorem 5 and Remark 4. The end of a Corollary is signed by the symbol �.

Corollary 7. Regarding to the first h ≥ 2 1-elements in direct progression in a parity
vector, for each n ≥ 1 for the solution x of a parity vector there is

x ≡ (2h − 1)(mod 2h+1). (18)

�
Now we need an individual identification for each parity vector and its solution x. Let

p ∈ N, p = 1, . . . ,P(h, n), be the enumeration value for the order of the parity vectors

10
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with same h ≥ 2 as generating by the algorithm of Theorem 5. Then for each n ≥ 1 the
individual identification for a parity vector vn(x) and its solution x we will denote by

vn,h,p with xn,h,p, (19)

whereby the indexes n, h, p are used only in the written representation, which change.
That means for example, if n and h are given, we only write vp and xp, which makes the
equations easier to read. Further let vn−1,p′ be the predecessor-parity vector of vn,p in
regard to the first step of the algorithm of Theorem 5.

Corollary 8. Regarding to the first step of the algorithm of Theorem 5, for each n ≥ 2,
h ≥ 2, for the solution x of a parity vector vn,p which last element is ”1” there is

xn,p ≡ xn−1,p′
(
mod 2κ(n)

)
, (20)

and xn,p is explicit given with λ ∈ {1, 3, 5, 7} by the recurrence relation

xn,p = xn−1,p′ + λ · 2κ(n) if xn−1,p′ + λ · 2κ(n) < 2σn , (21)

or

xn,p = xn−1,p′ + λ · 2κ(n) − 2σn if xn−1,p′ + λ · 2κ(n) > 2σn . (22)

That means there exist only four possibilities for an integer solution (x, y) in equation
(13) for x = xn−1,p′ + λ · 2κ(n) with λ = 1, 3, 5, or 7. And if and only if x > 2σn then is
xn = x− 2σn . There is 1 ≥ λ ≥ 7, because of x < 2σn for each n ≥ 1, and x odd implies
λ odd. From x < 2σn and the fact that d(n) can only attain the values 1 or 2 with only
one ”1” and two ”2” in direct progression, follows also that for n ≥ 2

• there exist only two values of λ ≥ 5 in direct progression.

• if d(n− 1) = d(n) = 2 there is λ ∈ {1, 3}.

• if d(n) = 2 and d(n+ 1) = 1 there is λ ∈ {1, 3}.

• in (22) there is λ ∈ {3, 7} and especially for d(n) = 1 there is λ = 7.

�
Appendix 9.1.7 shows a program for the recurrence relation of Corollary 8.

Corollary 9. Regarding to the second step of the algorithm of Theorem 5, for each n ≥ 2,
2 ≤ h ≤ n, for the solution x of a parity vector vp which last element is ”0” there is

xp ≡ xp−1

(
mod 2κ(n)−j), (23)

whereby j ≥ 1 is the number of the last 0-elements in direct progression in vp.

For each n ≡ 1 (mod 2) there is

xp = xp−1 + δ · 2κ(n)−j with δ = 1± 8b, b ∈ N. (24)

For each n ≡ 0 (mod 2) there is

xp = xp−1 + δ · 2κ(n)−j with δ = 3± 8b, b ∈ N. (25)

11
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For each 2 ≤ n ≤ 8, 2 ≤ h ≤ n, the solution xp is explicit given as follows.

For each n ≡ 1 (mod 2) there is

xp =xp−1 + 2κ(n)−j +
(
2− d(n)

)
· 2κ(n)−j+3 (26)

if the right side of (26) < 2σn , or

xp = xp−1 + 2κ(n)−j +
(
2− d(n)

)
· 2κ(n)−j+3 − 2σn (27)

if the right side of (26) > 2σn .

For each n ≡ 0 (mod 2) there is

xp = xp−1 + 2κ(n)−j + 2κ(n)−j+1 +
(
2− d(n)

)
· 2κ(n)−j+3 (28)

if the right side of (28) < 2σn , or

xp = xp−1 + 2κ(n)−j + 2κ(n)−j+1 +
(
2− d(n)

)
· 2κ(n)−j+3 − 2σn (29)

if the right side of (28) > 2σn .

These rules, equations (26) to (29), also work for each n ≥ 9 with j = 1 for all d(n) = 2
and almost all d(n) = 1. Unfortunately, for n ≥ 9 with j ≥ 2 the rules for constructing
the solution xp from xp−1 are not so clear defined as for 2 ≤ n ≤ 8. There exist explicit
rules for each n ≥ 9, but they are depending on the value of j and λ. At this point we
cannot specify these explicit rules in an easy general manner. �

Corollary 10. Regarding to the third step of the algorithm of Theorem 5, for each n ≥ 2
the solution x of each parity vector vn,n+1,1 is given by

xn,n+1,1 = 2 · xn,n,P(n,n) + 1 if 2 · xn,n,P(n,n) + 1 < 2σn , (30)

or

xn,n+1,1 = 2 · xn,n,P(n,n) + 1− 2σn if 2 · xn,n,P(n,n) + 1 > 2σn . (31)

�
Note that vn,n+1,1 is the last parity vector of each V(n) and the child of vn,n,P(n,n).

8 Conclusion

At first sight the stopping time residue classes (mod 2σn), as listed in Chapter 2 and in
Appendix 9.2, convey the impression of randomness. There seems to be no regularity.
The congruences seem to obey no law of order.

We have shown that this impression is deceptive. The finite stopping time behavior of
the 3x+ 1 function is exactly defined by an algorithmic structure according to a directed
rooted tree, whose vertices are the residue classes (mod 2σn). And there exists explicit
arithmetic relationships between the parent and child vertices given by the Corollaries 8,
9 and 10. (cf. Figure 3 and 4)

Up to this point, our results on the residues (mod 2σn) are absolutely precise and
clear. These results are given without the use of any statistical and probability theoretical
methods. Even though Corollary 8 and 9 are not precise enough at this time to generate
all solutions x precisely, from this point, statistical and probability theoretical methods
could be used to show that the residues (mod 2σn) and the residues 0 (mod 2) and
1 (mod 4) build the set of the natural numbers.

12
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xn−1 (mod 2σn−1) xn,p−1 (mod 2σn)

xn,p (mod 2σn)

Corollary 8

Corollary 9

Figure 3: Tree construction principle (cf. Figure 1)

3 (mod 24) 11 (mod 25) 59 (mod 27) 123 (mod 28)

23 (mod 25) 7 (mod 27)

15 (mod 27)

219 (mod 28)

199 (mod 28)

39 (mod 28)

79 (mod 28)

175 (mod 28)

95 (mod 28)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4: Directed rooted tree of the residues (mod 2σn). (cf. Figure 2)

One possibility to prove the 3x + 1 Conjecture would be the following: Let us
assume the most extreme case for Corollary 8 and 9. In regard to Remark 6, the values
for x are thus as large as possible, whereby most of the small values (residual classes)
are skipped. The equations (22), (27), (29) and (31) are the reason why there must still
exist very small solutions for x, even if the values for n become very large. Thus it could
be shown that there exist bounds for n such that all x smaller than a specific value have
a finite stopping time.

13
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9 Appendix

9.1 Algorithms in PARI/GP [6]

9.1.1 Program 1

Program 1 shows the algorithm for Theorem 2. It generates the values of Table 1 especially
A100982. It outputs the values of column n and their sum z(n) for each n ≥ 2.

1 {

2 limit =20; /* or limit >20 */

3 R=matrix(limit ,limit);

4 R[2 ,1]=0;

5 R[2 ,2]=1;

6

7 for(n=2, limit ,

8 print; print1("For n="n" in column n: ");

9 Kappa=floor(n*log (3)/ log (2));

10 Zn=0;

11 for(k=n, Kappa ,

12 R[k+1,n]=R[k,n]+R[k,n-1];

13 print1(R[k+1,n]", ");

14 Zn=Zn+R[k+1,n];

15 );

16 print; print(" and the sum is z(n)="Zn);

17 );

18 }

9.1.2 Program 2

Program 2 shows the algorithm for Theorem 2. It generates the values of Table 1 especially
A076227. It outputs the values of row k and their sum w(k) for each k ≥ 2.

1 {

2 limit =20; /* or limit >20 */

3 R=matrix(limit ,limit);

4 R[2 ,1]=0;

5 R[2 ,2]=1;

6

7 for(n=2, limit ,

8 if(n>2, print; print1("For k="n-1" in row k: "));

9 Kappa=floor(n*log (3)/ log (2));

10 for(k=n, Kappa ,

11 R[k+1,n]=R[k,n]+R[k,n-1];

12 );

13 t=floor (1+(n-1)* log (2)/ log (3)); /* cf. A020915 */

14 Wk=0;

15 for(i=t, n-1,

16 print1(R[n,i]", ");

17 Wk=Wk+R[n,i];

18 );

19 if(n>2, print; print(" and the sum is w(k)="Wk));

20 );

21 }

14
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9.1.3 Program 3

Program 3 shows the algorithm for Theorem 5. It generates the parity vectors of V(n)
for n ≥ 2 from the one initial parity vector of V(1). It outputs the parity vectors with h,
p and its counting number which last value is equal to z(n).

1 {

2 k=3;

3 Log32=log (3)/ log (2);

4 limit =14; /* or limit >14 */

5 V=matrix(limit ,60000);

6 xn=3;

7

8 /* initial parity vector of V(1) */

9 A=[]; for(i=1, 2, A=concat(A,i)); A[1]=1; A[2]=1;

10 V[1 ,1]=A;

11

12 for(n=2, limit ,

13 print("n="n);

14 Sigma=floor (1+(n+1)* Log32 );

15 d=floor(n*Log32)-floor((n-1)* Log32);

16 Kappa=floor(n*Log32);

17 Kappa2=floor((n-1)* Log32);

18

19 r=1; v=1;

20 until(w==0,

21 A=[]; for(i=1, Kappa2+1, A=concat(A,i));

22 A=V[n-1,v];

23 B=[]; for(i=1, Kappa+1, B=concat(B,i));

24 for(i=1, Kappa2+1, B[i]=A[i]);

25

26 /* step 1 */

27 if(d==1, B[k]=1; V[n,r]=B; r++; v++);

28 if(d==2, B[k]=0; B[k+1]=1; V[n,r]=B; r++; v++);

29

30 /* step 2 */

31 if(B[Kappa ]==0,

32 for(j=1, Kappa -n,

33 B[Kappa+1-j]=B[Kappa+2-j]; B[Kappa+2-j]=0;

34 V[n,r]=B; r++;

35 if(B[Kappa -j]==1, break (1));

36 );

37 );

38

39 /* step 3 */

40 w=0; for(i=n+2, Kappa+1, w=w+B[i]);

41 );

42 k=k+d;

43

44 p=1; h2=3;

45 for(i=1, r-1,

46 h=0; B=V[n,i]; until(B[h]==0, h++);

47 if(h>h2 , p=1; h2++; print);

48 print(V[n,i]" "h-1" "p" "i);

49 p++;

50 );

51 print;

52 );

53 }

15
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9.1.4 Program 4

Program 4 shows the same algorithm for Theorem 5 as Program 3, but it outputs the
values of Table 2 column by column.

1 {

2 k=3;

3 Log32=log (3)/ log (2);

4 limit =14; /* or limit >14 */

5 V=matrix(limit ,60000);

6 xn=3;

7

8 /* initial parity vector of V(1) */

9 A=[]; for(i=1, 2, A=concat(A,i)); A[1]=1; A[2]=1;

10 V[1 ,1]=A;

11

12 for(n=2, limit ,

13 print1("n="n" ");

14 Sigma=floor (1+(n+1)* Log32 );

15 d=floor(n*Log32)-floor((n-1)* Log32);

16 Kappa=floor(n*Log32);

17 Kappa2=floor((n-1)* Log32);

18

19 r=1; v=1;

20 until(w==0,

21 A=[]; for(i=1, Kappa2+1, A=concat(A,i));

22 A=V[n-1,v];

23 B=[]; for(i=1, Kappa+1, B=concat(B,i));

24 for(i=1, Kappa2+1, B[i]=A[i]);

25

26 /* step 1 */

27 if(d==1, B[k]=1; V[n,r]=B; r++; v++);

28 if(d==2, B[k]=0; B[k+1]=1; V[n,r]=B; r++; v++);

29

30 /* step 2 */

31 if(B[Kappa ]==0,

32 for(j=1, Kappa -n,

33 B[Kappa+1-j]=B[Kappa+2-j]; B[Kappa+2-j]=0;

34 V[n,r]=B; r++;

35 if(B[Kappa -j]==1, break (1));

36 );

37 );

38

39 /*step 3 */

40 w=0; for(i=n+2, Kappa+1, w=w+B[i]);

41 );

42 k=k+d;

43

44 p=1; h2=3; zn=0;

45 for(i=1, r-1,

46 h=0; B=V[n,i]; until(B[h]==0, h++);

47 if(h>h2 , print1(" "p-1); zn=zn+p-1; p=1; h2++);

48 p++;

49 );

50 print1(" "p-1" z(n)="zn+1); print;

51 );

52 }

16
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9.1.5 Program 5

Program 5 shows an algorithm for generating P(h, n) for a fixed h ≥ 4 and n =
5, . . . , limit. It outputs the values of Table 2 for a given row h.

1 {

2 h=4; /* or h>4 */

3 limit =20; /* or limit >20 */

4 Log32=log (3)/ log (2);

5 if(h>7, h++);

6 if(h>8, print1("h="h-1":"), print1("h="h":"));

7 P1=P2=vector(limit);

8 a=2;

9 b=1;

10 n=4;

11 P1 [1]=1;

12 P2[2]=n-(h-1);

13

14 until(n>limit -1,

15 n++;

16 value =1;

17 d1=floor(n*Log32)-floor((n-1)* Log32 );

18 d2=floor ((n-1)* Log32)-floor ((n-2)* Log32);

19 b++;

20 if((d1==1) && (d2==2), a=0);

21 if((d1==2) && (d2==1), a=-1);

22 if((d1==2) && (d2==2), a=0; b--);

23 if(a+b-b2==2, b--);

24 b2=a+b;

25 for(a=2, a+b,

26 if((n>6) && (n==h-1), P2[a]=0);

27 P1[a]=P1[a-1]+P2[a];

28 value=value+P1[a];

29 a2=a;

30 );

31 if(d1==2, P1[a2+1]=P1[a2]; value=value+P1[a2 +1]);

32 if((n>6) && (n==h-1), print1(" "1));

33 if(n>=h-1, print1(" "value ));

34 for(i=2, b+1, P2[i]=P1[i]);

35 );

36 }

9.1.6 Program 6

The function NextPermutation(a) generates all permutations in lexicographic ordering of
a zero-one tuple (15) as shown in Table 3.

1 NextPermutation(a)=

2 {

3 i=#a-1;

4 while (!(i<1 || a[i]<a[i+1]), i--);

5 if(i<1, return (0));

6 k=#a;

7 while (!(a[k]>a[i]), k--);

8 t=a[k];

9 a[k]=a[i];

10 a[i]=t;

11 for(k=i+1, (#a+i)/2,

12 t=a[k];

13 a[k]=a[#a+1+i-k];

14 a[#a+1+i-k]=t;

15 );

16 return(a);

17 }

17
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9.1.7 Program 7

Program 7 shows the algorithm for Corollary 8, especially for the first parity vector vn,2,1
of each V(n) for n ≥ 2. It outputs the integer solution x for these parity vectors with λ.

1 {

2 j=3;

3 limit =20; /* or limit >20; */

4 Log32=log (3)/ log (2);

5 xn=3;

6

7 /* initial parity vector of V(1) */

8 B=[]; for(i=1, j+1, B=concat(B,i)); B[1]=1; B[2]=1;

9

10 for(n=2, limit ,

11 Sigma=floor (1+(n+1)* Log32 );

12 d=floor(n*Log32)-floor((n-1)* Log32);

13 Kappa=floor(n*Log32);

14

15 /* generate the new parity vector for n */

16 if(n>2, B=[]; for(i=1, Kappa+1, B=concat(B,i));

17 for(i=1, j-1, B[i]=A[i]);

18 );

19 if(d==2, B[j]=0; B[j+1]=1 , B[j]=1);

20 j=j+d;

21 A=[]; for(i=1, Kappa+1, A=concat(A,i));

22 for(i=1, Kappa+1, A[i]=B[i]);

23

24 /* determine the n+1 values for Alpha[i] */

25 Alpha =[]; for(i=1, n+1, Alpha=concat(Alpha ,i));

26 for(i=1, n+1, Alpha[i]=0);

27 i=1; for(k=1, Kappa+1, if(B[k]==1, Alpha[i]=k-1; i++));

28

29 /* calculate Lamda from Diophantine equation */

30 Lamda =1;

31 until(Lamda >7,

32 x=xn+Lamda *2^ Kappa;

33 Sum =0; for(i=1, n+1, Sum=Sum +3^(n+1-i)*2^ Alpha[i]);

34 y=(3^(n+1)*x+Sum )/2^ Sigma;

35 if(frac(y)==0,

36 if(x>2^Sigma , x=x-2^ Sigma );

37 print(n" "x" "Lamda);

38 xn=x;

39 );

40 Lamda=Lamda +2;

41 );

42 );

43 }

18
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9.2 Stopping time residue classes up to σ(x) = 15

σ(x) = 1
if x ≡ 0 (mod 2)

σ(x) = 2
if x ≡ 1 (mod 4)

σ(x) = 4
if x ≡ 3 (mod 16)

σ(x) = 5
if x ≡ 11, 23 (mod 32)

σ(x) = 7
if x ≡ 7, 15, 59 (mod 128)

σ(x) = 8
if x ≡ 39, 79, 95, 123, 175, 199, 219 (mod 256)

σ(x) = 10
if x ≡ 287, 347, 367, 423, 507, 575, 583, 735, 815, 923, 975, 999 (mod 1024)

σ(x) = 12
if x ≡ 231, 383, 463, 615, 879, 935, 1019, 1087, 1231, 1435, 1647, 1703, 1787, 1823, 1855, 2031,
2203, 2239, 2351, 2587, 2591, 2907, 2975, 3119, 3143, 3295, 3559, 3675, 3911, 4063 (mod 4096)

σ(x) = 13
if x ≡ 191, 207, 255, 303, 539, 543, 623, 679, 719, 799, 1071, 1135, 1191, 1215, 1247, 1327,
1563, 1567, 1727, 1983, 2015, 2075, 2079, 2095, 2271, 2331, 2431, 2607, 2663, 3039, 3067, 3135,
3455, 3483, 3551, 3687, 3835, 3903, 3967, 4079, 4091, 4159, 4199, 4223, 4251, 4455, 4507, 4859,
4927, 4955, 5023, 5103, 5191, 5275, 5371, 5439, 5607, 5615, 5723, 5787, 5871, 5959, 5979, 6047,
6215, 6375, 6559, 6607, 6631, 6747, 6815, 6983, 7023, 7079, 7259, 7375, 7399, 7495, 7631, 7791,
7847, 7911, 7967, 8047, 8103 (mod 8192)

σ(x) = 15
if x ≡ 127, 411, 415, 831, 839, 1095, 1151, 1275, 1775, 1903, 2119, 2279, 2299, 2303, 2719,
2727, 2767, 2799, 2847, 2983, 3163, 3303, 3611, 3743, 4007, 4031, 4187, 4287, 4655, 5231, 5311,
5599, 5631, 6175, 6255, 6503, 6759, 6783, 6907, 7163, 7199, 7487, 7783, 8063, 8187, 8347, 8431,
8795, 9051, 9087, 9371, 9375, 9679, 9711, 9959, 10055, 10075, 10655, 10735, 10863, 11079, 11119,
11567, 11679, 11807, 11943, 11967, 12063, 12143, 12511, 12543, 12571, 12827, 12967, 13007,
13087, 13567, 13695, 13851, 14031, 14271, 14399, 14439, 14895, 15295, 15343, 15839, 15919,
16027, 16123, 16287, 16743, 16863, 16871, 17147, 17727, 17735, 17767, 18011, 18639, 18751,
18895, 19035, 19199, 19623, 19919, 20079, 20199, 20507, 20527, 20783, 20927, 21023, 21103,
21223, 21471, 21727, 21807, 22047, 22207, 22655, 22751, 22811, 22911, 22939, 23231, 23359,
23399, 23615, 23803, 23835, 23935, 24303, 24559, 24639, 24647, 24679, 25247, 25503, 25583,
25691, 25703, 25831, 26087, 26267, 26527, 26535, 27111, 27291, 27759, 27839, 27855, 27975,
28703, 28879, 28999, 29467, 29743, 29863, 30311, 30591, 30687, 30715, 30747, 30767, 30887,
31711, 31771, 31899, 32155, 32239, 32575, 32603 (mod 32768)
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9.3 Expansion of the first residue classes (mod 2k) for k = 2, . . . , 7.

w(k) r (mod 2k) −→ q (mod 3n)

1 3 (mod 22) −→ 8 (mod 32)

1 3 (mod 23) −→ 4 (mod 32)
2 7 (mod 23) −→ 26 (mod 33)

1 7 (mod 24) −→ 13 (mod 33)
2 11 (mod 24) −→ 20 (mod 33)
3 15 (mod 24) −→ 80 (mod 34)

1 7 (mod 25) −→ 20 (mod 34)
2 15 (mod 25) −→ 40 (mod 34)
3 27 (mod 25) −→ 71 (mod 34)
4 31 (mod 25) −→ 242 (mod 35)

1 7 (mod 26) −→ 10 (mod 34)
2 15 (mod 26) −→ 20 (mod 34)
3 27 (mod 26) −→ 107 (mod 35)
4 31 (mod 26) −→ 121 (mod 35)
5 39 (mod 26) −→ 152 (mod 35)
6 47 (mod 26) −→ 182 (mod 35)
7 59 (mod 26) −→ 76 (mod 34)
8 63 (mod 26) −→ 728 (mod 36)

1 7 (mod 27) −→ 161 (mod 36)
2 31 (mod 27) −→ 182 (mod 36)
3 39 (mod 27) −→ 76 (mod 35)
4 47 (mod 27) −→ 91 (mod 35)
5 63 (mod 27) −→ 364 (mod 36)
6 71 (mod 27) −→ 137 (mod 35)
7 79 (mod 27) −→ 152 (mod 35)
8 91 (mod 27) −→ 175 (mod 35)
9 95 (mod 27) −→ 182 (mod 35)

10 103 (mod 27) −→ 593 (mod 36)
11 111 (mod 27) −→ 638 (mod 36)
12 123 (mod 27) −→ 236 (mod 35)
13 127 (mod 27) −→ 2186 (mod 37)

Table 4

Example: The sequence C(7) = (7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, . . . ).

After k = 3 steps in the 3x + 1 iteration x = 7 leads to 26, after the 4-th step to
13, after the 5-th step to 20 and after the 6-th step to 10. After the 7-th step the
stopping time is reached because 5 < 7. From Chapter 2 we know that σ(x) = 7 if
x ≡ 7, 15, 59 (mod 128), and that is the reason why the residue class 5 (mod 34) is not
in the upper list in the last block for k = 7.
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9.4 First parity vector sets V(n) with integer solution (x, y) for n = 1, . . . , 6.

V(1)

(1, 1) (3, 2)

V(2)

(1, 1, 0, 1) (11, 10)
(1, 1, 1, 0) (23, 20)

V(3)

(1, 1, 0, 1, 1) (59, 38)
(1, 1, 1, 0, 1) ( 7, 5)
(1, 1, 1, 1, 0) (15, 10)

V(4)

(1, 1, 0, 1, 1, 0, 1) (123, 118)
(1, 1, 0, 1, 1, 1, 0) (219, 209)
(1, 1, 1, 0, 1, 0, 1) (199, 190)
(1, 1, 1, 0, 1, 1, 0) ( 39, 38)
(1, 1, 1, 1, 0, 0, 1) ( 79, 76)
(1, 1, 1, 1, 0, 1, 0) (175, 167)
(1, 1, 1, 1, 1, 0, 0) ( 95, 91)

V(5)

(1, 1, 0, 1, 1, 0, 1, 1) (507, 362)
(1, 1, 0, 1, 1, 1, 0, 1) (347, 248)
(1, 1, 0, 1, 1, 1, 1, 0) (923, 658)
(1, 1, 1, 0, 1, 0, 1, 1) (583, 416)
(1, 1, 1, 0, 1, 1, 0, 1) (423, 302)
(1, 1, 1, 0, 1, 1, 1, 0) (999, 712)
(1, 1, 1, 1, 0, 0, 1, 1) (975, 695)
(1, 1, 1, 1, 0, 1, 0, 1) (815, 581)
(1, 1, 1, 1, 0, 1, 1, 0) (367, 262)
(1, 1, 1, 1, 1, 0, 0, 1) (735, 524)
(1, 1, 1, 1, 1, 0, 1, 0) (287, 205)
(1, 1, 1, 1, 1, 1, 0, 0) (575, 410)

V(6)

(1, 1, 0, 1, 1, 0, 1, 1, 0, 1) (1019 , 545)
(1, 1, 0, 1, 1, 0, 1, 1, 1, 0) (1787 , 955)
(1, 1, 0, 1, 1, 1, 0, 1, 0, 1) (2907 , 1553)
(1, 1, 0, 1, 1, 1, 0, 1, 1, 0) (3675 , 1963)
(1, 1, 0, 1, 1, 1, 1, 0, 0, 1) (1435 , 767)
(1, 1, 0, 1, 1, 1, 1, 0, 1, 0) (2203 , 1177)
(1, 1, 0, 1, 1, 1, 1, 1, 0, 0) (2587 , 1382)
(1, 1, 1, 0, 1, 0, 1, 1, 0, 1) (3143 , 1679)
(1, 1, 1, 0, 1, 0, 1, 1, 1, 0) (3911 , 2089)
(1, 1, 1, 0, 1, 1, 0, 1, 0, 1) ( 935, 500)
(1, 1, 1, 0, 1, 1, 0, 1, 1, 0) (1703 , 910)
(1, 1, 1, 0, 1, 1, 1, 0, 0, 1) (3559 , 1901)
(1, 1, 1, 0, 1, 1, 1, 0, 1, 0) ( 231, 124)
(1, 1, 1, 0, 1, 1, 1, 1, 0, 0) ( 615, 329)
(1, 1, 1, 1, 0, 0, 1, 1, 0, 1) ( 463, 248)
(1, 1, 1, 1, 0, 0, 1, 1, 1, 0) (1231 , 658)
(1, 1, 1, 1, 0, 1, 0, 1, 0, 1) (2351 , 1256)
(1, 1, 1, 1, 0, 1, 0, 1, 1, 0) (3119 , 1666)
(1, 1, 1, 1, 0, 1, 1, 0, 0, 1) ( 879, 470)
(1, 1, 1, 1, 0, 1, 1, 0, 1, 0) (1647 , 880)
(1, 1, 1, 1, 0, 1, 1, 1, 0, 0) (2031 , 1085)
(1, 1, 1, 1, 1, 0, 0, 1, 0, 1) (3295 , 1760)
(1, 1, 1, 1, 1, 0, 0, 1, 1, 0) (4063 , 2170)
(1, 1, 1, 1, 1, 0, 1, 0, 0, 1) (1823 , 974)
(1, 1, 1, 1, 1, 0, 1, 0, 1, 0) (2591 , 1384)
(1, 1, 1, 1, 1, 0, 1, 1, 0, 0) (2975 , 1589)
(1, 1, 1, 1, 1, 1, 0, 0, 0, 1) (1087 , 581)
(1, 1, 1, 1, 1, 1, 0, 0, 1, 0) (1855 , 991)
(1, 1, 1, 1, 1, 1, 0, 1, 0, 0) (2239 , 1196)
(1, 1, 1, 1, 1, 1, 1, 0, 0, 0) ( 383, 205)

Note that the values for x are equal to the congruences ri of the associated residue
classes (mod 2σn) as listed in A177789 and in Appendix 9.2.
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9.5 How the algorithm of Theorem 5 works

Figure 5 shows how the algorithm of Theorem 5 is generating the parity vectors up
to n = 6 from the initial parity vector of V(1). For reasons of space, here the paren-
theses and commas of the parity vectors are dispensed with. On the right we see the
7 + 7 + 7 + 5 + 3 + 1 = 30 parity vectors of V(6). Please compare the number of parity
vectors for each n (tree column) with the values of Table 2.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
d(n) = 1 d(n) = 2 d(n) = 1 d(n) = 2 d(n) = 1 d(n) = 2

Figure 5: Directed rooted tree structure for the parity vectors up to V(6).
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9.6 Parity vector set V(6) with integer solution (x, y), p and h

V(6)

p parity vector (x, y) h

1 (1, 1, 0, 1, 1, 0, 1, 1, 0, 1) (1019 , 545) 2
2 (1, 1, 0, 1, 1, 0, 1, 1, 1, 0) (1787 , 955) 2
3 (1, 1, 0, 1, 1, 1, 0, 1, 0, 1) (2907 , 1553) 2
4 (1, 1, 0, 1, 1, 1, 0, 1, 1, 0) (3675 , 1963) 2
5 (1, 1, 0, 1, 1, 1, 1, 0, 0, 1) (1435 , 767) 2
6 (1, 1, 0, 1, 1, 1, 1, 0, 1, 0) (2203 , 1177) 2
7 (1, 1, 0, 1, 1, 1, 1, 1, 0, 0) (2587 , 1382) 2

1 (1, 1, 1, 0, 1, 0, 1, 1, 0, 1) (3143 , 1679) 3
2 (1, 1, 1, 0, 1, 0, 1, 1, 1, 0) (3911 , 2089) 3
3 (1, 1, 1, 0, 1, 1, 0, 1, 0, 1) ( 935, 500) 3
4 (1, 1, 1, 0, 1, 1, 0, 1, 1, 0) (1703 , 910) 3
5 (1, 1, 1, 0, 1, 1, 1, 0, 0, 1) (3559 , 1901) 3
6 (1, 1, 1, 0, 1, 1, 1, 0, 1, 0) ( 231, 124) 3
7 (1, 1, 1, 0, 1, 1, 1, 1, 0, 0) ( 615, 329) 3

1 (1, 1, 1, 1, 0, 0, 1, 1, 0, 1) ( 463, 248) 4
2 (1, 1, 1, 1, 0, 0, 1, 1, 1, 0) (1231 , 658) 4
3 (1, 1, 1, 1, 0, 1, 0, 1, 0, 1) (2351 , 1256) 4
4 (1, 1, 1, 1, 0, 1, 0, 1, 1, 0) (3119 , 1666) 4
5 (1, 1, 1, 1, 0, 1, 1, 0, 0, 1) ( 879, 470) 4
6 (1, 1, 1, 1, 0, 1, 1, 0, 1, 0) (1647 , 880) 4
7 (1, 1, 1, 1, 0, 1, 1, 1, 0, 0) (2031 , 1085) 4

1 (1, 1, 1, 1, 1, 0, 0, 1, 0, 1) (3295 , 1760) 5
2 (1, 1, 1, 1, 1, 0, 0, 1, 1, 0) (4063 , 2170) 5
3 (1, 1, 1, 1, 1, 0, 1, 0, 0, 1) (1823 , 974) 5
4 (1, 1, 1, 1, 1, 0, 1, 0, 1, 0) (2591 , 1384) 5
5 (1, 1, 1, 1, 1, 0, 1, 1, 0, 0) (2975 , 1589) 5

1 (1, 1, 1, 1, 1, 1, 0, 0, 0, 1) (1087 , 581) 6
2 (1, 1, 1, 1, 1, 1, 0, 0, 1, 0) (1855 , 991) 6
3 (1, 1, 1, 1, 1, 1, 0, 1, 0, 0) (2239 , 1196) 6

1 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) ( 383, 205) 7

In this example for n = 6 it can be seen how the 30 parity vectors are ordered by
their first 1-elements in direct progression. The number of these first 1-elements in each
parity vector is equal to h. The listed order of the parity vectors is the exact order as
the algorithm of Theorem 5 is generating the parity vectors, based on its tree structure.
(cf. Figure 5)

10 Miscellaneous

All PARI/GP programs, tables and figures are written/created by the author.
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