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MAXIMAL INDEPENDENT SETS ON A GRID GRAPH

SEUNGSANG OH

Abstract. An independent vertex set of a graph is a set of vertices of
the graph in which no two vertices are adjacent, and a maximal inde-
pendent set is one that is not a proper subset of any other independent
set. In this paper we count the number of maximal independent sets of
vertices on a complete rectangular grid graph. More precisely, we pro-
vide a recursive matrix-relation producing the partition function with
respect to the number of vertices. The asymptotic behavior of the max-
imal hard square entropy constant is also provided. We adapt the state
matrix recursion algorithm, recently invented by the author to answer
various two-dimensional regular lattice model problems in enumerative
combinatorics and statistical mechanics.

1. Introduction

In graph theory, many problems involve subsets of the vertices of a graph
that satisfy certain restrictions based on the adjacency relations within the
graphs [10, 11]. Among them, counting all maximal independent sets of a
given graph is one that has attracted considerable attention. In a graph G,
an independent vertex set is a subset S of its vertex set V (G) such that there
is no edge of G between any two vertices of S. A maximal independent set

(MIS) is an independent vertex set that is not a proper subset of any other
independent vertex set. In other words, it is a set S such that every edge of
the graph has at least one endpoint not in S and every vertex not in S has
at least one neighbor in S.

Erdös and Moser raised the problem of determining the maximum value
of the number of MISs in a general graph with n vertices and those graphs
having this maximum value. Moon and Moser [12] presented that a graph

can have at most 3n/3 MISs and that there are graphs achieving this many.
Later Griggs, Grinstead and Guichard [5] improved this result for connected
graphs. This problem has been extensively studied for various classes of
graphs, including trees [18, 22] and graphs with at most r cycles [4, 19].

Recently several significant enumeration problems regarding various com-
binatorial objects on the m×n grid graph were solved by means of the state
matrix recursion algorithm, originated from [15] and later developed by the
author [13]. As one of the most interesting applications, this algorithm
provides a recursive matrix-relation producing the exact number of inde-
pendent vertex sets on the m×n grid graph in the preceding paper [17].
This is well known as the Hard Square Problem or the Merrifield-Simmons
index [10, 11]. This index is an important topological index for the study
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of the relation between molecular structure and physical/chemical proper-
ties of certain hydrocarbon compounds, such as the correlation with boiling
points [6]. A good summary of results on the Merrifield-Simmons index of
graphs can be found in the survey paper [21].

In this paper, we apply the state matrix recursion algorithm to calculate
the number of MISs on the m×n rectangular grid graph Zm×n that is the
most interesting two-dimensional regular lattice. A MIS on Zm×n is drawn
in Figure 1 (a). An independent vertex set is often represented by a hard
square lattice gas with nearest-neighbor exclusion. In a MIS, all vertices
must be covered by hard squares as in Figure 1 (b). Up to now there are
only partial results [2, 3] on counting MISs in Zm×n.

(a) (c)

1 2 3 m
1

2

3

n

(b)

0 2 1 0 2

0 1 0

22 1 0

0 2 2 0

3 0 1 3 0

1

1

1

2

Figure 1. (a) A MIS on Zm×n. (b) A maximal hard square
lattice gas. (c) Another 0, 1, 2, 3, 4 array form.

The partition function of MISs at activity z on Zm×n is defined by

Pm×n(z) =
∑

k(t) zt,

where k(t) is the number of MISs consisting of t vertices. Then, the number
of MISs is

σ(Zm×n) = Pm×n(1).

It is of interest to note that σ(Zm×n) is indeed the number of m×n arrays
of five digits 0, 1, 2, 3, 4 where each entry equals the number of its horizontal
and vertical zero neighbors, where 0’s are located at the place of a MIS as
in Figure 1 (c). The numbers of σ(Zm×n) are registered in Sloane’s On-Line
Encyclopedia of Integer Sequences [20], namely A197054.

By virtue of the state matrix recursion algorithm, we present a recursive
formula for this partition function. Hereafter Ok denotes the 3k×3k zero-

matrix, and
m
⊗ A denotes the m-fold tensor product1 of a matrix A.

1 The matrix describing the tensor product A⊗B is the Kronecker product of the two
matrices. For example,

[

1 2
3 4

]

⊗

[

5
6

]

=









1 ·

[

5
6

]

2 ·

[

5
6

]

3 ·

[

5
6

]

4 ·

[

5
6

]









=









1 · 5 2 · 5
1 · 6 2 · 6
3 · 5 4 · 5
3 · 6 4 · 6









=









5 10
6 12
15 20
18 24









.
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Theorem 1. The partition function Pm×n(z) is the unique entry of the 1×1
matrix

Dm · (Am +Bm)n ·Em,

where Am and Bm are 3m×3m matrices recursively defined by

Ak+1 =





Ok Ok z Ck

Ok Ok Ok

Ok Ok Ok



 , Bk+1 =





Ok Ok Ok

Ak+Bk Ak Ok

Ak+Bk Ak+Bk Ok





and Ck+1 =





Ok Ok Ok

Ak+Bk Ak+Bk Ok

Ak+Bk Ak+Bk Ok



 ,

for k = 0, . . . ,m−1, starting with A0 =
[

0
]

and B0 = C0 =
[

1
]

, and Dm

and Em are respectively 1×3m and 3m×1 matrices defined by

Dm =
m
⊗

[

1 1 0
]

and Em =
m
⊗





0
1
1



 .

This partition function gives the following significant consequences: The
lowest degree of Pm×n(z) indicates the minimum number of vertices to pro-
duce a MIS, and its coefficient is the number of MISs with fewest set.

Note that the square matrices Am and Bm are exponentially large; this
is exactly what one would expect just from applying the standard transfer
matrix method used for other lattice models. But these matrices are signif-
icantly smaller than what would be obtained from naive application of the
transfer matrix method (See Table 1).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 1
m = 2 2 2
m = 3 2 4 10
m = 4 3 6 18 42
m = 5 4 10 38 108 358
m = 6 5 16 78 274 1132 4468
m = 7 7 26 156 692 3580 17742 88056
m = 8 9 42 320 1754 11382 70616 439338 2745186
m = 9 12 68 654 4442 36270 281202 2192602 17155374
m = 10 16 110 1326 11248 114992 1117442 10912392 106972582

Table 1. List of the exact numbers of σ(Zm×n)

We are turning now to the growth rate per vertex of the number of MISs
σ(Zm×n) as defined by

lim
m,n→∞

(σ(Zm×n))
1

mn = κ.

We call this limit κ the maximal hard square entropy constant . A two-
dimensional application of Fekete’s lemma gives a mathematical proof of
the existence of the limit.
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Theorem 2. The maximal hard square entropy constant κ exists. More

precisely,

κ = sup
m,n≥1

(σ(Zm×n))
1

(m+1)(n+1) .

We approximate the maximal hard square entropy constant as little greater
than 1.225084 · · · from σ(Z8×380) = 2.0932 · · ·×10302.

2. State matrix recursion algorithm

In this section we prove Theorem 1 by means of the state matrix re-
cursion algorithm. This algorithm is divided into three stages. The first
stage is devoted to the installation of the mosaic system for MISs on the
grid graph. Note that the original construction of the mosaic system for
quantum knots was invented by Lomonaco and Kauffman to represent an
actual physical quantum system [9]. Recently, the author et al . have de-
veloped a state matrix argument for knot mosaic enumeration in a series
of papers [7, 8, 14, 15, 16]. The state matrix recursion algorithm is a
well-formalized version of this argument to answer various two-dimensional
square lattice model problems in enumerative combinatorics and statistical
mechanics [13, 17]. In the second stage, we find recursive matrix-relations
producing the exact enumeration. Our proofs of two lemmas in this stage
parallel those of Lemmas 3 and 4 in [17], with slight modification to MISs.
In the third stage, we analyze the state matrix obtained in the second stage
to complete the proof.

2.1. Stage 1: Conversion to the MIS mosaic system.
In this paper, we consider the sixteen mosaic tiles illustrated in Figure 2.

Their side edges are labeled with three letters a, b and c. Note that the dot
in the first mosaic tile T1 indicates a vertex in a MIS. In detail, T1 has four
side edges labeled with one letter a only. All the other fifteen mosaic tiles
have side edges labeled with letters b and c, except that four b’s are not
allowed.
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Figure 2. Sixteen mosaic tiles labeled with three letters

For positive integers m and n, an m×n–mosaic is an m×n rectangular
array M = (Mij) of those tiles, where Mij denotes the mosaic tile placed
at the ith column from ‘left’ to ‘right’ and the jth row from ‘bottom’ to
‘top’. We are exclusively interested in mosaics whose tiles match each other
properly to represent MISs. For this purpose we consider the following rules.
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Adjacency rule (abc–cba type): Adjacent edges of adjacent mosaic tiles
in a mosaic must be labeled with any of the following pairs of letters: a/c,
b/b.

Boundary state requirement: All boundary edges in a mosaic are la-
beled with letters a and b (but, not c).

The meaning of the abc–cba type is that if the labeled state of one side
of a pair of adjacent edges is a (b or c), then the other side is c (b or
a, respectively). As illustrated in Figure 3, every MIS in Zm×n can be
converted into an m×n–mosaic which satisfies the two rules. According to
the adjacency rule, we avoid putting two mosaic tiles T1 next to each other
(to be an independent vertex set), and guarantee that each of fifteen mosaic
tiles T2∼T16 has at least one T1 as neighbors (to be maximal).

1 2 3 m
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b

c
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Figure 3. Conversion of the MIS in Figure 1 to a MIS m×n–mosaic

A mosaic is said to be suitably adjacent if any pair of mosaic tiles sharing
an edge satisfies the adjacency rule. A suitably adjacent m×n–mosaic is
called a MIS m×n–mosaic if it additionally satisfies the boundary state
requirement. The boundary state requirement guarantees the uniqueness
of a MIS m×n–mosaic representing a given MIS. The following one-to-one
conversion arises naturally.

One-to-one conversion: There is a one-to-one correspondence between
MISs on Zm×n and MIS m×n–mosaics. Furthermore, the number of vertices
in a MIS is equal to the number of T1 mosaic tiles in the corresponding MIS
m×n–mosaic.

2.2. Stage 2: State matrix recursion formula.
Let p ≤ m and q ≤ n be positive integers. Consider a suitably adjacent

p×q–mosaic M , possibly labeled c on boundary edges. We use v(M) to
denote the number of appearances of T1 tiles in M . A state is a finite
sequence of three letters a, b and c. The b–state sb(M) (t–state st(M)) is
the state of length p obtained by reading off letters on the bottom (top,
respectively) boundary edges from right to left, and the l–state sl(M) (r–
state sr(M)) is the state of length q on the left (right, respectively) boundary
edges from top to bottom. For example, the MIS 5×5–mosaic drawn in
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Figure 3 has four state indications: sb = abbba, st = babba, sl = ababa,
and sr = babba.

Given a triple 〈sr, sb, st〉 of r–, b– and t–states, we associate the state

polynomial :

Q〈sr ,sb,st〉(z) =
∑

k(v) zv ,

where k(v) is the number of all suitably adjacent p×q–mosaics M such that
v(M) = v, sr(M) = sr, sb(M) = sb, st(M) = st and sl(M) is any state of
length q consisting of only two letters a and b. The last condition for sl(M)
is due to the left boundary state requirement.

Now we focus on mosaics of width 1. Consider a suitably adjacent p×1–
mosaic (p ≤ m), which is called a bar mosaic. Bar mosaics of length p have
3p kinds of b– and t–states, especially called bar states. We arrange all bar
states in two ways as follows: for example if p = 2, the abc-ordered state
set as aa, ab, ac, ba, bb, bc, ca, cb and cc (the lexicographic order), and
the cba-ordered state set as cc, cb, ca, bc, bb, ba, ac, ab and aa (the reverse
lexicographic order). For 1 ≤ i ≤ 3p, let ǫpi and λ

p
i denote the ith bar states

of length p among the abc- and cba-ordered state sets, respectively.
The bar state matrix Xp (X = A,B,C) for the set of suitably adjacent

bar mosaics of length p is a 3p×3p matrix (mij) given by

mij = Q〈x,ǫpi ,λ
p
j 〉
(z)

where x = a, b, c, respectively. We remark that information on suitably
adjacent bar mosaics is completely encoded in the three bar state matrices
Ap, Bp and Cp.

Lemma 3. The bar state matrices Ap, Bp and Cp are obtained by the re-

currence relations:

Ak+1 =





Ok Ok z Ck

Ok Ok Ok

Ok Ok Ok



 , Bk+1 =





Ok Ok Ok

Ak+Bk Ak Ok

Ak+Bk Ak+Bk Ok





and Ck+1 =





Ok Ok Ok

Ak+Bk Ak+Bk Ok

Ak+Bk Ak+Bk Ok





with seed matrices A1 =

[

0 0 z

0 0 0
0 0 0

]

, B1 =

[

0 0 0
1 0 0
1 1 0

]

and C1 =

[

0 0 0
1 1 0
1 1 0

]

.

Note that we may start with matrices A0 =
[

0
]

and B0 = C0 =
[

1
]

instead of A1, B1 and C1.

Proof. The following proof parallels the inductive proof of [17, Lemma 3]
with slight modification. By observing the sixteen mosaic tiles, we find
the first bar state matrices A1, B1 and C1 as in the lemma. For example,
(1, 3)-entry of A1 is

Q〈a,ǫ11,λ
1
3〉
(z) = Q〈a,a,a〉(z) = z

since exactly one mosaic tile T1 satisfies this requirement.
Assume that the bar state matrices Ak, Bk and Ck satisfy the statement.

Consider the matrix Bk+1, which is of size 3k+1×3k+1. Partition this matrix
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into nine block submatrices of size 3k×3k, and consider the 21-submatrix
of Bk+1 i.e., the (2, 1)-component in the 3×3 array of the nine blocks. Due
to the abc- and cba-orders, the (i, j)-entry of the 21-submatrix is the state
polynomial Q〈b,bǫki ,cλ

k
j 〉
(z) where bǫki (similarly cλk

j ) is a bar state of length

k+1 obtained by concatenating two bar states b and ǫki . A suitably adjacent
(k+1)×1–mosaic corresponding to this triple 〈b,bǫki , cλ

k
j 〉 must have a tile

either T3 or T4 at the place of the rightmost mosaic tile, and so its second
rightmost tile must have r–state b or a, respectively, by the adjacency rule.
By considering the contribution of the rightmost tile T3 or T4 to the state
polynomial, one easily gets

Q〈b,bǫki ,cλ
k
j 〉
(z) = (i, j)-entry of (Ak +Bk).

Thus the 21-submatrix of Bk+1 is Ak + Bk. Using the same argument, we
derive Table 2 presenting all possible twenty seven cases as desired. �

Submatrix for 〈sr, sb, st〉 Rightmost tile Submatrix

Ak+1 13-submatrix 〈a, a··, a··〉 T1 z Ck

Bk+1

21-submatrix 〈b,b··, c··〉 T3, T4 Ak +Bk

22-submatrix 〈b,b··,b··〉 T2 Ak

31-submatrix 〈b, c··, c··〉 T7, T8 Ak +Bk

32-submatrix 〈b, c··,b··〉 T5, T6 Ak +Bk

Ck+1

21-submatrix 〈c,b··, c··〉 T11, T12 Ak +Bk

22-submatrix 〈c,b··,b··〉 T9, T10 Ak +Bk

31-submatrix 〈c, c··, c··〉 T15, T16 Ak +Bk

32-submatrix 〈c, c··,b··〉 T13, T14 Ak +Bk

The other 18 cases None Ok

Table 2. 27 submatrices of Ak+1, Bk+1 and Ck+1

Now we extend to mosaics of any width. The state matrix Ym×q for the
set of suitably adjacent m×q–mosaics (q ≤ n) is a 3m×3m matrix (yij) given
by

yij =
∑

Q〈sr ,ǫmi ,λm
j 〉(z),

where the summation is taken over all r–states sr of length q consisting of
only two letters a and b. The summation condition of sr is due to the right
boundary state requirement.

Lemma 4. The state matrix Ym×n is obtained by

Ym×n = (Am +Bm)n.

Proof. The following proof parallels the inductive proof of [17, Lemma 4]
with slight modification. For n = 1, Ym×1 = Am + Bm since Ym×1 counts
suitably adjacent m×1–mosaics with l– and r–states consisting of letters
a or b. Assume that Ym×k = (Am + Bm)k. Consider a suitably adjacent

m×(k+1)–mosaic Mm×(k+1) with r– and l–states consisting of letters a and
b. Split it into two suitably adjacent m×k– and m×1–mosaics Mm×k and
Mm×1 by tearing off the topmost bar mosaic. There is a certain relation
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between the t–state of Mm×k and the b–state of Mm×1 as shown in Figure 4.
To satisfy the adjacency rule, the letters a and c are changed by c and a,
respectively, from one state to the other. The key point is that, for some
r = 1, . . . , 3m, st(M

m×k) = λm
r and sb(M

m×1) = ǫmr .

r-th state in cba-order

r-th state in abc-order

Adjacency rule

Mm  k+

Mm  1+

ts

bs

acac b

aa c

ac

b

ac

b

a c

b

a c b

i-th state in abc-order

j-th state in cba-order

Figure 4. Expanding Mm×k to Mm×(k+1)

Let Ym×(k+1) = (yij), Ym×k = (y′ij) and Ym×1 = (y′′ij). Note that yij is the

state polynomial for the set of suitably adjacent m×(k+1)–mosaics M which
admit splittings into Mm×k and Mm×1 satisfying sb(M) = sb(M

m×k) = ǫmi ,
st(M) = st(M

m×1) = λm
j , and for some r = 1, . . . , 3m, st(M

m×k) = λm
r

and sb(M
m×1) = ǫmr . Obviously, all their l– and r–states consist of letters a

and b. Since all 3m kinds of bar states arise as states of these m horizontal
adjacent edges,

yij =

3m
∑

r=1

y′ir · y
′′
rj.

This implies

Ym×(k+1) = Ym×k · Ym×1 = (Am +Bm)k+1,

and the induction step is finished. �

2.3. Stage 3: State matrix analyzing.

Proof of Theorem 1. The (i, j)-entry of Ym×n is the state polynomial for the
set of suitably adjacent m×n–mosaics M with sb(M) = ǫmi , st(M) = λm

j

and r– and l–states consisting of letters a and b. According to the boundary
state requirement, MISs in Zm×n are converted into suitably adjacent m×n–
mosaics M with b–, t–, r– and l–states consisting of letters a and b (but not
c). Thus the partition function Pm×n(z) is the sum of all entries of Ym×n

associated to b– and t–states only consisting of letters a and b.
Now we define the two matrices Dm and Em as in Theorem 1. Obviously,

Dm · Ym×n is the 1×3m matrix obtained from Ym×n by nullifying each ith
row where the corresponding ith state in the abc-order has at least one
letter of c, followed by summing each column. Again, Dm ·Ym×n ·Em is the
1×1 matrix obtained from Dm · Ym×n by nullifying each jth column where
the corresponding jth state in the cba-order has at least one letter of c,
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followed by summing the unique row. Therefore we get the partition function
Pm×n(z) from the unique entry of Dm ·Ym×n ·Em. This fact combined with
Lemmas 3 and 4 completes the proof. �

3. Maximal hard square entropy constant

We will need the following result called Fekete’s lemma with slight mod-
ification.

Lemma 5. [13, Lemma 7] If a double sequence {am,n}m, n∈N with am,n ≥ 1
satisfies am1,n · am2,n ≤ am1+m2+1,n and am,n1 · am,n2 ≤ am,n1+n2+1 for all

m, m1, m2, n, n1 and n2, then

lim
m,n→∞

(am,n)
1

mn = sup
m,n≥1

(am,n)
1

(m+1)(n+1) ,

provided that the supremum exists.

Proof of Theorem 2. Obviously, σ(Zm×n) is at least 1 for all m, n. For
any two MIS m1×n– and m2×n–mosaics, we can always create a new
MIS (m1+m2+1)×n–mosaic by inserting a proper 1×n–mosaic between
them as in Figure 5. More precisely, we put T1 tiles in all other places in
each consecutive shaded region. Note that all tiles in the 1×n–mosaic whose
neither left nor right neighbors are T1 tiles are shaded. Therefore σ(Zm1×n) ·
σ(Zm2×n) ≤ σ(Z(m1+m2+1)×n), and similarly for the other index. Since we

use total sixteen mosaic tiles at each site, supm,n(σ(Zm×n))
1

(m+1)(n+1) ≤ 16,
and now apply Lemma 5. �

2Mm   n+1Mm   n+

Figure 5. Adjoining two MIS mosaics
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