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MAXIMAL INDEPENDENT SETS ON A GRID GRAPH

SEUNGSANG OH

ABSTRACT. An independent vertex set of a graph is a set of vertices of
the graph in which no two vertices are adjacent, and a maximal inde-
pendent set is one that is not a proper subset of any other independent
set. In this paper we count the number of maximal independent sets of
vertices on a complete rectangular grid graph. More precisely, we pro-
vide a recursive matrix-relation producing the partition function with
respect to the number of vertices. The asymptotic behavior of the max-
imal hard square entropy constant is also provided. We adapt the state
matrix recursion algorithm, recently invented by the author to answer
various two-dimensional regular lattice model problems in enumerative
combinatorics and statistical mechanics.

1. INTRODUCTION

In graph theory, many problems involve subsets of the vertices of a graph
that satisfy certain restrictions based on the adjacency relations within the
graphs [10, 11I]. Among them, counting all maximal independent sets of a
given graph is one that has attracted considerable attention. In a graph G,
an independent vertex set is a subset S of its vertex set V(G) such that there
is no edge of G between any two vertices of S. A mazimal independent set
(MIS) is an independent vertex set that is not a proper subset of any other
independent vertex set. In other words, it is a set .S such that every edge of
the graph has at least one endpoint not in S and every vertex not in S has
at least one neighbor in S.

Erdos and Moser raised the problem of determining the maximum value
of the number of MISs in a general graph with n vertices and those graphs
having this maximum value. Moon and Moser [12] presented that a graph
can have at most 3"/3 MISs and that there are graphs achieving this many.
Later Griggs, Grinstead and Guichard [5] improved this result for connected
graphs. This problem has been extensively studied for various classes of
graphs, including trees [I8], 22] and graphs with at most r cycles [4] [19].

Recently several significant enumeration problems regarding various com-
binatorial objects on the mxn grid graph were solved by means of the state
matrixz recursion algorithm, originated from [15] and later developed by the
author [I3]. As one of the most interesting applications, this algorithm
provides a recursive matrix-relation producing the exact number of inde-
pendent vertex sets on the m xn grid graph in the preceding paper [17].
This is well known as the Hard Square Problem or the Merrifield-Simmons
index [10}, [IT]. This index is an important topological index for the study

This research was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIP) (No. NRF-2014R1A2A1A11050999).
1


http://arxiv.org/abs/1709.03678v1

2 S. OH

of the relation between molecular structure and physical/chemical proper-
ties of certain hydrocarbon compounds, such as the correlation with boiling
points [6]. A good summary of results on the Merrifield-Simmons index of
graphs can be found in the survey paper [21].

In this paper, we apply the state matrix recursion algorithm to calculate
the number of MISs on the m xn rectangular grid graph Z,,x, that is the
most interesting two-dimensional regular lattice. A MIS on Z,,«, is drawn
in Figure [ (a). An independent vertex set is often represented by a hard
square lattice gas with nearest-neighbor exclusion. In a MIS, all vertices
must be covered by hard squares as in Figure [Il (b). Up to now there are
only partial results [2] 3] on counting MISs in Z,, .

n
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(a) (b) (c)

FIGURE 1. (a) A MIS on Zy,xp. (b) A maximal hard square
lattice gas. (c) Another 0, 1, 2, 3, 4 array form.

The partition function of MISs at activity z on Z,x, is defined by

Prxn(2) =Y k(1) 2,

where k(t) is the number of MISs consisting of ¢ vertices. Then, the number
of MISs is

U(men) = men(l)

It is of interest to note that o(Z,,xy) is indeed the number of m x n arrays
of five digits 0, 1, 2, 3, 4 where each entry equals the number of its horizontal
and vertical zero neighbors, where 0’s are located at the place of a MIS as
in Figure [ (c). The numbers of o(Zy,x») are registered in Sloane’s On-Line
Encyclopedia of Integer Sequences [20], namely A197054.

By virtue of the state matrix recursion algorithm, we present a recursive
formula for this partition function. Hereafter Q) denotes the 3% x 3¥ zero-

m
matrix, and ® A denotes the m-fold tensor productﬂ of a matrix A.

1 The matrix describing the tensor product A ® B is the Kronecker product of the two
matrices. For example,

1_[5} 2_[5} 1-5 2-5 5 10

1 2] [5] _ 6 6| |16 2-6] |6 12

{3 4}®M 3_{5} 4_{5} T |35 4-5| " |15 20"
6 6 3:6 4.6 18 24
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Theorem 1. The partition function Pxn(z) is the unique entry of the 1x1
matric

Dm : (Am + Bm)n ' Em7

where Ay, and By, are 3™ x3™ matrices recursively defined by

Apy1= |0 O O |, Bry1= |Ap+Br A O
Op 0O Oy Ap+B, Ap+B, O
Oy Oy Oy

and Cygy1 = |Ax+Br Ap+Br Ol ,
Ap+Br Ap+B; Oy

for k=0,...,m—1, starting with Ag = [O} and By = Cy = [1}, and D,,
and E,, are respectively 1x3™ and 3™ x1 matrices defined by

m m O
Dp=0[1 1 0] and Ep = |1
1

This partition function gives the following significant consequences: The
lowest degree of P, x,(z) indicates the minimum number of vertices to pro-
duce a MIS, and its coefficient is the number of MISs with fewest set.

Note that the square matrices A,, and B, are exponentially large; this
is exactly what one would expect just from applying the standard transfer
matrix method used for other lattice models. But these matrices are signif-
icantly smaller than what would be obtained from naive application of the
transfer matrix method (See Table [I).

n=1 n=2 n=3 n=4 n=5 n==~6 n="7T n==~8
m=1 1
m=2 2 2
m=3 2 4 10
m =4 3 6 18 42
m=25 4 10 38 108 358
m =06 5 16 78 274 1132 4468
m=7 7 26 156 692 3580 17742 88056
m=2~8 9 42 320 1754 11382 70616 439338 2745186
m=9 12 68 654 4442 36270 281202 2192602 17155374
m =10 16 110 1326 11248 114992 1117442 10912392 106972582

TABLE 1. List of the exact numbers of o(Z,xn)

We are turning now to the growth rate per vertex of the number of MISs
0(Zmxn) as defined by

. 1
lim (0(Zmxn))™mn = K.
m,n—o0
We call this limit s the maximal hard square entropy constant. A two-
dimensional application of Fekete’s lemma gives a mathematical proof of
the existence of the limit.
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Theorem 2. The mazximal hard square entropy constant k exists. More
precisely,

1
k= sup (0(Zmxp))mFOEFD
m,n>1

We approximate the maximal hard square entropy constant as little greater
than 1.225084 - - - from o (Zgx3s0) = 2.0932 - - - x 10302,

2. STATE MATRIX RECURSION ALGORITHM

In this section we prove Theorem [l by means of the state matrix re-
cursion algorithm. This algorithm is divided into three stages. The first
stage is devoted to the installation of the mosaic system for MISs on the
grid graph. Note that the original construction of the mosaic system for
quantum knots was invented by Lomonaco and Kauffman to represent an
actual physical quantum system [9]. Recently, the author et al. have de-
veloped a state matrix argument for knot mosaic enumeration in a series
of papers [7, [8, 14, 15, 16]. The state matrix recursion algorithm is a
well-formalized version of this argument to answer various two-dimensional
square lattice model problems in enumerative combinatorics and statistical
mechanics [13] [17]. In the second stage, we find recursive matrix-relations
producing the exact enumeration. Our proofs of two lemmas in this stage
parallel those of Lemmas 3 and 4 in [17], with slight modification to MISs.
In the third stage, we analyze the state matrix obtained in the second stage
to complete the proof.

2.1. Stage 1: Conversion to the MIS mosaic system.

In this paper, we consider the sixteen mosaic tiles illustrated in Figure 2
Their side edges are labeled with three letters a, b and c. Note that the dot
in the first mosaic tile 77 indicates a vertex in a MIS. In detail, 77 has four
side edges labeled with one letter a only. All the other fifteen mosaic tiles
have side edges labeled with letters b and c, except that four b’s are not
allowed.

a b [¢ c b b c c
al e |a ¢ b b b ¢ b b b ¢ b b b ¢ b
4 T b To b T3 b Ty ¢ Ts ¢ Tg c T7 c Tg
b b c c b b C c
b c c c b cc c b c c c b cc c
c C C C
bT9 leo bTu bT12 T13 T4 Tis Ti6

FIGURE 2. Sixteen mosaic tiles labeled with three letters

For positive integers m and n, an m X n—-mosaic is an m X n rectangular
array M = (M;;) of those tiles, where M;; denotes the mosaic tile placed
at the ith column from ‘left’ to ‘right’ and the jth row from ‘bottom’ to
‘top’. We are exclusively interested in mosaics whose tiles match each other
properly to represent MISs. For this purpose we consider the following rules.
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Adjacency rule (abc—cba type): Adjacent edges of adjacent mosaic tiles
in a mosaic must be labeled with any of the following pairs of letters: a/c,

b/b.

Boundary state requirement: All boundary edges in a mosaic are la-
beled with letters a and b (but, not c).

The meaning of the abc—cba type is that if the labeled state of one side
of a pair of adjacent edges is a (b or c), then the other side is ¢ (b or
a, respectively). As illustrated in Figure B every MIS in Z,,«, can be
converted into an m x n—mosaic which satisfies the two rules. According to
the adjacency rule, we avoid putting two mosaic tiles 77 next to each other
(to be an independent vertex set), and guarantee that each of fifteen mosaic
tiles T5 ~T1¢ has at least one 77 as neighbors (to be maximal).

a b b a b
nlaealc blb claealc b
a c b a c
C a b C a
b claealc blb claea
c a b C a
a C b a C
3 laealc blb claealc b
a b C a b
C b a C b
2|b blb claealc blb b
C b a b c
a b C b a
1 |aealc blb blb claea
a b b b a
1 2 3 m

Fi1cURE 3. Conversion of the MIS in Figure [l to a MIS m x n—mosaic

A mosaic is said to be suitably adjacent if any pair of mosaic tiles sharing
an edge satisfies the adjacency rule. A suitably adjacent m X n—mosaic is
called a MIS m xn—-mosaic if it additionally satisfies the boundary state
requirement. The boundary state requirement guarantees the uniqueness
of a MIS m x n—mosaic representing a given MIS. The following one-to-one
conversion arises naturally.

One-to-one conversion: There is a one-to-one correspondence between
MISs on Zy,xn and MIS mxn—mosaics. Furthermore, the number of vertices
in a MIS is equal to the number of 77 mosaic tiles in the corresponding MIS
m X n—mosaic.

2.2. Stage 2: State matrix recursion formula.

Let p < m and ¢ < n be positive integers. Consider a suitably adjacent
p X g—mosaic M, possibly labeled ¢ on boundary edges. We use v(M) to
denote the number of appearances of T3 tiles in M. A state is a finite
sequence of three letters a, b and c. The b—state sy(M) (t—state s¢(M)) is
the state of length p obtained by reading off letters on the bottom (top,
respectively) boundary edges from right to left, and the [-state s;(M) (r—
state s, (M)) is the state of length ¢ on the left (right, respectively) boundary
edges from top to bottom. For example, the MIS 5 x 5—mosaic drawn in
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Figure B has four state indications: s, = abbba, s; = babba, s; = ababa,
and s, = babba.

Given a triple (s,,sp,s¢) of 7—, b— and t-states, we associate the state
polynomial:

Q(sr,sb,st> (Z) = Z k(v) Zv’
where k(v) is the number of all suitably adjacent pxg—mosaics M such that
v(M) =v, $,(M) = s, sp(M) = sp, s¢(M) = s; and s;(M) is any state of
length ¢ consisting of only two letters a and b. The last condition for s;(M)
is due to the left boundary state requirement.

Now we focus on mosaics of width 1. Consider a suitably adjacent px1—
mosaic (p < m), which is called a bar mosaic. Bar mosaics of length p have
3P kinds of b— and t—states, especially called bar states. We arrange all bar
states in two ways as follows: for example if p = 2, the abc-ordered state
set as aa, ab, ac, ba, bb, be, ca, cb and cc (the lexicographic order), and
the cba-ordered state set as cc, cb, ca, be, bb, ba, ac, ab and aa (the reverse
lexicographic order). For 1 <i < 3P, let €/ and X! denote the ith bar states
of length p among the abc- and cba-ordered state sets, respectively.

The bar state matriz X, (X = A, B,C) for the set of suitably adjacent
bar mosaics of length p is a 37 x 37 matrix (m;;) given by

mij = Q(x,ef,A§>(Z)

where x = a, b, ¢, respectively. We remark that information on suitably
adjacent bar mosaics is completely encoded in the three bar state matrices
Ap, B, and C),.

Lemma 3. The bar state matrices Ay, B, and C, are obtained by the re-
currence relations:

Op Op zC Oy O Oy
App1= |0, Op Oy |, Bpy1 = |Ap+DBy A, Oy
O, 0O Oy Ap+B, Ap+B. O

Oy O Oy

and Cyy1 = |Ax+Br Ar+Br Oy
Ap+Br Ap+Bp Oy

0 0 =z 0 0 O 0 0 O
with seed matrices Ay = |0 0 0|, Byj=|[1 0 0| and C;=1|1 1 0].
0 0 O 1 1 0 1 1 0

Note that we may start with matrices Ay = [0] and By = Cy = [1]
instead of Ay, By and Cj.

Proof. The following proof parallels the inductive proof of [I7, Lemma 3]
with slight modification. By observing the sixteen mosaic tiles, we find
the first bar state matrices A1, B; and C; as in the lemma. For example,
(1,3)-entry of A; is

Qe ) (2) = Quaan(2) = 2

since exactly one mosaic tile 1] satisfies this requirement.
Assume that the bar state matrices Ay, B and C}, satisfy the statement.
Consider the matrix By 1, which is of size 3¥71x3*+1. Partition this matrix
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into nine block submatrices of size 3* x 3¥, and consider the 21-submatrix
of Byy i.e., the (2,1)-component in the 3x3 array of the nine blocks. Due
to the abc- and cba-orders, the (7, j)-entry of the 21-submatrix is the state
polynomial Q<b,b6§,c>\§>(z) where be¥ (similarly c)\?) is a bar state of length
k+1 obtained by concatenating two bar states b and ef. A suitably adjacent
(k-+1) x 1-mosaic corresponding to this triple (b, be¥, C)\?> must have a tile
either T3 or Ty at the place of the rightmost mosaic tile, and so its second
rightmost tile must have r—state b or a, respectively, by the adjacency rule.
By considering the contribution of the rightmost tile 15 or T4 to the state
polynomial, one easily gets

Qb bek exty (2) = (4, j)-entry of (Ay, + By).

Thus the 21-submatrix of Byi1 is Ax + Bi. Using the same argument, we
derive Table [2] presenting all possible twenty seven cases as desired. U

Submatriz for (s, sy, st) Rightmost tile Submatriz

Agy1  13-submatrix (a,a--, a-) T z Cy,
21-submatrix (b,b--, c-) T3, Ty Ay + By,

B 22-submatrix (b,b--,b--) Ty Ay
k+1 31-submatrix (b,c-+,c-+) T, Ty Ay + By,
32-submatrix (b,c-,b-) Ts, Tg Ay + By,
21-submatrix <C,b -, C- > Thi, Tio A + By,
C 22-submatrix <C, b--,b- > Ty, Tho A + By,
k1 31-submatrix <C,C 5 C > T15, T16 Ak + Bk
32-submatrix <C, c--,b- > Ths, Tig Ay, + By,

The other 18 cases None Oy

TABLE 2. 27 submatrices of Agy1, Bryr1 and Ciyq

Now we extend to mosaics of any width. The state matriz Y,,, for the
set of suitably adjacent mxg-mosaics (¢ < n) is a 3™ x3"™ matrix (y;;) given

by
ij = Z Q<sr,ezn,)\;n> (Z),
where the summation is taken over all r—states s, of length ¢ consisting of

only two letters a and b. The summation condition of s, is due to the right
boundary state requirement.

Lemma 4. The state matriz Yy,x, s obtained by
Yinxn = (Am + Bm)n

Proof. The following proof parallels the inductive proof of [I7, Lemma 4]
with slight modification. For n = 1, Y;,x1 = A + By, since Yy« counts
suitably adjacent m x 1-mosaics with [— and r—states consisting of letters
a or b. Assume that Yj,xx = (A, + Bp)*. Consider a suitably adjacent
mx (k+1)-mosaic M™**+1) with r— and I-states consisting of letters a and
b. Split it into two suitably adjacent m x k— and m x 1-mosaics M™** and
M™*! by tearing off the topmost bar mosaic. There is a certain relation
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between the t-state of M™** and the b-state of M™*! as shown in Figure @l
To satisfy the adjacency rule, the letters a and ¢ are changed by c¢ and a,

respectively, from one state to the other. The key point is that, for some
r=1,...,3™ s (M™F*) =\ and s,(M™*1) = ™.

St
b a b ¢ a «——— j-th state in cha-order
M ° °
c a ¢ b a <«—— r-thstate in abc-order
; <«— Adjacency rule
a ¢ a b ¢ «—— r-thstatein cha-order
mxk | o ¢
M ° °

C a C b a «—— i-th state in abc-order
Sh

FIGURE 4. Expanding M™*F to pMm>(k+1)

Let Yooy (k1) = (Yig)s Ymxk = (¥i;) and Vi1 = (yj;). Note that y;; is the
state polynomial for the set of suitably adjacent mx(k+1)-mosaics M which
admit splittings into M™** and M™*! satisfying s,(M) = sp( M™<F) =
st(M) = s;(M™') = X", and for some r = 1,...,3™, se(M™*k) = \m
and s,(M™*1) = ¢™. Obviously, all their /- and r-states consist of letters a
and b. Since all 3™ kinds of bar states arise as states of these m horizontal

adjacent edges,
3m
Yii = > Yir Y-
r=1

This implies
me(kJrl) = Yixk  Ymx1 = (Am + Bm)k+17
and the induction step is finished. O

2.3. Stage 3: State matrix analyzing.

Proof of Theorem[1. The (i, j)-entry of Y;,,x,, is the state polynomial for the
set of suitably adjacent m x n—-mosaics M with sp(M) = €, s¢(M) = A"
and r— and [-states consisting of letters a and b. According to the boundary
state requirement, MISs in Z,, «, are converted into suitably adjacent mxn—
mosaics M with b—, t—, r— and [-states consisting of letters a and b (but not
c¢). Thus the partition function P,y (2) is the sum of all entries of Y, xn
associated to b— and t—states only consisting of letters a and b.

Now we define the two matrices D,, and E,, as in Theorem [l Obviously,
Dy, - Yiuxn is the 1x 3™ matrix obtained from Y, x, by nullifying each ith
row where the corresponding ith state in the abc-order has at least one
letter of ¢, followed by summing each column. Again, D,, - Yyxn - Em is the
1x 1 matrix obtained from D,, - Y;,xn by nullifying each jth column where
the corresponding jth state in the cba-order has at least one letter of c,
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followed by summing the unique row. Therefore we get the partition function
Ppyxn(2z) from the unique entry of Dy, - Yy, xp - Ep,. This fact combined with
Lemmas [B] and @ completes the proof. O

3. MAXIMAL HARD SQUARE ENTROPY CONSTANT

We will need the following result called Fekete’s lemma with slight mod-
ification.

Lemma 5. [13| Lemma 7] If a double sequence {amn}m, neN With ap, > 1
satisfies Amy n - Gmomn < Gmit+matin AN Gmny * Gmony < Gmong+no+1 JOr all
m, mi, mo, N, ny and ny, then

1
lim (amm)ﬁ = Sup (am,n)ma
m, n—00 m.n>1

provided that the supremum exists.

Proof of Theorem [2. Obviously, 0(Z,x») is at least 1 for all m, n. For
any two MIS m; x n— and mg X n—mosaics, we can always create a new
MIS (mj+msa+1) X n—mosaic by inserting a proper 1xn—mosaic between
them as in Figure Bl More precisely, we put 77 tiles in all other places in
each consecutive shaded region. Note that all tiles in the 1xn—mosaic whose
neither left nor right neighbors are 77 tiles are shaded. Therefore o (Zy,, xn)-
0(Zmyxn) < 0(Zm, +mot1)xn), and similarly for the other index. Since we

1
use total sixteen mosaic tiles at each site, sup,, ,,(0(Zyxn)) 00D < 16,

and now apply Lemma [l O
[ ] ] [}
o o
. .
o | @ <
. .
e
° o °
Mmxn o Mm2xn

FI1GURE 5. Adjoining two MIS mosaics
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