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CUBIC THREE-FOLD

NICK EARLY

Abstract. In this note, we apply combinatorial techniques from our Ph.D. thesis to study how
generalized permutohedra may be represented functionally on Parke-Tayor factors and related
rational functions. In any functional representation of polyhedral cones, in general certain ho-
mological information may be lost. The combinatorial relations of the Parke-Taylor factors lift
homologically to generalized permutohedra.

The 6-particle case contains several related layers of interesting geometric data: the Newton
polytope for the polynomial numerator lifts the permutohedron in three variables, which is a
hexagon, and the fraction itself provides a functional representation of certain neighborhoods
of a vertex of a 5-dimensional weight permutohedron. The lift from fraction to generalized
permutohedron was derived by comparing functional representations. We observe additionally
that the numerator and its permutations satisfy a degree 3 polynomial relation which defines a
classical projective variety known as the Segre cubic.

We include in an extended Appendix selected Mathematica code which can be used to verify
our computations independently.
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1. Preface: how this work came about

In the research announcement [4], results were announced from my Ph.D. thesis, which con-
tained new techniques developed to study combinatorics and representation theory associated to
permutohedral cones embedded in a dilated simplex. The main result was to prove a conjecture
that my thesis co-adviser, Adrian Ocneanu shared with me.

Ocneanu has studied permutohedra and their deformations using plates, which are constructed
from certain affine translations of cones which are dual to faces of the arrangement of reflection
hyperplanes. I learned about plates and some of their combinatorially rich linear relations
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2 NICK EARLY

through many intensive discussions with Ocneanu during my graduate work. He is preparing a
paper containing proofs which are based on his original computations.

In [5] I introduce a more general framework from which these relations and more may be
deduced. Three bilinear operations on the algebra of characteristic functions of polyhedra are
essential: duality, the pointwise product, and convolution of characteristic functions, the latter
of which represents the Minkowski sum of polyedra. It is known that duality exchanges pointwise
product and convolution, see [2] for details. The present paper applies this theoretical framework
to a specific question coming from physics.

In the computations below, certain “restricted shuffles” are invoked, summing fractions which
implicitly represent signed characteristic functions of plates over all permutations which satisfy
given orientations of pairs of labels. An orientation is a pair (i, j), which means geometrically
that the plate contains the ray {c(ei − ej) : c ≥ 0}. The result of the sum is a fraction which
represents the polyhedral cone generated by the rays ei − ej which are labeled by the given
orientations (i, j). The combinatorics which we apply below appears to be new, and deserves
further attention.

A geometric model is presented in which the objects are characteristic functions of permutohe-
dral cones and certain configurations of their faces. Permutohedral cones can be represented on
rational functions in various ways, and the Parke-Taylor factors, as cyclic products of differences
of variables, appear in one of these representations. Recently I learned about a related and very
interesting paper [10] which was just posted to the arXiv. There, in particular, some of the
same restricted shuffles and their closed form fractions were used geometrically in a way which
is essentially dual to the approach here.

In Fall, 2015 Nima Arkani-Hamed asked if I could explain geometrically certain positive sums
of Parke-Taylor factors in [6] which when simplified collapse to a fraction which was shown
to have a closed form expression. The solution which I propose can be summarized briefly as
follows: the sum and this fraction in particular could be understood to live in a functional repre-
sentation of generalized permutohedral cones. I give a combinatorial recipe for the construction,
which in contrast with the methods of [6] involves ordered pairs rather than oriented triples. An
interesting feature here is that the ordered pairs label explicitly edge directions of the permuto-
hedral cone. The fraction and its permutations provide a functional representation of the weight
permutohedron with vertices permutations of (0, 0, 1, 1, 2, 2). We believe that there is a similar
geometric interpretation for lists of 3-cycles which we shall investigate in a future publication.

We also postpone to future work the treatment of functional representations of weight permu-
tohedra other than those which we have considered in this paper, on Parke-Taylor factors and
more generally.
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3. Introduction and Motivation

We start with the two generating intertwiners for the group SL3, the invariant tensors in
the antisymmetrizations respectively Λ3(C3) and Λ3 (Λ2C3). The usual permutohedron in three
coordinates, a hexagon, is the Newton polytope of the Vandermonde determinant polynomial.
In what follows we study the dual determinant.

Let vi = (ui, vi, wi) ∈ C3, i = 1, . . . , 6. The polynomial X12,34,56 obtained by pre-composing
the dual determinant

det (v1 × v2, v3 × v4, v5 × v6)
with the Veronese map

(x1, . . . x6) 7→

 1 1 1 1 1 1
x1 x2 x3 x4 x5 x6
x2

1 x2
2 x2

3 x2
4 x2

5 x2
6


has a five-dimensional Newton polytope which we view as the permutohedron for the wreath
product of symmetric groups Wr(S2, S3) = (S2 × S2 × S2) n S3, which is the signed stabilizer
for the polynomial X12,34,56.

Here we study the action of the full symmetric group on generators for the irreducible rep-
resentation V(3,3) of S6, corresponding to the partition 3 + 3 = 6, which is generated by the 15
permutations of X12,34,56, up to sign. Namely, we note that the cyclic subgroup G = 〈(123456)〉
of S6 generated by the Coxeter element (123456) decomposes the S6-orbit of the X12,34,56 into
equivalence classes. It happens that two such equivalence classes, with respectively 2 and 3
elements, together form a basis.

Remark 1. The action of the cyclic group G on the X and C bases is reminiscent of the cyclic
jeu-de-taquin action on standard Young tableaux of shape (2, 2, 2) respectively (3, 3), which label
different bases for the same space.

We were encouraged to finish this paper when we recognized the dual intertwiner C12,34,56 in
the numerator of the positive sum of Parke-Taylor factors in [6]. Subsequently, we found a new
combinatorial formula, different from the one given in [6], for the numerator of their expression
for the n = 6 particle case,

PT({1, 2, 3, 4, 5, 6}) + PT({1, 2, 4, 5, 6, 3}) + PT({1, 4, 2, 5, 6, 3}) + PT({1, 4, 5, 6, 2, 3})
+PT({1, 4, 6, 2, 3, 5}) + PT({1, 4, 6, 2, 5, 3}) + PT({1, 6, 2, 3, 4, 5}) =

− (x1x2x4 − x2x3x4 − x1x3x5 + x2x3x5 − x2x4x5 + x3x4x5 − x1x2x6 + x1x3x6 − x1x4x6 + x2x4x6 + x1x5x6 − x3x5x6) 2

(x1 − x2) (x1 − x3) (x2 − x3) (x1 − x4) (x3 − x4) (x1 − x5) (x2 − x5) (x4 − x5) (x2 − x6) (x3 − x6) (x4 − x6) (x5 − x6) ,

where the sum is over the set S of all 6-cycles containing the oriented 3-cycles
{1, 2, 3}, {2, 5, 6}, {3, 4, 6}, {4, 5, 1}

as cyclic subwords, and where

PT({σ1, . . . , σn}) = 1
(xσ1 − xσ2)(xσ2 − xσ3) · · · (xσ6 − xσ1) .

is the cyclically invariant Parke-Taylor factor labeled by the cycle σ.

Remark 2. The numerator of the above fraction is equal to (the square of) the polynomial

C16,24,35 = det

 1 1 1
x1 + x6 x2 + x4 x3 + x5
x1x6 x2x4 x3x5


= x1x2x4−x2x3x4−x1x3x5 +x2x3x5−x2x4x5 +x3x4x5−x1x2x6 +x1x3x6−x1x4x6 +x2x4x6 +x1x5x6−x3x5x6,
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see also [7].

4. Generalized Permutohedral Cones, From Plates

We recover the same non-planar Parke-Taylor factor using ordered pairs instead of oriented
3-cycles. From our perspective this is geometrically very suggestive, as here each ordered pair
represents an (oriented) generating edge (a root of type SU(n)) of a polyhedral cone.

Given a permutation σ, let pi = σ−1(i) denote the position of i in σ written in line notation.
Let P be the set of all line permutations σ satisfying the conditions

p1 < p2, p1 < p4, p6 < p2, p6 < p4,

p2 < p3, p2 < p5, p4 < p3, p4 < p5,

or more compactly,
{p1, p6} < {p2, p4} < {p3, p5}.

The resulting sum can be formulated very simply as the average over the group (Z/2)×3

acting on adjacent pairs of index positions, and after algebraic simplification we obtain the same
fraction as above, with the 3-cycle condition from [6], namely

PT({1, 6, 2, 4, 3, 5}) + PT({1, 6, 2, 4, 5, 3}) + PT({1, 6, 4, 2, 3, 5}) + PT({1, 6, 4, 2, 5, 3})+
PT({6, 1, 2, 4, 3, 5}) + PT({6, 1, 2, 4, 5, 3}) + PT({6, 1, 4, 2, 3, 5}) + PT({6, 1, 4, 2, 5, 3}) =

(x1x2x4 − x2x3x4 − x2x5x4 + x3x5x4 − x1x6x4 + x2x6x4 − x1x3x5 + x2x3x5 − x1x2x6 + x1x3x6 + x1x5x6 − x3x5x6) 2

(x1 − x2) (x1 − x3) (x2 − x3) (x1 − x4) (x3 − x4) (x1 − x5) (x2 − x5) (x4 − x5) (x2 − x6) (x3 − x6) (x4 − x6) (x5 − x6) .

See the Appendix for Mathematica code.

1

3 4

2

5 6

Figure 1. Edge graph for the 6-particle weight permutohedron

In [5] we shall investigate how the ordered pair condition suggests that the above provides a
functional representation of a body built from permutohedral cones, where additional degenerate
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terms are determined by inclusion/exclusion for certain generalized permutohedral cones subject
to shuffle-lump type relations, studied as plates by A. Ocneanu [12].

5. Two Classical Varieties from Representation Theory of the Symmetric
Group

In this section we study the polynomial numerator for the 6-particular non-planar amplitude
in detail, using representation theory and algebraic geometry.

Let us first fix terminology. We shall write V(λ1,...,λk) for the irreducible representation of the
symmetric group Sn which is labeled by the partition λ = (λ1, . . . , λk) of n. Define v(t) =
(1, t, t2) ∈ C3. Consider the compound determinant

X(ab,cd,ef) := det(v(xa)× v(xb), v(xc)× v(xd), v(xe)× v(xf )),

where v(xi)× v(xj) is the cross product

v(xi)× v(xj) = det

i j k
1 xi x2

i

1 xj x2
j

 = ((xj − xi) · xixj,−(xj − xi) · (xi + xj), (xj − xi)).

Lemma 3. The polynomial X(12,34,56) is invariant up to sign under the order ((23)(3!) = 48)
wreath product Wr(S2, S3), viewed as a subgroup of S6. The S6-orbit of X(12,34,56) has 15 elements,
up to sign.

Proof. The wreath product Wr(S2, S3) can be presented explicitly in terms of generators in S6
as

〈(12), (34), (56), (13)(24), (35)(46)〉.
By linearity of the determinant, we have

X(12,34,56) = g(12,34,56) · C(12,34,56).

where
g(12,34,56) = (x2 − x1)(x4 − x3)(x6 − x5)

and

C(12,34,56) = det

 1 1 1
x1 + x2 x3 + x4 x5 + x6
x1x2 x3x4 x5x6


It follows that the stabilizer of X12,34,56 is the copy of Wr(S2, S3) presented above, so by the
orbit-stabilizer theorem the S6-orbit X of X(12,34,56) has 6!/48 = 15 elements, up to sign. �

However, the complex vector space spanned by the XI has only dimension 5.

Definition 4. Let

XG = {X(12,34,56), X(16,23,45), X(14,26,35), X(15,24,36), X(13,25,46)} ⊂ X .

In what follows, we prove that XG is a basis which behaves optimally with respect to permu-
tation of the coordinate labels. We therefore call the XG good basis due to the simple form of
the relations given below.

Proposition 5. The set XG spans the orbit space X .
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Proof. By explicit computation, expanding each XI as a polynomial in the minors ∆J , we have
the following list of linear relations.

X(12,35,46) = −X(15,24,36) +X(16,23,45)

X(12,36,45) = X(13,25,46) −X(14,26,35)

X(13,24,56) = X(14,26,35) +X(16,23,45)

X(13,26,45) = −X(12,34,56) −X(15,24,36)

X(14,23,56) = −X(13,25,46) −X(15,24,36)

X(14,25,36) = −X(12,34,56) −X(16,23,45)

X(15,23,46) = X(12,34,56) −X(14,26,35)

X(15,26,34) = X(13,25,46) +X(16,23,45)

X(16,24,35) = X(12,34,56) −X(13,25,46)

X(16,25,34) = −X(14,26,35) −X(15,24,36)

�

Proposition 6. The set XG is linearly independent, and its span is the irreducible S6-module
V(2,2,2).

Proof. Let ∆i,j,k = det(v(xi), v(xj), v(xk)).
It follows from standard theory representation theory of the symmetric group, see for example

[9], that the set of polynomials

{∆123∆456,∆124∆356,∆125∆346,∆134∆256,∆135∆246}

is a basis for V(2,2,2). Expanding by minors, for example

X(12,34,56) = det
[
∆134 ∆156
∆234 ∆256

]
,

and applying the so-called straightening relation [9]

∆abc∆ijk = (∆ajc∆ibk −∆aic∆jbk −∆aij∆bck −∆ajb∆ick + ∆aib∆jck)

expresses the usual basis of V(2,2,2) in terms of our good basis XG. By explicit computation we
have

∆123∆456 = −1
2 (X12,34,56 +X13,25,46 −X14,26,35 +X15,24,36 −X16,23,45)

∆124∆356 = 1
2 (X12,34,56 −X13,25,46 +X14,26,35 −X15,24,36 +X16,23,45)

∆125∆346 = 1
2 (X12,34,56 +X13,25,46 −X14,26,35 −X15,24,36 +X16,23,45)

∆134∆256 = 1
2 (X12,34,56 +X13,25,46 +X14,26,35 +X15,24,36 +X16,23,45)

∆135∆246 = −1
2 (X12,34,56 −X13,25,46 −X14,26,35 −X15,24,36 −X16,23,45) .

�
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For an overview of the representation theory of the symmetric group used in what follows, see
for example [9].

Recalling that

X(12,34,56) = g(12,34,56)C(12,34,56) =
 ∏
i=1,3,5

(xi+1 − xi)
 det

 1 1 1
x1 + x2 x3 + x4 x5 + x6
x1x2 x3x4 x5x6

 ,
in the notation from Lemma 3, we have the following Proposition.

Proposition 7. The linear spans of the S6 orbits of C12,34,56 and of g12,34,56 are both isomorphic
to the S6 module V(3,3).

Proof. (Sketch) It follows directly from the classical construction, see [9], that the polynomials
gI span the irreducible S6 representation V(3,3).

We sketch the direct computation. The character values of conjugacy classes of permutations
in S6, acting on the linear span of the permutations of C12,34,56, can be obtained directly from
the matrices, with respect to the ordered basis

C(12,34,56), C(16,23,45), C(14,26,35), C(15,24,36), C(13,25,46),

by taking traces of matrices of conjugacy class representatives and then for instance comparing
to the known character table for S6. The relations for the polynomials CI , which are the same
up to some signs as those for the XI , are

C(12,35,46) = C(15,24,36) − C(16,23,45)

C(12,36,45) = C(13,25,46) − C(14,26,35)

C(13,26,45) = C(12,34,56) + C(15,24,36)

C(14,23,56) = −C(13,25,46) − C(15,24,36)

C(14,25,36) = C(12,34,56) + C(16,23,45)

C(15,23,46) = C(14,26,35) − C(12,34,56)

C(15,26,34) = −C(13,25,46) − C(16,23,45)

C(16,24,35) = C(13,25,46) − C(12,34,56)

C(16,25,34) = −C(14,26,35) − C(15,24,36)

For example, in the “C” basis the permutation (12)(34)(56) has the matrix expression
1 −1 1 −1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


which has trace -3. We omit the rest of the computation. �

One can easily check that under cyclic permutation of x1, . . . , x6 the good basis decomposes
(up to sign) into orbits of sizes 2 and 3:

{X12,34,56, X16,23,45} ∪ {X14,26,35, X15,24,36, X13,25,46},

and similarly for the CI .
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6. A Quartic Relation for the Usual Determinantal Basis of V(2,2,2)

In order to determine how many relations to expect between the polynomials CI , a Mathe-
matica computation shows that the Jacobian of the map C6 → C5 given by

(x1, . . . , x6) 7→ {X12,34,56, X16,23,45, X14,26,35, X15,24,36, X13,25,46}

has rank 4. We therefore expect one algebraic relation to hold among the elements of the good
basis. Indeed, though the computation was too intensive for our laptop, with L. Oeding’s help
[14], Grobner basis techniques in Macaulay2 implemented on a computing cluster yielded the
following homogeneous degree 4 polynomial relation, which may be easily verified on a computer.
In what follows, our computations are performed in the some what simpler basis which is labeled
by standard Young tableaux.

Proposition 8. The polynomials

d1 = ∆123∆456

d2 = ∆124∆356

d3 = ∆125∆346

d4 = ∆134∆256

d5 = ∆135∆246,

satisfy
(d1(d1 − d2 + d3 + d4 − d5) + d2d5 + d3d4)2 − 4d2d3d4d5 = 0.

Question 9. We expect that the quartic polynomial relation above can be shown to be equivalent
to the Igusa quartic. What change of variable realizes this explicitly?

7. A Cubic Relation for the Cubic Polynomials Cij,rs,uv
Recall that

C12,34,56 = det

 1 1 1
x1 + x2 x3 + x4 x5 + x6
x1x2 x3x4 x5x6

 .
A computer-assisted computation, this time small enough to be run on a laptop, shows that

the polynomial relation suggested by the rank computation of the Jacobian of the polynomial
map

(x1, . . . , x6) 7→ {C12,34,56, C16,23,45, C14,26,35, C15,24,36, C13,25,46},
can be expressed in terms of symmetric functions, after a sign twist. Namely, the five polynomials
CI above satisfy the following surprising identity.

Theorem 10. Let

(f1, f2, f3, f4, f5) = (C12,34,56,−C16,23,45, C14,26,35,−C15,24,36, C13,25,46).

Then

5σ3
1 − 18σ1σ2 + 27σ3 = 0,

where σi = σi(f1, f2, f3, f4, f5) is the degree i elementary symmetric function.

Proof. As above, an explicit computation using any CAS shows that the expression vanishes. �
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We thank I. Dolgachev for communication regarding the following observation, which follows
from standard arguments in algebraic geometry that the Segre cubic is the unique irreducible
threefold which has S6 symmetry. However, we did not attempt to find the explicit change of
variable. See [7] for background and references.

Corollary 11. The relation above defines the Segre cubic.

Moreover, in this formulation we see clearly a symmetry under permutations of the 5 functions
fi. We intend to return to this observation in future work.

In personal correspondence, Dolgachev [8] directed our attention to [7], where the polynomials
CI are used to study the Segre cubic in great detail. To the best of our knowledge, however, our
formulation in terms of elementary symmetric functions and the cyclically-invariant decomposi-
tion of the CI-basis has not been written down. Our motivation here is to develop new techniques
to study a classical object in a new context.

It would be interesting to determine whether this S5 symmetry could be related to the con-
structions in [15] and its sequels.
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Appendix A. Mathematica Code

The ordered pair formulation for the 6-particle non-planar Parke-Taylor amplitude is computed
in Mathematica with the code given in Figure 2.

With[{L = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}} // Sort},

Map[parkeTaylor, Select[Permutations[Range[6]], Intersection[Subsets[#, {2}], L] === L &]]] // Total // Factor

-
(x1 x2 x3 + x1 x2 x4 - x1 x3 x4 - x2 x3 x4 - x1 x2 x5 + x3 x4 x5 - x1 x2 x6 + x3 x4 x6 + x1 x5 x6 + x2 x5 x6 - x3 x5 x6 - x4 x5 x6)

2

(x1 - x3) (x2 - x3) (x1 - x4) (x2 - x4) (x1 - x5) (x2 - x5) (x3 - x5) (x4 - x5) (x1 - x6) (x2 - x6) (x3 - x6) (x4 - x6)

1

3

4

2 5

6

Figure 2. Mathematica computation of the non-planar Parke-Taylor amplitude
using oriented edges.

Summing functional representatives of plates over the same set of permutations yields a much
simpler expression which has essentially the same numerator. Moreover, the expression separates
into a sum of two fractions labeling two permutohedral cones.

plateNonDegenerateRational[J_] := Product
1

xJj - xJj+1
, {j, 1, Length[J] - 1};

With[{pairs = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}}},

Map[plateNonDegenerateRational, Select[Permutations[Range[6]],

Intersection[Subsets[#, {2}], pairs] === pairs &]] // Total // Simplify] // ExpandNumerator

-x1 x2 x3 - x1 x2 x4 + x1 x3 x4 + x2 x3 x4 + x1 x2 x5 - x3 x4 x5 + x1 x2 x6 - x3 x4 x6 - x1 x5 x6 - x2 x5 x6 + x3 x5 x6 + x4 x5 x6

(x1 - x3) (-x2 + x3) (x1 - x4) (x2 - x4) (x3 - x5) (x4 - x5) (x3 - x6) (x4 - x6)

1

(x3 - x4) (-x1 + x4) (-x2 + x4) (x3 - x5) (-x3 + x6)
+

1

(x1 - x3) (-x2 + x3) (x3 - x4) (x4 - x5) (-x4 + x6)

Figure 3. The 6-particle case as a permutohedral cone

Remark 12. The sequence in Figure 5 also enumerates the numbers of vertices in the dilated
diplo-simplices. The unit diplo simplex has the 2n+ 2 vertices ±vi, where

vi =
(( 1

d+ 1

)n
,

(
−d
d+ 1

))
.

See [3] for details.
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1

4

2

3

5

6 1

3

2

4

5

6

Figure 4. Trees which represent the bottom two fractions in Figure 3.

Table[

Map[Total,

Tuples[

Permute[{0, 0, 0, 1, 1, 1}, PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{3, 4}}], Cycles[{{5, 6}}],

Cycles[{{1, 3}, {2, 4}}], Cycles[{{3, 5}, {4, 6}}]}]] // Union, {r}]] // Union // Length,

{r, 0, 6}]

{1, 12, 73, 284, 835, 2036, 4347}

Table[

Map[Total, Tuples[Join[Permutations[{1, 1, 1, 1, 1, -5}/ 6], Permutations[-{1, 1, 1, 1, 1, -5}/ 6]], {r}]] //

Union // Length, {r, 0, 6}]

{1, 12, 73, 284, 835, 2036, 4347}

FindGeneratingFunction[{1, 12, 73, 284, 835, 2036, 4347}, x]

1 + 6 x + 16 x2 + 6 x3 + x4

(-1 + x)6

Figure 5. The growth sequences – and thus the numerators of the generating
functions, the coefficients (1, 6, 16, 6, 1) – for the Newton polytope of C12,34,56 and
the diplo-simplex, the contact polytope for the dual lattice A∗

5, coincide.

makeAllLumpedPartitions[n_] := Flatten[Table[Map[Map[Sort,

FoldPairList[TakeDrop, #, composition]] &, Permutations[Range[n]]] // Union,

{composition, Flatten[Map[Permutations, IntegerPartitions[n]], 1]}], 1]

makeAllLumpedPartitionsBase[n_] := Flatten[Table[Map[Map[Sort,

FoldPairList[TakeDrop, #, composition]] &, Select[Permutations[Range[n]], #[[1]] ⩵ 1 &]] // Union,

{composition, Flatten[Map[Permutations, IntegerPartitions[n]], 1]}], 1]

Figure 6. Definitions for Figure 7

In Figure 7 we depart from the example non-planar amplitude, using instead the standard
order on the coordinates, summing over plates which satisfy

{p1, p2} < {p3, p4} < {p5, p6}.
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pLComplete[{{1}, {2, 5}, {4}, {3, 6, 7, 8}}]

1

(1 - x1) (1 - x1 x2 x5) (1 - x1 x2 x4 x5) (1 - x1 x2 x3 x4 x5 x6 x7 x8)

Map(-1)6-Length[#] plate[#] &, Select[makeAllLumpedPartitions[6],

(Position[#, 1][[1, 1]] < Position[#, 3][[1, 1]]) && Position[#, 1][[1, 1]] < Position[#, 4][[1, 1]] &&

Position[#, 2][[1, 1]] < Position[#, 3][[1, 1]] && Position[#, 2][[1, 1]] < Position[#, 4][[1, 1]] &&

Position[#, 3][[1, 1]] < Position[#, 5][[1, 1]] && Position[#, 4][[1, 1]] < Position[#, 5][[1, 1]] &&

Position[#, 3][[1, 1]] < Position[#, 6][[1, 1]] && Position[#, 4][[1, 1]] < Position[#, 6][[1, 1]] &]

 // Total

-[[123456]] + [[123456]] + [[213456]] + [[123456]] + [[124356]] + [[123456]] + [[123465]] - [[123456]] - [[124356]] -

[[123456]] - [[123465]] - [[213456]] - [[214356]] - [[213456]] - [[213465]] - [[123456]] - [[123465]] - [[124356]] -

[[124365]] + [[123456]] + [[123465]] + [[124356]] + [[124365]] + [[213456]] + [[213465]] + [[214356]] + [[214365]]

Map(-1)6-Length[#] pLComplete[#] &, Select[makeAllLumpedPartitions[6],

(Position[#, 1][[1, 1]] < Position[#, 3][[1, 1]]) && Position[#, 1][[1, 1]] < Position[#, 4][[1, 1]] &&

Position[#, 2][[1, 1]] < Position[#, 3][[1, 1]] && Position[#, 2][[1, 1]] < Position[#, 4][[1, 1]] &&

Position[#, 3][[1, 1]] < Position[#, 5][[1, 1]] && Position[#, 4][[1, 1]] < Position[#, 5][[1, 1]] &&

Position[#, 3][[1, 1]] < Position[#, 6][[1, 1]] && Position[#, 4][[1, 1]] < Position[#, 6][[1, 1]] &]

 // Total // Simplify

-1 + x1
2 x2

2 x3 x4 -1 + x1
2 x2

2 x3
2 x4

2 x5 x6

(-1 + x1) (-1 + x2) (-1 + x1 x2 x3) (-1 + x1 x2 x4) (-1 + x1 x2 x3 x4) (-1 + x1 x2 x3 x4 x5) (-1 + x1 x2 x3 x4 x6) (-1 + x1 x2 x3 x4 x5 x6)

Figure 7. This provides an alternate (more precise) functional representation of
the n = 6 particle case. NOTE the extra “lumped” terms with alternating signs.
It would be interesting to investigate their physical interpretation, perhaps as
collinear limits. Note also that the exponent vectors have integer entries. We are
describing a 6-dimensional cone which projects onto the generalized permutohedral
cone from Definition 13.

Series[-(1/(((-1 + x1) (-1 + x2) (-1 + x1 x2 x3) (-1 + x1 x2 x4) (-1 + x1 x2 x3 x4) (-1 + x1 x2 x3 x4 x5) (-1 + x1 x2 x3 x4 x6)))),

{x1, 0, 2}, {x2, 0, 2}] // Normal // Expand

1 + x1 + x1
2
+ x2 + x1 x2 + x1

2 x2 + x2
2
+ x1 x2

2
+ x1

2 x2
2
+ x1 x2 x3 + x1

2 x2 x3 + x1 x2
2 x3 + x1

2 x2
2 x3 + x1

2 x2
2 x3

2
+ x1 x2 x4 + x1

2 x2 x4 + x1 x2
2 x4 + x1

2 x2
2 x4 +

x1 x2 x3 x4 + x1
2 x2 x3 x4 + x1 x2

2 x3 x4 + 2 x1
2 x2

2 x3 x4 + x1
2 x2

2 x3
2 x4 + x1

2 x2
2 x4

2
+ x1

2 x2
2 x3 x4

2
+ x1

2 x2
2 x3

2 x4
2
+ x1 x2 x3 x4 x5 + x1

2 x2 x3 x4 x5 + x1 x2
2 x3 x4 x5 +

x1
2 x2

2 x3 x4 x5 + x1
2 x2

2 x3
2 x4 x5 + x1

2 x2
2 x3 x4

2 x5 + x1
2 x2

2 x3
2 x4

2 x5 + x1
2 x2

2 x3
2 x4

2 x5
2
+ x1 x2 x3 x4 x6 + x1

2 x2 x3 x4 x6 + x1 x2
2 x3 x4 x6 + x1

2 x2
2 x3 x4 x6 +

x1
2 x2

2 x3
2 x4 x6 + x1

2 x2
2 x3 x4

2 x6 + x1
2 x2

2 x3
2 x4

2 x6 + x1
2 x2

2 x3
2 x4

2 x5 x6 + x1
2 x2

2 x3
2 x4

2 x6
2

Series

--1 + x1
2 x2

2 x3 x4 -1 + x1
2 x2

2 x3
2 x4

2 x5 x6

(((-1 + x1) (-1 + x2) (-1 + x1 x2 x3) (-1 + x1 x2 x4) (-1 + x1 x2 x3 x4) (-1 + x1 x2 x3 x4 x5) (-1 + x1 x2 x3 x4 x6))), {x1, 0, 2}, {x2, 0, 2} //

Normal // Expand

1 + x1 + x1
2
+ x2 + x1 x2 + x1

2 x2 + x2
2
+ x1 x2

2
+ x1

2 x2
2
+ x1 x2 x3 + x1

2 x2 x3 + x1 x2
2 x3 + x1

2 x2
2 x3 + x1

2 x2
2 x3

2
+ x1 x2 x4 + x1

2 x2 x4 + x1 x2
2 x4 + x1

2 x2
2 x4 +

x1 x2 x3 x4 + x1
2 x2 x3 x4 + x1 x2

2 x3 x4 + x1
2 x2

2 x3 x4 + x1
2 x2

2 x3
2 x4 + x1

2 x2
2 x4

2
+ x1

2 x2
2 x3 x4

2
+ x1

2 x2
2 x3

2 x4
2
+ x1 x2 x3 x4 x5 + x1

2 x2 x3 x4 x5 + x1 x2
2 x3 x4 x5 +

x1
2 x2

2 x3 x4 x5 + x1
2 x2

2 x3
2 x4 x5 + x1

2 x2
2 x3 x4

2 x5 + x1
2 x2

2 x3
2 x4

2 x5 + x1
2 x2

2 x3
2 x4

2 x5
2
+ x1 x2 x3 x4 x6 + x1

2 x2 x3 x4 x6 + x1 x2
2 x3 x4 x6 + x1

2 x2
2 x3 x4 x6 +

x1
2 x2

2 x3
2 x4 x6 + x1

2 x2
2 x3 x4

2 x6 + x1
2 x2

2 x3
2 x4

2 x6 + x1
2 x2

2 x3
2 x4

2 x6
2

Figure 8. We think of the numerator as a multiplicity function which cancels the
over-determined denominator. The first expression has a coefficient which is not
equal to 1; the second does not. The exponent vectors in the second expression
project into the support of the indicator function for the 6-dimensional polytope
which is dual to the equations in Definition 13. That is, the exponent vectors
of the monomials label the integer lattice points in the dual cone, lifted into R6.
Details for the general construction will be given in a subsequent publication.

Definition 13. Let xab···c = xa + xb + · · ·+ xc, as usual. The degree 2 standard nonplanar plate
in six variables is cut out by the following equations. Note that the second column x12 ≥ 0 is
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redundant.{
x ∈ R6 : x1 ≥ 0 x12 ≥ 0 x123 ≥ 0 x1234 ≥ 0 x12345 ≥ 0

x2 ≥ 0 x124 ≥ 0 x12346 ≥ 0 , x123456 = 0
}

Proposition 14. Let hij = ei − ej. The above degree 2 nonplanar plate in six variables is
presented as the conical hull

〈e1 − e3, e1 − e4, e2 − e3, e2 − e4, e3 − e5, e3 − e6, e4 − e5, e4 − e6〉+
:= {t13h13 + t14h14 + t23h23 + t24h24 + t35h35 + t36h36 + t45h45 + t46h46 : tij ≥ 0}

Corollary 15. Consider the weight permutohedron which is the convex hull of permutations of
(0, 0, 1, 1, 2, 2). Then, the neighboring vertices are connected by precisely those ei − ej listed in
Proposition 14.

Appendix B. Nonplanar n = 9 particle case

With[{L = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 5}, {3, 7}, {4, 7}, {4, 9}, {5, 6}, {6, 8}, {8, 9}} // Sort},

Map[parkeTaylor, Select[Permutations[Range[9]], Intersection[Subsets[#, {2}], L] === L &]]] // Total // Factor

-
(x1 x2 x3 + x1 x2 x4 - x1 x3 x4 - x2 x3 x4 - x1 x2 x7 + x3 x4 x7 - x1 x2 x9 + x3 x4 x9 + x1 x7 x9 + x2 x7 x9 - x3 x7 x9 - x4 x7 x9)

2

(x1 - x3) (x2 - x3) (x1 - x4) (x2 - x4) (x3 - x5) (x5 - x6) (x1 - x7) (x2 - x7) (x3 - x7) (x4 - x7) (x6 - x8) (x1 - x9) (x2 - x9) (x4 - x9) (x8 - x9)

1

3

4

2
5

7

9

6

8

Figure 9. The numerator for the 9-particle fraction has the same form as the
6-particle case. The ordered pairs here were obtained by ad hoc methods.

Appendix C. Edge graphs for Wreath Permutohedra

Recall the notation from [4] where Ba,b denotes the hypersimplex formed from the convex hull
of permutations of the vector with a 1’s and b 0’s (1, . . . , 1, 0, . . . , 0).

Below we present some sample Mathematica code to visualize the Newton polytope for C12,34,56
and a candidate higher dimensional analog.

For concreteness, in Figure 10, the edge directions for the cone of the Newton polytope
extending away from the vertex (0, 0, 0, 1, 1, 1) toward its wreath product permutations, are

e1 − e4, e2 − e4, e3 − e4, e3 − e5, e3 − e6.
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{0, 0, 0, 1, 1, 1}

{0, 0, 1, 0, 1, 1}

{0, 0, 1, 1, 0, 1}

{0, 0, 1, 1, 1, 0}

{0, 1, 0, 0, 1, 1}

{1, 0, 0, 0, 1, 1}

{0, 1, 1, 1, 0, 0}

{1, 0, 1, 1, 0, 0}

{1, 1, 0, 0, 0, 1}

{1, 1, 0, 0, 1, 0}

{1, 1, 0, 1, 0, 0}

{1, 1, 1, 0, 0, 0}

Figure 10. Degenerate Wreath Product Permutohedron for Wr(S2, S3), edge
graph of the Newton polytope for C12,34,56. Two vertices above are connected
by an edge if their difference is a root ei − ej. The polytope is convex hull of the
Wr(S2, S3)-orbit of (0, 0, 0, 1, 1, 1), it is a sub-polytope of the hypersimplex B3,3,
and it projects onto the permutohedron in 3 coordinates, the convex hull of per-
mutations of (0, 1, 2), under the lumping map (x1, . . . , x6) 7→ (x12, x34, x56), where
xij = xi + xj. Remark: one can check that the square faces in the diagram are
tetrahedra.
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Graph[Map[UndirectedEdge @@ # &,

Select[

Subsets[Permute[{0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1},

PermutationGroup[{Cycles[{{1, 2}}], Cycles[{{2, 3}}], Cycles[{{4, 5}}], Cycles[{{5, 6}}],

Cycles[{{7, 8}}], Cycles[{{8, 9}}], Cycles[{{1, 4}, {2, 5}, {3, 6}}],

Cycles[{{4, 7}, {5, 8}, {6, 9}}], Cycles[{{7, 10}, {8, 11}, {9, 12}}]}]] // Union, {2}],

Total[Abs[Subtract @@ #]] ⩵ 2 &]]]

Figure 11. Candidate for a higher dimensional non-planar leading singu-
larity: edge graph for the convex hull of the Wr(S3, S4)-orbit of the point
(0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1) in the hypersimplex B6,6. This is the Newton poly-
tope for the candidate higher dimensional analog C123,456,789,101112 arising from the
dual SL4 determinant. As in the n = 3 case, there is an explicit projection onto the
permutohedron in n = 4 coordinates, the convex hull of permutations of (0, 1, 2, 3).
One would like to study functional representations of this and other weight per-
mutohedra which correspond to tensor product invariants, on Parke-Taylor factors
and more generally.
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