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Abstract

The existence of an exactly marginal deformation in a conformal field theory is very
special, but it is not well understood how this is reflected in the allowed dimensions
and OPE coefficients of local operators. To shed light on this question, we compute
perturbative corrections to several observables in an abstract CFT, starting with the
beta function. This yields a sum rule that the theory must obey in order to be part of
a conformal manifold. The set of constraints relating CFT data at different values of
the coupling can in principle be written as a dynamical system that allows one to flow
arbitrarily far. We begin the analysis of it by finding a simple form for the differential
equations when the spacetime and theory space are both one-dimensional. A useful
feature we can immediately observe is that our system makes it very difficult for level
crossing to occur.
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1 Introduction

In a d-dimensional conformal field theory, an exactly marginal operator is a primary scalar
of dimension d which does not pick up an anomalous dimension when it is added to the
CFT as a deformation. The space of CFTs that can be reached in this way is referred to
as a conformal manifold.1 When the points along it describe genuinely different theories,
not related by a relabelling of operators, we call a conformal manifold non-trivial. All non-
trivial conformal manifolds that have been discovered so far have some enhanced symmetry
beyond the conformal group SO(d + 1, 1). In particular, all known examples in d ≥ 3
are supersymmetric. The reason for this could simply be better analytic control which
makes it easier to discover new theories, or there could be a fundamental obstruction to
non-supersymmetric conformal manifolds. It is therefore worthwhile to check if there are
some universal features of the operator algebra that we can associate with the presence of
exactly marginal operators. Just as the modern bootstrap [3] seeks to determine whether a
putative set of local operators can belong to a consistent conformal theory, there may be a
test that can narrow down the space of CFTs to the space of conformal manifolds.

The original references in this subject proved non-renormalization theorems to discover
conformal manifolds [4–8]. To some extent, they did so by making explicit reference to a
Lagrangian. Interestingly, some of these manifolds turn out to be strongly coupled at all
points. There is also a growing body of work developing the non-perturbative understanding
of these theories through the superconformal algebra [9–12]. The short multiplets to which
marginal operators must belong only exist in certain cases. Above 2D, these are N = 1, 2
in 3D and N = 1, 2, 4 in 4D [13]. In these algebras, additional requirements for finding a
conformal manifold may be phrased in terms of representation theory and recombination
rules. Various aspects of superconformal manifolds have been deduced from this line of

1Continuous families of CFTs can arise in other ways as well. One example is the procedure in [1, 2]
for constructing a line of nonlocal fixed points. Liouville theory may also be seen as a fixed line as one
varies the central charge. These do not fit the definition of a conformal manifold because the lines are not
traversed by deforming the CFT with a local operator.
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reasoning including their dimensionality and the presence of complex structure. The or-
thogonal approach taken here will use conformal perturbation theory which does not rely
on supersymmetry. The mnemonic

S 7→ S +

∫
ddxgiÔi (1.1)

is merely an abstract statement for how we deform correlation functions. Considering a
single direction on a conformal manifold that could be multi-dimensional, we will denote
the associated marginal operator and its coupling by Ô and g respectively. An infinite
family of constraints follows from setting β(g), the running of the coupling, to zero. The
two-loop term becomes a sum rule for even-spin CFT data analogous to the one in [3].

The local operators in a conformal manifold, even-spin or otherwise, obey many addi-
tional restrictions that require more work to state. Although there is no known way to tell
if a set of scaling dimensions and OPE coefficients {∆i, λijk} is part of a conformal mani-
fold, the framework of conformal perturbation theory holds promise in telling us whether
two such sets can consistently be part of the same conformal manifold. The key is that
when there is a unique operator of each dimension, a set of differential equations exists for
evolving {∆i(g), λijk(g)} from one value of g to another. Subtleties arise when there is de-
generacy and especially when there is more than one marginal operator. In this case, there
is a non-trivial Zamolodchikov metric and the curvatures built up from it become interesting
observables that affect how the equations for d∆i

dg
and

dλijk
dg

must be defined [14, 15]. Even
after we limit ourselves to a single marginal operator, these equations can only be written
down once the appropriate conformal block expansions are known. This yields conformal
block requirements that are much steeper than those in other CFT techniques. For compar-
ison, we note that recent studies of the analytic bootstrap use conformal blocks with small
external spin that only need to be evaluated in certain limits [16–19]. Bounds from spinning
correlators, recently found with the numerical bootstrap, use the full expressions, but again
the external spin is at most 2 [20–23]. The flow equations for conformal manifolds couple
blocks of all internal and external Lorentz representations. For this reason they seem to be
prohibitive in d ≥ 3. We believe that the sheer complexity of this dynamical system is part
of the reason why it has not appeared in the literature thus far.

Nevertheless, we will see shortly that the system can in fact be analyzed sensibly in
d = 1. The main result we have derived from this is that there is no level crossing for
operators of the same symmetry. The absence of level crossing has long been predicted on
general grounds but it remains a challenge to see how it is achieved. Because our argument
assumes no degeneracy, we have not answered whether level crossing can occur when there
is more than one marginal deformation. The program of applying our system to a known
conformal manifold is similar in spirit to an algorithm that was recently developed for the
numerical bootstrap. The authors of [24] saturated a dimension bound and then obtained all
other solutions to crossing on the edge of that bound through a set of evolution equations.
We envision an algorithm that accomplishes the same thing except in a setting where the
spectra belong to the same continuous line for a physical reason.

This paper is organized as follows. In section 2, we use the two-loop vanishing of β(g) to
derive the aforementioned sum rule that CFTs possessing a marginal operator must satisfy.
We explain some technical features of it related to renormalization and the fact that spin-`
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operators in Ô × Ô contribute with the sign (−1)`/2. This two-loop contribution to the
beta function can be regarded as a one-loop shift in the OPE coefficient λÔÔÔ. In section
3, we generalize our construction to an arbitrary OPE coefficient λijk. The infinitely many
constraints that follow are recast into the explicit dynamical system in one dimension that
we have advertised. The implications for nearly degenerate pairs of operators then follow
from elementary scattering theory. Section 4 concludes and suggests future extensions of
this work.

After these results were obtained, [25] appeared and discussed some of the same ideas.

2 Two-loop constraints

The standard framework for studying CFTs deformed by local operators is conformal per-
turbation theory [26, 27]. Defining O(∞) = limx→∞ x

2∆O(x), the order-n correction to
Ô(∞) is

gn0
n!

∫
ddx1 . . . d

dxn

〈
Ô(x1) . . . Ô(xn)Ô(∞)

〉
. (2.1)

Integrals of this form generically have logarithmic divergences which should be regulated
by a UV cutoff Λ.2 These are removed from renormalized correlators by expressing them in
terms of the coupling g = Λ∆̂−dg0. The beta function is

β(g) =
dg

d log Λ
= (∆̂− d)g + β2g

2 + β3g
3 + . . . , (2.2)

which should vanish for marginal Ô. Putting our theory in a box of volume V , the one-loop
and two-loop terms may be read off from

1

V

∫
ddx1ddx2

〈
Ô(x1)Ô(x2)Ô(∞)

〉
∼ −2β2 log Λ

1

V

∫
ddx1ddx2ddx3

〈
Ô(x1)Ô(x2)Ô(x3)Ô(∞)

〉
∼ −6β3 log Λ . (2.3)

In the first integral, the OPE with x2 → x1 tells us that

β2 = −Sd−1

2
λÔÔÔ . (2.4)

The second integral is more interesting as it involves a four-point function. Recently, there
has been interest in approximating it using data from the numerical bootstrap [1, 2, 30].
A logarithmic divergence arises by letting x2 and x3 approach x1 while remaining of the
same order. Performing a conformal transformation, we may write β3 as a single integral of〈
Ô(0)Ô(x)Ô(ê)Ô(∞)

〉
where ê is an arbitrary unit vector. For each relevant operator in

the OPE Ô × Ô, there is a power-law singularity. Subtracting these,

β3 = −Sd−1

6

∫
ddx

[〈
Ô(0)Ô(x)Ô(ê)Ô(∞)

〉
−
∑

∆<d

λ2
ÔÔO

(
1

|x|∆ +
1

|x|2d−∆
+

1

|ê− x|2d−∆

)]

(2.5)

2An approach using dimensional regularization instead was developed in [28,29].
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Figure 1: Once we send our four points to (0, z, 1,∞), R12, R23 and R13 map to the blue,
red and yellow z-plane regions respectively. We have used a change of variables to give all
integrals the blue domain, which we denote by R.

is the net result.3 There is a different form of (2.5) that will be more useful for our purposes
[30]. It comes from writing (2.3) as an integral over R12 ∪R23 ∪R13 where Rij means that
|xij| is smaller than the other two distances. These are precisely the regions of optimal
convergence for conformal block expansions in the s, t and u channels. Figure 1 plots them
for our desired kinematics. By covariance of the correlator, they can all be swapped for the
region R ≡ {|x| < 1, |ê−x|} where the only potential singularity is at the origin. With this
in mind,

β3 = −3
Sd−1

6

∑

O

λ2
ÔÔO

∫

R
ddx|x|−2dGO(u, v)

∣∣∣∣
reg

. (2.6)

The factor of 3 reflects the crossing symmetry of the four-point function. Later, when we
deal with mixed correlators, we will have to treat each permutation separately. By setting
the terms above to zero,

∆̂ = d

λÔÔÔ = 0
∑

O

λ2
ÔÔO

∫

R
ddx|x|−2dGO(u, v)

∣∣∣∣
reg

= 0 (2.7)

are the conditions that a conformal manifold imposes on the operator algebra. For the rest
of this section, we will focus on the non-trivial line of (2.7) and refer to it as the sum rule.
As a first step in understanding the ingredients of the sum rule, we may plot the conformal
block integrals as functions of the exchanged dimension ∆. Figure 2 does this for d = 2 but
the same basic features appear in all dimensions. Looking at the scalars, we see that relevant
and irrelevant operators contribute with opposite signs. The discontinuity at ∆ = d arises
because the counterterm 1

|x|∆ , introduced to cure a UV divergence, becomes IR divergent as

3Equivalently, one could omit ∆ = 0 from the sum and then invoke some notation to change the four-point
function to the connected four-point function.
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Figure 2: Plots showing how a primary operator in Ô × Ô contributes to the beta func-
tion. These follow from a numerical integral but they may be obtained analytically in one
dimension.

well at marginality. Higher spin operators, which exist for d ≥ 2, appear to have the same
sign for all ∆. However, they alternate with spin according to ` (mod 4). This agrees with
the observation in [25].

2.1 Ambiguities in the sum rule

An important feature of the scalar plot in Figure 2 is that it does not pass through the
origin. This means that in the sum rule derived from a connected four-point function in
(2.5), the identity term is finite. Although this might seem strange at first sight, it is an
inevitable consequence of using counterterms in bounded regions. There are different ways
to do this when crossing symmetry is not manifestly satisfied, leading to a freedom in how
the sum rule is presented. It should be emphasized that this is not a physical ambiguity.
Data solving one version of the sum rule will automatically solve another if it comes from a
crossing symmetric theory. This reflects the fact that the beta function is well defined within
our scheme. It is even scheme independent at two loops, as explained in [30]. Nevertheless,
it represents an ambiguity in characterizing the beta function term of an abstract conformal
multiplet.

For simplicity, suppose that the only relevant scalar in Ô×Ô is the identity. In this case,
the right hand side of Figure 3 is a cartoon that represents the integration done in (2.5).
To change prescriptions, it will be helpful to distinguish between a subtracted function and
its isolated divergence. We may consider a subtraction of 1

|z|2d from f(z), integrated over an
r-ball for instance.∫

B(r)

ddzf(z)− 1

|z|2d =

∫

B(r)

ddzf(z)− Sd−1

d
(r−d − Λd)

∫

B(r)

ddzf(z)− 1

|z|2d
∣∣∣∣
div

=

∫

B(r)

ddzf(z) +
Sd−1

d
Λd (2.8)

5



(a) (b)

Figure 3: We represent Rd as a blob with the function to be integrated inside it. The left
and right choices both compute the two-loop beta function. Because Rd has no boundary,
the integrated power-laws being subtracted are equal to their divergent parts.

The expression that subtracts the full power-law includes an extra Sd−1

d
r−d compared to

the expression that only subtracts the divergence. Clearly, r →∞ makes these procedures
equivalent, explaining why both halves of Figure 3 are the same.

As soon as we expand in conformal blocks, we must partition space into the blue, red and
yellow regions from Figure 1. These are represented in Figure 4 by the same colors. The type
of subtraction being performed on the left hand side is the choice made in this work. It makes
use of the fact that divergences are localized around special points, allowing us to keep only
one in each region. It is now clear that power-laws present in the blocks for relevant scalars
will not be fully removed. After divergences are subtracted, finite boundary terms will
remain. Another choice that we could have made is the approach of the right hand side —
subtracting the same original counterterm in all three channels. The equivalence between
the two choices relies on crossing symmetry. In this case, a power-law like 1

|z|2d is fully

cancelled but the additional appearances of 1 and 1
|1−z|2d mean that we are subtracting too

much. Finite parts will thus persist unless we find a natural way to pair these counterterms
with the blocks of irrelevant operators instead. In this regard, the lightcone bootstrap has
successfully matched crossed-channel singularities to infinite towers of operators in the direct
channel [31,32]. However, these are the well known towers of double-twist operators which
only exist asymptotically.
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(a) Equivalent to Figure 3 (a) (b) Equivalent to Figure 3 (b)

Figure 4: The cartoons obtained by splitting Figure 3 into s, t and u channel regions. In
both cases, the identity block is not annihilated. A divergence subtraction is now no longer
the same as a full subtraction. In particular, removing div everywhere in the left blob would
not compute a physical quantity.

2.2 The alternating sign

We now turn to the question of why the contributions plotted in Figure 2 have signs that
alternate with spin. Although a general proof eludes us, we may show that the correct sign
is predicted by the large-∆ limit. It is convenient to express everything in terms of the
radial co-ordinate

ρ =
z

(1 +
√

1− z)2

r = |ρ|
η = cos arg ρ . (2.9)

For the large-∆ block, we use

G∆,`(r, η) =
`!

(2ν)`

(4r)∆Cν
` (η)

(1− r2)ν
√

(1 + r2)2 − 4r2η2

(
1 +O

(
1

∆

))

ν =
d− 2

2
(2.10)

which is the entire part from the meromorphic expansion in [33]. It is easy to check that the
region C \ (1,∞) for z maps to the unit circle for ρ [34]. Therefore G∆,`(r, η) vanishes for
∆→∞ and so must an integral of it over a bounded region. Another thing to check is that
R, the region that looks like a cutoff circle, maps to {(r, η)| − 1 < η < 1, 0 < r < r∗(|η|)}
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where r∗(|η|) is the smaller solution of r2 − 4r + 1 = 2r|η| [30]. With a little bit of work to
find the measure, our integral is

I =
`!

(2ν)`

∫ 1

−1

dη

∫ r∗(|η|)

0

dr
√

(1 + r2)2 − 4r2η2(4r)∆−d−1(1− r2)ν(1− η2)ν−
1
2Cν

` (η) . (2.11)

Everything in the integrand except the Gegenbauer polynomial is sign-definite and peaks
at η = 0. It therefore seems that the sign of I should be controlled by the sign of Cν

` (0).
This is indeed (−1)`/2 as can be seen in various ways. Perhaps most easily, we can just use
the fact that each Gegenbauer is an even polynomial with ` zeros on the unit interval. The
fact that Cν

` (±1) > 0 then gives us the right sign for Cν
` (0). To see why this sign persists,

consider ∫ 1

−1

dη
Cν
` (η)

Cν
` (0)

f(|η|)(1− η2)ν−
1
2 . (2.12)

If f is identically 1, then it is a special case of a Gegenbauer polynomial and (2.12) vanishes
by orthogonality. This means that the positive sign near η = 0 is exactly cancelling the
negative signs that appear elsewhere. The integral should then become more positive once
we change f to a positive function that peaks at zero and decays in either direction. We
may check that this holds for

f(|η|) =

∫ r∗(|η|)

0

dr
√

(1 + r2)2 − 4r2η2(4r)∆−d−1(1− r2)ν , (2.13)

but this only proves our suspicion when ` ≤ 2. For higher spins, we will need information
about f beyond monotonicity. A saddle point evaluation of (2.13) leads to

f(|η|) ≈ 4∆−d

∆− d− 1

√
1 + |η|(1− r∗(|η|)2)νr∗(|η|)∆−d+1 . (2.14)

For sufficiently large ∆, the increasing function
√

1 + |η|(1 − r∗(|η|)2)ν does not spoil the
decrease of r∗(|η|)∆−d+1. Therefore, we may consider the parts of (2.12) on either side of the
first zero of Cν

` (η). Call this point η0. For the η > η0 part of (2.12) which includes negative
contributions, the crudest underestimate is

I> ≥ − 4∆−d

∆− d− 1
K>r∗(η0)∆−d+1

K> = |minCν
` (η)/Cν

` (0)| (1− η0)
√

1 + η0(1− r∗(η0)2)ν . (2.15)

We may underestimate the positive contribution from η ∈ [0, η0] by just taking η ∈
[
0, η0

2

]
.

This yields

I< ≥ 4∆−d

∆− d− 1
K<r∗

(η0

2

)∆−d+1

K< =
∣∣∣Cν

`

(η0

2

)
/Cν

` (0)
∣∣∣ η0

2

√
1 +

η0

2

(
1− r∗

(η0

2

)2
)ν

. (2.16)

SinceK> andK< are independent of ∆, it is easy to choose ∆ such that [r∗
(
η0

2

)
/r∗(η0)]∆−d+1

is larger than K>/K<.
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2.3 Realizations

The simplest conformal manifold is probably the compactified free boson in two dimensions.4

While the absence of a beta function in a free theory hardly needs to be stated, it is
instructive to discuss this model from symmetry considerations alone. At a generic radius,
the symmetry is given by two copies of the affine U(1) algebra. The current J and its modes
an satisfy

J(z)J(w) =
1

(z − w)2
+ . . .

[an, am] = nδm+n,0 . (2.17)

The object T =: J2 :, known as the Sugawara stress tensor, has all of its properties deter-
mined from (2.17). Specifically,

T (z)T (w) =
1

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + . . .

Lm =
1

2

∑

n∈Z

: am−nan : (2.18)

which implies the Virasoro algebra for central charge 1. This leads to a simple relation
between the charges and conformal weights of primary operators; h = q2. We therefore see
that JJ̄ is a marginal deformation because the two pieces have charge ±1.

Cardy found this model through a bottom-up approach while searching for a fixed line
that did not require finely tuned OPE coefficients. In [35], he showed that

〈
Ô(0)Ô(z, z̄)Ô(1)Ô(∞)

〉
= |z|−4G(z, z̄) (2.19)

= 2<
[

1

z2
+

1

(1− z)2
+

1

z̄2(1− z)2

]
+

1

|z|4 +
1

|1− z|4 + 1

is the unique crossing-symmetric four-point function with a vanishing regulated integral
whose singularities involve only the Virasoro identity block. We have separated the con-
nected and disconnected pieces above. The holomorphic factorization looks like

G(z, z̄) = g(z)g(z̄)

g(z) =

(
z2 − z + 1

1− z

)2

= 1 + 2z2 +
∞∑

k=2

kzk+1 . (2.20)

The expansion of (2.20) into SL(2;R) blocks is

g(z) = 1 +
∞∑

n=1

cnz
2n

2F1(2n, 2n; 4n; z)

cn =
2n− 1

4n−1

(2n)!

(4n− 3)!!
, (2.21)

4We use the term “manifold” loosely, as the moduli space is not smooth at the self-dual radius.
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yielding an explicit realization of (2.7).5 The only scalar of ∆ < 2 in this Virasoro identity
block is the quasiprimary I itself. This would make it a dead-end CFT if we took the unusual
step of regarding this subsector of the free boson as a theory in its own right. Because no
relevant deformations contribute to the beta function, the model owes marginality to the
appearance of both signs in Figure 2.

The known examples of conformal manifolds above d = 2 are superconformal manifolds.
Let us discuss 4D theories in decreasing order of supersymmetry. The N = 4 theories
will have an exactly marginal operator whenever they have a stress-energy tensor. Both of
these are in a multiplet whose primary transforms in the 20′ representation of the SU(4)
R-symmetry. Reassuringly, there is no way for this to recombine with another multiplet.
There is a well known conjecture that all N = 4 SCFTs fall into the Super Yang-Mills class.
The situation inN = 2 is similar with classical marginality implying exact marginality again
due to recombination rules. The difference is that local N = 2 SCFTs do not automatically
require the multiplet for marginal operators to be present. Indeed, known N = 2 SCFTs
include conformal manifolds but also a large zoo of isolated fixed points [38]. Finally,
classically marginal operators are ubiquitous in N = 1 theories as descendants of scalar
chiral primaries. These primaries obey ∆ = 3

2
|r|, where we are interested in r-charge 2 to

get the multiplet of a superpotential. To prevent this from recombining with a conserved
current multiplet, one needs extra input such as the mechanism described in [9].

Since we must have a solved theory to fully apply (2.7), we are essentially limited to
examples like free N = 4 SYM or free N = 2 SQCD with the right matter content to make
it conformal. What might be more interesting is checking the contribution of particular su-
permultiplets. BPS multiplets, which have fixed dimension whenever they appear, could be
treated once. When an unprotected multiplet has correlators of its descendants determined
by those of the primary, its contribution could be plotted as a function of ∆ analogously to
Figure 2. This is not the case for long multiplets with nilpotent superconformal invariants.
In these superconformal blocks, the coefficients of bosonic blocks that appear are theory
dependent [39–41]. Even before these exercises are done, it is clear that (2.7) will not allow
us to see individual cancellation within a given block. As stated earlier, our current form of
the sum rule is contaminated by counterterms such that even the identity — the supermul-
tiplet with no descendants at all — contributes a finite piece. This should be addressed in
any serious attempt to study the structure of the OPE applicable to the beta function.

3 Evolution equations

To begin exploring the landscape of conformal manifolds, the sum rule (2.7) is the most
natural starting point. We would like to emphasize, however, that CFTs with exactly
marginal deformations obey a much larger set of constraints. If a continuous line of theories
has a solution at one point, these constraints are in principle enough to solve for local
operators in the theories at all other points. The idea is to flow along the manifold in a

5We have guessed (2.21) with the help of OEIS [36]. However, a proof should be possible with the
technology of [37].
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given direction by applying the first order shifts

δ∆i = −δgSd−1λiiÔ

δλijk = δg

∫

R
ddx

〈
Oi(0)Ô(x)Oj(ê)Ok(∞)

〉
+ perms (3.1)

repeatedly. Because the marginal operator takes us from one CFT to another, we will always
be able to use the conformal block expansion on the right hand side of (3.1). This allows
us to write the results of conformal perturbation theory in exponentiated form:

d∆i

dg
= −Sd−1λiiÔ

dλijk
dg

=
∑

O

λiÔOλjkO

∫

R
ddx

GO(x)

|x|∆i+d

∣∣∣∣
reg

. (3.2)

The sum rule from the last section is the special case found by taking Oi, Oj and Ok to be

Ô itself. Clearly, the infinite coupled system (3.2) will need to be truncated if one hopes to
use it numerically. It is also unrealistic to expect a subset of the equations in (3.2) to close
among themselves. In particular, this means that one will have to compute the trajectories
of OPE coefficients λijk(g) even if she is only interested in the dimensions ∆i(g). It also
means that CFT data involving only scalars will still receive contributions from spinning
conformal blocks. For this reason, (3.2) is most readily accessible in d = 1.

3.1 One dimension

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5: Continuing to complex z, our blocks have one branch cut from −∞ to 0 and
another from 1 to ∞. This differs from higher-dimensional blocks which are analytic on
C \ (1,∞). As an example, we may multiply two SL(2;R) blocks to get an SL(2;C) block.
This causes the left cut to cancel and the right cut to double.
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Unlike in higher dimensions, there is only one cross-ratio on which 1D conformal blocks
can depend. We take this to be z = x12x34

x13x24
. The explicit functions

GO(z) = z∆
2F1(∆−∆12,∆ + ∆34, 2∆; z) , x1 < x2 < x3 < x4 (3.3)

were found in [42,43]. Because the region of validity does not cover all of R, we will need

G̃O(z) =

(
z

z − 1

)∆

2F1

(
∆ + ∆12,∆ + ∆34, 2∆;

z

z − 1

)
, x2 < x1 < x3 < x4 (3.4)

as well. Using (3.3) for z ∈ (0, 1
2
) and (3.4) for z ∈ (−1, 0) leads to six regions. These

correspond to the six possible orderings of x1, x2, x3 after fixing x4 = ∞.6 Putting back
kinematic factors, we have

dλijk
dg

=
∑

O

(λiÔOλjkOI1 + λÔiOλjkOI2) + perms

I1 =

∫ 1
2

0

dz
GO(z)

z∆i+1

I2 =

∫ 0

−1

dz
G̃O(z)(1− z)∆k−∆j

(−z)∆i+1
. (3.5)

A straightforward calculation yields

I1 =
z∆−∆i

∆−∆i
2F1(∆−∆i,∆ + ∆j −∆k, 2∆, z)

∣∣∣∣
1
2

0

→ 2∆i−∆

∆−∆i
2F1

(
∆−∆i,∆ + ∆j −∆k, 2∆,

1

2

)
(3.6)

where we have dropped finitely many terms in the last step. This amounts to renormalization
as the negative powers of z are precisely the divergences from ∆ < ∆i operators in Oi× Ô.
These are implicitly assumed to be subtracted in the naive integrals (3.5).

To proceed further, we will need some identities, namely the two Pfaff transformations
which combine to give an Euler transformation.

2F1(a, b, c, z) = (1− z)−a2F1

(
a, c− b, c; z

z − 1

)

= (1− z)−b2F1

(
c− a, b, c; z

z − 1

)

= (1− z)c−a−b2F1(c− a, c− b, c; z) (3.7)

Using these on the second integral,

I2 =

∫ 0

−1

dz(−z)∆−∆i−1
2F1(∆−∆i + 1,∆ + ∆j −∆k, 2∆; z) .

6This phenomenon of the s-channel splitting into two pieces occurs because there is no continuous way
to move one operator around another. One consequence of this is that only cyclic permutations of (i, j, k)
leave λijk invariant [44].
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We now renormalize and use a Pfaff transformation to send the argument −1 back to 1
2
.

I2 →
2∆i−∆

∆−∆i
2F1

(
∆−∆i,∆−∆j + ∆k, 2∆;

1

2

)
(3.8)

We might have expected this form because the switch (x1,∆1) ↔ (x2,∆2) is the same as
(x3,∆3)↔ (x4,∆4). We arrive at our full coupled system by permuting labels in the results
above.

d∆i

dg
= −2λiiÔ

dλijk
dg

=
∑

O

2∆i−∆

∆−∆i

[
λiÔOλjkO2F1

(
∆−∆i,∆ + ∆jk

2∆
;
1

2

)
+ λÔiOλjkO2F1

(
∆−∆i,∆ + ∆kj

2∆
;
1

2

)]

+
∑

O

2∆j−∆

∆−∆j

[
λjÔOλikO2F1

(
∆−∆j,∆ + ∆ik

2∆
;
1

2

)
+ λÔjOλikO2F1

(
∆−∆j,∆ + ∆ki

2∆
;
1

2

)]

+
∑

O

2∆k−∆

∆−∆k

[
λkÔOλijO2F1

(
∆−∆k,∆ + ∆ij

2∆
;
1

2

)
+ λÔkOλijO2F1

(
∆−∆k,∆ + ∆ji

2∆
;
1

2

)]

(3.9)

When ∆ = ∆i is exchanged, it is helpful to use the formula

∂

∂γ
2−γ2F1

(
γ,∆ + ∆jk

2∆
;
1

2

) ∣∣∣∣
γ=0

= − log(2) +
∆ + ∆jk

4∆
3F2

(
1, 1,∆ + ∆jk + 1

2, 2∆ + 1
;
1

2

)
.

(3.10)
The size of the system (3.9) can be reduced in a parity-invariant theory. Because there

are 6 channels, but 24 configurations of 4 points, our four-point functions must be invariant
under {(), (12)(34), (13)(24), (14)(23)} = Z2×Z2 — the set of transformations that stabilize
z. As a result, λijk and λjik are allowed to differ at most by a sign. A non-trivial check
is that, with this assumption, our differential equation for λijk has the S4/(Z2 × Z2) = S3

symmetry befitting three operators that can couple to the parity-even Ô. Parity symmetry
is common in defect CFTs, for example, because it is inherited from the parent theory.

3.2 Avoided level crossing

Even if one does not have a concrete model of a non-trivial conformal manifold in one
dimension, a general prediction that can be distilled from (3.9) is a strong preference against
nearly degenerate operators. Consider two primaries O1 and O2 where, for some value of
the coupling g0, ∆1 − ∆2 is parametrically small. We take it to be positive without loss
of generality. By the Neumann-Wigner non-crossing rule, we expect it to stay positive for
g > g0. For a demonstration of this occuring in maximally supersymmetric Yang-Mills
theory, see [45]. Also, [46] discussed this in the context of the 1

N
expansion where the

“distance of closest approach” is determined by the mixing matrix between planar and
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non-planar eigenstates. Taking the second derivative of one of the dimensions,

d2∆1

dg2
= −2

dλ11Ô
dg

= −4
∑

O

2∆1−∆

∆−∆1

λ2
1ÔO2F1

(
∆−∆1,∆ + ∆1 − 1

2∆
;
1

2

)

−4
∑

O

2∆1−∆

∆−∆1

λÔ1Oλ1ÔO2F1

(
∆−∆1,∆−∆1 + 1

2∆
;
1

2

)

−4
∑

O

21−∆

∆− 1
λÔÔOλ11O2F1

(
∆− 1,∆

2∆
;
1

2

)
. (3.11)

Our ability to quickly take the second derivative is only guaranteed because we are consid-
ering a manifold that has only one marginal operator and therefore a flat connection [14,15].
Three values of ∆ lead to small denominators in (3.11) but the only one that can dominate
the sum is ∆ = ∆2. Indeed, ∆1 and 1 yield divergences whose renormalized versions are
O(1) numbers in view of (3.10). Knowing this, we can approximate the differential equation
as

d2∆1

dg2
≈ 4

λ2
12Ô2∆1−∆2

∆1 −∆2

[
2F1

(
−∆12,∆2 + ∆1 − 1

2∆2
;
1

2

)
+ 2F1

(
−∆12,∆2 −∆1 + 1

2∆2
;
1

2

)]

≈
8λ2

12Ô
∆1 −∆2

. (3.12)

In the first step, we have assumed that our theory has a parity symmetry. Since operators
with different quantum numbers are allowed to cross, we are interested in O1 and O2 which
have the same parity. This means that λ11Ô, λ22Ô and λ12Ô all exist and are independent

of the label ordering. After switching the labels to find d2∆2

dg2 , the differential equation for
y ≡ ∆1 −∆2 is

d2y

dg2
=

16λ2
12Ô
y

. (3.13)

It is not necessarily true that λ12Ô is slowly varrying compared to y. Therefore we will
compute its variation by going back to (3.9).

dλ12Ô
dg

≈ 2

∆2 −∆1

λ12Ôλ22Ô +
2

∆1 −∆2

λ12Ôλ11Ô

=
2λ12Ô
y

(λ11Ô − λ22Ô)

= −λ12Ô
y

dy

dg
. (3.14)

Solving this separable equation yields

d2y

dg2
=

2c

y3
(3.15)
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where c is a positive constant. The right hand side is − d
dy
U(y) for the potential function

U(y) = c
y2 . Having turned this into a 1D classical scattering problem, we see that U(y)

is always a repulsive potential. In particular, U(0) = +∞ means that a shrinking y will
always reach a turning point.

This argument appears not to use any special information about one dimension. Besides
demonstrating agreement with [46], lack of level crossing may be seen as a consistency check
of the equations we have been using. If operator pairs with ∆1 ≈ ∆2 could occur throughout
the conformal manifold, the differential equation for λ11Ô would contain terms that are large
— possibly large enough to combat the suppression by powers of g in conformal perturbation
theory. From this point of view, it is encouraging that our system abhors the regime y � 1.

4 Conclusion

We expect our main results, (2.7) and (3.9), to fit into a larger effort to understand theories
with β(g) = 0 systematically. First, we intend to take a closer look at the question what
is the contribution of a given primary operator to the two-loop beta function of a deformed
CFT? Our ability to discuss the sum rule in the context of known conformal manifolds was
limited because this question does not have a unique answer. This arose from the lack of
a clear prescription for distributing counterterms in the conformal block expansion. Given
the recent interest in using conformally covariant basis functions other than the traditional
blocks, it is possible that results in [47–51] could help ensure that we are using the right
language.

Moving beyond the sum rule, we have seen a rich set of relations for how the local
CFT data depend on the coupling. The toy model we have chosen avoids the mixing and
interesting geometry induced by multiple couplings. We presented (3.9) as the d = 1 version
of this dynamical system because it looked appealingly simple and offered a demonstration
of avoided level crossing. A worthwhile goal is applying this framework to a realistic model
numerically. This will probably need to be done in d = 2 and involve Virasoro blocks.
Treating d = 2 with global blocks would require us to diagonalize the two-point functions of
degenerate operators before every g 7→ g+ δg step. It is therefore of interest to find efficient
algorithms for conformal blocks that lack a closed form, as explored in [52–55].
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