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Abstract

A method is described to count simple diagonal walks on Z2 with a �xed starting point and

endpoint on one of the axes and a �xed winding angle around the origin. The method involves the

decomposition of such walks into smaller pieces, the generating functions of which are encoded in

a commuting set of Hilbert space operators. The general enumeration problem is then solved by

obtaining and explicit eigenvalue decomposition of these operators involving elliptic functions. By

further restricting the intermediate winding angles of the walks to some open interval, the method

can be used to count various classes of walks restricted to cones in Z2 of opening angles that are

integer multiples of π/4.

We present three applications of this main result. First we �nd an explicit generating function

for the walks in such cones that start and end at the origin. In the particular case of a cone of angle

3π/4 these walks are directly related to Gessel’s walks in the quadrant, and we provide a new proof

of their enumeration. Next we study the distribution of the winding angle of a simple random walk

on Z2 around a point in the close vicinity of its starting point, and �nd an intriguing probabilistic

interpretation of the Jacobi elliptic functions. Finally we relate the spectrum of one of the Hilbert

space operators to the enumeration of closed loops in Z2 with �xed winding number around the

origin.

1 Introduction

Counting of lattice paths has been a major topic in combinatorics (and probability and physics) for

many decades. Especially the enumeration of various types of lattice walks con�ned to convex cones

in Z2, like the positive quadrant, has attracted much attention in recent years, due mainly to the rich

algebraic structure of the generating functions involved (see e.g [13, 4] and references therein) and the

relations with other combinatorial structures (e.g. [3, 26]). The study of lattice walks in non-convex

cones has received much less attention. Notable exception are walks on the slit plane [10, 14] and the

three-quarter plane [12]. When describing the plane in polar coordinates, the con�nement of walks to

cones of di�erent opening angles (with the tip positioned at the origin) may equally be phrased as a

restriction on the angular coordinates of the sites visited by the walk. One may generalize this concept

by replacing the angular coordinate by a notion of winding angle of the walk around the origin, in

which case one can even make sense of cones of angles larger than 2π . It stands to reason that a �ne

control over the winding angle in the enumeration of lattice walks brings us a long way in the study of

walks in (especially non-convex) cones.

Although the winding angle of lattice walks seems to have received little attention in the com-

binatorics literature, probabilistic aspects of the winding of long random walks have been studied in

considerable detail [18, 19, 28, 29]. In particular, it is known that under suitable conditions on the steps of
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Figure 1: The winding angle of a simple diagonal walk w ∈ W of length |w | = 19 from (2, 0)
to (−1, 3). The (full) winding angle θw is indicated in green, and the winding angle increment

θwi − θwi−1 in blue (which is negative in this example).

the random walk the winding angle after n steps is typically of order logn, and that the angle normalized

by 2/logn converges in distribution to a standard hyperbolic secant distribution. The methods used all

rely on coupling to Brownian motion, for which the winding angle problem is easily studied with the

help of its conformal properties. Although quite generally applicable in the asymptotic regime, these

techniques tell us little about the underlying combinatorics.

In this paper we initiate the combinatorial study of lattice walks with control on the winding angle, by

looking at various classes of simple (rectilinear or diagonal) walks onZ2. As we will see, the combinatorial

tools described in this paper are strong enough to bridge the gap between the combinatorial study of

walks in cones and the asymptotic winding of random walks. Before describing the main results of the

paper, we should start with some de�nitions.

We let W be the set of simple diagonal walks w in Z2 of length |w | ≥ 0 avoiding the origin, i.e. w

is a sequence (wi ) |w |i=0 in Z2 \ {(0, 0)} with wi −wi−1 ∈ {(1, 1), (1,−1), (−1,−1), (−1, 1)} for 1 ≤ i ≤ |w |.
We de�ne the winding angle θwi ∈ R ofw up to time i to be the di�erence in angular coordinates of wi

and w0 including a contribution 2π (resp. −2π ) for each full counterclockwise (resp. clockwise) turn of

w around the origin up to time i . Equivalently, (θwi )
|w |
i=0 is the unique sequence in R such that θw

0
= 0

and θwi − θwi−1 is the (counterclockwise) angle between the segments ((0, 0),wi−1) and ((0, 0),wi ) for

1 ≤ i ≤ |w |. The (full) winding angle of w is then θw B θw|w | . See Figure 1 for an example.

Main result The Dirichlet space D is the Hilbert space of complex analytic functions f on the unit

disc D = {z ∈ C : |z | < 1} that vanish at 0 and have �nite norm ‖ f ‖2
D

with respect to the Dirichlet inner

product

〈f ,д〉D =
∫
D
f ′(z)д′(z)dA(z) =

∞∑
n=1

n [zn]f (z) [zn]д(z), dA(x + iy) B 1

π
dxdy.

See [2] for a review of its properties. We denote by (en)∞n=1 the standard orthogonal basis de�ned by

en(x) B xn , which is unnormalized since ‖en ‖2D = n.

For k ∈ (0, 1) we let vk : C \ {z ∈ R : z2 ≥ k} → C be the analytic function de�ned by the elliptic

integral

vk (z) B
1

4K(k)

∫ z

0

dx√
(k − x2)(1 − kx2)

(1)

along the simplest path from 0 to z, where

K(k) =
∫ √

k

0

dx√
(k − x2)(1 − kx2)

=

∫
1

0

dy√
(1 − y2)(1 − k2y2)

2



is the complete elliptic integral of the �rst kind with elliptic modulus k . For �xed k we use the

conventional notation

k ′ =
√
1 − k2 and k1 =

1 − k ′
1 + k ′

for the complimentary modulus k ′ and the descending Landen transformation k1 of k . Using these we

introduce a family (fm)∞m=1 of analytic functions by setting (notice the k1 in vk1(z)!)

fm(z) B cos(2πm(vk1(z) + 1/4)) − cos(πm/2). (2)

As we will see (in Proposition 2) this family forms yet another orthogonal basis of D, with

‖ fm ‖2D =
m(q−mk − qmk )

4

, where qk B e−πK (k
′)/K (k )

is the (elliptic) nome of modulus k . The main technical result of this paper is the following.

(a) W
(3π /2)
4,2 (b) W

(π ,(0,3π /2))
3,1 (c) W

(π /2,(−π /4,π ))
4,4

Figure 2: Examples of walks enumerated by Theorem 1.

Theorem 1. For l ,p ≥ 1 and α ∈ π
2
Z, let W(α )l,p be the set of (possibly empty) simple diagonal walksw on

Z2 \ {(0, 0)} that start at (p, 0), end on one of the axes at distance l from the origin, and have full winding
angle θw = α .

(i) LetW (α )l,p (t) B
∑
w ∈W(α )l,p

t |w | be the generating function ofW(α )l,p . For k = 4t ∈ (0, 1) �xed, there exists

a compact self-adjoint operator Y(α )k on D with eigenvectors (fm)∞m=1 such that

W (α )l,p (t) = 〈el ,Y
(α )
k ep〉D, Y(α )k fm =

2K(k)
π

1

m
qm |α |/πk fm . (3)

(ii) Let W(α, I )l,p ⊂ W
(α )
l,p be the subset of the aforementioned walks that have intermediate winding angles

in I ⊂ R, i.e. θwi ∈ I for i = 1, 2, . . . , |w | − 1, and letW (α, I )l,p (t) be the corresponding generating
function. If I = (β−, β+) with β± ∈ π

2
Z ∪ {±∞}, α ∈ [β−, β+] ∩ π

2
Z and α , 0 or α , β±, then the

generating functionW (α, I )l,p (t) is related to a matrix element of a compact self-adjoint operator on D

with the same eigenvectors (fm)∞m=1, as described in the table below.

α β− β+ W (α, I )l,p (t) Eigenvalues

> 0 0 α
1

lp
〈el ,A(α )k ep〉 A(α )k fm =

π
2K (k )

m
q−mα /π
k −qmα /π

k

fm

> 0 < 0 α
1

l
〈el , J(α,β−)k ep〉 J(α,β−)k fm =

q2mβ−/π
k −1

q2mβ−/π
k −q2mα /π

k

qmα/πk fm

≥ 0 < 0 > α 〈el ,B(α,β−,β+)k ep〉 B(α,β−,β+)k fm =
2K (k )
π

q2mβ−/π
k −1
mqmα /π

k

q2mα /π
k −q2mβ+/π

k

q2mβ−/π
k −q2mβ+/π

k

fm

3



The remaining cases follow from the symmetries (α , β−, β+) → (−α ,−β+,−β−) and (α , β−, β+) →
(α ,α − β+,α − β−), and the cases β± = ±∞ agree with the corresponding limits β± → ±∞ (using
that qk ∈ (0, 1)).

(iii) The statement of (ii) remains valid for β± ∈ π
4
Z ∪ {±∞} and α ∈ [β−, β+] ∩ π

2
Z as long as l and p

are even.

For example, this theorem states that the set of simple diagonal walks from (3, 0) to (−3, 0) that have

winding angle π around the origin has generating function

W (π )
3,3 (t) =

〈
e3,Y

(π )
k e3

〉
D
=

2K(k)
π

∞∑
m=1

1

m
qmk
〈e3, fm〉2D
‖ fm ‖2D

=
2K(k)
π

∞∑
m=1

4

m2

qmk
q−mk − qmk

(
3[z3]fm(z)

)
2

= 10 t6 + 280 t8 + 5661 t10 + · · ·

Application: Excursions Theorem 1 can be used to count many specialized classes of walks involving

winding angles. The �rst quite natural counting problem we address is that of the (diagonal) excursions
E from the origin, i.e. E is the set of (non-empty) simple diagonal walks starting and ending at the

origin with no intermediate returns (Figure 3a). Actually, in this case we may equally well consider

simple rectilinear walks on Z2, thanks to the obvious linear mapping between the two types of walks

(Figure 3b). Even though walksw ∈ E do not completely avoid the origin, we may still naturally assign a

winding angle sequence to them by imposing that the �rst and last step do not contribute to the winding

angle, i.e. θw
1
= θw

0
= 0 and θw = θw|w | = θ

w
|w |−1. In Proposition 4 we prove that the generating function

for excursions with winding angle α ∈ π
2
Z is given (for k = 4t ∈ (0, 1) �xed) by

F (α )(t) B
∑
w ∈E

t |w |1{θw=α } =
2π

K(k)

∞∑
n=1

(1 − qnk )
2

1 − q4nk
q
n( 2π |α |+1)
k .

Similarly to Theorem 1(ii) one may further restrict the full winding angle sequence ofw to lie in an open

interval I = (β−, β+) with β± ∈ π
4
Z such that 0 ∈ I and α ∈ I ∩ π

2
Z. In this case it is more natural to

also �x the starting direction, say w1 = (1, 1), and we introduce the corresponding generating function

F (α, I )(t), such that F (α,R)(t) = F (α )(t)/4. We prove in Theorem 2 that the generating function F (α, I )(t) is

given by the �nite sum

F (α, I )(t) = π

8δ

∑
σ ∈(0,δ )∩ π

2
Z

(
cos

(
4σα

δ

)
− cos

(
4σ (2β+ − α)

δ

))
F

(
t ,
4σ

δ

)
, δ B 2(β+ − β−), (4)

(a) Diagonal excursion. (b) Rectilinear excursion.

Figure 3: Example of an excursion in diagonal and rectilinear form together with its winding

angle.
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where F (t ,b) B ∑
α ∈ π

2
Z F
(α )(t) eibα is the “characteristic function” associated to F (α )(t). For non-integer

values of b (see Proposition 4 for the full expression) the latter can be expressed in closed form as

F (t ,b) = 1

cos

(
πb
2

) 1 −
π tan

(
πb
4

)
2K(k)

θ ′
1

(
πb
4
,
√
qk

)
θ1

(
πb
4
,
√
qk

)  , (b ∈ R \ Z)

where θ1(z,q) is the �rst Jacobi theta function (see (21) for a de�nition). In Proposition 1 we prove that

F (t ,b) is an algebraic power series in t for any b ∈ Q \ Z, but not for b ∈ Z. By looking at the terms

appearing in (4) we may thus deduce whether F (α, I )(t) is algebraic too.

As a special case we look at the excursions that stay in the angular interval (−π/4,π/2). Around

2000 Ira Gessel conjectured that the generating function for such excursions is given (in our notation)

by

F (0,(−π /4,π /2))(t) =
∞∑
n=0

t2n+2 16n
(5/6)n(1/2)n
(2)n(5/3)n

= t2 + 2t4 + 11t6 + 85t8 + · · · ,

where (a)n = Γ(a+n)/Γ(a) is the descending Pochhammer symbol (see also Sloane’s Online Encyclopedia
of Integer sequences (OEIS) sequence A135404). The �rst computer-aided proof of this conjecture appeared

in [25], and it was followed by several “human” proofs in [9, 11, 4]. Here we provide an alternative proof

using Theorem 2. Indeed, we have explicitly

F (0,(−π /4,π /2))(t) = 1

4

F

(
t ,
4

3

)
=

1

2

[ √
3π

2K(4t)
θ ′
1

( π
3
,
√
qk

)
θ1

( π
3
,
√
qk

) − 1] .
According to our discussion above this is an algebraic power series in t , a fact about F (0,(−π /4,π /2))(t) that

was �rst observed in [8]. In Corollary 3 we deduce an explicit algebraic equation for F (0,(−π /4,π /2))(t),
and check that it agrees with a known equation for

∑∞
n=0 t

2n+2
16

n (5/6)n (1/2)n
(2)n (5/3)n .

Application: unconstrained random walks Let (Wi )i≥0 be a simple random walk on Z2 started at

the origin. A natural question is to ask for the (approximate) distribution of the winding angle θ j of the

random walk around some point (x ,y) ∈ R2 up to time j. As mentioned before, this question has been

addressed successfully in the literature in the limit j →∞ using coupling to Brownian motion. With

the help of Theorem 1 we may complement these results by deriving various exact statistics at �nite j.

A particularly appealing statistic is obtained by formulating the problem in the following precise

way. We take (x ,y) = (−1/2,−1/2), and we lower the resolution at which we measure the winding angle

by rounding it to the nearest integer or half-integer multiple of π . To prevent con�icts from occurring

in the rounding process it is natural to not look at the winding angle θ j after the j’th step, but at the

winding angle θ j−1/2 half-way the j’th step (or equivalently we may set θ j−1/2 B
1

2
(θ j−1 + θ j )). Finally,

we replace the �xed time j by a random geometric time ζk with parameter k ∈ (0, 1), distributed as

j 7→ k j (1 − k) on Z≥0. To be precise, we consider the well-de�ned random variables {θζk+1/2}πZ+ π2
(see Figure 4) and {θζk−1/2}πZ, where {·}A means rounding to the nearest element of A ⊂ R and by

convention we set θ−1/2 = 0.

We prove that the characteristic functions of these variables are exactly given by the Jacobi elliptic

functions cn(·,k) and dn(·,k) of modulus k (with argument normalized for correct periodicity),

E exp
(
ib{θζk+1/2}πZ+ π2

)
= cn(K(k)b,k), E exp

(
ib{θζk−1/2}πZ

)
= dn(K(k)b,k).

Since cn(y, 1) = dn(y, 1) = sech(y) = Eeiyη is the characteristic function of a random variable η with

the standard hyperbolic secant distribution with density
1

2
sech(πx/2)dx , we may directly conclude the

5
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(a) {θ j−1/2}πZ (b) {θ j−1/2}πZ+ π
2

Figure 4: Example of an unconstrained random walk. The value of the rounded winding angle

{θ j−1/2}πZ or {θ j−1/2}πZ+ π
2

around (− 1

2
,− 1

2
) depends on which half plane of the universal cover

of R2 \ {(− 1

2
,− 1

2
)} harbors the j’th step of the walk, as illustrated by the color shading.

convergence in distribution as k → 1 of the winding angle at geometric time,

θζk+1/2

K(k)
(d)

−−−→
k→1

η, (K(k) ∼ − log
√
1 − k2 as k → 1).

A more delicate singularity analysis yields the same distributional limit for 2θ j+1/2/log(j) as j →∞ (in

accordance with the probabilistic results of [18, 19, 28, 29]), but this is beyond the scope of this paper.

Application: loops The last application we discuss utilizes the fact that the eigenvalues of the oper-

ators in Theorem 1 have much simpler expressions than the components

〈
ep , fm

〉
D

of the eigenvectors.

It is therefore worthwhile to seek combinatorial interpretations of traces of (combinations of) operators,

the values of which only depend on the eigenvalues. When writing out the trace in terms of the basis

(ep )∞p=1 it is clear that such an interpretation must involve walks that start and end at arbitrary but equal

distance from the origin. If the full winding angle is taken to be a multiple of 2π then such a walk forms

a loop, i.e. it starts and ends at the same point.

A natural combinatorial set-up is described in Section 5. There we consider the set Ln of rooted loops
of index n, n ∈ Z, which are simple diagonal walks avoiding the origin that start and end at an arbitrary

but equal point in Z2 and have winding angle 2πn around the origin. The set Ln = Leven

n ∪Lodd

n naturally

partitions into loops that visit only sites of even respectively odd parity ((x ,y) ∈ Z2 with x + y even

respectively odd). Theorem 4 states that the corresponding generating functions for n > 0 are given by

Ln(t) B
∑
w ∈Ln

t |w |

|w | =
1

n
tr J(2πn,−∞)k =

1

n

q2nk
1 − q2nk

, Lodd

n (t) =
1

n

q2nk
1 − q4nk

, Leven

n (t) = 1

n

q4nk
1 − q4nk

.

A simple probabilistic consequence is the following. Let (Wi )2li=0 be a simple random walk on Z2

started at the origin and conditioned to return after 2l steps. For each point z ∈ R2 we let the index Iz
be the signed number of times (Wi )2li=0 winds around z in counterclockwise direction, i.e. 2π Iz is the

winding angle of (Wi )2li=0 around z. If z lies on the trajectory of (Wi )2li=0, then we set Iz = ∞. We let the
clusters Cn of index n be the set of connected components of {z ∈ R2 : Iz = n}, and for c ∈ Cn we let |c |

6



(a) Lodd

2
(b) Leven

−1

Figure 5: Two examples of rooted loops with di�erent index and parity.

and |∂c | respectively be the area and boundary length of component c . Then for n > 0,

E

[ ∑
c ∈Cn
|c |

]
=

4
2l(

2l
l

)2 2ln [k2l ] q2nk
1 − q4nk

∼ l

2πn2
,

E

[ ∑
c ∈Cn
(|∂c | − 2)

]
=

4
2l(

2l
l

)2 4ln [k2l ] q2nk
1 + q2nk

∼ 2π 3l

log
2 l
.

The �rst result should be compared to the analogous result for Brownian motion: Garban and Ferreras

proved in [24] using Yor’s work [30] that the expected area of the set of points with index n with respect

to a unit time Brownian bridge in R2 is equal to 1/(2πn2). Perhaps surprisingly, we �nd that the expected

boundary length all the components of index n (minus twice the expected number of such components)

grows asymptotically at a rate that is independent of n, contrary to the total area.

Open question 1. Does E
[∑

c ∈C0 �nite |c |
]
, i.e. the total area of the �nite clusters of index 0, have a

similarly explicit expression? Based on the results of [24] we expect it to be asymptotic to πl/30 as l →∞.

Finally we mention one more potential application of the enumeration of loops in Theorem 4 in the

context of random walk loop soups [27], which are certain Poisson processes of loops on Z2. A natural

Figure 6: A simple walk on Z2 together with its clusters of index 1 (light blue) and 2 (dark blue).

The largest cluster c has area |c | = 9 and boundary length |∂c | = 20 (notice that both sides of the

“slit” contribute to the length).

7



quantity to consider in such a system is the winding �eld which roughly assigns to any point z ∈ R2
the total index of all the loops in the process [21, 20]. Theorem 4 may be used to compute explicit

expectation values (one-point functions of the corresponding vertex operators to be precise) in the

massive version of the loop soups. We will pursue this direction elsewhere.

Discussion The connection between the enumeration of walks and the explicitly diagonalizable

operators on Dirichlet space may seem a bit magical to the reader. So perhaps some comments are in

order on how we arrived at this result, which originates in the combinatorial study of planar maps.

A planar map is a multigraph (a graph with multiple edges and loops allowed) that is properly

embedded in the 2-sphere (edges are only allowed to meet at their extremities), viewed up to orientation-

preserving homeomorphisms of the sphere. The connected components of the complement of a planar

map are called the faces, which have a degree equal to the number of bounding edges. There exists a

relatively simple multivariate generating function for bipartite planar maps, i.e. maps with all faces of

even degree, that have two distinguished faces of degree p and l and a �xed number of faces of each

degree (see e.g. [22]). The surprising fact, for which we will give a combinatorial explanation elsewhere

using a peeling exploration [16, 17], is that this generating function has a form that is very similar to

that of the generating functionW (π ,(−π ,π )l,p (t) of diagonal walks from (p, 0) to (−l , 0) that avoid the slit

{(x , 0) : x ≤ 0} until the end.

If one further decorates the planar maps by a rigid O(n) loop model [7], then the combinatorial

relation extends to one between walks of �xed winding angle W
(α )
l,p with α ∈ πZ and planar maps with

two distinguished faces and a certain collections of non-intersection loops separating the two faces. The

combinatorics of the latter has been studied in considerable detail in [7, 6, 5], which has inspired our

treatment of the simple walks on Z2 in this paper. Further details on the connection and an extension

to more general lattice walks with small steps (i.e. steps in {−1, 0, 1}2) will be provided in forthcoming

work.
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2 Winding angle of walks starting and ending on an axis

Our strategy towards proving Theorem 1 will be to �rst prove part (ii) for three special cases (see Figure

7),

Jl,p B W
( π
2
,(− π

2
, π
2
))

l,p , Bl,p B W
(0,(− π

2
, π
2
))

l,p , Al,p B W
( π
2
,(0, π

2
))

l,p .

We de�ne three linear operators Jk , Bk and Ak on D by specifying their matrix elements with respect to

the standard basis (ei )i≥1 in terms of the corresponding generating functions Jl,p (t), Bl,p (t) and Al,p (t)
(with k = 4t ) as

1

l

〈
el , Jkep

〉
D
= Jl,p (t),

〈
el ,Bkep

〉
D
= Bl,p (t),

1

lp

〈
el ,Akep

〉
D
= Al,p (t).

The main reason we de�ne the operators in this way is the following.

Proposition 1. The linear operators Jk , Bk , Ak on D are bounded and satisfy Jk = AkBk .

8



(a) Jl,p , Jl,p (t) = 1

l

〈
el , Jkep

〉
D

(b) Bl,p , Bl,p (t) =
〈
el ,Bkep

〉
D

(c) Al,p , Al,p (t) = 1

lp

〈
el ,Akep

〉
D

Figure 7: Examples of walks contributing to the three types of building blocks.

Proof. It is not hard to see that (for �xed k = 4t ∈ (0, 1)) Al,p (t) falls o� exponentially in l + p, and

therefore Ak has �nite Hilbert-Schmidt norm

∞∑
p=1

‖Akep ‖2D
‖ep ‖2D

=

∞∑
p,l=1

p l A2

l,p (t) < ∞.

In particular, Ak is bounded (and even compact).

On the other hand, the matrix elements of Bk with respect to the orthonormal basis (ep/
√
p)p≥1 are

given by Bl,p (t)/
√
lp ≤ Bl,p (t) ≤ b |l−p | for some sequence (bn)n≥0 that falls o� exponentially. Hence,

the operator norm of Bk is bounded by that of the symmetric Toeplitz operator associated to (bn)n≥0,
which by classical results is �nite since (bn)n≥0 are the Fourier coe�cients of a continuous function.

For l ,p,m ≥ 1, composition of walks determines a bijection between pairs of walks in Al,m ×Bm,p

and walks in Jl,p for which the last intersection with the horizontal axis occurs at (m, 0). Hence

1

l

〈
el , Jkep

〉
D
= Jl,p (t) =

∞∑
m=1

Al,m(t)Bm,p (t) =
∞∑

m=1

1

lm
〈el ,Akem〉D

〈
emBk , ep

〉
D
=

1

l

〈
el ,AkBkep

〉
D
,

implying that Jk = AkBk , which is therefore also bounded. �

It is clear from the de�nitions that Bk and Jk are self-adjoint, and we will soon see (in Lemma 1)

that the same is true for Jk . The relation Jk = AkBk then implies that all three operators commute.

Provided the operators are compact (and we have already seen this to be the case for Ak ), they can be

simultaneously (unitarily) diagonalized.

In Section 2.1 we will diagonalize Jk , and then we will check in Section 2.2 that Bk and Ak possess

the same set of eigenvectors, as expected. Finally, in Section 2.3 we will prove Theorem 1 by taking

suitable compositions of the operators Jk , Bk . and Ak .

2.1 The operator Jk

We wish to enumerate the walks w ∈ Jl,p , p, l ≥ 1, that start at (p, 0) and end at (0, l) while maintaining

strictly positive �rst coordinate until the end. By looking at both coordinates of the walks separately,

we easily see that these walks are in bijection with pairs of simple walks of equal length on Z, the �rst

of which starts at p and ends at 0 while staying positive until the end, while the second starts at 0 and

ends at l without further restrictions. For �xed length n, such walks only exist if both n −p and n − l are

non-negative even integers, in which case the Ballot theorem tells us that the former walks are counted

9



by
p
n

( n
(n+p)/2

)
and the latter by

( n
(n+l )/2

)
. Therefore the generating function Jl,p (t) is given explicitly by

Jl,p (t) =
∞∑
n=1

p

n

(
n

(n + l)/2

) (
n

(n + p)/2

)
1{n−p and n−l non-negative and even}t

n . (5)

It is non-trivial only when p + l is even, in which case it has radius of convergence equal to 1/4.

For �xed k = 4t ∈ (0, 1) we denote byψk : D→ C the analytic function given by

ψk (x) =
1 −
√
1 − kx2
√
k x

,

which maps the unit disk D biholomorphically onto a strict subset ψk (D) ⊂ D. It induces a linear

operator Rk on the Dirichlet space D of analytic functions f on D that vanish at the origin by setting

Rk f B f ◦ψk .

Lemma 1. The linear operator Rk is bounded and Jk = R†kRk . In particular, Jk is self-adjoint.

Proof. Since the Dirichlet norm is preserved under conformal mapping, we have

‖Rk f ‖2D = ‖ f ◦ψk ‖
2

D =

∫
ψk (D)

| f ′(z)|2dA(z) ≤ ‖ f ‖2D,

implying that Rk is bounded.

By the Lagrange inversion theorem one easily �nds that for n − p non-negative and even one has

[xn]ψk (x)p =
(
k

4

)n/2
[zn]

(
1 −
√
1 − 4z2
2z

)p
=

(
k

4

)n/2 p
n
[un−p ]

(
1 + u2

)n
=

(
k

4

)n/2 p
n

(
n

(n + p)/2

)
. (6)

Therefore〈
el ,R

†
kRkep

〉
D
=

〈
Rkel ,Rkep

〉
D
=

∞∑
n=1

n [xn]ψk (x)l [xn]ψk (x)p

=

∞∑
n=1

(
k

4

)n
n
l

n

(
n

(n + l)/2

)
p

n

(
n

(n + p)/2

)
1{n−p and n−l non-negative and even}

= l Jl,p (t) =
〈
el , Jkep

〉
D
,

which �nishes the proof. �

In order to diagonalize Jk it su�ces to �nd an orthogonal basis of D consisting of analytic functions

that are also orthogonal with respect to the Dirichlet inner-product onψk (D),

〈f ,д〉D(ψk (D)) B
∫
ψk (D)

f ′(z)д′(z) dA(z).

To this end we seek an injective holomorphic mapping that takes bothD andψk (D) to su�ciently simple

domains. As we will see the elliptic integral vk1(z) introduced in (1) does this job. First we notice that

vk (z) can be expressed in terms of the inverse function arcsn(·,k) (in a suitable neighbourhood of the

origin) of the Jacobi elliptic function sn(·,k) with modulus k ,

vk (z) B
1

4K(k)

∫ z

0

dx√
(k − x2)(1 − kx2)

=
arcsn

(
z√
k
,k

)
4K(k) . (7)

As depicted in Figure 8 and proved in the next lemma, after the removal of two slits vk1 maps both D

andψk (D) to rectangles, with the same width but di�erent height.

10



Figure 8: The analytic function vk1 maps the disk with two slits onto a rectangle of width
1

2
and

height 2Tk = K(k ′)/(2K(k)). The shaded domains representψk (D) and its image under vk1 .

Lemma 2. vk1 maps D \ {z ∈ R : z2 ≥ k1}, respectivelyψk (D) \ {z ∈ R : z2 ≥ k1}, biholomorphically onto
the open rectangle Hk1 B (−1/4, 1/4) + i(−Tk1/2,Tk1/2), respectively Hk B (−1/4, 1/4) + i(−Tk/2,Tk/2),
where Tk := K(k ′)/(4K(k)) satis�es Tk1 = 2Tk .

Proof. It follows from elementary properties of the Jacobi elliptic function that sn(·,k1)maps (−K(k1),K(k1))+
i(−K(k ′

1
)/2,K(k1)/2) biholomorphically onto the disc of radius 1/

√
k1 with double slits at {z ∈ R : z2 > 1}.

This shows that vk1 indeed maps D \ {z ∈ R : z2 ≥ k1} to Hk1 .

The descending Landen transformation relates the Jacobi elliptic functions sn(·,k) and sn(·,k1)
through (see e.g. [1, 16.12.2])

sn(u,k) = (1 + k1) sn(u/(1 + k1),k1)
1 + k1 sn2(u/(1 + k1),k1)

.

Inverting the relation yields√
k1 sn(u/(1 + k1),k1) =

1 −
√
1 − k2 sn2(u,k)
k sn(u,k) = ψk (

√
k sn(u,k)).

Setting u = 4K(k)vk (x) and using that K(k) = (1 + k1)K(k1) we observe that vk1(ψk (x)) = vk (x) for

x ∈ D \ {z ∈ R : z2 ≥ k}. Hence, the image of ψk (D) \ {z ∈ R : z2 ≥ k1} agrees with that of

D \ {z ∈ R : z2 ≥ k1} after substituting k1 → k . �

The presence of slits in the domain of vk1 indicates that for any analytic function f on D, f ◦v−1k1
can be continued to an analytic function д on the in�nite strip R + i[−Tk ,Tk ], which is 1-periodic and

satis�es д(1/2 −v) = д(v). In fact, vk1 induces an isomorphism between D and the Hilbert space Hk of

such analytic functions д that vanish at 0 with norm

‖д‖2Hk
=

∫
Hk

1

|д′(v)|2dA(v).

A simple Fourier series expansion now su�ces to diagonalize Jk .

Proposition 2. The operator Jk onD is compact and the family (fm)∞m=1 de�ned in (2) forms an orthogonal
basis of D satisfying

Jk fm =
1

qm/2k + q−m/2k

fm , ‖ fm ‖2D =
m

4

(
q−mk − qmk

)
.

11



Figure 9: The re�ection principle in the vertical axis yields a bijection between walks from (p, 0)
to (−l , 0) and walks (p, 0) to (l , 0) that visit the vertical axis at least once.

Proof. Clearly (cos(2πm(· + 1/4)) − cos(πm/2))∞m=1 forms a basis of Hk , which is orthogonal since an

explicitly computation shows that

〈cos(2πm(· + 1/4)) − cos(πm/2), cos(2πn(· + 1/4)) − cos(πn/2)〉Hk =
1

2

m sinh(2mπTk1)1{m=n } .

But then we also have

〈fm , fn〉D =
1

2

m sinh(2mπTk1)1{m=n } =
m(q−mk − qmk )

4

1{m=n }, (8)

meaning that (fm)∞m=1 forms an orthogonal basis of D with norm ‖ fm ‖D as claimed. By Lemma 2

〈fm , fn〉D(ψk (D)) takes the same form except for the replacement k1 → k , i.e.

〈fm , Jk fn〉D = 〈fm , fn〉D(ψk (D)) =
1

2

m sinh(2mπTk )1{m=n } .

It follows that fm is an eigenvector of Jk with eigenvalue

〈fm , Jk fn〉D
〈fm , fn〉D

=
sinh(2mπTk )
sinh(4mπTk )

=
1

2 cosh(2mπTk )
=

1

qm/2k + q−m/2k

,

where we used that Tk1 = 2Tk . In particular, Jk is a compact operator, since 1/(qm/2k + qm/2k ) → 0 as

m →∞. �

Notice that this veri�es Theorem 1(ii) for α = π/2 and I = (−π/2,π/2).

2.2 The operators Bk and Ak

Recall that Bl,p (t) =
〈
el ,Bkep

〉
D

is the generating function for the set Bl,p of simple diagonal walks

from (p, 0) to (l , 0) that maintain strictly positive �rst coordinate. A simple re�ection principle (see

Figure 9) teaches us that Bl,p (t) is given by

Bl,p (t) = Bl−p (t) − B−l−p (t), (9)

where Bm(t), m ∈ Z, is the generating function of simple diagonal walks from (0, 0) to (m, 0) without

further restrictions.

Lemma 3. For �xed t ∈ (0, 1/4), Bm(t) can be expressed as a contour integral as

Bm(t) =
1

2πi

∫
γ

dz

zm+1
√
1 − 4t2(z + 1/z)2

, (10)

where γ traces the unit circle in counterclockwise direction.
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Proof. The contribution of walks from (0, 0) to (m, 0) of length 2n andm even is(
2n

n

) (
2n

n +m/2

)
t2n =

1

2πi

∫
γ

dz

zm+1

(
2n

n

)
(z + 1/z)2nt2n .

The result then follows from summing over n ≥ 0 and relying on absolute convergence to interchange

the summation and integral. �

Based on the similarity between the integrand of (10) and the one in the de�nition (1) of vk1 , we �nd

the following useful representation of Bk .

Lemma 4. If f ,д ∈ D are analytic in a neighbourhood of the closed unit disk, then

〈f ,Bkд〉D =
2K(k)
π

∫
γ ′
(f (z) − f (z−1))(д(z) − д(z−1))v ′k1(z)dz, (11)

where γ ′ traces the upper half of the unit circle starting at 1 and ending at −1.

Proof. From the de�nition (1) we see that the integrand of (11) is continuous and bounded on the upper-

half circle, and therefore the right-hand side of (11) converges absolutely. Hence, it su�ces to check the

identity for f = el and д = ep , p, l ≥ 1. Combining (9) and Lemma 3 we �nd

〈el ,Bep〉D = Bl−p (t) − B−l−p (t) =
1

2

(
Bl−p (t) − B−l−p (t) + Bp−l (t) − Bl+p (t)

)
=
−1
4πi

∫
γ

(zl − z−l )(zp − z−p )dz
z
√
1 − 4t2(z + 1/z)2

=
−1
2πi

∫
γ ′

(zl − z−l )(zp − z−p )dz
z
√
1 − 4t2(z + 1/z)2

, (12)

where in the last equality we used that both sides vanish for p + l odd, while for p + l even the upper

and lower half circles contribute equally. Note that

(k1 − z2)(1 − k1z2) = −z2((1 + k1)2 − k1(z + 1/z)2) = −z2(1 + k1)2
(
1 − k2

4

(z + 1/z)2
)
.

Hence, for z on the upper-half circle (1) implies that

v ′k1(z) =
1

4K(k1)
1√

(k1 − z2)(1 − k1z2)
=

i

4K(k)
1

z
√
1 − k2

4
(z + 1/z)2

,

where we used that (1 + k1)K(k1) = K(k). Combining with (12) we indeed reproduce the right-hand side

of (11). �

With the contour integral representation in hand it is now straightforward to evaluate Bk (and Ak

subsequently) with respect to the basis (fm)∞m=1.

Proposition 3. The linear operators Bk and Ak are compact and have the same eigenvectors (fm)∞m=1 as
Jk satisfying

Bk fm =
2K(k)
π

1

m

1 − qmk
1 + qmk

fm ,

Ak fm =
π

2K(k)
m

q−m/2k − qm/2k

fm .
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Proof. The functions fm(z) are seen to be analytic for |z | < 1/
√
k1, and therefore we may apply Lemma

4 to obtain

〈fn ,Bk fm〉D =
2K(k)
π

∫
γ ′
(fn(z) − fn(z−1))(fm(z) − fm(z−1))v ′k1(z)dz

= −2K(k)
π

∫
1/2

0

(cos(2πn(v + iTk )) − cos(2πn(v − iTk )))

× (cos(2πm(v + iTk )) − cos(2πm(v − iTk )))dv

=
8K(k)
π

sinh(2πnTk ) sinh(2πmTk )
∫

1/2

0

sin(2πnv) sin(2πmv)dv

=
2K(k)
π

sinh
2(2πmTk )1{m=n } .

Together with (8) we conclude that fm is an eigenmode of Bk with eigenvalue

〈fm ,Bk fm〉D
〈fm , fm〉D

=
4K(k)
π

sinh
2(2mπTk )

m sinh(4mπTk )
=

2K(k)
π

tanh(2mπTk )
m

=
2K(k)
π

1

m

1 − qmk
1 + qmk

.

Since Jk = AkBk is injective, we �nd using Proposition 2 that

Ak fm =
π

2K(k)m
1 + qmk
1 − qmk

1

qm/2k + q−m/2k

fm =
π

2K(k)
m

q−m/2k − qm/2k

fm .

The eigenvalues of Bk and Ak both approach 0 asm →∞, implying compactness. �

2.3 Proof of Theorem 1

We start with part (i) with α ∈ π
2
Z. Given a walk w ∈ W(α )l,p , let (si )Ni=1 be the sequence of times at which

w alternates between the axes, i.e. s0 = 0 and for each j ≥ 0 we set sj+1 = inf{s > sj : |θws − θwsj | = π/2}
provided it exists (otherwise sj = sN is the last entry in the sequence). Let (α j )Nj=0 and (lj )Nj=0 be the

sequences of winding angles and distances to the origin de�ned by α j = θ
w
sj respectively lj = |wsj | for

0 ≤ j ≤ N . It is now easy to see that for 0 ≤ j < N the part of the walk between time sj and sj+1 is (up

to a unique rotation around the origin and/or re�ection in the horizontal axis) of the form of a walk

w (j) ∈ Jlj+1,lj . Similarly, the last part of the walk between time sN and |w | is (up to rotation) of the form

of a walk w (N ) ∈ Bl,lN . See Figure 10 for an example.

In fact, this construction is seen to yield a bijection between W
(α )
l,p and the set of tuples(

N , (lj )Nj=0, (α j )Nj=0, (w (j))Nj=0
)

where N ≥ 0, l0 = p, lj ≥ 1, (α j )Nj=0 is a simple walk on
π
2
Z from α0 = 0 to αN = α , w (j) ∈ Jlj+1,lj for

0 ≤ j < N and w (N ) ∈ Bl,lN . If we denote by

a(α )N =

(
N

N− 2|α |
π

2

)
1{N− 2|α |

π even and non-negative}

the number of simple walks on
π
2
Z from 0 to α of length N ≥ 0, then we may identify the generating

14



(a) (b) (c)

Figure 10: (a) A walk w ∈ W
(−π /2)
5,3 ; (b) its decomposition into w (0) ∈ J1,3, w

(1),w (2) ∈ J1,1,

w (3) ∈ B5,1; (c) its winding angle sequence (θwi ).

function of W
(α )
l,p as

W (α )l,p (t) =
∞∑

N=0

a(α )N

∞∑
l1, ...,lN =1

Bl,lN (t)
N−1∏
i=0

Jli+1,li (t)

=

∞∑
N=0

a(α )N

∞∑
l1, ...,lN =1

〈
el ,BkelN

〉
D

N−1∏
i=0

1

li+1

〈
eli+1 , Jkeli

〉
D

=

∞∑
N=0

a(α )N

〈
el ,Bk JNk ep

〉
D
.

Since the eigenvalues of Jk are all strictly smaller than 1/2 and a(α )N ≤ 2
N

,

∑∞
N=0 a

(α )
N Bk JNk converges to

a compact self-adjoint operator Y(α )k satisfying

W (α )l,p (t) =
〈
el ,Y

(α )
k ep

〉
D
. (13)

With a little help of (6), we �nd the (formal) generating function

a(α )(x) =
∞∑

N=0

a(α )N xN =
1

√
1 − 4x2

(
1 −
√
1 − 4x2
2x

)
2 |α |/π

.

Then one may deduce after some simpli�cation that

Y(α )k fm = Bk a(α ) (Jk ) fm =
2K(k)
π

1

m

1 − qmk
1 + qmk

a(α )
(

1

qm/2k + q−m/2k

)
fm

=
2K(k)
π

1

m
q |α |m/πk fm ,

in agreement with part (i) of Theorem 1.

We could easily extend this result to the case I = (β−, β+) with β± ∈ π
2
Z ∪ {±∞} such that 0 ∈ I

and α ∈ I ∩ π
2
Z, by replacing a(α )(x) by the generating function of simple walks on

π
2
Z con�ned to an

interval. Instead, we choose to discuss a re�ection principle at the level of the simple diagonal walks,

which allows us to directly generalize to the case of β± ∈ π
4
Z ∪ {±∞} of part (iii).
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(a) (b)

Figure 11: Example with α = 0, I = (−π/4,π/2). (a) A walk w ∈ W(−π /2)
4,6 is depicted in black, and

its re�ection w ′ ∈ W(0)
4,6 in gray. (b) The corresponding winding angle sequences (θwi ) and (θw ′i ).

Lemma 5. Suppose l and p are both odd and β± ∈ π
2
Z, or l and p are both even and β± ∈ π

4
Z, such that

0 ∈ I . If in addition α ∈ π
2
Z ∩ I , then the generating function forW(α, I )l,p is given by

W (α, I )l,p (t) =
∞∑

n=−∞

(
W (α+nδ )l,p (t) −W (2β+−α+nδ )l,p (t)

)
, δ B 2(β+ − β−).

Proof. Consider any walk w ∈ ⋃∞
n=−∞W

(2β+−α+nδ )
l,p and let s = inf{j ≥ 0 : θwj < I } be the �rst time w

leaves I , which is well-de�ned since θw < I . It is not hard to see that under the stated conditions on

l ,p, β± the winding angle sequence (θwi )
|w |
i=0 cannot cross β± without visiting β±, and therefore θws = β±

and ws lies on an axis or a diagonal of Z2. Then we let w ′ be the walk obtained from w by re�ecting the

portion of w after time s in this axis or diagonal (see Figure 11). Then θw
′
= 2β+ − θw or θw

′
= 2β− − θw .

Hence w ′ ∈ ⋃∞
n=−∞W

(α+nδ )
l,p . It is not hard to see that this mapping w 7→ w ′ is injective (the inverse

w ′ 7→ w is given by the exact same re�ection operation). Moreover, any walk w ′ ∈ ⋃∞
n=−∞W

(α+nδ )
l,p is

obtained in such way provided (θw ′i )
|w ′ |
i=0 visits β± at least once. Clearly, the only walks w ′ not satisfying

the latter condition are the ones in W
(α, I )
l,p . The claimed result for the generating function W (α, I )l,p (t)

readily follows (absolute convergence is granted because

∑
α ′∈ π

2
ZW

(α ′)
l,p (t) < ∞). �

Inspired by this result let us introduce for β± ∈ π
4
Z such that 0 ∈ I and α ∈ π

2
Z ∩ I , the operator

B(α,β−,β+)k on D de�ned by

B(α,β−,β+)k B
∞∑

n=−∞

(
Y( |α+nδ |)k − Y( |2β+−α+nδ |)k

)
, δ B 2(β+ − β−). (14)

By Theorem 1(i) it is well-de�ned, compact and self-adjoint and has eigenvalues

2K(k)
π

1

m

∞∑
n=−∞

(
q |α+nδ |m/πk − q |2β+−α+nδ |m/πk

)
=

2K(k)
π

q
2mβ−/π
k − 1

mqmα/πk

q2mα/πk − q2mβ+/π
k

q
2mβ−/π
k − q2mβ+/π

k

. (15)

Lemma 5 then tells us that

W (α, I )l,p (t) =
〈
el ,B

(α,β−,β+)
k ep

〉
D

(16)

holds under the conditions stated in the lemma, which exactly veri�es part (ii) and (iii) for 0,α ∈ I and

β± �nite.
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Similarly when β− = −∞ or β+ = ∞ one may introduce the operators B(α,−∞,β+)k = Y(α )k − Y
(2β+−α )
k

and B(α,β−,∞)k = Y(α )k − Y
(−2β−−α )
k . It is straightforward to check that then (16) still holds, and that the

eigenvalues are given by (15) in the appropriate limit β− → −∞ or β+ →∞.

Next, let us consider the case 0 < α ∈ π
2
Z and I = (0,α). The caseα = π/2with the corresponding op-

erator A(π /2)k = Ak has already been settled above, so let us assume α ≥ π . Any such walkw ∈ W(α,(0,α ))l,p

is naturally encoded in a triple w (1),w (2),w (3) of walks with w (1) ∈ Al1,p , w (2) ∈ W(α−π ,(−π /2,α−π /2))l2,l1
and

w (3) ∈ Al,l2 for some l1, l2 ≥ 1. Hence

W (α,(0,α ))l,p (t) =
∞∑

l1,l2=1

1

ll2

〈
el ,Akel2

〉
D

〈
el2 ,B

(α,−π /2,α−π /2)
k el1

〉
D

1

l1p

〈
el1 ,Akep

〉
D

=
1

lp

〈
el ,AkB

(α,−π /2,α−π /2)
k Akep

〉
D
.

One may easily verify the claimed eigenvalues of A(α ) B AkB
(α,−π /2,α−π /2)
k Ak and its compactness.

Finally, a similar argument shows that for 0 < α ∈ π
2
Z, 0 > β− ∈ π

4
Z,

W
(α,(β−,α ))
l,p (t) =

∞∑
l1=1

1

ll1

〈
el ,Akel1

〉
D

〈
el1 ,B

(α−π /2,β−,α )
k ep

〉
D
=

1

l

〈
el ,AkB

(α−π /2,β−,α )
k ep

〉
D
,

and once again one may directly verify the eigenvalues of AkB
(α−π /2,β−,α )
k . This �nishes the proof of

Theorem 1.

3 Excursions

Recall from the introduction the set of excursions E consisting of (non-empty) simple diagonal walks

starting and ending at the origin with no intermediate returns. For such an excursion w ∈ E we have a

well-de�ned winding angle sequence (θwi )
|w |
i=0 with θw

1
= θw

0
= 0 and θw = θw|w | = θ

w
|w |−1. Our �rst goal

is to compute the generating function of excursions with winding angle equal to α ∈ π
2
Z,

F (α )(t) B
∑
w ∈E

t |w |1{θw=α } . (17)

To this end we cannot directly apply Theorem 1(i) because the excursions start and end at the origin.

Nevertheless, a combinatorial trick allows us to relate F (α )(t) to the generating functionsW (α
′)

l,p with

α ′ > |α |.

Lemma 6. For α ∈ π
2
Z, F (α )(t) may be expressed as the absolutely convergent sum

F (α )(t) = 4

∞∑
m,l,p=1

(−1)l+p+m+1mW ( |α |+mπ /2)
2l,2p (t).

Proof. For the absolute convergence it su�ces to note that

∑∞
l,p=1W

(π /2)
l,p (t) ≤ 1/(1 − 4t) and for n > 0

∞∑
l,p=1

W (nπ /2)l,p (t) ≤ ©«
∞∑

l,p=1

W (π /2)l,p (t)ª®¬
n

≤ (1 − 4t)−n .

Next we use that for α ′ ∈ π
2
Z>0, the sets

⋃
p∈4Z>0

W
(α ′)
l,p and

⋃
p∈4Z>0−2W

(α ′)
l,p are nearly in bijection.

Indeed, a walk in the former is mapped to a unique walk in the latter by moving its starting point by

17



Figure 12: By changing the starting point the dark blue walk in W
(π )
2,4 is mapped to a walk in W

(π )
2,2 .

The dark green walk w ∈ W(π )
2,2 satis�es |w1 | = |w |w |−1 | =

√
2, such that moving its starting point

and endpoint to the origin gives an excursion.

(±2, 0) depending on the direction of the �rst step (see Figure 12), while keeping the other sites �xed.

It is not hard to see that any walk

⋃
p∈4Z>0−2W

(α ′)
l,p is obtained in such way except for those walks in

W
(α ′)
l,2 that have w1 = (1,±1). The generating function of such walks is therefore given by∑

w ∈W(α
′)

l,2

t |w |1{ |w1 |=
√
2} =

∞∑
p=1

(−1)p+1W (α
′)

l,2p (t).

An analogous argument for the endpoint then yields

S (α
′)(t) B

∑
w ∈W(α

′)
2,2

t |w |1{ |w1 |= |w |w |−1 |=
√
2} =

∞∑
p,l=1

(−1)p+lW (α
′)

2l,2p (t). (18)

Let X be the set of four possible tuples (w1,w |w |−1,θ
w
|w |−1 − θ

w
1
), then we may write

S (α
′)(t) =

∑
(x,y,α )∈X

∑
w ∈W(α

′)
2,2

t |w |1{w1=x,w |w |−1=y } =
∑

(x,y,α )∈X

∑
w ∈E

t |w |1{w1=x,w |w |−1=y }1{θw=α },

where we used the obvious mapping to excursions by merely moving the starting point and endpoint

to the origin (see Figure 12). By the rotational symmetry of the set of excursions we may replace the

1{w1=x,w |w |−1=y } by 1/4 in the last sum. By observing that α takes exactly the four values α ′ − π/2, α ′,

α ′, α ′ + π/2, one �nds that

S (α
′)(t) = 1

4

∑
(x,y,α )∈X

∑
w ∈E

t |w |1{θw=α } =
1

4

F (α
′−π /2)(t) + 1

2

F (α
′)(t) + 1

4

F (α
′+π /2)(t).

From here it is an easy check by substitution that for α ∈ π
2
Z>0,

4

∞∑
m=1

(−1)m+1mS (α+mπ /2)(t) = F (α )(t) = F (−α )(t),

which together with (18) yields the claimed identity. �

We are now in the position to apply Theorem 1(i) and explicitly evaluate F (α )(t), as well as its

“characteristic function”

F (t ,b) B
∑
w ∈E

t |w |eibθ
w
=

∑
α ∈ π

2
Z

F (α )(t) eibα .

18



Proposition 4. The excursion generating functions are given by

F (α )(t) = 2π

K(k)

∞∑
n=1

(1 − qnk )
2

1 − q4nk
q
n( 2π |α |+1)
k , (19)

F (t ,b) =



1

cos

(
πb
2

) 1 −
π tan

(
πb
4

)
2K(k)

θ ′
1

(
πb
4
,
√
qk

)
θ1

(
πb
4
,
√
qk

)  for b ∈ R \ Z,

1 − π
2K (k ) for b ∈ 4Z,

1 − 2E(k )
π for b ∈ 2Z + 1,

−1 + 4E(k )
π − (1 − k2) 2K (k )π for b ∈ 4Z + 2,

(20)

where K(k) and E(k) are the complete elliptic integrals of the �rst and second kind, and θ1(z,q) is the Jacobi
theta function

θ1(z,q) B 2

∞∑
n=0

(−1)nq(n+1/2)2 sin((2n + 1)z). (21)

Proof. Combining Lemma 6 with Theorem 1(i) we �nd

F (α )(t) = 4

∞∑
m,l,p=1

(−1)l+p+m+1m
〈
e2l ,Y

( |α |+mπ /2)
k e2p

〉
D

=
4K(k)
π

∞∑
m,n=1

(−1)m+1m
n
q
n( 2π |α |+m)
k

1

‖ f2n ‖2

( ∞∑
p=1

(−1)p
〈
f2n , e2p

〉
D

)
2

=
4K(k)
π

∞∑
n=1

1

n

q
n( 2π |α |+1)
k

(1 + qnk )2
1

‖ f2n ‖2

( ∞∑
p=1

(−1)p
〈
f2n , e2p

〉
D

)
2

, (22)

where we used that

〈
fn , e2p

〉
D
= 0 for n odd. Since f2m(z) has radius of convergence larger than one,

we have

∞∑
p=1

(−1)p
〈
f2n , e2p

〉
D
=

∞∑
p=1

(−1)p 2p [z2p ]f2n(z) = i
f ′
2n(i) − f ′

2n(−i)
2

.

From the de�nition (1) of vk1 one may read o� that v ′k1(i) = 1/(4K(k1)(1 + k1)) = 1/(4K(k)). Together

with (2) we then �nd

∞∑
p=1

(−1)p 〈e2p , f2n〉 = (−1)n
π

K(k)n sinh(4πnTk ) = (−1)
n π

2K(k)n(q
−n
k − q

n
k ).

Combining with (22) and (8) we arrive at

F (α )(t) = 2π

K(k)

∞∑
n=1

(q−nk − q
n
k )

2

(1 + qnk )2
q
n( 2π |α |+1)
k

q−2nk − q2nk
=

2π

K(k)

∞∑
n=1

(1 − qnk )
2

1 − q4nk
q
n( 2π |α |+1)
k .

Using the identity ∑
α ∈ π

2
Z

x
2

π |α |eiπbα =
x−1 − x

x + x−1 − 2 cos(πb/2) for 0 < x < 1

19



we obtain with some algebraic manipulation

F (t ,b) = 2π

K(k)

∞∑
n=1

(1 − qnk )
2

1 − q4nk

1 − q2nk
qnk + q

−n
k − 2 cos(πb/2)

(23)

=
2π

K(k)

∞∑
n=1

(
1 − 2

qnk + q
−n
k

)
1

qnk + q
−n
k − 2 cos(πb/2)

(24)

=
2π

K(k)

∞∑
n=1

[(
1 − 1

cos(πb/2)

)
1

qnk + q
−n
k − 2 cos(πb/2)

+
1

cos(πb/2)
1

qnk + q
−n
k

]
, (25)

where the last equality only holds for b ∈ R \ (2Z + 1). The �rst term in the sum can be handled for

b ∈ R \ Z by recognizing that

∞∑
n=1

1

qnk + q
−n
k − 2 cos(πb/2)

=

∞∑
n=1

∞∑
m=1

qmn
k

sin(πbm/2)
sin(πb/2) =

∞∑
m=1

qmk
1 − qmk

sin(πbm/2)
sin(πb/2)

=
1

4 sin(πb/2)

[
θ ′
1
(πb/4,√qk )

θ1(πb/4,
√
qk )
− cot(πb/4)

]
,

where in the last equality we used [1, 16.29.1]. The second term follows from [1, 17.3.22],

∞∑
n=1

1

qnk + q
−n
k
= −1

4

+
K(k)
2π
.

Hence, for b ∈ R \ Z we have

F (t ,b) = 1

cos

(
πb
2

) 1 −
π tan

(
πb
4

)
2K(k)

θ ′
1

(
πb
4
,
√
qk

)
θ1

(
πb
4
,
√
qk

)  .
It remains to check the value of F (t ,b) at b = 0, 1, 2, since F (t ,b + 4) = F (t ,b) and F (t ,−b) = F (t ,b).
Starting from (24) or (25) and using [15, (23) and (26)] we obtain

F (t , 0) = 2π

K(k)

∞∑
n=1

1

qnk + q
−n
k
= 1 − π

2K(k) ,

F (t , 1) = 4π

K(k)

[
1

2

∞∑
n=1

1

qnk + q
−n
k
−
∞∑
n=1

1

(qnk + q
−n
k )2

]
=

4π

K(k)

[
K(k)
4π
− E(k)K(k)

2π 2

]
,

F (t , 2) = 2π

K(k)

[
2

∞∑
n=1

1

(qn/2k + q−n/2k )2
−
∞∑
n=1

1

qnk + q
−n
k

]
=

2π

K(k)

[
2

∞∑
n=1

1

(qnk + q
−n
k )2

+ 2

∞∑
n=1

1

(qn−1/2k + q1/2−nk )2
−
∞∑
n=1

1

qnk + q
−n
k

]
=

2π

K(k)

[
2

E(k)K(k)
π 2

− (1 − k2)K
2(k)
π 2
− K(k)

2π

]
.

�

The complete elliptic integrals of the �rst and second kind, K(k) and E(k), are well known not to be

represented by algebraic power series in k . Hence, the same is true for F (t ,b) at integer values of b. The

situation is surprisingly di�erent at other rational values of b:

Corollary 1. t 7→ F (t ,b) is algebraic for all b ∈ Q \ Z.

20



Proof. Using the Landen transformation θ ′
1
(u,q)/θ1(u,q)+θ ′4(u,q)/θ4(u,q) = θ ′1(u,

√
q)/θ1(u,

√
q), which

follows e.g. from the series representations [1, 16.29.1 & 16.29.4], we may rewrite F (t ,b) as

F (t ,b) = 1

cos

(
πb
2

) 1 −
π tan

(
πb
4

)
2K(k)

©«
θ ′
1

(
πb
4
,qk

)
θ1

(
πb
4
,qk

) + θ ′4
(
πb
4
,qk

)
θ4

(
πb
4
,qk

) ª®®¬
 ,

which in turn can be expressed using Jacobi’s zeta function Z (u,k) (see [1, 16.34.1 & 16.34.4]) as
1

F (t ,b) = 1

cos

(
πb
2

) [
1 − tan

(
πb

4

) (
2Z (u,k) + cn (u,k) dn (u,k)

sn (u,k)

)]
, u = K(k)b/2. (26)

The trigonometric functions as well as the elliptic functions cn(·,k), dn(·,k) and sn(·,k) are well-known

to be algebraic at rational multiples of their period, due to the existence of algebraic multiple-angle

formulas. The same is true for Z (u,k) since it satis�es an addition formula [1, 17.4.35],

Z (u +v,k) = Z (u,k) + Z (v,k) − k2 sn(u,k) sn(v,k) sn(u +v,k), (27)

and Z (K(k)n,k) = 0 for all n ∈ Z. Hence, for any rational value of b one can express Z (K(k)b/2,k) as a

polynomial in sn(·,k) evaluated at rational multiples of its period, which are algebraic in k . �

Corollary 2. Consider a simple random walk on Z2 started at the origin. The probability that its winding
angle around the origin upon its �rst return equals πm/2 form ∈ Z is

1

π

(
−ψ

(
|m | + 1

4

)
+ 2ψ

(
|m | + 2

4

)
−ψ

(
|m | + 3

4

))
,

whereψ (x) = Γ′(x)/Γ(x) is the digamma function.

Proof. Letm ∈ Z be �xed. First we rewrite the sum in (19) as

∞∑
n=1

(1 − qnk )
2

1 − q4nk
qn( |m |+1)k =

∞∑
n=1

∞∑
p=0

q
n( |m |+4p+1)
k (1 − qnk )

2

=

∞∑
p=0

[
1

1 − q |m |+4p+1k

− 2

1 − q |m |+4p+2k

+
1

1 − q |m |+4p+3k

]
As qk → 1 the latter is asymptotically equal to

∞∑
p=0

[
1

|m | + 4p + 1 −
2

|m | + 4p + 2 +
1

|m | + 4p + 3

]
1

1 − qk
+O(1)

=
1

4

(
−ψ

(
|m | + 1

4

)
+ 2ψ

(
|m | + 2

4

)
−ψ

(
|m | + 3

4

))
1

1 − qk
+O(1),

where we used the series representation ψ (x + 1) −ψ (1) = ∑∞
p=1

(
1

p −
1

x+p

)
of the digamma function.

Since K(k) = −πK(k ′)/(logqk ) = 1

2
π 2/(1 − qk ) +O(1), we �nd from (19) that as t → 1/4,

F (mπ /2)(t) → 1

π

(
−ψ

(
|m | + 1

4

)
+ 2ψ

(
|m | + 2

4

)
−ψ

(
|m | + 3

4

))
.

From the de�nition (17) it is easily seen that this is precisely the desired probability. �

1
Thanks to Kilian Raschel for pointing out this relation!
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Before me move on let us have a look at the asymptotics of F (t ,b)

Lemma 7. For �xed b ∈ [0, 2] the coe�cients of t 7→ F (t ,b) satisfy the estimate

[t2l ]F (t ,b) ∼


sin

2

(
πb
4

)
Γ(1+b)
π

4
2(l+1−b)

lb+1 for b ∈ (0, 2)
π

l log2 l
4
2l for b = 0

1

4π l 3 4
2l for b = 2.

The analogous results for other b ∈ R follow from F (t ,b) = F (t ,b + 4) = F (t , 4 − b).

Proof. General properties of the various functions involved indicate that for �xed b ∈ R, k 7→ F (k/4,b)
is analytic in a domain that includes {z ∈ C : |z | < 1 + ϵ} \ {z ∈ R : |z | ≥ 1} for some ϵ > 0. Hence, we

should focus on the behaviour of F (k/4,b) as k2 → 1. For b �xed we may use Jacobi’s identity (see e.g.

Akhiezer, §22 (6))

θ1

(
πb

4

,
√
qk

)
=

i
√
2Tk

e
− πb2

32Tk θ1

(
−i πb

8Tk
,q2k ′

)
.

Taking logarithmic derivatives in b on both sides, we �nd

π

4K(k)

θ ′
1

(
πb
4
,
√
qk

)
θ1

(
πb
4
,
√
qk

) = − 1

K(k)
©«
iπ

8Tk

θ ′
1

(
−i πb

8Tk
,q2k ′

)
θ1

(
−i πb

8Tk
,q2k ′

) + πb

16Tk

ª®®¬
= − π

2K(k ′)
©«i
θ ′
1

(
−i πb

8Tk
,q2k ′

)
θ1

(
−i πb

8Tk
,q2k ′

) + b

2

ª®®¬ .
From the de�nition (21) it is clear that θ ′

1
(z,q2k ′)/θ1(z,q

2

k ′) = cot(z) +O(sin(2z)q4k ′) and K(k ′) = π/2 +
O(1 − k2), therefore for 0 < b < 2 we �nd

π

4K(k)

θ ′
1

(
πb
4
,
√
qk

)
θ1

(
πb
4
,
√
qk

) = −b
2

+ coth

(
πb

8Tk

)
+O

(
sinh

(
πb

4Tk

)
q4k ′

)
= −b

2

+
q−b/2k ′ + qb/2k ′

q−b/2k ′ − q
b/2
k ′

+O
(
(q−bk ′ − q

b
k ′)q

4

k ′

)
= 1 − b

2

+ 2qbk ′ +O
(
q2bk ′ + q

4−b
k ′

)
.

Hence, for b ∈ (0, 1) ∪ (1, 2) as k → ±1 we �nd
2

F (t ,b) =
1 + (b − 2) tan

(
πb
4

)
cos

(
πb
2

) − 4
tan

(
πb
4

)
cos

(
πb
2

)qbk ′ +O (
q2bk ′ + q

4−b
k ′

)
.

Since qk ′ = (1 − k2)/16 + O((1 − k2)2), the dominant singularity is proportional to (1 − k2)b and then

transfer theorems tells us that

[t2l ]F (t ,b) ∼ −41−2b
tan

(
πb
4

)
cos

(
πb
2

)
Γ(−b)

4
2l

lb+1
= sin

2

(
πb

4

)
Γ(1 + b)

π

4
2(l+1−b)

lb+1
,

where we used the re�ection formula Γ(1 − z)Γ(z) = π/sin(πz).
2
The constant term is exactly the characteristic function of the probability distribution in Corollary 2.
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One may check that this formula is valid for b = 1 as well, since F (t ,b) = 1 − 2E(k)/π has dominant

singularity (1 − k2) log(1 − k2)/(2π ), and therefore [t2l ]F (t , 1) ∼ 4
2l/(2πl2). For b = 2, however F (t , 2)

has singularity −(1 − k2)2 log(1 − k2)/(8π ) and [t2l ]F (t , 2) ∼ 4
2l/(4πl3), which di�ers by a factor of two

from the general formula. Finally, for b = 0 we may use that [k2l ]F (k, 0) is the probability that a simple

random walk �rst returns to the origin at time 2l , which is well known to be asymptotically proportional

to π/(l log2 l). �

3.1 Excursions restricted to an angular interval

We turn to the problem of enumerating excursions w with winding angle sequence (θwi )
|w |
i=0 restricted

to lie fully within an interval I ⊂ R. For convenience we let E′ = {w ∈ E : w1 = (1, 1)} be the set of

excursions that leave the origin in a �xed direction. Then we let F (α, I )(t) be the generating function

F (α, I )(t) =
∑
w ∈E′

t |w |1{θw=α and θwi ∈I for 0≤i≤ |w | } .

Notice that with this de�nition F (α,R)(t) = F (α )(t)/4.

Theorem 2. For I = (β−, β+), β± ∈ π
4
Z such that 0 ∈ I , and α ∈ I ∩ π

2
Z the generating function F (α, I ) is

given by the �nite sum

F (α, I )(t) = π

8δ

∑
σ ∈(0,δ )∩ π

2
Z

(
cos

(
4σα

δ

)
− cos

(
4σ (2β+ − α)

δ

))
F

(
t ,
4σ

δ

)
, δ B 2(β+ − β−) (28)

It is algebraic if β+ − β− ∈ π
2
Z + π

4
, or if β± ∈ π

2
Z and either β+ − β− ∈ πZ + π

2
or α ∈ πZ + π

2
or

β+ − α ∈ πZ. Moreover, its coe�cients satisfy the asymptotic estimate

[t2l ]Fn,m,p (t) ∼
(
cos

(
2πα

δ

)
− cos

(
2π (2β+ − α)

δ

))
sin

2

(
π 2

2δ

)
Γ

(
1 + 2π

δ

)
4δ

4
2(l+1−2π /δ )

l1+2π /δ

Proof. By a re�ection principle that is completely analogous to that used in Lemma 5 we observe that

F (α, I )(t) is given by the sum

F (α, I )(t) = 1

4

∞∑
n=−∞

(
F (α+nδ )(t) − F (2β+−α+nδ )(t)

)
, δ B 2(β+ − β−),

where the factor 1/4 is due to the fourfold di�erence between E and E′.

Then the discrete Fourier transform

π

2δ

∑
σ ∈(0,δ )∩ π

2
Z

(
e−4iσα/δ − e−4iσ (2β+−α )/δ

)
e4iσα

′/δ = 1{α−α ′∈δZ} − 1{2β+−α−α ′∈δZ}

leads to

F (α, I )(t) = π

8δ

∑
σ ∈(0,δ )∩ π

2
Z

(
e−4iσα/δ − e−4iσ (2β+−α )/δ

) ∑
α ′∈ π

2
Z

F (α
′)(t)e4iσα ′/δ .

Using that F (t , 4σ/δ ) = F (t , 4(δ − σ )/δ ), the latter is seen to agree exactly with (28).

Since F (α, I )(t) is expressed in terms of trigonometric functions at rational angles and F (t ,b) at rational

values of b, it follows from Corollary 1 that F (α, I )(t) is algebraic if the sum does not involve F (t ,b) at

integer values of b. This is certainly the case when δ ∈ πZ + π
2

, since 4σ/δ < Z for σ ∈ (0,δ ) ∩ π
2
Z.

Suppose now β± ∈ π
2
Z. Then cos (4σα/δ ) − cos (4σ (2β+ − α)/δ ) = 0 for σ = δ/2, meaning that F (t , 2)

does not contribute to F (α, I )(t). Hence, the only remaining obstruction for algebraicity is the case that
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(a) (b)

Figure 13: Excursions (a) of length 2n + 2 staying in the angular interval (−π/4,π/2) are

related to walks (b) in the quadrant starting and ending at the origin with 2n steps in

{(0, 1), (0,−1), (1, 1), (−1,−1)}.

δ = 4σ and cos(α) − cos(2β+ − α) , 0, which is evaded by having either δ ∈ 2πZ + π or α ∈ πZ + π
2

or

β+ − α ∈ πZ.

According to Lemma 7 the asymptotics of F (α, I )(t) is determined by the terms σ = π/2 and σ =

δ − π/2. If δ > π then these are distinct and equal, while in the case δ = π we noticed that the

asymptotics for F (t , 2) includes an additional factor of two compared to the formula for b ∈ (0, 2). Hence,

in general as l →∞,

[t2l ]F (α, I )(t) ∼ π

4δ

(
cos

(
2πα

δ

)
− cos

(
2π (2β+ − α)

δ

))
sin

2

(
π 2

2δ

)
Γ

(
1 + 2π

δ

)
π

4
2(l+1−2π /δ )

l1+2π /δ
,

in accordance with the claimed result. �

As a special case we look at excursions that stay in the angular interval (−π/4,π/2), see Figure 13.

Corollary 3 (Gessel’s lattice path conjecture). The generating function of excursions that stay in the
angular interval (−π/4,π/2) with winding angle α = 0 is

F (0,(−π /4,π /2))(t) = 1

4

F

(
t ,
4

3

)
=

1

2

[ √
3π

2K(4t)
θ ′
1

( π
3
,
√
qk

)
θ1

( π
3
,
√
qk

) − 1] = ∞∑
n=0

t2n+2 16n
(5/6)n(1/2)n
(2)n(5/3)n

. (29)

Proof. The �rst two equalities follow from Theorem 2 and Proposition 4 respectively. It remains to show

that our generating function reproduces the known formula

∞∑
n=0

t2n+2 16n
(5/6)n(1/2)n
(2)n(5/3)n

=
1

2

[
2F1

(
−1
2

,−1
6

;

2

3

; (4t)2
)
− 1

]
,

which we will do by showing they both solve the same algebraic equation (and checking that the �rst

few terms in the expansion agree).

Denoting y = 1

2
F (t , 4/3) + 1 and using (26) we get (with k = 4t )

y =
√
3

(
2Z (u,k) + cn (u,k) dn (u,k)

sn (u,k)

)
, u =

2K(k)
3

.

Applying the addition formula (27) to Z (u + u + u,k) twice one �nds

0 = Z (3u,k) = 3Z (u,k) − k2
(
sn(2u,k) sn2(u,k) + sn(2u,k) sn(3u,k) sn(u,k)

)
= 3Z (u,k) − k2 sn(2u,k) sn2(u,k),
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where we used that Z (2K(k),k) = sn(2K(k),k) = 0. Using the double argument formula [1, 16.18.1]

sn(2u,k) = 2 sn(u,k) cn(u,k) dn(u,k)
1 − k2 sn4(u,k)

as well as k2 − dn2(u,k) = −k2 cn2(u,k) = k2 sn2(u,k) − k2 (see [1, 16.9.1]), one may express y in terms

of x B dn(u,k) as

y = −x (1 − x
2)2 + 3k2

(1 − x2)2 − k2

√
x2 + k2 − 1
3(1 − x2) . (30)

Using the various addition theorems applied to sn(u+u+u,k) = 0 and rewriting in terms of x = dn(u,k)
one �nds after a slightly tedious calculation that x solves

k2 =
(1 − x)(1 + x)3

1 + 2x
.

Eliminating k from (30), y is then seen to be given by

y =
3 − (1 − x)2√
3(1 + 2x)

.

Finally one may check that these solve

27y8 −
(
4608t4 + 4032t2 + 18

)
y4 +

(
−32768t6 + 67584t4 + 4224t2 − 8

)
y2

− 65536t8 − 114688t6 − 50688t4 − 448t2 − 1 = 0,

which is equivalent to the polynomial in [8, Corollary 2] (after substituting t→ t2, T→ (y−1)/(2t2)). �

4 Jacobi elliptic functions are characteristic functions

Theorem 3. For a simple random walk on Z2 started at the origin let θ j+1/2 be its winding angle around
(− 1

2
,− 1

2
) up to half-way between its jth and (j + 1)th site (and let θ−1/2 = 0 by convention). Let also ζk be a

geometric random variable with parameter k , i.e. having distribution j 7→ k j (1 − k) on Z≥0. Then we have
the “hyperbolic secant laws”

P
[
(n − 1

2
)π ≤ θζk−1/2 < (n + 1

2
)π

]
=

π

2K(k) sech
(
nπ

K(k ′)
K(k)

)
,

P
[
nπ ≤ θζk+1/2 < (n + 1)π

]
=

π

2kK(k) sech
(
(n + 1

2
)π K(k

′)
K(k)

)
.

If we denote by {·}A : R→ A rounding to the closest element of A ⊂ R (con�icts do not arise here) then the
corresponding characteristic functions are given by

E exp
[
ib{θζk−1/2}πZ

]
= dn(K(k)b,k), (31)

E exp
[
ib{θζk+1/2}πZ+ π2

]
= cn(K(k)b,k), (32)

where cn(·,k) and dn(·,k) are Jacobi elliptic functions with modulus k .

In order to approach this problem we require a new building block, in the sense of Section 2, that

involves walks that start on an axis but end at a general point. In particular we will consider the set

Cn of (possibly empty) walks w starting at (n, 0) and staying strictly inside the positive quadrant, i.e.

wi ∈ Z2>0 for 1 ≤ i ≤ |w |, with generating function Cn(t).
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(a) (b)

Figure 14: (a) An unconstrained walk starting at (1, 0) that visits the vertical axis decomposes

into a walk in J3,1 (in black) and another unconstrained walk (in blue). (b) A walk starting at

(1, 0) and avoiding the vertical axis decomposes into a walk in B5,1 (in green) and a walk in C5

(in black).

Lemma 8. Form positive and odd we have

∞∑
n=1

Cn(t) 〈en , fm〉D = −
π

8(1 − k)K(k)
m(q−mk − qmk )

(qm/4k + q−m/4k )2

Proof. Let us consider the set of all (possibly empty) diagonal walks starting at (p, 0) for p positive

and odd, which has generating function 1/(1 − k). Some of these walks visit the vertical axis and this

necessarily happens away from the origin because p is odd. By decomposing such walks at their �rst

visit (see Figure 14a) we �nd that they have generating function

1

1 − k

∞∑
l=1

2Jl,p (t) =
1

1 − k

∞∑
l=1

1

l

〈
el , 2Jkep

〉
D
,

where the factor 2 takes into account that the �rst visit may occur at the positive or negative side of the

vertical axis. Hence, the remaining walks, those starting at (p, 0) and avoiding the vertical axis, have

generating function

1

1 − k −
1

1 − k

∞∑
l=1

1

l

〈
el , 2Jkep

〉
D
=

1

1 − k

∞∑
l=1

1

l

〈
el , (I − 2Jk )ep

〉
D
.

By decomposing the latter walks at their last intersection with the horizontal axis (see Figure 14b), we

may also express their generating function as

1

1 − k

∞∑
l=1

1

l

〈
el , (I − 2Jk )ep

〉
D
= 2

∞∑
n=1

Cn(k)
〈
en ,Bkep

〉
D
.

Using that

〈
fm , ep

〉
D
, 0 only whenm+p is even, this implies with the help of Propositions 3 and 2 that

∞∑
n=1

Cn(k) 〈en , fm〉D =
π

2K(k)
m(1 + qmk )
1 − qmk

∞∑
n=1

Cn(k) 〈en ,Bk fm〉D

=
π

4(1 − k)K(k)
m(1 + qmk )
1 − qmk

∞∑
l=1

1

l
〈el , (I − 2Jk )fm〉D

=
π

4(1 − k)K(k)
m(1 + qmk )
1 − qmk

(
1 − 2

qm/2k + q−m/2k

) ∞∑
l=1

1

l
〈el , fm〉D .
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(a) (b)

Figure 15: (a) An unconstrained walkw with
1

2
(θw|w |+θ

w
|w |−1) ∈ (−3π/2,−π ). (b) Its decomposition

into w ′ ∈ W(−3π /2)
3,1 (blue), w ′′ ∈ C3 (black) and s = (1,−1) (green).

Since fm has a radius of convergence larger than one, we may evaluate

∞∑
l=1

1

l
〈el , fm〉D =

∞∑
l=1

[zl ]fm(z) = fm(1) = − cosh(2πmTk ) = −
1

2

(
qm/2k + q−m/2k

)
.

Combining the last two displays yields the claimed result. �

Proof of Theorem 3. Let α ∈ π
2
Z − π

4
. We observe that

P
[
α − π

4
≤ θζk+1/2 < α + π

4

]
=

1 − k
k

G(α )(k/4),

where G(α )(t) is the generating function for the set of non-empty simple diagonal walks w that start

at (1, 0) and have winding angle
1

2
(θw|w | + θ

w
|w |−1) ∈ (α −

π
4
,α + π

4
) (see Figure 15a). It is not hard to see

that such a walk can be uniquely encoded in a triple (w ′,w ′′, s), where w ′ ∈ W(α−π /4)n,1 ∪W(α+π /4)n,1 for

some odd n ≥ 1, w ′′ ∈ Cn and s ∈ {(1, 1), (1,−1), (−1,−1), (−1, 1)} a single step (see Figure 15b). As a

consequence we obtain the relation

G(α )(t) = 4t
∞∑
n=1

Cn(t)
(
W (α−π /4)n,1 (t) +W (α+π /4)n,1 (t)

)
.

With the help of Theorem 1(i) this evaluates to

G(α )(t) = k
∞∑
n=1

Cn(t)
〈
en , (Y(α−π /4)k + Y(α+π /4)k )e1

〉
D

= k
∞∑

m,n=1

Cn(t) 〈en , fm〉D

〈
e1, (Y(α−π /4)k + Y(α+π /4)k )fm

〉
D

‖ fm ‖2D

= k
∞∑

m,n=1

Cn(t) 〈en , fm〉D
8K(k)
π

qm |α |/πk (qm/4k + q−m/4k )
m2(q−mk − qmk )

〈e1, fm〉D .

Form odd we have

〈e1, fm〉D = f ′m(0) = (−1)(m+1)/22πmv ′k1(0) =
(−1)(m+1)/2πm
2

√
k1K(k1)

=
(−1)(m+1)/2πm

kK(k) ,
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while 〈e1, fm〉D = 0 form even. Together with Lemma 8 and some manipulation this leads to

G(α )(t) = 1

1 − k
π

K(k)

∞∑
p=0

(−1)p
q
(2p+1) |α |/π
k

q
(2p+1)/4
k + q

−(2p+1)/4
k

.

In particular, the probability that θζk+1/2 ∈ (nπ , (n + 1)π ) for n ∈ Z is then

P
[
nπ ≤ θζk+1/2 < (n + 1)π

]
=

1 − k
k

(
G(nπ+π /4)(k/4) +G(nπ+3π /4)(k/4)

)
=

π

kK(k)

∞∑
p=0

(−1)pq(2p+1)( |n |+1/2)k =
π

kK(k)
1

qn+1/2k + q−n−1/2k

=
π

2kK(k) sech
((
n +

1

2

)
π
K(k ′)
K(k)

)
.

Similarly, for n ∈ Z \ {0} we have

P
[
(n − 1

2
)π ≤ θζk+1/2 < (n + 1

2
)π

]
=

1 − k
k

(
G(nπ−π /4)(k/4) +G(nπ+π /4)(k/4)

)
=

π

kK(k)

∞∑
p=0

(−1)pq(2p+1) |n |k =
π

kK(k)
1

qnk + q
−n
k
=

π

2kK(k) sech
(
nπ

K(k ′)
K(k)

)
.

According to [15, (19)],

∑∞
n=−∞ sech(nπK(k ′)/K(k)) = 2K(k)/π and therefore

P
[
− 1

2
π ≤ θζk+1/2 < 1

2
π
]
= 1 − 1

k
+

π

2kK(k) .

But then for general n ∈ Z,

P
[
(n − 1

2
)π ≤ θζk−1/2 < (n + 1

2
)π

]
= (1 − k)1{n=0} + k P

[
(n − 1

2
)π ≤ θζk+1/2 < (n + 1

2
)π

]
=

π

2K(k) sech
(
nπ

K(k ′)
K(k)

)
.

With the help of [1, 16.23.2 & 16.23.3] the characteristic functions may �nally be expressed as

E exp
(
ib{θζk−1/2}πZ

)
=

π

K(k)

∞∑
n=−∞

eibnπ

qnk + q
−n
k
= dn(K(k)b,k),

E exp
(
ib{θζk+1/2}πZ+ π2

)
=

π

kK(k)

∞∑
n=−∞

eib(n+1/2)π

qn+1/2k + q−n−1/2k

= cn(K(k)b,k).

�

5 Winding angle of loops

Another, rather interesting application of Theorem 1 is the counting of loops on Z2. To be precise,

for integer n , 0, let the set Ln of rooted loops of index n be the set of simple diagonal walks w

on Z2 \ {(0, 0)} that start and end at the same (arbitrary) point and have winding angle θw = 2πn.

The set Ln = Leven

n ∪ Lodd

n naturally partitions into the even loops Leven

n supported on {(x ,y) ∈ Z2 :

x + y even, (x ,y) , (0, 0)} and the odd loops Lodd

n on {(x ,y) ∈ Z2 : x + y odd}.

Theorem 4. The (“inverse-size biased”) generating functions for Leven
n and Lodd

n are given by

Levenn (t) B
∑

w ∈Leven
n

t |w |

|w | =
1

|n | trD PevenJ(2π |n |,−∞)k =
1

|n |
q4 |n |k

1 − q4 |n |k

,

Loddn (t) B
∑

w ∈Lodd
n

t |w |

|w | =
1

|n | trD PoddJ(2π |n |,−∞)k =
1

|n |
q2 |n |k

1 − q4 |n |k

,

where Peven (respectively Podd) is the projection operator onto the even (respectively odd) functions in D.
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Proof. Without loss of generality we will take n > 0, since the case of negative n then follows from

symmetry. Let us consider the subset

ˆLn B {w ∈ Ln : w0 ∈ {(x , 0) : x > 0} and θwi < θ
w

for 0 ≤ i < |w |}

of rooted loops of index n > 0 that start on the positive x-axis and that attain the winding angle

2nπ only at the very end. Clearly
ˆLn =

⋃
p≥1W

(2πn,(−∞,2πn))
p,p in the notation of Theorem 1. Similarly

ˆLeven/odd

n B ˆLn ∩ Leven/odd =
⋃

p even/odd
W
(2πn,(−∞,2πn))
p,p . The generating functions of

ˆLeven

n and
ˆLodd

n

are therefore given by∑
w ∈ ˆLeven/odd

n

t |w | =
∑

p even/odd

1

p

〈
ep , J

(2πn,−∞)
k ep

〉
D
= trD Peven/oddJ(2nπ ,−∞)k =

∑
m even/odd

q2(2m+1)nk ,

where we used that (according to Theorem 1(ii)) J(2nπ ,−∞)k has eigenvalues (q2nmk )m≥1 and that the even

and odd subspaces of D are spanned by the even respectively odd elements of the basis (fm)m≥1. Hence,∑
w ∈ ˆLeven

n

t |w | =
q4nk

1 − q4nk
and

∑
w ∈ ˆLodd

n

t |w | =
q2nk

1 − q4nk
. (33)

Now suppose we take a general loop w ∈ Ln . We denote by w (j) ∈ Ln , 1 ≤ j ≤ |w |, the cyclic

permutation of w given by the walk w (j) B (w j ,w j+1, . . . ,w |w |,w1, . . . ,w j ). We claim that among these

|w | cyclic permutations are exactly n elements of
ˆLn .

To see this, let (il )ml=1 be the sequence of increasing times (in {1, 2, . . . , |w |}) at whichw intersects the

positive x-axis. Then w (il ), 1 ≤ l ≤ m, are potential candidates for walks in
ˆLn , since they start on the

positive x-axis. For each such walk w ′ = w (il ) we may consider the winding angle sequence (θw ′i )
|w ′ |
i=0 as

well as the subsequence (α (l )j )mj=0 of (θw ′i )
|w ′ |
i=0 containing just those angles in 2πZ. Then (α (l )j )mj=0 describes

a walk on 2πZ from 0 to 2πn with steps in {−2π , 0, 2π }, and w (il ) ∈ ˆLn precisely when this walk stays

strictly below 2πn until the very end. Since the walks (α (l )j )mj=0, 1 ≤ l ≤ m, correspond precisely to an

equivalence class under cyclic permutation of the increments, a well-known cycle lemma (or ballot

theorem) tells us that the latter condition, hence w (il ) ∈ ˆLn , is satis�ed for exactly n values of l .

The claim implies that

∑
w ∈Ln

t |w |

|w | =
1

n

∑
w ∈Ln

t |w |

|w |

|w |∑
j=1

1{w (j )∈ ˆLn } =
1

n

∑
w ∈ ˆLn

t |w |

|w |

|w |∑
j=1

1{w (j )∈Ln } =
1

n

∑
w ∈ ˆLn

t |w | .

This identity restricted to the even and odd subspaces together with (33) then gives the desired expres-

sions. �

For the rest of this section we switch to simple rectilinear rooted loops on Z2. For such a loop w

we let the index Iw : R2 → Z be de�ned by setting Iw (z) = 0 when z lies on the trajectory of w and

otherwise 2π Iw (z) is the winding angle of w around the point z. By a suitable a�ne transformation we

may now equally think of Lodd

n , n , 0, as the set of simple rooted loops on Z2 with index Iw (z) with

respect to some �xed o�-lattice point, say, (1/2, 1/2). Similarly, Leven

n , n , 0, is in 1-to-1 correspondence

with such loops that have index n with respect to a �xed lattice point, say, the origin. The following

probabilistic result takes advantage of this point of view.

Corollary 4. For l ≥ 1, letW = (Wi )2li=0 be a simple random walk on Z2 conditioned to return to the origin
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after 2l steps. For n , 0, let Cn be the set of connected components of (IW )−1(n). Then

E

[ ∑
c ∈Cn
|c |

]
=

4
2l(

2l
l

)2 2ln [k2l ] q2nk
1 − q4nk

∼ l

2πn2
,

E

[ ∑
c ∈Cn
(|∂c | − 2)

]
=

4
2l(

2l
l

)2 4ln [k2l ] q2nk
1 + q2nk

∼ 2π 3l

log
2 l
,

where |c | is the area of c ∈ Cn and |∂c | the boundary length of c .

Proof. The left and right sides of the identities are all seen to be invariant under n → −n, so we may

restrict to the case n > 0. A simple counting exercise shows that for any c ∈ Cn the area and boundary

length of c can be expressed in terms of the cardinalities |c ∩ Z2 | and |c ∩ (Z + 1/2)2 | as

|c | = |c ∩ (Z + 1/2)2 | and |∂c | = 2|c ∩ (Z + 1/2)2 | − 2|c ∩ Z2 | + 2.

Hence, we have that ∑
c ∈Cn
|c | =

∑
z∈(Z+1/2)2

1{IW (z)=n } =
∑
w

1{Iw (1/2,1/2)=n },∑
c ∈Cn
(|c | + 1 − |∂c |/2) =

∑
z∈Z2

1{IW (z)=n } =
∑
w

1{Iw (0,0)=n },

where the last sum on both lines is over all possible translationsw ofW by a vector in Z2. The collection

of translations that have index Iw (1/2, 1/2) = n (respectively Iw (0, 0) = n) indexed by all possible

W precisely determines a partition of the loops of length 2l in Lodd

n (respectively Leven

n ). Since the

probability of any particular walkW is

(
2l
l

)−2
we �nd with the help of Theorem 4 that

E

[ ∑
c ∈Cn
|c |

]
=

1(
2l
l

)2 [t2l ] ∑
w ∈Lodd

n

t |w | =
1(
2l
l

)2 2l [t2l ]Lodd

n (t) =
4
2l(

2l
l

)2 2ln [k2l ] q2nk
1 − q4nk

,

E

[ ∑
c ∈Cn
(|c | + 1 − |∂c |/2)

]
=

1(
2l
l

)2 [t2l ] ∑
w ∈Leven

n

t |w | =
1(
2l
l

)2 2l [t2l ]Leven

n (t) = 4
2l(

2l
l

)2 2ln [k2l ] q4nk
1 − q4nk

.

The �rst line and the di�erence between the two lines agree with the claimed formulas.

Since k 7→ qk is analytic in C \ {k ∈ R : |k | ≥ 1} and |qk | < 1 for |k | = 1 and k2 , 1, it follows

that both k 7→ q2nk /(1 − q
4n
k ) and k 7→ q2nk /(1 + q

2n
k ) are ∆-analytic with singularities at k = ±1. Since

qk = 1 + π 2

log(1−k2) +O(log
−2(1 − k2)) as k → ±1, we �nd

q2nk
1 − q4nk

= − 1

4n

log(1 − k2)
π 2

+O(1) and

q2nk
1 + q2nk

=
1

2

+
n

2

π 2

log(1 − k2) +O(log
−2(1 − k2)).

Standard transfer theorems (see [23]) then imply

[k2l ]
q2nk

1 − q4nk
∼ 1

4nπ 2l
and [k2l ]

q2nk
1 + q2nk

∼ π 2n

2l log2 l
as l →∞.

Together with 4
2l/

(
2l
l

)2 ∼ πl these give rise to the stated asymptotics. �

30



References

[1] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions: With Formulas, Graphs,
and Mathematical Tables. Courier Corporation, 1964.

[2] Arcozzi, N., Rochberg, R., Sawyer, E., and Wick, B. The Dirichlet space: A Survey. New York
Journal of Mathematics 17a (2011), 45–86. arXiv:1008.5342.

[3] Bernardi, O. Bijective counting of Kreweras walks and loopless triangulations. Journal of
Combinatorial Theory, Series A 114, 5 (2007), 931–956.

[4] Bernardi, O., Bousqet-Mélou, M., and Raschel, K. Counting quadrant walks via Tutte’s

invariant method. arXiv:1708.08215.

[5] Borot, G., Bouttier, J., and Duplantier, B. Nesting statistics in the O(n) loop model on random

planar maps. arXiv:1605.02239.

[6] Borot, G., Bouttier, J., and Guitter, E. Loop models on random maps via nested loops: the case

of domain symmetry breaking and application to the Potts model. J. Phys. A: Math. Theor. 45, 49

(2012), 494017.

[7] Borot, G., Bouttier, J., and Guitter, E. A recursive approach to the O(n) model on random

maps via nested loops. J. Phys. A: Math. Theor. 45, 4 (2012), 045002.

[8] Bostan, A., and Kauers, M. The complete generating function for Gessel walks is algebraic. Proc.
Amer. Math. Soc. 138, 9 (2010), 3063–3078.

[9] Bostan, A., Kurkova, I., and Raschel, K. A human proof of Gessel’s lattice path conjecture. Trans.
Amer. Math. Soc. 369, 2 (2017), 1365–1393.

[10] Bousqet-Mélou, M. Walks on the Slit Plane: Other Approaches. Advances in Applied Mathematics
27, 2 (2001), 243–288.

[11] Bousqet-Mélou, M. An elementary solution of Gessel’s walks in the quadrant. Advances in
Mathematics 303 (2016), 1171–1189.

[12] Bousqet-Mélou, M. Square lattice walks avoiding a quadrant. Journal of Combinatorial Theory,
Series A 144 (2016), 37–79.

[13] Bousqet-Mélou, M., and Mishna, M. Walks with small steps in the quarter plane. In Algorithmic
Probability and Combinatorics, no. 520 in Contemp. Math. Amer. Math. Soc., Providence, 2010,

pp. 1–39.

[14] Bousqet-Mélou, M., and Schaeffer, G. Walks on the slit plane. Probab Theory Relat Fields 124,

3 (2002), 305–344.

[15] Bruckman, P. S. On the Evaluation of Certain In�nite Series by Elliptic Functions. The Fibonacci
Quarterly 15.4 (1977), 293–310.

[16] Budd, T. The Peeling Process of In�nite Boltzmann Planar Maps. The Electronic Journal of
Combinatorics 23, 1 (2016), P1.28.

[17] Budd, T., and Curien, N. Geometry of in�nite planar maps with high degrees. Electron. J. Probab.
22 (2017).

31

http://arxiv.org/abs/1008.5342
http://arxiv.org/abs/1708.08215
http://arxiv.org/abs/1605.02239


[18] Bélisle, C. Windings of Random Walks. The Annals of Probability 17, 4 (1989), 1377–1402.

[19] Bélisle, C., and Faraway, J. Winding angle and maximum winding angle of the two-dimensional

random walk. Journal of Applied Probability 28, 4 (1991), 717–726.

[20] Camia, F. Brownian Loops and Conformal Fields. In Advances in Disordered Systems, Random
Processes and Some Applications. Cambridge University Press, 2016. arXiv: 1501.04861.

[21] Camia, F., Gandolfi, A., and Kleban, M. Conformal correlation functions in the Brownian loop

soup. Nuclear Physics B 902 (2016), 483–507.

[22] Collet, G., and Fusy, É. A Simple Formula for the Series of Constellations and Quasi-Constellations

with Boundaries. The Electronic Journal of Combinatorics 21, 2 (2014), P2.9.

[23] Flajolet, P., and Odlyzko, A. Singularity Analysis of Generating Functions. SIAM J. Discrete
Math. 3, 2 (1990), 216–240.

[24] Garban, C., and Trujillo-Ferreras, J. A. The Expected Area of the Filled Planar Brownian Loop

is π/5. Commun. Math. Phys. 264, 3 (2006), 797–810.

[25] Kauers, M., Koutschan, C., and Zeilberger, D. Proof of Ira Gessel’s lattice path conjecture.

PNAS 106, 28 (2009), 11502–11505.

[26] Kenyon, R., Miller, J., Sheffield, S., and Wilson, D. B. Bipolar orientations on planar maps and

SLE12. arXiv:1511.04068.

[27] Lawler, G., and Trujillo Ferreras, J. Random walk loop soup. Trans. Amer. Math. Soc. 359, 2

(2007), 767–787.

[28] Rudnick, J., and Hu, Y. The winding angle distribution of an ordinary random walk. J. Phys. A:
Math. Gen. 20, 13 (1987), 4421.

[29] Shi, Z. Windings of Brownian motion and random walks in the plane. Ann. Probab. 26, 1 (1998),

112–131.

[30] Yor, M. Loi de l’indice du lacet Brownien, et distribution de Hartman-Watson. Z. Wahrscheinlich-
keitstheorie verw. Gebiete 53, 1 (1980), 71–95.

32

http://arxiv.org/abs/1511.04068

	1 Introduction
	2 Winding angle of walks starting and ending on an axis
	2.1 The operator Jk
	2.2 The operators Bk and Ak
	2.3 Proof of Theorem ??

	3 Excursions
	3.1 Excursions restricted to an angular interval

	4 Jacobi elliptic functions are characteristic functions
	5 Winding angle of loops

