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ENUMERATION OF PERMUTATIONS AVOIDING A TRIPLE OF 4-LETTER

PATTERNS IS ALL DONE

DAVID CALLAN, TOUFIK MANSOUR, AND MARK SHATTUCK

Abstract. This paper completes a project to enumerate permutations avoiding a triple T of 4-
letter patterns, in the sense of classical pattern avoidance, for every T . There are 317 symmetry
classes of such triples T and previous papers have enumerated avoiders for all but 14 of them.
One of these 14 is conjectured not to have an algebraic generating function. Here, we find the
generating function for each of the remaining 13, and it is algebraic in each case.

Keywords: pattern avoidance, Wilf-equivalence, generating function, INSENC algorithm

1. Introduction

This paper is the last in a series whose goal is to enumerate the permutations avoiding the patterns
in T for each of the

(

24
3

)

triples T of 4-letter patterns. There are 317 symmetry classes of these
triples and 242 Wilf classes; hence, 242 distinct counting sequences. A Wilf class is said to be
small or large depending on whether it contains one or more symmetry classes. The symmetry
classes in large Wilf classes were enumerated in [5,6] (combined in [7]). The small Wilf classes that
can be enumerated by the insertion encoding algorithm (INSENC) [17] are listed in Table 2 in the
appendix. The small Wilf classes not amenable to INSENC are listed in Table 1 below along with
a reference to either a published paper or to a result in the present paper. The numbering in both
tables follows that of Table 2 in [7], where representative triples for all 317 symmetry classes are
listed in lex order of counting sequence. The generating function for Case 237, the only one not
enumerated, is conjectured not to be differentially algebraic (see, e.g., [14, Seq. A257562]).

Our work extends earlier results concerning the enumeration of permutations avoiding one or two
4-letter patterns. Permutations avoiding a single 4-letter pattern have been well studied (see,
e.g., [15,16,18]), and there are 56 symmetry classes of pairs of 4-letter patterns, all but 8 of which
have been enumerated. Le [12] established that these 56 symmetry classes form 38 distinct Wilf
classes, and of these 38, 12 can be enumerated with regular insertion encodings (see [17]). Some of
these generating functions were computed by hand by Kremer and Shiu [11]. In [13], Simion and
Schmidt enumerated permutations avoiding any subset of S3, in particular, any subset of S3 of size
three. Our results here then address the analogous problem on S4 and complete the enumeration
in the case of three patterns.

The organization of this paper is as follows. In the next section, we recall some previous terminology
and notation. In the third section, we provide proofs of generating function formulas corresponding
to the final thirteen symmetry classes for three patterns of length four. In the appendix, the
generating functions for all small Wilf classes that can be done using INSENC are listed.
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Table 1: Small Wilf classes not amenable to INSENC.

Start of Table

No. T Reference No. T Reference

15 {2134, 3412, 1243} [2] 29 {1324, 2143, 3421} [1]

30 {4231, 2143, 1324} [1] 49 {2341, 1324, 4123} [3]

69 {3412, 1324, 1234} [3] 72 {3412, 1324, 1243} [3]

74 {3412, 1243, 1234} Theorem 5 75 {4231, 1324, 1243} [3]

76 {3412, 1324, 4123} [3] 77 {3412, 3124, 1243} [4]

80 {4312, 1324, 4123} [3] 84 {4231, 1324, 4123} [3]

86 {3412, 4132, 1324} [3] 88 {1324, 3412, 3421} [3]

90 {1243, 2431, 3412} [4] 93 {1324, 2413, 3421} [3]

99 {4231, 3142, 1324} [3] 103 {2314, 1342, 4123} [4]

106 {1342, 2143, 3412} [4] 109 {2143, 3412, 3421} Theorem 47

118 {3412, 1423, 1234} [4] 121 {3412, 2341, 1243} Theorem 9

125 {2341, 4123, 1243} Theorem 17 130 {3412, 3124, 1342} [4]

131 {2134, 1342, 4123} [4] 132 {1324, 2341, 2413} [3]

133 {2143, 2314, 1342} [4] 134 {2134, 4123, 1243} [2]

149 {3412, 4123, 1234} Theorem 22 150 {4312, 4132, 1324} [3]

151 {4312, 1324, 1423} [3] 153 {4231, 1324, 1423} [3]

156 {1324, 2341, 2431} [3] 158 {1324, 1342, 3412} [3]

159 {3412, 1423, 1243} [4] 162 {3412, 1342, 4123} [4]

163 {3412, 2314, 1342} [4] 164 {2341, 4123, 1423} [4]

165 {4312, 3124, 1423} [4] 172 {2143, 4132, 1324} [1]

175 {2413, 1342, 4123} [4] 176 {1342, 2431, 3412} [4]

178 {2314, 2431, 1342} [4] 180 {2431, 4132, 1324} [3]

182 {3412, 2314, 2431} [4] 184 {1324, 2431, 3241} [3]

185 {2341, 4123, 1234} Theorem 29 187 {1324, 2314, 2431} [3]

188 {2143, 3214, 1432} Theorem 49 190 {3142, 2314, 1423} [4]

192 {1243, 1342, 2431} [4] 193 {1324, 2431, 3142} [3]

194 {3124, 4123, 1243} [4] 195 {1324, 4123, 1243} [3]

197 {4312, 3142, 1423} [4] 198 {1342, 4123, 1234} [4]

199 {1342, 4123, 1243} [4] 204 {3124, 1342, 1243} [4]

207 {2134, 1423, 1243} [2] 208 {3124, 1342, 1234} [4]

209 {3142, 1432, 1243} Theorem 30 210 {4132, 1324, 1243} [3]

211 {1324, 4123, 1234} [3] 212 {1324, 2413, 2431} [3]

213 {2431, 1324, 1342} [3] 214 {1342, 2341, 3412} [4]

216 {2143, 3412, 3142} Theorem 33 217 {4132, 1342, 1243} [4]

219 {1342, 2413, 3412} [4] 220 {2431, 2314, 3142} [4]

222 {3421, 3412, 1342} [4] 223 {1243, 1342, 2413} [4]

224 {4132, 1342, 1423} [4] 225 {2413, 3142, 1243} Theorem 34

226 {2143, 2413, 1342} [4] 227 {2143, 1432, 1324} [1]

228 {2341, 2413, 3412} Theorem 35 230 {2341, 1243, 1234} Theorem 40

231 {1324, 4123, 1423} [3] 232 {1234, 1342, 2341} [4]

237 {1432, 1324, 1243} [14, Seq. A257562] 240 {2341, 3412, 3421} Theorem 44

241 {1324, 1243, 1234} [3] 242 {2341, 2431, 3241} [4]

End of Table

2. Preliminaries

For a pattern set T under consideration, FT (x) denotes the generating function
∑

n≥0 |Sn(T )|xn for

T -avoiders and Gm(x) the generating function for T -avoiders π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )



ENUMERATION OF PERMUTATIONS AVOIDING A TRIPLE OF 4-LETTER PATTERNS IS ALL DONE 3

with m left-right maxima i1, i2, . . . , im = n; thus FT (x) =
∑

m≥0 Gm(x). Note that G1(x) =

xFT (x) if no pattern in T starts with 4, with G0(x) = 1. For several of the triples T , our efforts
are directed toward finding an expression for Gm(x), usually distinguishing the case m = 2, and
sometimes also m = 3, from larger values of m. In cases such as these where we make use of the
method of generating functions, we examine the structure of an avoider by splitting the class of
avoiders into subclasses according to a judicious choice of parameters. This choice is made so that
each member of a subclass can be decomposed into independent parts. The generating function
(g.f) for a subclass (a summand in the full g.f.) is then the product of the g.f.’s for each of the
individual parts, and we speak of the “contribution” of the various parts to the g.f. for the subclass.
By contrast, in cases 74, 125 and 185, prior to computing the g.f., we determine an explicit formula
that directly enumerates the class of avoiders in question. To do so, we consider appropriate
combinatorial parameters related to the class, which involve here the position of and/or the actual
letters contained within the leftmost ascent. The g.f. then follows from the explicit formula and
a calculation, one that often involves multiple sums and is computer-assisted. In the last three
cases, we make use of (and modify in one case) the method of generating forests [18] to determine
a system of functional equations satisfied by the related g.f.’s, which we then solve by the kernel
method (see, e.g., [9]).

Throughout, C(x) = 1−
√
1−4x
2x denotes the g.f. for the Catalan numbers Cn := 1

n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n−1

)

. As is well known [10, 19], C(x) is the g.f. for (|Sn(π)|)n≥0 where π is any one of the six

3-letter patterns. The identity C(x) = 1
1−xC(x) or, equivalently, xC(x)2 = C(x) − 1, is used to

simplify some of the results. Occasionally, we need the g.f. for avoiders of a 3-letter and a 4-letter
pattern; see [20] for a comprehensive list.

3. Proofs

3.1. Case 74: {1234, 1243, 3412}. Recall within a permutation π = π1π2 · · ·πn that an index i
for which πi < πi+1 is called an ascent. The letters πi and πi+1 are referred to as the ascent
bottom and ascent top, respectively. The leftmost ascent is the smallest j such that πj < πj+1

and the leftmost ascent bottom and top are the corresponding letters πj and πj+1, respectively.
For example, if π = 87436512, then π has ascents at indices 4 and 7 and the leftmost ascent top
and bottom are 6 and 3, respectively. Similar terminology applies when discussing the rightmost
ascent.

Suppose that a permutation π = π1 · · ·πn has its leftmost ascent at index i. Then we will refer to
the prefix π1 · · ·πi as the initial descent sequence (IDS). For example, if π = 64325178, then the
leftmost ascent occurs at index 4 and the IDS is 6432. Let T = {1234, 1243, 3412}. To enumerate
members of Sn(T ), we will classify them according to the value of the leftmost ascent bottom and
the nature of the IDS. We first enumerate the following restricted class of T -avoiders.

Lemma 1. The number of T -avoiding permutations of length n whose first letter is ≤ n−2, whose
leftmost ascent top is n, and whose IDS does not comprise a set of consecutive integers is given by

bn =

n−4
∑

a=1

n−2
∑

b=a+2

b−a
∑

m=2

(

b− a− 1

m− 2

)[

(b−m+ 1)(n− b− 1) +

(

n− b− 2

2

)]

, n ≥ 5.

Moreover,

bn =
1

12
(n− 2)(3 · 2n − (n− 1)(n2 − 3n+ 12)).
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Proof. Let Bn denote the set of T -avoiding permutations in question. Suppose π ∈ Bn has first
letter b ≤ n − 2, leftmost ascent at index m, and leftmost ascent bottom a. Note that the IDS
of π not comprising a set of consecutive integers implies b ≥ a + 2 and 2 ≤ m ≤ b − a. Then π
may be written as π = ba1 · · · am−2anπ

′ (*), where a1 > · · · > am−2 belong to [a+ 1, b− 1]. Note
that the subsequence of π comprising [b + 1, n] avoids {123, 132, 3412} and thus must either (i)
decrease, (ii) have the form n, n − 1, . . . , s + 1, s − 1, . . . , b + 1, s for some b + 2 ≤ s ≤ n − 1, or
(iii) have the form n, n− 1, . . . , s+ 1, s− 1, . . . , t, s, t− 1, . . . , b+ 1 for some b+ 3 ≤ s ≤ n− 1 and
b+2 ≤ t ≤ s− 1. Observe further that the b−m letters in [b− 1] lying within π′ must decrease in
order to avoid 3412. Let x denote the largest (and hence leftmost) letter in [b− 1] occurring in π′.
Note that x > a by the assumption on the IDS of π. If (i) holds, then the element x must occur
between b + 2 and b + 1 or directly following b + 1 in order to avoid an occurrence of 1243 of the
form ax(b+ 2)(b+ 1). Since the letters in [b− 1] within π′ must decrease, it follows that there are
b −m + 1 ways in which to position the elements of [b −m] in π′, which uniquely determines π′.
If (ii) holds, then there are once again b−m+ 1 ways in which to position the elements of [b− 1]
in π′ for each s. Thus, combining cases (i) and (ii), there are (b −m+ 1)(n− b − 1) possibilities
for π′ for each b and m.

On the other hand, if (iii) holds, then x (and hence all elements of [b− 1] in π′) must follow b+1,
for otherwise there would be a 3412 of the form (s− 1)sx(b+ 1) if x came between s and b+ 1 or
a 1243 of the form axs(b + 1) if x occurred prior to s. Thus, there are

n−1
∑

s=b+3

s−1
∑

t=b+2

1 =

n−1
∑

s=b+3

(s− b− 2) =

(

n− b− 2

2

)

possibilities for π′ satisfying (iii). In all cases, there are
(

b−a−1
m−2

)

choices for the letters a1 >

· · · > am−2. Note that for each choice of the ai, the number of possibilities for π′ is the same.
Furthermore, any permutation π of the form (*) above, where π′ satisfies (i), (ii) or (iii), is seen
to avoid T . Considering all possible a, b and m then yields bn members of Bn altogether.

Thus,

bn =

n−4
∑

a=1

n−2
∑

b=a+2

b−a
∑

m=2

(

b− a− 1

m− 2

)[

(b−m+ 1)(n− b− 1) +

(

n− b − 2

2

)]

, n ≥ 5.

Note that

b−a
∑

m=2

(

b− a− 1

m− 2

)[

(b−m+ 1)(n− b− 1) +

(

n− b− 2

2

)]

= 2b−a−2(n2 + (a− b− 6)n+ 5b+ 7− a− ab)

− 1

2
(n2 − (2b+ 5− 2a)n+ (b+ 2)(b + 3)− 2a(b+ 1)),

which leads to

n−2
∑

b=a+2

b−a
∑

m=2

(

b− a− 1

m− 2

)[

(b−m+ 1)(n− b− 1) +

(

n− b− 2

2

)]

= 2n−a−2(n− 4 + a)− 1

6
(n3 − 6n2 − (3a2 − 9a− 11)n+ 2a3 − 3a2 − 5a− 18).
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Hence,

bn =
1

12
(n− 2)(3 · 2n − (n− 1)(n2 − 3n+ 12)),

which completes the proof.

�

We now consider a class of T -avoiding permutations where the IDS consists of consecutive integers.

Lemma 2. The number of T -avoiding permutations of length n whose first letter is ≤ n−2, whose
leftmost ascent top is n, and whose IDS comprises a set of consecutive integers is given by

(n− 5)2n−1 +

(

n+ 1

2

)

+ 3, n ≥ 3.

Proof. Suppose π = π1 · · ·πn is of the form under consideration where n ≥ 3 and that π has leftmost
ascent at index m with πm = a. Then the first m letters of π are a+m− 1, a+m− 2, . . . , a, where
1 ≤ a ≤ n− 2 and 1 ≤ m ≤ n− a− 1. Elements of [a− 1] must decrease within π in order to avoid
3412. On the other hand, elements of [a+m,n] satisfy conditions (i), (ii) or (iii) as described in
the proof of the previous lemma (where b is taken there to be a +m − 1). If (i) holds, then it is
seen that members of [a− 1] may be placed (in decreasing order) following any of the elements of

[a+m,n] within π without introducing an occurrence of T . Thus, there are in this case
(

n−m−1
a−1

)

possible π given a and m. This implies that there are a total of

n−2
∑

a=1

n−a−1
∑

m=1

(

n−m− 1

a− 1

)

=

n−2
∑

a=1

((

n− 1

a

)

− 1

)

= 2n−1 − n

permutations in this case. If (ii) holds, then letters in [a− 1] again may be inserted following any
members of [a+m,n], whereas if (iii) holds, then one cannot place letters in [a− 1] directly after
s or members of [a + m + 1, t − 1] in order to avoid 3412. Thus in (ii), there as n − a − m + 1
possible places to insert letters in [a− 1], while in (iii), there are n− t+ 1 such places.

For each a and m, considering all s and t yields

n−2
∑

t=a+m

n−1
∑

s=t+1

(

n− t+ a− 1

a− 1

)

=

n−1
∑

t=a+m

(

n− t+ a− 1

a− 1

)

(n− t− 1)

=
n
∑

t=a+m

(

n− t+ a− 1

a− 1

)

(n− t− 1) + 1

=
n
∑

t=a+m

(

n− t+ a− 1

a− 1

)

(n− t+ a)− (a+ 1)

(

n−m

a

)

+ 1

= a

(

n−m+ 1

a+ 1

)

− (a+ 1)

(

n−m

a

)

+ 1 = f(a,m)
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possible permutations for (ii) and (iii) combined. Summing over all possible a and m then gives

n−2
∑

a=1

n−a−1
∑

m=1

f(a,m) =

n−2
∑

a=1

n−a
∑

m=1

f(a,m) =

n−2
∑

a=1

(

a

(

n+ 1

a+ 2

)

− (a+ 1)

(

n

a+ 1

)

+ n− a

)

=

n−1
∑

a=0

(

(a+ 2)

(

n+ 1

a+ 2

)

− (a+ 1)

(

n

a+ 1

)

− 2

(

n+ 1

a+ 2

)

+ n− a

)

= (n+ 1)(2n − 1)− n2n−1 − 2(2n+1 − n− 2) +

(

n+ 1

2

)

= (n− 6)2n−1 + n+ 3 +

(

n+ 1

2

)

.

Combining this with the prior case (i) completes the proof. �

Lemma 3. The number of T -avoiding permutations of length n whose leftmost ascent top is n− 1
is given by

dn = (n+ 8)2n−3 + 1−
(

n+ 2

2

)

− (n− 1)(n− 2)(2n− 3)

6
, n ≥ 3.

Proof. Let π be a member of Sn(T ) under consideration have first letter b ≤ n − 2 and leftmost
ascent bottom a. Then the elements of [b + 1, n − 1] must decrease within π. For if not and
b+1 ≤ x < y ≤ n− 2 with x to the left of y, then there is a 1234 if n is to the right of y, a 1243 if
n occurs between x and y, and a 3412 if n occurs between n− 1 and x. Let S denote the elements
of [n] comprising the IDS of π. First suppose S does not consist of consecutive integers and let x
denote the largest element of [a + 1, b − 1] not belonging to S. We consider further cases based
off of the position of the letter n within π. First assume n lies to the right of b + 1. Then x must
occur after n or between b+ 1 and n in order to avoid 1234. Let the leftmost ascent of π occur at
index m. Since the elements of [b − 1] to the right of n − 1 within π must decrease, we see that

there are b −m + 1 ways in which to arrange the elements of [b]− S. As there are
(

b−a−1
m−2

)

ways
in which to select the middle m− 2 elements of S, considering all a, b and m gives

n−4
∑

a=1

n−2
∑

b=2

b−a
∑

m=2

(

b− a− 1

m− 2

)

(b−m+ 1)

possible permutations in this case. On the other hand, if n lies to the left of b+1, then all letters in
[b− 1]−S must occur after b+1, for otherwise there would be a 3412 as seen with (n− 1)nx(b+1)
or a 1243 in the form axn(b+ 1). There are thus n− b− 2 possible positions for n relative to the
letters in [b+ 1, n− 2], which yields

n−4
∑

a=1

n−2
∑

b=2

b−a
∑

m=2

(

b− a− 1

m− 2

)

(n− b− 2)

additional permutations.
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Combining the two preceding cases implies that the number of permutations under consideration
for which S does not consist of consecutive integers is given by

n−4
∑

a=1

n−2
∑

b=2

b−a
∑

m=2

(

b− a− 1

m− 2

)

(n−m− 1) =

n−3
∑

m=2

(n−m− 1)

n−2
∑

b=m+1

b−m
∑

a=1

(

b− a− 1

m− 2

)

=

n−3
∑

m=2

(n−m− 1)

n−2
∑

b=m+1

((

b− 1

m− 1

)

− 1

)

=

n−3
∑

m=2

(n−m− 1)

((

n− 2

m

)

− (n−m− 1)

)

= 2n−2 − n+

n−3
∑

m=2

(n− 2)

(

n− 3

n−m− 3

)

−
n−3
∑

m=2

(n−m− 1)2 = n2n−3 − n+ 1−
n−2
∑

m=1

m2

= n2n−3 − n+ 1− (n− 1)(n− 2)(2n− 3)

6
, n ≥ 4.

Now assume S = {a, a+1, . . . , a+m−1} for some 1 ≤ a ≤ n−2 and 1 ≤ m ≤ n−a−1. Then the
subsequence of π comprising the letters in [a+m,n] must have the form n− 1, n− 2, . . . , t, n, t−
1, . . . , a+m for some a+m ≤ t ≤ n− 1. Letters in [a− 1] may occur only after a+m or members
of [t, n− 1] if t > a+m, for otherwise there would be an occurrence of 3412. If t = a+m, letters
in [a − 1] may occur after any member of [a +m,n]. In either case, there are

(

n−t+a−1
a−1

)

ways in

which to arrange the members of [a− 1], which must decrease. One can verify that permutations
π obtained in this manner are T -avoiding. Considering all a, m and t gives

n−2
∑

a=1

n−a−1
∑

m=1

n−1
∑

t=a+m

(

n− t+ a− 1

a− 1

)

=

n−2
∑

a=1

n−a−1
∑

m=1

((

n−m

a

)

− 1

)

=

n−2
∑

a=1

((

n

a+ 1

)

− (n− a)

)

= 2n −
(

n+ 1

2

)

− 1

possibilities. Combining this case with the previous yields dn permutations in all. �

Let an = |Sn(T )|. We may express an in terms of the bn and dn sequences as follows, where we
take bn = 0 if n ≤ 4.

Lemma 4. If n ≥ 2, then

(1) an = an−1 + (2n− 9)2n−2 + 3 +

(

n+ 1

2

)

+ bn +

n−3
∑

m=0

dn−m,

with a1 = 1, where bn and dn are as defined above.

Proof. We enumerate the remaining cases of Sn(T ). Let π ∈ Sn(T ) and not of a form described
in Lemmas 1–3, where n ≥ 3. If π starts with n, then there are clearly an−1 possibilities. Since
members of Sn(T ) starting with a letter ≤ n − 2 must have leftmost ascent top either equal to
n− 1 or n, the only remaining case is if π starts with n− 1, which we now assume. If the leftmost
ascent top of π is n, then π = (n − 1)ρ′nρ′′, where ρ′ and ρ′′ are possibly empty and decreasing.
This gives 2n−2 possible π. So assume π has leftmost ascent top n−m−1 for some 1 ≤ m ≤ n−3.
Since any ascent top of π is either the largest or second largest letter yet to appear (otherwise
1234 or 1243 would be present), it follows that π must start n− 1, n− 2, . . . , n−m. These letters
are seen to be extraneous concerning the avoidance of T and thus may be deleted (note that they
impose no restrictions when considering 3412 since n−m− 1 is the first ascent top). This leaves a
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permutation of the form enumerated by dn−m. Considering all possible m then yields
∑n−3

m=1 dn−m

possibilities. Combining the additional cases discussed here with those from Lemmas 1–3 completes
the proof. �

By Lemmas 1, 3 and 4, we have

an = an−1 + (2n− 9)2n−2 + 3 +

(

n+ 1

2

)

+
1

12
(n− 2)(3 · 2n − (n− 1)(n2 − 3n+ 12))

+

n−3
∑

m=0

(

(n−m+ 8)2n−m−3 + 1−
(

n−m+ 2

2

)

− (n−m− 1)(n−m− 2)(2n−m− 3)

6

)

,

which is equivalent to

an = an−1 + (n− 1)2n − 1

6
(n− 1)(n3 − 3n2 + 14n− 6), n ≥ 2,

with a1 = a0 = 1. Hence, we can state the following result.

Theorem 5. Let T = {1234, 1243, 3412}. Then

FT (x) =
1− 9x+ 35x2 − 75x3 + 98x4 − 78x5 + 36x6 − 12x7

(1− x)6(1− 2x)2
.

3.2. Case 121: {1243, 2341, 3412}. We need the following lemmas.

Lemma 6. For d ≥ 1, define Nd(x) to be the generating function for permutations π = (n −
d − 1)π′nπ′′ ∈ Sn(T ) such that π′′ contains the subsequence (n − 1)(n − 2) · · · (n − d), and set

N(x) =
∑

d≥1
Nd(x)
(1−x)d . Then

N(x) =
x3(1 − 6x+ 15x2 − 21x3 + 15x4 − 3x5)

(1− x)4(1 − 2x)2(1− 3x+ 1 + x2)
.

Proof. Refine Nd(x) to Nd,e counting avoiders where π′ has e letters. Since π avoids 1243 and
d ≥ 1, we see that π′ is decreasing.

Let π = (n− d− 1)π′nπ′′ ∈ Sn(T ) such that π′′ contains the subsequence (n− 1)(n− 2) · · · (n− d)
and π′ contains e letters, say π′ = jeje−1 · · · j1. To find N1(x), write π

′′ as α(n−1)β. If α = ∅, then
β is decreasing and the contribution is xe+3

(1−x)e+1 . Otherwise, the maximal letter of α is between

js−1 and js for some s ∈ [e + 1] where j0 = 0 and je+1 = n − 2. Since π avoids 1243 and 2341,
js−1 < β < js. The letters in π′′ smaller than n− 2 are decreasing. Thus, by considering whether

β is empty or not, we obtain a contribution of xe+4

(1−x)s + xe+5

(1−x)2 for 2 ≤ s ≤ e+ 1, and of xe+4

(1−x)2 for

s = 1. Hence,

N1,e(x) =
xe+3

(1− x)e+1
+

e+1
∑

s=2

(

xe+4

(1− x)s
+

xe+5

(1− x)2

)

+
xe+4

(1 − x)2
,
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which leads to

N1(x) =
∑

e≥0

N1,e(x) =
x3(1 − 3x+ 4x2 − 3x3)

(1 − x)4(1− 2x)
.(2)

For d ≥ 2, by a decomposition similar to the case d = 1, we see that

Nd,e(x) = xNd−1,e(x) +
xd+e+3

(1− x)d+1
.

Summing over e ≥ 0, we obtain for d ≥ 2,

Nd(x) = xNd−1(x) +
xd+3

(1 − x)d+2
.

Multiplying by 1
(1−x)d

and summing over d ≥ 2, we have

N(x)− N1(x)

1− x
=

x

1− x
N(x) +

∑

d≥2

xd+3

(1− x)2d+2
.

Now use (2) and solve for N(x) to complete the proof. �

Lemma 7. Define M(x) to be the generating function for permutations π = iπ′nπ′′ ∈ Sn(T ) with
2 left-right maxima such that i ≤ n− 2. Then

M(x) =
x3(1 − 6x+ 16x2 − 25x3 + 20x4 − 5x5)

(1− x)4(1− 2x)2(1− 3x+ x2)
.

Proof. Let Md(x) denote the generating function for permutations π = iπ′nπ′′ ∈ Sn(T ) with 2
left-right maxima such that π′′ contains the subsequence (n − 1) · · · (n − d) and i ≤ n − d − 1.
Clearly, M1(x) = M(x). Since π avoids 1243, there is no letter greater than i between n and
n − d + 1. Thus, all letters greater than i in π′′ must occur to the right of n− d + 1. We denote
the subsequence comprising these letters by γ.

To find Md(x), write γ as α(n− d)β. In cases (i) α = β = ∅, (ii) α 6= ∅ and β = ∅, (iii) α = ∅ and
β 6= ∅, we have the contributions (i) Nd(x), (ii) xMd(x), (iii) Md+1(x), respectively. Thus, we may
assume that α, β 6= ∅. Note first that i+ 1 must occur in β, for otherwise i(i+ 1) is a 12 within a
1243, and by similar reasoning β < α. Thus, α and β form decreasing subsequences since π avoids
2341 and 3412, which implies αβ is decreasing. Furthermore, no letter in [i − 1] can occur to the
right of n− d, for otherwise there would be an occurrence of 2341 of the form i(n− d− 1)(n− d)i′

for some i′ ∈ [i− 1]. From the preceding observations, we see that π can be expressed as follows:

π = i(i− 1) · · · i′nγ(1)(n− 1)γ(2) · · · γ(d−1)(n− d+ 1)γ(d)(n− d− 1) · · · γ(e−1)(n− e)

γ(e)(n− d)(n− e− 1) · · · (i+ 1),

where e ≥ d + 1, i ≥ i′ > γ(1) · · · γ(e) and γ(1) · · · γ(e) is decreasing (for otherwise, 1243 would be

present). Thus, we have a contribution of
∑

e≥d+1
xe+3

(1−x)e+2 = xd+4

(1−x)d+2(1−2x)
. Hence

Md(x) = Nd(x) + xMd(x) +Md+1(x) +
xd+4

(1 − x)d+2(1− 2x)
,

which implies

Md(x) =
1

1− x
Nd(x) +

1

1− x
Md+1(x) +

xd+4

(1− x)d+3(1 − 2x)
.
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Multiplying by 1
(1−x)d−1 and summing over d ≥ 1, we obtain

∑

d≥1

Md(x)

(1 − x)d−1
= N(x) +

∑

d≥1

Md+1(x)

(1− x)d
+
∑

d≥1

xd+4

(1 − x)2d+2(1− 2x)
,

which is equivalent to

M1(x) = N(x) +
∑

d≥1

xd+4

(1− x)2d+2(1− 2x)
,

and the result follows from Lemma 6. �

Lemma 8.

G2(x) = x2FT (x) +
x3(2 − 14x+ 42x2 − 70x3 + 64x4 − 27x5 + 4x6)

(1− x)4(1− 2x)2(1− 3x+ x2)
.

Proof. Clearly, G2(x) = M(x) + H(x), where H(x) is the generating function for permutations
π = (n− 1)π′nπ′′ ∈ Sn(T ). Since (n− 1)π′n avoids T if and only if π′ avoids T , G2(x) = M(x) +
x2FT (x)+H ′(x), whereH ′(x) is the generating function for permutations π = (n−1)π′nπ′′ ∈ Sn(T )
where π′′ is nonempty. By similar arguments as in the proofs of Lemmas 6 and 7, one can show

that H ′(x) = x3(1−2x+2x2)
(1−x)3(1−2x) and the result follows using Lemma 7. �

Theorem 9. Let T = {1243, 2341, 3412}. Then

FT (x) =
1

1− 3x+ x2
+

1

1− x
+

1− x+ x2

(1− x)4
− 2(1− x)(1 − 2x− x2)

(1− 2x)3
.

Proof. To find Gm(x) with m ≥ 3, let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 3 left-right maxima.

Since π avoids T , we see that π(s) = ∅ for all s ≥ 4, with i1 < π(3) < i2. If π(3) = ∅, then we
have a contribution of xm−2G2(x). Otherwise, the letters in π(1)π(2) smaller than i1 are decreasing
and the letters of π(2)π(3) between i1 and i2 are decreasing. Thus, we have a contribution of

xm+1

(1−x)2(1−2x) . Hence,

Gm(x) = xm−2G2(x) +
xm+1

(1− x)2(1− 2x)
.

Summing over m ≥ 3, we obtain

FT (x)− 1− xFT (x) −G2(x) =
x

1− x
G2(x) +

x4

(1 − x)3(1− 2x)
,

and the result follows by substituting for G2(x) and solving for FT (x). �

3.3. Case 125: {1243, 2341, 4123}. We treat this case in 4 subsections.

3.3.1. Case I. Let T = {1243, 2341, 4123} and un denote the number of T -avoiding permutations
of length n starting with n− 1 and having leftmost ascent of the form a, n, where 2 ≤ a ≤ n− 1.
If 1 ≤ i ≤ n− 1, then let C′

n,i denote the number of 123-avoiding permutations of length n whose

leftmost ascent occurs at index i, with C′
n,n = 1. The numbers un may be expressed explicitly in

terms of C′
n,i as follows.
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Lemma 10. We have

(3) un = Cn−2 +

n−2
∑

a=2

n−2−a
∑

t=0

(

n− 2− a

t

)

u′(n− t, a), n ≥ 3,

where

u′(m, a) =

a−1
∑

i=1

(

i+m− 2− a

i

)

C′
a−1,i, 2 ≤ a ≤ m− 2.

Proof. Clearly, there are Cn−2 permutations avoiding T that start n− 1, n. So let π ∈ Sn(T ) be a
permutation enumerated by un having leftmost ascent bottom a ≤ n− 2. Then π is either of the
form π = (n− 1)a1a2 · · ·atanπ′, where a1 > a2 > · · · > at > a for some t ≥ 1 or π = (n− 1)anπ′.
One may verify that the letters a1, . . . , at are extraneous concerning the avoidance of the patterns
in T (note that these letters have no bearing on 2341, since letters in [a + 1, n − 2] occurring to
the right of a in π must occur as a decreasing subsequence to avoid 4123). Let u′(m, a) denote the
number of T -avoiding permutations of length m starting (m − 1)am. Considering all possible a

and t thus implies that there are
∑n−2

a=2

∑n−2−a

t=0

(

n−2−a
t

)

u′(n− t, a) permutations π of the stated
form above.

To complete the proof of (3), we need to establish the formula above for u′(m, a). To do so, let
ρ ∈ Sm(T ) be of the form enumerated by u′(m, a). Then ρ = (m− 1)amρ′ for some permutation
ρ′ of [a− 1]∪ [a+1,m− 2]. Note that ρ′ is 123-avoiding with all letters in [a+1,m− 2] descending
since ρ avoids 4123. Thus, ρ′ may be obtained by inserting letters from [a + 1,m − 2] within
a 123-avoiding permutation λ of [a − 1]. Suppose λ = λ1λ2 · · ·λa−1, with the first ascent of λ
occurring at index i (where i = a − 1 if λ = (a − 1) · · · 21). Since ρ′ avoids 123, no letter from
[a+ 1,m− 2] may be inserted beyond the (i + 1)-st letter of λ. Also, letters are to be inserted in
decreasing order, with letters preceding λ allowed. Since there are i+1 positions in which to insert
the letters from [a+1,m− 2], it follows that there are

(

i+m−2−a
i

)

possible ρ for each λ whose first
ascent occurs at index i. One may verify that permutations ρ so obtained avoid T . Considering
all 1 ≤ i ≤ a− 1 yields the desired formula for u′(m, a) and completes the proof. �

Let Cn,i denote the number of 123-avoiding permutations of length n having first letter i. Let
q(x, y) =

∑

n≥1

∑n

i=1 Cn,ix
nyi and ℓ(x, y) =

∑

n≥1

∑n

i=1 C
′
n,ix

nyi. Then the latter may be ex-
pressed in terms of the former as follows.

Lemma 11. We have

(4) ℓ(x, y) =
xy

(1 − xy)2
q

(

x

1− xy
, 1− xy

)

+
xy

1− xy
.

Proof. We refine C′
a,i according to the leftmost ascent bottom. That is, let C′

a,i,j denote the
number of 123-avoiding permutations π of length a with leftmost ascent at index i and leftmost
ascent bottom j. Note that C′

a,i,j can only be non-zero when 1 ≤ j ≤ a − i. Furthermore, any
letters of π coming prior to j are extraneous concerning avoidance of the patterns in T and thus
may be deleted, as can the leftmost ascent top. This leaves a permutation of the form enumerated
by Ca−i,j . Upon selecting the first i − 1 letters of π, which must belong to [j + 1, a], yields the
formula

C′
a,i =

a−i
∑

j=1

C′
a,i,j =

a−i
∑

j=1

(

a− j

i− 1

)

Ca−i,j , 1 ≤ i ≤ a− 1,
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with C′
a,a = 1. Thus we have

ℓ(x, y) =
∑

a≥1

C′
a,a(xy)

a +
∑

a≥2

a−1
∑

i=1





a−i
∑

j=1

(

a− j

i− 1

)

Ca−i,j



 xayi

=
xy

1− xy
+
∑

a≥2

a−1
∑

i=1





i
∑

j=1

(

a− j

i − j + 1

)

Ci,j



 xaya−i

=
xy

1− xy
+
∑

i≥1

i
∑

j=1

Ci,j

∑

a≥i+1

(

a− j

i− j + 1

)

xaya−i

=
xy

1− xy
+

xy

(1 − xy)2

∑

i≥1

i
∑

j=1

Ci,j

(

x

1− xy

)i

(1− xy)j ,

which implies (4). �

Note that from [8], we have

q(x, y) =
xy(1− yC(xy))

1− x− y
.(5)

We now calculate the generating function u(x) =
∑

n≥3 unx
n, which will be needed later.

Lemma 12. We have

(6) u(x) = x2(C(x) − 1) + (1− x)r

(

x

1− x
, 1− x

)

,

where

r(x, y) =
x4y2

(1− x− xy)2
q

(

xy(1 − x)

1− x− xy
,
1− x− xy

1− x

)

+
x4y2

(1 − x)(1 − x− xy)
.

Proof. First note that

∑

n≥4

n−2
∑

a=2

u′(n, a)xnya =
∑

n≥4

n−2
∑

a=2

a−1
∑

i=1

C′
a−1,i

(

i+ n− 2− a

i

)

xnya

=
∑

a≥2

a−1
∑

i=1

C′
a−1,iy

a
∑

n≥a+2

(

i+ n− 2− a

i

)

xn =
∑

a≥2

a−1
∑

i=1

C′
a−1,i

xa+2ya

(1− x)i+1

=
x3y

1− x

∑

a≥1

a
∑

i=1

C′
a,i

(xy)a

(1− x)i
=

x3y

1− x
ℓ

(

xy,
1

1− x

)

=
x4y2

(1− x− xy)2
q

(

xy(1− x)

1− x− xy
,
1− x− xy

1− x

)

+
x4y2

(1− x)(1 − x− xy)
,



ENUMERATION OF PERMUTATIONS AVOIDING A TRIPLE OF 4-LETTER PATTERNS IS ALL DONE 13

where we have used (4) in the final equality. Next observe that

∑

n≥4

n−2
∑

a=2

n−2−a
∑

t=0

(

n− 2− a

t

)

u′(n− t, a)xnya =
∑

a≥2

∑

n≥a+2

n
∑

t=a+2

(

n− 2− a

n− t

)

u′(t, a)xnya

=
∑

a≥2

∑

t≥a+2

u′(t, a)ya
∑

n≥t

(

n− 2− a

t− 2− a

)

xn =
∑

a≥2

∑

t≥a+2

u′(t, a)
xtya

(1− x)t−a−1

= (1 − x)
∑

t≥4

t−2
∑

a=2

u′(t, a)

(

x

1− x

)t

((1 − x)y)a = (1− x)r

(

x

1− x
, (1− x)y

)

.

Multiplying both sides of (3) by xn, and summing over n ≥ 3, then gives

u(x) = x2(C(x) − 1) +
∑

n≥4

(

n−2
∑

a=2

n−2−a
∑

t=0

(

n− 2− a

t

)

u′(n− t, a)

)

xn

= x2(C(x) − 1) + (1− x)r

(

x

1− x
, (1− x)y

)

|y=1,

which implies (6). �

Now let bn denote the number of T -avoiding permutations of length n whose leftmost ascent is of
the form a, n for some 2 ≤ a ≤ n − 1. For example, b3 = 1 (for 231) and b4 = 5 (for 2413, 2431,
3241, 3412 and 3421). Then we have the following recurrence formula.

Lemma 13. We have

(7) bn = bn−1 + un + 2n−3 − n+ 2 +

(

n− 2

4

)

+

n−4
∑

j=0

n−3−j
∑

i=1

(

n− i− 2

j + 1

)

Cn−2−j,i, n ≥ 3,

with b2 = 0, where un is given by (3) above.

Proof. Let π be a member of Sn(T ) enumerated by bn. If the first letter of π is n− 1, then there
are un possibilities by definition, so assume n ≥ 4 and that the first letter of π is less than n− 1.
Then π = a1a2 · · · ajanπ′, where j ≥ 0 and 2 ≤ a < aj < · · · < a1 ≤ n− 2. Let S = {a1, . . . , aj},
where S is possibly empty. Note that π′ is nonempty and let x denote the first letter of π′. If
x = n− 1, then it is seen that x may be deleted and there are bn−1 possibilities.

Now suppose x ∈ [a− 1]. Note that π′ is 123-avoiding due to 4123. Furthermore, this is the only
restriction on π′ since n, x implies all letters in [a + 1, n − 1] in π′ must decrease, and thus no
letter to the left of n can serve as a “2” within an occurrence of 2341 or as a “4” within a 4123.
Also, x < a implies all elements of S ∪ {a} are extraneous concerning the avoidance of 1243 as
well. Thus, these letters may all be deleted in addition to n, leaving a permutation of the form
enumerated by Cn−2−j,i for some i ∈ [a− 1]. Considering all 2 ≤ a ≤ n− 2, 0 ≤ j ≤ n− 2− a and
1 ≤ i ≤ a− 1 gives

n−2
∑

a=2

n−2−a
∑

j=0

a−1
∑

i=1

(

n− 2− a

j

)

Cn−2−j,i =

n−4
∑

j=0

n−3−j
∑

i=1

Cn−2−j,i

n−2−j
∑

a=i+1

(

n− 2− a

j

)

=

n−4
∑

j=0

n−3−j
∑

i=1

(

n− 2− i

j + 1

)

Cn−2−j,i
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possibilities in this case.

Next let a + 1 ≤ x ≤ n − 2. Here, we consider two cases on S. Note that S cannot comprise
all of [a+ 1, n− 2] due to our assumption on x. First suppose S = [a + 1, s] ∪ [t, n − 2] for some
a ≤ s < t− 1 ≤ n− 2, where S = ∅ is possible. Then π′ is of the form

π′ = b1b2 · · · bp(n− 1)d1d2 · · · dq,
where p ≥ 1, q ≥ 0 and b1 ∈ [a+1, n−2]. Note that no elements of [a−1] can occur to the right of
n−1, for otherwise there would be an occurrence of 2341 of the form ab1(n−1)z for some z ∈ [a−1].
Since letters occurring between n and n − 1 within π are decreasing due to 4123, the final a − 1
letters bi must comprise [a− 1]; that is, we have bp−a+2 = a− 1, bp−a+2 = a− 2, . . . , bp = 1. Since
a ≥ 2, the di letters must also decrease in order to avoid 4123. Furthermore, all of the di letters
are less than all of the letters in [a+ 1, n− 2] occurring between n and n− 1, for otherwise, there
would be an occurrence of 1243 (with a and n− 1 corresponding to the “1” and “4”, respectively).
Thus, the subsequence b1b2 · · · bp−a+1d1d2 · · · dq comprises all elements of [a + 1, n − 2] occurring
to the right of n within π in decreasing order, where p ≥ a and q is possibly zero. One may verify
that the corresponding π of the stated form is T -avoiding. Considering all a and S implies that
there are

n−3
∑

a=2

n−3−a
∑

i=0

n−3−a−i
∑

j=0

(n− 2− a− i− j) =

n−3
∑

a=2

n−3−a
∑

i=0

(

n− 1− a− i

2

)

=

n−3
∑

a=2

(

n− a

3

)

=

(

n− 1

4

)

possibilities in this case.

If S is not of the form [a+1, s]∪ [t, n+2], then there must exist some v1 < u < v2 all belonging to
[a+1, n−2] such that u ∈ S and v1, v2 /∈ S. If π′ = b1 · · · bp(n−1)d1 · · · dq is as before, with q > 0,
then b1 ≥ v2 > u and dq ≤ v1 < u implies ub1(n− 1)dq is a 2341, which is impossible. Thus q = 0
and there is only one way in which to arrange the letters within π to the right of n, i.e., letters in
[n− 2]− S in decreasing order followed by a− 1, . . . , 1, n− 1. By subtraction, there are for n ≥ 4,

n−3
∑

a=2



2n−2−a − 1−
n−3−a
∑

i=0

n−3−a−i
∑

j=0

1



 = 2n−3 − (n− 2)−
n−3
∑

a=2

(

n− 1− a

2

)

= 2n−3 − (n− 2)−
(

n− 2

3

)

possible members of Sn(T ) in this case. Combining all of the previous cases gives (7). �

3.3.2. Case II. Let dn denote the number of T -avoiding permutations of length n not starting with
n whose leftmost ascent is of the form a, n− 1 for some 2 ≤ a ≤ n− 2. Note, for example, d5 = 6,
the enumerated permutations being {24135, 24153, 24315, 32415, 34125, 34215}. Then dn may be
expressed in terms of bn as follows.

Lemma 14. We have

(8) dn = dn−1 + bn−1 − bn−2 +

(

n− 3

2

)

+

n−3
∑

a=3

n−3−a
∑

ℓ=0

n−2−a−ℓ
∑

m=1

(

n− 5− ℓ−m

a− 3

)

m, n ≥ 5,

with d4 = 1, where bn is given by (7) above.
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Proof. Let Bm and Dm denote the subsets of Sm(T ) enumerated by bm and dm for m ≥ 3. To
show (8), consider forming members of Dn by inserting n somewhere to the right of n− 1 within
members of Bn−1, where n ≥ 5. First note that there are dn−1 possibilities if the letter n − 2 is
to directly follow n− 1 within a member of Bn−1, upon deleting n− 1. Let B′

m denote the subset
of Bm consisting of those members where m − 1 does not directly follow m. Note that one may
always append the letter n to a member of B′

n−1 without introducing an occurrence of one of the
patterns in T , which yields bn−1 − bn−2 members of Dn.

We now consider the various cases considered in the proof of recurrence (7) above in an effort to
determine any further members of Dn. Let π ∈ B′

n−1. If the first letter of π is n− 2, then n must
be added as the final letter (in order to avoid 2341), and hence there are no additional members of
Dn coming from this case (beyond those already accounted for by bn−1 − bn−2 above). So assume
henceforth that the first letter of π is less than n − 2, and write π = π′a(n − 1)π′′, where a ≥ 2
is the leftmost ascent bottom. Let y be the first letter of π′′. First assume a + 1 ≤ y ≤ n − 3.
Then the element 1 must (directly) precede n− 2 within π′′, or π would contain 2341. Thus, the
letter n cannot be inserted between n− 1 and y, for otherwise there is an occurrence of 2341, and
it cannot be inserted anywhere between y and n− 2 either due to 1243 occurring in that case. If
n were to be inserted to the right of n − 2, but not at the very end of π, then there would be a
2341 in which the roles of “2” and “3” are played by the letters y and n− 2, respectively. Thus,
no additional members of Dn arise if y ∈ [a+ 1, n− 3].

Now assume y ∈ [a− 2] and let z denote the last letter of π′′. Note that z 6= y since π′′ has length
at least two. Then z must belong to [a− 3]∪ {a− 1} since π′′ is 123-avoiding, which again implies
one must add n to the very end of π to create a member of Dn (in order to avoid an occurrence
of 2341 as witnessed by the subsequence a(n − 1)nz). So assume henceforth y = a − 1. Still, no
additional members of Dn are possible if z ∈ [a− 2], so assume henceforth z > a. We now consider
cases on π′. First suppose that π′ does not comprise [a + 1, a + ℓ] for some 0 ≤ ℓ ≤ n − 3 − a.
The there exist a+ 1 ≤ u < v ≤ n− 3 with u /∈ π′ and v ∈ π′. Then u ≥ z since z is seen to be
the smallest element of [a+ 1, n− 3] in π′′. Thus, adding n anywhere except at the very end of π
produces an occurrence of 2341, as witnessed by v(n− 1)nz.

So assume π′ comprises [a+ 1, a+ ℓ] for some ℓ. If a ≥ 3, then π may be written as

π = (a+ ℓ) · · · (a+ 1)a(n− 1)(a− 1)ρ1(a+ ℓ+m) · · · (a+ ℓ+ 2)(a+ ℓ+ 1), n ≥ 6,

for some 1 ≤ m ≤ n − 2 − a − ℓ, where ρ consists of the remaining letters of [n − 1]. Since the
set of letters to the right of n− 1 within π form a 123-avoiding permutation, with the last letter
greater than the first, the subsequence ρ consists of alternating runs of letters from the disjoint
sets [2, a− 2] and [a+ ℓ+m+ 1, n− 2], where the subsequences of π comprising the letters from
these sets are decreasing (in order to avoid 4123). Thus, selecting the positions of the elements of

[2, a − 2] uniquely determines ρ, which can be done in
(

n−5−ℓ−m
a−3

)

ways. In this case, n may be

inserted directly prior to any of the elements of [a+ ℓ+1, a+ ℓ+m] and the resulting permutation
is seen to always belong to Sn(T ). Considering all possible a, ℓ and m gives

n−3
∑

a=3

n−3−a
∑

ℓ=0

n−2−a−ℓ
∑

m=1

(

n− 5− ℓ−m

a− 3

)

m

members of Dn that have not been enumerated already. If a = 2, then we have

π = (ℓ+ 2) · · · 32(n− 1)1(n− 2)(n− 3) · · · (ℓ + 3), n ≥ 5,
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in which case n may be inserted directly prior to any element of [ℓ+3, n−2]. This gives
∑n−5

ℓ=0 (n−
4− ℓ) =

(

n−3
2

)

additional members of Dn. Combining this case with the previous yields (8).

�

3.3.3. Case III. Let en denote the number of T -avoiding permutations of length n not starting
with n whose leftmost ascent is of the form a, b, where 2 ≤ a < b ≤ n − 2. Note that e4 = 0 and
e5 = 2, the enumerated permutations being 23145 and 42315. The sequence en may be expressed
in terms of bn and dn as follows.

Lemma 15. We have

(9) en = en−1 + dn−1 + Cn−2 − 2n−3 +

n−2
∑

i=3

(di+1 − bi), n ≥ 4,

with e3 = 0, where bn and dn are determined by (7) and (8).

Proof. Let π be a permutation enumerated by en, where n ≥ 5. To show (9), we consider cases
on the first and the last letters of π. Let a and b be the letters involved in the leftmost ascent of
π, where 2 ≤ a < b ≤ n − 2, and let x and y denote the first and last letters of π. If x 6= n − 1
and y = n, then deleting n gives en−1 + dn−1 possibilities in this case, upon considering whether
or not b is less than n− 2. If x = n− 1 and y = n, then π must start n− 1, n− 2, . . . , b + 1. For
if not, and p ∈ [b + 1, n− 1] lies to the right of b within π, then π contains a 4123, as witnessed
by the subsequence (n − 1)abp. Then the elements of [b + 1, n] may be deleted from π, which
leaves a 123-avoiding permutation of length b whose leftmost ascent is a, b, where a ≥ 2. Upon
subtracting the 123-avoiding permutations of length b that start with b or whose leftmost ascent
is 1, b, one gets Cb − Cb−1 − 2b−2 possibilities for each b. Summing over 3 ≤ b ≤ n − 2 gives
∑n−2

b=3

(

Cb − Cb−1 − 2b−2
)

= Cn−2 − 2n−3 possible π in this case.

Finally, assume y 6= n. Then π must start n− 1, n− 2, . . . , b + 1. To show this, suppose it is not
the case and let q ∈ [b+1, n− 1] lie to the right of b. Note that any letter to the right of n within
π must be less than b so as to avoid 1243. In particular, q must lie between b and n. Since y 6= n,
there exists a letter r to the right of n. But then bqnr is a 2341, which is impossible. Furthermore,
one may verify, without using any letters to the left of a, that any elements of [a+ 1, b− 1] to the
right of b within π must decrease. Thus, it is seen that the letters n − 1, n− 2, . . . , b + 1 impose
no restriction on the subsequent letters of π when considering the pattern 4123. The same can
be said for the patterns 1243 and 2341, which implies that these letters are extraneous concerning
the avoidance of T and thus may be deleted. Doing so leaves a permutation of length b + 1, not
starting or ending with b+1, whose leftmost ascent is of the form a ≤ b, where a ≥ 2. Considering

all possible b gives
∑n−2

i=3 (di+1 − bi) possibilities in this case, by subtraction, which completes the
proof. �

3.3.4. Case IV. Let gn denote the number of T -avoiding permutations of length n not starting
with n whose leftmost ascent is of the form 1, a for some a > 1.

Lemma 16. We have

(10) gn = gn−1 + 5 · 2n−3 +

(

n− 1

4

)

− n+

n−1
∑

m=3

(

n−m+ 1

2

)

2m−3, n ≥ 3,

with g2 = 1.
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Proof. Recurrence (10) is clear if n = 3, so assume n ≥ 4. Let π = a1a2 · · · as1π′ be of the form
enumerated by gn, where 1 < as < as−1 < · · · < a1 ≤ n − 1, and let S = {a1, a2, . . . , as}. We
consider several cases on S. If S = ∅, then π = 1π′ where π′ avoids {132, 2341, 4123}, and hence
there are 2n−1 − n + 1 possibilities. So assume S 6= ∅. If as = 2, then deleting 2 gives gn−1

possibilities. Henceforth assume as ≥ 3. We will refer to letters in [a1 + 1, n] as large and those
belonging to [2, a1]− S as small. Note that π′ contains both large and small letters.

Large letters to the left of any small letters within π′ must decrease (due to 2341), while large
letters to the right of any small letters must increase (1243). The small letters themselves must
decrease, for otherwise there would be a 4123 starting with a1, 1. It is not possible for there to
exist two or more large letters occurring between the greatest and the least of the small letters,
for otherwise π would contain 1243 or 2341. Assume now that there is exactly one such large
letter. In order for this to occur, the set S must be an interval of the form [ℓ, ℓ + s − 1], where
4 ≤ ℓ ≤ n − 1 and 1 ≤ s ≤ n − ℓ. For if not, then the largest small letter y would exceed the
smallest member x of S, which would introduce an occurrence of 2341 of the form xyz2 for some
large letter z. Furthermore, any large letters occurring to the left of the first small letter must be
less than any large letters occurring to the right of the last large letter in this case, for otherwise
there would be an 4123 where the “1” and “2” correspond to the largest small and the smallest
large letter, respectively. One may verify that a permutation satisfying all of the requirements
above with respect to the large and small letters and to the set S is T -avoiding. Note that given ℓ
there are ℓ−3 possible positions in which to place the smallest large letter since it must go between
two small letters. If the leftmost large letter within π′ is denoted by n− t, where 0 ≤ t ≤ n− ℓ− s,
then considering all possible ℓ, s and t yields

n−1
∑

ℓ=4

n−ℓ
∑

s=1

n−ℓ−s
∑

t=0

(ℓ − 3) =

n−4
∑

s=1

n−4−s
∑

t=0

n−s−t
∑

ℓ=4

(ℓ − 3) =

n−4
∑

s=1

n−4−s
∑

t=0

(

n− 2− s− t

2

)

=

n−4
∑

s=1

(

n− 1− s

3

)

=

(

n− 1

4

)

permutations in this case.

So assume that there is not a large letter between the greatest and the least of the small letters.
We consider further cases on π′, which we write as π′ = α1βα2, where β comprises the set of
small letters. First assume that one of α1, α2 is empty or that both are nonempty with min(α2) >
max(α1). Let a1 = m, where s + 2 ≤ m ≤ n − 1. For each S with a1 = m, there are n −m + 1
possible π′ upon choosing the length of (the interval) α2, which can be anywhere from 0 to n−m
(note that once S is specified, π′ is uniquely determined in this case by |α2|). Also as ≥ 3 implies

that there are
(

m−3
s−1

)

choices for the remaining elements of S. Since all permutations formed in
this manner are seen to be T -avoiding, we get

n−3
∑

s=1

n−1
∑

m=s+2

(n−m+ 1)

(

m− 3

s− 1

)

=
n−1
∑

m=3

(n−m+ 1)
m−2
∑

s=1

(

m− 3

s− 1

)

=
n−1
∑

m=3

(n−m+ 1)2m−3

possibilities in this case. Now assume that α1 and α2 are both nonempty, with min(α2) < max(α1).
Then it must be the case that min(α2) is the only letter in α2 that is less than max(α1), for if not,
then there would be an occurrence of 4123. If max(α1) = n − t, then 0 ≤ t ≤ n − m − 2 where
a1 = m, with s+ 2 ≤ m ≤ n− 2. The first letter of α2 must then belong to [m+1, n− t− 1], and



18 D. CALLAN, T. MANSOUR, AND M. SHATTUCK

thus there are n−m− t− 1 choices for it. Considering all possible s, m and t yields

n−4
∑

s=1

n−2
∑

m=s+2

n−m−2
∑

t=0

(n−m− t− 1)

(

m− 3

s− 1

)

=

n−4
∑

s=1

n−2
∑

m=s+2

(

m− 3

s− 1

)(

n−m

2

)

=

n−2
∑

m=3

(

n−m

2

)

2m−3

additional permutations. Thus, the last two cases combined give

n−1
∑

m=3

((

n−m+ 1

2

)

+ 1

)

2m−3 = 2n−3 − 1 +

n−1
∑

m=3

(

n−m+ 1

2

)

2m−3

possibilities in all. Putting this together with the prior cases above implies (10). �

For any of the sequence above, put zero if n is such that the corresponding set of permutations is
empty. For example, we have dn = 0 for n ≤ 3. Combining cases I through IV above, and including
permutations that start with the letter n, implies that the number of T -avoiding permutations of
length n is given by

(11) an = bn + dn + en + gn + Cn−1, n ≥ 2,

with a0 = a1 = 1.

We now find a formula for the generating function A(x) =
∑

n≥0 anx
n. Define B(x) =

∑

n≥2 bnx
n,

D(x) =
∑

n≥4 dnx
n, E(x) =

∑

n≥3 enx
n and G(x) =

∑

n≥2 gnx
n. First we rewrite the recurrences

in the preceding lemmas in terms of generating functions, by multiplying both sides by xn and
summing over all possible n. By Lemmas 13–16, we obtain

B(x) =
1

1− x

(

u(x) +
x3

1− 2x
− x3

(1− x)2
+

x5

(1− x)5
− x5

(1− x)4

+ xq

(

x

1− x
, 1− x

)

− xq(x, 1)

)

,(12)

D(x) = xB(x) +
x5

(1 − x)3(1− 2x)
,(13)

(1− x)E(x) = xD(x) + x2C(x) −
(

x2 + x3 +
2x4

1− 2x

)

+
x

1− x
D(x) − x2

1− x
B(x),(14)

G(x) =
x2(1− 5x+ 13x2 − 18x3 + 13x4 − 6x5 + x6)

(1 − x)6(1− 2x)
,(15)

respectively. By solving (12)–(14), along with use of (5) and Lemma 12, we obtain

B(x) = (1− x)(C(x) − 1) +
x(3x5 − 8x4 + 13x3 − 11x2 + 5x− 1)

(1− x)6
,

D(x) = x(1 − x)(C(x) − 1)− x2(7x6 − 22x5 + 37x4 − 36x3 + 21x2 − 7x+ 1)

(1− x)6(1 − 2x)
,

E(x) =
x2(2− x)

1− x
(C(x) − 1)− x3(8x6 − 29x5 + 54x4 − 57x3 + 36x2 − 13x+ 2)

(1− x)7(1 − 2x)
.

By (11), we have

A(x) = 1 + x+B(x) +D(x) + E(x) +G(x) + x(C(x) − 1),

which, upon substituting the expressions just found for the generating functions B(x), D(x), E(x)
and G(x), implies the following result.
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Theorem 17. Let T = {1243, 2341, 4123}. Then

FT (x) =
1− 9x+ 34x2 − 70x3 + 87x4 − 65x5 + 26x6 − 5x7

(1 − x)7(1− 2x)
+

1

1− x

(

C(x) − 1
)

.

3.4. Case 149: {1234, 3412, 4123}. We enumerate directly T -avoiding permutations that have
exactly two or three left-right maxima.

3.4.1. The case of two l-r maxima. We first count T -avoiding permutations that have two left-right
maxima in which the first component is decreasing. Let En denote the set of permutations of length
n avoiding {123, 3412} and let en = |En|.
Lemma 18. The number of T -avoiding permutations of length n having two left-right maxima and
of the form π = aπ′nπ′′ where π′ is decreasing is given by

gn = (3− n)2n−3 − 1 +

n−2
∑

a=1

2a−1en−1−a +

n−1
∑

a=2

(

2n−1−a − 1−
(

n− a

2

))

(a− 1)2a−2

+

n−2
∑

i=0

(

n− 1 + i

2i+ 1

)

+

n−3
∑

a=2

n−2−a
∑

ℓ=1

a−1
∑

i=0

2n−2−a−ℓ

(

a− 1

i

)(

ℓ+ i

i

)

, n ≥ 3.(16)

Proof. We first determine the number e∗n of members of En whose final letter is not part of an
occurrence of 231. Let E∗

n denote the subset of En enumerated by e∗n and let E∗
n,ℓ ⊆ E∗

n consist of

those members whose final decreasing run is of length ℓ, with e∗n,ℓ = |E∗
n,ℓ|. We define a bijection

between E∗
n,ℓ and E∗

n−ℓ as follows where 1 ≤ ℓ ≤ n − 1. Suppose λ ∈ E∗
n,ℓ and let b denote

the leftmost ascent bottom of λ. First assume b ≥ 2. Then letters in [b − 1] decrease so as to
avoid 3412, while letters greater than b to the right of it must also decrease to avoid 123. Since
b ≥ 2 and the final letter of λ is not part of a 231, it follows that the final ℓ + 1 letters of λ are
1, b + r + ℓ, b + r + ℓ − 1, . . . , b + r + 1 for some r ≥ 0. In this case, we delete from λ the letters
in [b + r + 1, b + r + ℓ − 1], together with 1, and standardize the resulting permutation which is
seen to result in a member λ′ ∈ E∗

n−ℓ. Note that all members of E∗
n−ℓ in which the leftmost ascent

top is not the final letter arise uniquely in this manner. If b = 1, then λ consists of two decreasing
runs, the second of which is of length ℓ. To obtain λ′ in this case, we delete the final ℓ− 1 letters
of λ, together with the first letter of λ if it exceeds the first letter of the second decreasing run;
otherwise, we simply delete the final ℓ letters of λ prior to standardizing. Note that one obtains
in this manner all members of E∗

n−ℓ that consist of two decreasing runs in which the second run
is of length one, together with the decreasing permutation (n − ℓ) · · · 21. One may verify in each
case that the mapping λ 7→ λ′ is a bijection, as desired. Since e∗n,n = 1 and e∗n =

∑n

ℓ=1 e
∗
n,ℓ, we

have e∗n = 1 +
∑n−1

ℓ=1 e∗n−ℓ for n ≥ 2, with e∗1 = 1, which implies e∗n = 2n−1 and e∗n,ℓ = 2n−ℓ−1 for
1 ≤ ℓ ≤ n− 1.

We now count members of Sn(T ) that have two left-right maxima and are of the form π = aπ′nπ′′

for some a ≥ 1 where π′ is decreasing. There are clearly en−2 possibilities if a = 1 and 2n−2

possibilities if a = n − 1, so assume n ≥ 4 and 2 ≤ a ≤ n − 2. Let L denote the subsequence
of π comprising the elements of [a + 1, n − 1]. Then L is {123, 3412}-avoiding, with no letters in
[a − 1] occurring between n and the rightmost ascent bottom of L, for otherwise there is a 4123
of the form na′ℓ1ℓ2, where a′ ∈ [a− 1] and ℓ1, ℓ2 comprise the rightmost ascent of L (viewed as a
permutation in its own respect when discussing ascents). We consider cases on L. First suppose
L (when standardized) belongs to E∗

n−1−a,ℓ for some ℓ. Let i denote the number of elements of
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[a− 1] in π′′. Since π′ is decreasing, there is no restriction on the choice of these elements. There

are e∗n−1−a,ℓ possibilities for L and
(

ℓ+i

i

)

ways in which to arrange the elements of [a− 1] occurring

in π′′ once π′ and L are specified, since they must decrease (due to 3412) and occur to the right of
the rightmost ascent bottom of L. Considering all possible a, ℓ and i, and treating separately the
case when ℓ = n− 1− a, gives

n−2
∑

a=2

n−1−a
∑

ℓ=1

a−1
∑

i=0

(

a− 1

i

)(

ℓ+ i

i

)

e∗n−1−a,ℓ

= n− 3 +
n−3
∑

i=1

n−2
∑

a=i+1

(

a− 1

i

)(

n− 1− a+ i

i

)

+
n−3
∑

a=2

n−2−a
∑

ℓ=1

a−1
∑

i=0

2n−2−a−ℓ

(

a− 1

i

)(

ℓ+ i

i

)

=
n−2
∑

i=0

(

n− 1 + i

2i+ 1

)

− 2n−2 − 1 +
n−3
∑

a=2

n−2−a
∑

ℓ=1

a−1
∑

i=0

2n−2−a−ℓ

(

a− 1

i

)(

ℓ+ i

i

)

possible permutations and each is seen to be T -avoiding. On the other hand, if L does not belong
to E∗

n−1−a, then the letters from [a− 1] in π′′ can always occur at the end (in descending order),
which yields

n−2
∑

a=2

2a−1(en−1−a − e∗n−1−a) =

n−2
∑

a=2

2a−1en−1−a − (n− 3)2n−3

permutations in this case.

We now entertain the possibility of x ∈ [a− 1] occurring in a position of π′′ other than beyond the
rightmost letter of L when L does not belong to E∗

n−1−a. Note first that if the final letter q of a
{123, 3412}-avoiding permutation ρ is part of an occurrence of 231, then one can always take the
letter corresponding to the “3” within the occurrence to be the leftmost ascent top r of ρ. This
is clear if the leftmost ascent bottom s of ρ exceeds q. On the other hand, if s < q, then since all
letters greater than s and to the right of r decrease, the only possibility for the “2” in this case
is some letter to the left of r, whence one may take r to be the “3” (since all letters to the left
of r decrease). Thus if L contains more than one ascent, inserting x anywhere to the right of the
rightmost ascent bottom of L other than beyond the rightmost letter of L is seen to introduce an
occurrence of 3412, where the “4” and the “2” correspond to the leftmost ascent top and rightmost
letter of L, respectively. Therefore, L must contain exactly one ascent in order for x to occur in a
position prior to some letter in L. In this case, x can go either between the two letters comprising
the ascent of L or beyond the last letter of L. Since at least one letter in [a−1] must be positioned
prior to some letter in L (in order to distinguish permutations arising in this case from those of
previous cases), there are

(

a−1
i

)

i ways in which to select and arrange the letters from [a− 1] in π′′

where i ≥ 1. Furthermore, there are
∑n−2−a

j=2

(

(

n−1−a

j

)

− (n− a− j)
)

possibilities for L, since the

second (and final) decreasing run of L cannot comprise an interval (for otherwise, L would belong
to E∗

n−1−a). Considering all possible a, i and j yields

n−2
∑

a=2

a−1
∑

i=1

(

a− 1

i

)

i

n−2−a
∑

j=2

((

n− 1− a

j

)

− (n− a− j)

)

=

n−1
∑

a=2

(

2n−1−a − 1−
(

n− a

2

))

(a−1)2a−2

additional permutations. Combining this case with the other cases gives (16). �
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Let En,ℓ ⊆ En consist of those members whose final decreasing run (i.e., the letters to the right of
and including the rightmost ascent top) is of length ℓ for 1 ≤ ℓ ≤ n−1, with En,n = {n(n−1) · · ·1}.
For example, we have E4,2 = {2143, 3142, 3241, 4132, 4231} and E4,3 = {1432, 2431, 3421}. We will
need the following explicit formula for en,ℓ = |En,ℓ|.
Lemma 19. If n ≥ 2, then

(17) en,ℓ =
n−1−ℓ
∑

m=0

e′n−m,ℓ, 1 ≤ ℓ ≤ n− 1,

where

e′n,ℓ =

(

n− 1

ℓ− 1

)

+

ℓ
∑

b=2

b−1
∑

i=1

n−1−b
∑

r=ℓ+1−i

(

r − 2− ℓ+ b

b− 1− i

)

+

n−1
∑

b=ℓ+1

ℓ
∑

i=1

n−1−b
∑

r=ℓ+1−i

(

r − 2− ℓ+ b

b− 1− i

)

for 1 ≤ ℓ ≤ n− 2, with e′n,n−1 = n− 1 if n ≥ 2.

Proof. Let E ′
n,ℓ ⊆ En,ℓ consist of those members whose leftmost ascent top is n, with e′n,ℓ = |E ′

n,ℓ|.
Since the leftmost ascent top q of any π ∈ En is the largest letter yet to be used, all elements
of [q + 1, n] must appear as part of the initial decreasing run of π. Since these letters are seen
to be extraneous concerning the avoidance of 123 and 3412, they may be deleted which implies

en,ℓ =
∑n−ℓ−1

m=0 e′n−m,ℓ. To complete the proof, we establish the formula stated above for e′n,ℓ where
1 ≤ ℓ ≤ n− 2, the ℓ = n− 1 case being clear from the definitions.

Let π ∈ E ′
n,ℓ and b be the leftmost ascent bottom of π. If the letters to the right of n within π

are decreasing, then π = π′bnπ′′(b − 1) · · · 21, where π′ and π′′ are decreasing and π′′ has length

ℓ − b, assuming b ≤ ℓ. Considering all possible b gives
∑ℓ

b=1

(

n−1−b
ℓ−b

)

=
(

n−1
ℓ−1

)

permutations π. So

assume that there is at least one ascent to the right of n within π. Then π = π′bnπ′′, where π′ is
decreasing and π′′ can be expressed as

π′′ = ρb(b − 1)ρb−1(b− 2) · · · ρ21ρ1,
where ρi denotes a possibly empty sequence of letters. Let K denote the subsequence of π com-
prising the letters in ρb ∪ ρb−1 ∪ · · · ∪ ρ1. Then K is decreasing so as to avoid 123 and nonempty,
by the assumption on π. First suppose 2 ≤ b ≤ ℓ and let i be the smallest index j such that
ρj 6= ∅. Note that 1 ≤ i ≤ b − 1 since i = b is disallowed, for otherwise π′′ would be decreasing
contrary to our assumption. Also, ρi contains exactly ℓ + 1 − i letters since the final decreasing
run of π is to be of length ℓ. If r denotes the number of letters in K, then ℓ+1− i ≤ r ≤ n− 1− b,
with K comprising the interval [n− r, n− 1] and the remaining elements of [b+ 1, n− 1] going in
π′. For if not, then there would be would an occurrence of 3412 of the form xn(b − 1)y for some
x, y ∈ [b+1, n− 1] with x > y. Note that the largest r− (ℓ+1− i) letters of K may be distributed

amongst ρb, ρb−1, . . . , ρi+1 in
(

r−2−ℓ+b
b−1−i

)

ways. Considering all possible b, i and r yields

ℓ
∑

b=2

b−1
∑

i=1

n−1−b
∑

r=ℓ+1−i

(

r − 2− ℓ + b

b− 1− i

)

permutations π and each is seen to belong to E ′
n,ℓ. If ℓ + 1 ≤ b ≤ n− 1, then the index i satisfies

1 ≤ i ≤ ℓ, for otherwise π would have a final decreasing run of length strictly greater than ℓ. Then
r satisfies the same conditions as before and K again comprises [n − r, n − 1]. Considering all b,
i and r gives the second triple sum in the expression for e′n,ℓ above and combining the previous

cases yields the desired expression for the cardinality of E ′
n,ℓ. �
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Let bn denote the number of T -avoiding permutations of length n having exactly two left-right
maxima. It is given explicitly as follows.

Lemma 20. We have

bn = (7− n)2n−3 − 2 +

n−2
∑

a=1

2a−1en−1−a +

n−3
∑

a=2

n−2−a
∑

ℓ=1

a−1
∑

i=0

2n−2−a−ℓ

(

a− 1

i

)(

ℓ+ i

i

)

+

n−1
∑

a=2

(

2n−1−a − 1−
(

n− a

2

))

(a− 1)2a−2 +

n−1
∑

a=3

a−2
∑

ℓ=1

ℓ
∑

j=0

(

n− 1− a+ j

j

)

ea−1,ℓ, n ≥ 3,

(18)

where en−1−a and ea−1,ℓ are as defined above.

Proof. We count permutations π = aπ′nπ′′ having two left-right maxima where π′ is not decreasing,
whence a ≥ 3. Then letters in [a + 1, n− 1] must decrease, so as to avoid an occurrence of 1234.
Let α denote the subsequence of π comprising the letters in [a − 1]. Then α avoids {123, 3412},
and if α ∈ Ea−1,ℓ for some ℓ where 1 ≤ ℓ ≤ a− 2, then at most ℓ letters of α can lie within π′′ (or
else there would be an occurrence of 3412 starting with a, n). Suppose exactly j letters of α lie

within π′′. If 0 ≤ j ≤ ℓ−1, then there are ea−1,ℓ possibilities for π
′ and

(

n−1−a+j

j

)

ways to arrange

the letters in π′′ once π′ is known since letters from both [a− 1] and [a+ 1, n− 1] are decreasing
in π′′, which uniquely determines π. This yields

n−1
∑

a=3

a−2
∑

ℓ=1

ℓ−1
∑

j=0

(

n− 1− a+ j

j

)

ea−1,ℓ

possible π and one may verify that each such π is T -avoiding. If j = ℓ, then the same reasoning
applies except that now α must contain at least two ascents, for otherwise π′ would be decreasing
contrary to our assumption. Thus, there are ea−1,ℓ−

(

a−1
ℓ

)

+1 possibilities for α in this case, which
yields

n−1
∑

a=3

a−2
∑

ℓ=1

(

n− 1− a+ ℓ

ℓ

)[

ea−1,ℓ −
(

a− 1

ℓ

)

+ 1

]

additional permutations. Note that

n−1
∑

a=3

a−2
∑

ℓ=1

(

n− 1− a+ ℓ

ℓ

)[(

a− 1

ℓ

)

− 1

]

=

n−3
∑

ℓ=1

n−1
∑

a=ℓ+1

(

n− 1− a+ ℓ

ℓ

)[(

a− 1

ℓ

)

− 1

]

=

n−3
∑

ℓ=1

[(

n− 1 + ℓ

2ℓ+ 1

)

−
(

n− 1

ℓ+ 1

)]

=

n−2
∑

ℓ=0

(

n− 1 + ℓ

2ℓ+ 1

)

− (2n−1 − 1).

The two previous cases taken together then imply that there are

2n−1 − 1−
n−2
∑

ℓ=0

(

n− 1 + ℓ

2ℓ+ 1

)

+

n−1
∑

a=3

a−2
∑

ℓ=1

ℓ
∑

j=0

(

n− 1− a+ j

j

)

ea−1,ℓ

permutations π of the stated form above where π′ is not decreasing. Combining this expression
with the one for gn in Lemma 18 above gives (18). �
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3.4.2. Three l-r maxima. Let dn denote the number of T -avoiding permutations of length n having
three left-right maxima. The sequence dn may be expressed explicitly as follows.

Lemma 21. We have

(19) dn =

n−2
∑

a=1

n−1
∑

b=a+1

dn(a, b), n ≥ 3,

where

dn(a, b) =

(

2a−1 +

(

a

2

))

(

2b−1−a − b+ a
)

+

(

(a− 1)2a−2 −
(

a

2

))

(

2b−1−a − 1
)

+
a−1
∑

j=0

((

a− 1

j

)

− 1

)(

n− b+ j

j

)

+
a−1
∑

j=0

b−2−a
∑

r=0

((

a− 1

j

)

− 1

)(

n− 3− r − j

n− 1− b

)

+

a−1
∑

j=0

j
∑

i=0

b−1−a
∑

r=0

(

i+ r

i

)(

n− 2 + j − i− a− r

n− 1− b

)

, 1 ≤ a < b ≤ n− 1.

Proof. Let Dn(a, b) denote the set of T -avoiding permutations whose left-right maxima are a, b, n,
where 1 ≤ a < b ≤ n−1. We will show that |Dn(a, b)| is given by dn(a, b) above, which implies (19).
Let π = aπ′bπ′′nπ′′′ ∈ Dn(a, b). Then all letters in π′ and [b+1, n− 1] decrease so as to avoid 1234
as well as any letters from [a+1, b− 1] in π′′. Also, any letters of [b− 1] within π′′′ and any letters
of [a − 1] occurring to the right of b must decrease, for otherwise there would be an occurrence
of 3412 in either case. We now consider cases based off of whether or not the subsequence α of π
comprising [a − 1] is decreasing. First assume that it is. Suppose for now that the subsequence
β of π comprising [a + 1, b − 1] is not decreasing and thus contains exactly one ascent. Then all
elements of [b − 1] within π′′′ in this case must occur at the end of π′′′ (necessarily in decreasing
order), for otherwise there is a 1234 of the form axy(b+1) for some x, y ∈ [a+1, b− 1] with x < y.
Also, any elements of [a − 1] in π′′ must occur at the end of π′′, for otherwise there is a 4123 of
the form bzxy where z ∈ [a− 1].

Let j denote the number of elements of [a − 1] occurring to the right of b within π and i, the
number of elements of [a−1] in π′′, where 0 ≤ j ≤ a−1 and 0 ≤ i ≤ j. Let r denote the number of

elements of [a+1, b− 1] in π′′. Then there are
(

n−1−a
r

)

− 1 ways in which to select these elements
as β is to contain an ascent. Since the positions of the elements of [a− 1] within π are determined
by the prior observations once i and j are specified in this case, we get

a−1
∑

j=0

j
∑

i=0

b−1−a
∑

r=0

[(

b− 1− a

r

)

− 1

]

= (2b−1−a − b+ a)

a−1
∑

j=0

j
∑

i=0

1 =

(

a+ 1

2

)

(2b−1−a − b+ a)

possible permutations. One may verify (and also in the subsequent cases) that the permutations

so obtained are T -avoiding. On the other hand, if β is decreasing, then we get
(

i+r
i

)

possibilities
for π′′ since letters from [a− 1] and [a+ 1, b− 1] within π′′ are decreasing, and

(

(n− 1− b) + (j − i) + (b − 1− a− r)

n− 1− b

)

=

(

n− 2 + j − i− a− r

n− 1− b

)

possibilities for π′′′ since letters from [b − 1] and [b + 1, n− 1] within π′′′ are decreasing, where i,
j and r are as before. Considering all i, j and r gives the triple sum found in the expression for
dn(a, b) above.
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Now assume that α contains an ascent. Note that since the letters of [a − 1] within π occurring
to the left and to the right of b form decreasing subsequences, there is exactly one ascent in α
and it involves the last letter of π′ and either the leftmost letter of [a − 1] within π′′ if π′′ is
nonempty or the leftmost letter of [a− 1] within π′′′ if π′′ is empty. Any elements of [a− 1] within
π′′ must occur at the end of π′′ in this case so as to avoid 1234. Also, if π′′ contains at least one
member of [a − 1] and π′′′ at least one member of [a + 1, b − 1], then all elements of [b − 1] in
π′′′ must come at the end, for otherwise there is an occurrence of 1234 of the form uvw(b + 1),
where u, v ∈ [a− 1] with u < v and w ∈ [a+ 1, b− 1]. We now consider cases on [a+ 1, b− 1]. If
[a + 1, b − 1] is confined to π′′, then there are

(

a−1
j

)

− 1 possibilities for the letters of α in π′ and
∑j

i=0

(

n−1−b+j−i
n−1−b

)

=
(

n−b+j
n−b

)

possibilities for π′′′ once π′ is determined. Considering all j gives
∑a−1

j=0

(

(

a−1
j

)

− 1
)

(

n−b+j

j

)

permutations.

So assume π′′′ ∩ [a+ 1, b− 1] 6= ∅. If π′′ ∩ [a− 1] 6= ∅, then members of [a− 1] in π′′ must occur at
the end and the same holds for members of [b− 1] in π′′′. Thus, we get

a−1
∑

j=0

((

a− 1

j

)

− 1

) j
∑

i=1

b−2−a
∑

r=0

(

b− 1− a

r

)

=
(

2b−1−a − 1
)

a−1
∑

j=0

((

a− 1

j

)

− 1

)

j

=
(

2b−1−a − 1
)

(

(a− 1)2a−2 −
(

a

2

))

members of Dn(a, b) in this case. If π′′ ∩ [a− 1] = ∅, then consider whether or not β contains an
ascent. If it does, then all members of [b − 1] in π′′′ must occur at the end (due to 1234), which
gives

a−1
∑

j=0

((

a− 1

j

)

− 1

) b−1−a
∑

r=0

((

b− 1− a

r

)

− 1

)

=
(

2a−1 − a
) (

2b−1−a − b+ a
)

possibilities. If it does not, then there are

(

(n− 1− b) + (b− 1− a− r) + (a− 1− j)

n− 1− b

)

=

(

n− 3− r − j

n− 1− b

)

possibilities for π′′′ once r and π′ are specified. Note that r ≤ b− 2−a since π′′′ ∩ [a+1, b− 1] 6= ∅.
Thus, we get

∑a−1
j=0

∑b−2−a

r=0

(

(

a−1
j

)

− 1
)

(

n−3−r−j

n−1−b

)

additional members of Dn(a, b). Combining all

of the previous cases implies that the cardinality of Dn(a, b) is given by dn(a, b), as desired. �

Upon including permutations that start with n, we have an = bn + dn + en−1 for n ≥ 2, with
a0 = a1 = 1.

To obtain an explicit formula for the generating function for the number of T -avoiders of length n,
we define A(x) =

∑

n≥0 anx
n, B(x) =

∑

n≥2 bnx
n, D(x) =

∑

n≥2 dnx
n and E(x) =

∑

n≥0 enx
n.

It is well known that the generating function for the number of {123, 3412}-avoiders of length n is
given by

E(x) = 1 +
x(1 − 4x+ 7x2 − 5x3 + 2x4)

(1− x)4(1 − 2x)
.
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Let E(x, y) = 1 +
∑

n≥1

∑n

ℓ=1 en,ℓx
nyℓ. Using Lemma 19, one can show

E(x, y) = 1 +
∑

n≥1

n∑

ℓ=1

en,ℓx
n
y
ℓ

= 1 +
xy((2x5

− 5x4 + 4x3
− x2)y2 + (2x5

− 6x4 + 11x3
− 8x2 + 2x)y − x4 + 4x3

− 6x2 + 4x− 1)

(1− x)2(1− 2x)(1− xy)2(xy + x− 1)
.

Note that E(x, 1) = E(x). Multiplying both sides of (18) by xn, and summing over all n ≥ 3,
yields

B(x) = x2 +
∑

n≥3

((7− n)2n−3 − 2)xn +
∑

n≥3

n−2
∑

a=1

2a−1en−1−ax
n

+
∑

n≥3

n−3
∑

a=2

n−2−a
∑

ℓ=1

a−1
∑

i=0

2n−2−a−ℓ

(

a− 1

i

)(

ℓ+ i

i

)

xn

+
∑

n≥3

n−1
∑

a=2

(

2n−1−a − 1−
(

n− a

2

))

(a− 1)2a−2xn

+
∑

n≥3

n−1
∑

a=3

a−2
∑

ℓ=1

ℓ
∑

j=0

(

n− 1− a+ j

j

)

ea−1,ℓx
n

= x2 +
2x3(1− 3x+ x2)

(1− x)(1 − 2x)2
+

x3(1 − 4x+ 7x2 − 5x3 + 2x4)

(1− x)4(1− 2x)2

+
x5(3− 6x+ 2x2)

(1− x)(1 − 2x)2(1− 3x+ x2)
+

x6

(1− x)3(1− 2x)3

+
x4(2− 13x+ 34x2 − 46x3 + 31x4 − 7x5)

(1− x)4(1− 2x)3(1− 3x+ x2)

=
x2(1− 10x+ 44x2 − 108x3 + 159x4 − 144x5 + 74x6 − 14x7)

(1− x)4(1 − 2x)3(1− 3x+ x2)
.

Multiplying both sides of (19) by xn, and summing over all n ≥ 3, yields

D(x) =
∑

n≥3

n−2
∑

a=1

n−1
∑

b=a+1

(

2a−1 +

(

a

2

))

(

2b−1−a − b+ a
)

xn

+
∑

n≥3

n−2
∑

a=1

n−1
∑

b=a+1

(

(a− 1)2a−2 −
(

a

2

))

(

2b−1−a − 1
)

xn

+
∑

n≥3

n−2
∑

a=1

n−1
∑

b=a+1

a−1
∑

j=0

((

a− 1

j

)

− 1

)(

n− b+ j

j

)

xn

+
∑

n≥3

n−2
∑

a=1

n−1
∑

b=a+1

a−1
∑

j=0

b−2−a
∑

r=0

((

a− 1

j

)

− 1

)(

n− 3− r − j

n− 1− b

)

xn

+
∑

n≥3

n−2
∑

a=1

n−1
∑

b=a+1

a−1
∑

j=0

j
∑

i=0

b−1−a
∑

r=0

(

i+ r

i

)(

n− 2 + j − i− a− r

n− 1− b

)

xn
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=
x5(1 − 2x+ x2 − x3)

(1 − x)6(1− 2x)2
+

x6(1 − x− x2)

(1− x)5(1− 2x)3
+

x5(2− x)

(1− x)3(1− 2x)(1 − 3x+ x2)

+
x6

(1 − x)2(1− 2x)2(1 − 3x+ x2)
+

x3

(1 − 2x)3

=
x3(1 − 9x+ 37x2 − 91x3 + 142x4 − 141x5 + 90x6 − 36x7 + 6x8)

(1− x)6(1− 2x)3(1− 3x+ x2)
.

By the fact an = bn + dn + en−1 for n ≥ 2, with a0 = a1 = 1, we have

A(x) = 1 +B(x) +D(x) + xE(x),

which leads to the following result.

Theorem 22. Let T = {1234, 3412, 4123}. Then

FT (x) =
1− 14x+ 87x2 − 315x3 + 736x4 − 1161x5 + 1253x6 − 918x7 + 446x8 − 134x9 + 18x10

(1 − x)6(1− 2x)3(1 − 3x+ x2)
.

3.5. Case 185: {1234, 2341, 4123}. We follow a similar pattern of proof as in Case 149 above and
use the same notation, letting un, bn, dn, en and gn denote the same subsets as in that case, but
with 1234 in place of 1243. From the proof of Lemma 10 above, we see that the sequence un is the
same as before since avoiding 1234 is logically equivalent to avoiding 1243 in this case. We now
proceed with the various cases.

3.5.1. Case I. Let bn denote the number of T -avoiding permutations of length n whose leftmost
ascent is of the form a, n for some 2 ≤ a ≤ n− 1. We have the following recurrence relation for bn.

Lemma 23. If n ≥ 3, then

(20) bn = bn−1 + un + (n− 3)2n−4 +

(

n− 2

5

)

−
(

n− 2

2

)

+

n−4
∑

j=0

n−3−j
∑

i=1

(

n− i− 2

j + 1

)

Cn−2−j,i,

with b2 = 0, where un given by (3) above.

Proof. The recurrence is clear for n = 3, so assume n ≥ 4. Let π ∈ Sn(T ) be of the form
enumerated by bn have leftmost ascent bottom a ≥ 2. If the first letter of π is n − 1, then
there are un possibilities, by definition, so assume henceforth that the first letter is ≤ n − 2.
Let x denote the letter that directly follows n within π. If x = n − 1, then there are bn−1

possibilities. If x ∈ [a − 1], then reasoning in this case as in the proof of Lemma 13 above again

gives
∑n−4

j=0

∑n−3−j

i=1

(

n−i−2
j+1

)

Cn−2−j,i possibilities. Now assume a+ 1 ≤ x ≤ n− 2. Note first that

all letters between n and n − 1 must decrease in order to avoid 4123. Also, no letter in [a − 1]
can occur to the right of n − 1, for otherwise there is a 2341 of the form ax(n − 1)a′ for some
a′ ∈ [a− 1], whence letters in [a− 1] form a decreasing subsequence. Thus a ≥ 2 implies all letters
to the right of n− 1 must decrease in order to avoid 4123. Hence, we have

π = αanβ(a− 1) · · · 1(n− 1)γ,

where α, β and γ are decreasing with α and γ possibly empty. We now consider cases on α. If α = ∅,
then it is seen that there are no further restrictions on β and γ and we get

∑n−2
a=2 (2

n−2−a − 1) =
2n−3 − n+ 2 possible permutations in this case.
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So assume α 6= ∅ and we consider first the case when some letter of γ is less than d = max(α). Let
c denote the largest such letter of γ. First observe that all letters in [a+ 1, c− 1] must belong to
α or γ, for if not, then there exists a 4123 of the form dauc for some u ∈ [a+ 1, c− 1] in β. Also,
all letters in [d + 1, n− 2] must belong to γ, for otherwise there is a 2341 of the form dd′(n− 1)c
for some d′ ∈ [d + 1, n − 2] in β. Since β is nonempty but does not contain members of either
[a + 1, c] or [d, n − 2], then it must be the case that d ≥ c + 2, whence a + 1 ≤ c ≤ n − 4 and
c + 2 ≤ d ≤ n− 2. Note further that β comprises [c+ 1, s] for some s ∈ [c + 1, d− 1]. For if not,
and s1, s2 ∈ [c+1, d− 1] with s1 < s2, s1 ∈ α and s2 ∈ β, then s1s2(n− 1)c is a 2341. Finally, the
elements of [a+ 1, c− 1] belonging to γ must comprise [t, c− 1] for some t ∈ [a+ 1, c]. For if not,
and t1, t2 ∈ [a+ 1, c− 1] with t1 > t2, t1 ∈ α and t2 ∈ γ, then t1(c+ 1)(n− 1)t2 is a 2341. Thus,
we have shown in this case that α, β and γ comprise the sets [a + 1, t − 1] ∪ [s + 1, d], [c + 1, s]
and [t, c] ∪ [d + 1, n− 2], respectively. One may verify that the corresponding π indeed avoids T .
Given a, c and d, note that such π are uniquely determined by s and t and that there are d− c− 1
choices for s and c− a choices for t. Summing over all a, c and d then gives

n−5
∑

a=2

n−4
∑

c=a+1

n−2
∑

d=c+2

(c− a)(d − c− 1) =
n−5
∑

a=2

n−4
∑

c=a+1

(c− a)

(

n− 2− c

2

)

=
n−4
∑

c=3

(

n− 2− c

2

) c−1
∑

a=2

(c− a)

=

n−4
∑

c=3

(

n− 2− c

2

)(

c− 1

2

)

=

(

n− 2

5

)

possible permutations.

Finally, assume α 6= ∅ and that all letters in γ are greater than d. Then all elements of [a+1, d−1]
must belong to α or β and all elements of [d + 1, n− 2] belong to β or γ. Since β 6= ∅, it follows
that there are 2n−3−a − 1 ways in which to arrange the members of [a+ 1, n− 2] once a and d are
specified. Furthermore, each is seen to give rise to a permutation that avoids T . Considering all
possible a and d then yields

n−3
∑

a=2

n−2
∑

d=a+1

(2n−3−a − 1) =

n−3
∑

a=2

(2n−3−a − 1)(n− 2− a) =

n−4
∑

a=1

a2a−1 −
(

n− 3

2

)

= (n− 5)2n−4 + 1−
(

n− 3

2

)

additional permutations. Combining this case with the prior gives (20). �

3.5.2. Case II. We have the following formula for dn in terms of bn.

Lemma 24. If n ≥ 5, then

(21) dn = dn−1 + bn−1 − bn−2 +

(

n− 3

2

)

−
(

n− 3

5

)

+

n−3
∑

a=3

n−3−a
∑

ℓ=0

n−2−a−ℓ
∑

m=1

(

n− 5− ℓ−m

a− 3

)

m,

with d4 = 1, where bn is given by (20) above.

Proof. We proceed as in the proof of Lemma 14 above and let Bm, B′
m and Dm have the same

meaning as before but with the pattern 1234 in place of 1243. We form members of Dn by inserting
n somewhere to the right of n − 1 within a member of Bn−1, where n ≥ 5. First note that there
are dn−1 possibilities if the letter n − 2 is to directly follow n − 1 within a member of Bn−1. So
consider inserting n into members π ∈ B′

n−1 without introducing an occurrence of a pattern in T .
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We show in every case except one that this is possible. Note that if n − 2 is the first letter of π,
then n can only be added as the final letter due to 2341, so assume henceforth that π does not
start with n− 2. Write π = π′a(n− 1)π′′, where a ≥ 2 is the leftmost ascent bottom and let y be
the first letter of π′′. If 1 ≤ y ≤ a− 1, then it is seen that n can always be added to the end of π.

Now assume a + 1 ≤ y ≤ n − 3. In this case, then it is only possible to insert n in the position
between 1 and n− 2. For if n is inserted somewhere between n− 1 and 1, then there is a 2341 as
seen with a(n− 1)n1, while if n is inserted to the right of n− 1 (including at the very end), then
ay(n − 2)n is a 1234. If π′ is empty or if π′ is nonempty and there are no letters in [a+ 1, d− 1]
to the right of n− 2 where d = max(π′), then it is seen from the proof of Lemma 23 that inserting
n between 1 and n − 2 within π does not introduce an occurrence of a pattern in T . On the
other hand, if π′ is nonempty and some member of [a+ 1, d− 1] occurs to the right of n− 2, then
one cannot insert n between 1 and n − 2 in this case as doing so introduces a 2341 of the form
d(n − 1)nd′ for some d′ ∈ [a + 1, d− 1]. Upon subtracting this last case, which pertains to

(

n−3
5

)

members of B′
n−1, one sees that there are bn−1−bn−2−

(

n−3
5

)

members of Dn that can be obtained
either by adding n to the end of π (if π starts with n − 2 or does not but has y ∈ [a − 1]) or by
inserting n between 1 and n− 2 (if π does not start with n− 2 and has a+ 1 ≤ y ≤ n− 3, where
either π′ = ∅ or π′ 6= ∅ and no member of [a+ 1, d− 1] occurs to the right of n− 2). Finally, from
the proof of Lemma 14, one gets

(

n− 3

2

)

+

n−3
∑

a=3

n−3−a
∑

ℓ=0

n−2−a−ℓ
∑

m=1

(

n− 5− ℓ−m

a− 3

)

m

additional members of Dn in the case when y = a − 1 and the last letter of π is greater than a,
upon inserting n somewhere to the right of 1, but not at the very end. Combining all of the prior
cases gives (21). �

3.5.3. Case III. We now seek a formula for en. Note that e4 = 0 and e5 = 2, the enumerated
permutations being 23154 and 42315. To determine en, we refine it as follows. Let En denote the
subset of Sn(T ) enumerated by en. Given π ∈ En with leftmost ascent a, b where 2 ≤ a < b ≤ n−2,
let V denote the subset of [a+ 1, b− 1] occurring to the right of b within π. At times V will also
refer to the corresponding subsequence of π comprising the elements of this set. Let vn denote the
number of π ∈ En in which members of V form a decreasing subsequence with at least one member
of V to the right of n. For example, if n = 6, then vn = 3, the enumerated permutations being
241635, 241653 and 524163. Note that vn = 0 if n ≤ 5 since a < b − 1 is required. We have the
following explicit formula for vn.

Lemma 25. If n ≥ 6, then

(22) vn = 2n−2 −
(

n− 1

3

)

− n+ 1 +

n−4
∑

a=2

n−3−a
∑

ℓ=1

[(

n

a+ ℓ+ 2

)

−
(

n− 1− ℓ

a+ 1

)]

.

Proof. Let Vn denote the subset of En enumerated by vn. Let π ∈ Vn have leftmost ascent a, b,
where 2 ≤ a ≤ n− 4 and a+ 2 ≤ b ≤ n− 2, and let R denote the subset of [a+ 1, b− 1] occurring
to the left of a within π. Then R must be of the form [a + 1, a+ r] for some 0 ≤ r ≤ b − 2 − a.
To see this, suppose it is not the case and let x be the largest element of R and y be the smallest
element of [a + 1, b − 1] − R. By the assumption on V that it be decreasing, y is the rightmost
element of [a + 1, b − 1] within π and hence occurs to the right of n. But then xbny is a 2341,
which is impossible. Furthermore, note that no element of [a−1] can occur to the right of n within
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π, for otherwise there is a 2341 of the form abnz for some z ∈ [a − 1]. Thus, the subsequence
of π comprising [a − 1] must decrease, for otherwise there is a 4123 of the form ba1a2v where
1 ≤ a1 < a2 ≤ a− 1 and v ∈ V . Therefore, we have shown that π contains a subsequence of the
form a+ r, . . . , a+1, a, b, a− 1, . . . , 1, n. Note that members of [b+1, n− 1] cannot occur between
b and n (due to 1234), and thus must occur prior to a+ r or to the right of n, in either case as a
decreasing subsequence. Finally, members of [b+1, n−1] occurring to the right of n must comprise
a set of the form [n− ℓ, n− 1] for some 0 ≤ ℓ ≤ n− 1− b, for otherwise there would be a 4123 as
witnessed by b1abb2 where b1, b2 ∈ [b + 1, n− 1].

Thus, we have the subsequence

n− ℓ− 1, . . . , b+ 1, a+ r, . . . , a+ 1, a, b, a− 1, . . . , 1, n, n− 1, . . . , n− ℓ,

into which we insert the elements of V = [a+ r+1, b− 1] to form members of Vn. One may verify
that the letters of V may be inserted in positions directly following any member of [a− 1]∪ {b} or
[n − ℓ, n] without introducing a pattern in T . If m denotes |V |, then m = b − 1 − a− r and thus
1 ≤ m ≤ b−1−a. Since the subsequence consisting of elements of V must decrease and contain at
least one letter to the right of n, there are

(

a+ℓ+m
m

)

−
(

a−1+m
m

)

ways in which to insert the elements
of V , by subtraction. Considering all possible a, b, ℓ and m implies

vn =

n−4
∑

a=2

n−2
∑

b=a+2

n−1−b
∑

ℓ=0

b−1−a
∑

m=1

[(

a+ ℓ+m

m

)

−
(

a− 1 +m

m

)]

, n ≥ 6.

Interchanging summation, and treating separately the ℓ = 0 case, gives

vn =

n−4
∑

a=2

n−2
∑

b=a+2

n−1−b
∑

ℓ=0

[(

b+ ℓ

a+ ℓ+ 1

)

−
(

b− 1

a

)]

=
n−4
∑

a=2

n−2
∑

b=a+2

[(

b

a+ 1

)

−
(

b− 1

a

)]

+
n−4
∑

a=2

n−3−a
∑

ℓ=1

n−1−ℓ
∑

b=a+2

[(

b+ ℓ

a+ ℓ+ 1

)

−
(

b− 1

a

)]

=

n−4
∑

a=2

n−2
∑

b=a+2

(

b− 1

a+ 1

)

+

n−4
∑

a=2

n−3−a
∑

ℓ=1

[(

n

a+ ℓ+ 2

)

−
(

n− 1− ℓ

a+ 1

)]

=

n−4
∑

a=2

(

n− 2

a+ 2

)

+

n−4
∑

a=2

n−3−a
∑

ℓ=1

[(

n

a+ ℓ+ 2

)

−
(

n− 1− ℓ

a+ 1

)]

,

which implies (22). �

We now count the remaining members of En for which some letter in V lies to the right of n.
Note that if V is not decreasing, then there must be at least one letter in V to the right of n, for
otherwise there is a 1234 of the form ab1b2n for some b1, b2 ∈ [a + 1, b − 1]. Let wn denote the
number of members of En in which the subsequence V is not decreasing. For example, if n = 7,
then w7 = 1, the enumerated permutation being 2531764. Note that wn = 0 if n < 7 since |V | ≥ 2
implies a < b− 2. We have the following formula for wn.
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Lemma 26. If n ≥ 7, then

wn = 2n−2 − 1−
(

n− 1

2

)

−
(

n− 1

4

)

+ 4

(

n− 6

2

)

+

(

n− 5

3

)

+

n−6
∑

a=2

n−2
∑

b=a+4

(b− 5− a)2b−2−a.

(23)

Proof. Let Wn denote the subset of En enumerated by wn. Suppose π ∈ Wn has leftmost ascent
a, b, where 2 ≤ a ≤ n− 5 and a+3 ≤ b ≤ n− 2. First observe that since V is not decreasing, all of
the letters in [b + 1, n− 1] must occur to the right of n (and decrease), for otherwise there would
be a 4123 of the form cau1u2, where c ∈ [b + 1, n− 1] and u1, u2 ∈ V with u1 < u2. Denote the
V subsequence of π = π1π2 · · ·πn by πi1πi2 · · ·πim , where m = |V |. Let j be the smallest index
in [m − 1] such that πij < πij+1

. Then y = πij+1
must occur to the right of the letter b + 1 in

π, for otherwise there is a 1234 as seen with axy(b + 1), where x = πij . Also, letters in [a − 1]
must occur between b and n (due to 2341). Let z be the leftmost letter in π belonging to [a− 1].
Then all letters in V to the right of z must decrease, for otherwise there is a 4123 of the form
bzv1v2 for some v1, v2 ∈ V . In particular, all letters in V to the right of b+1 must decrease, which
implies y directly follows b+1. Also, x cannot occur anywhere to the right of z since x < y, which
means that x must occur between b and z. Finally, the subsequence of π comprising [a− 1] must
itself decrease (and hence z = a − 1), for otherwise there is a 4123 of the form ba1a2y for some
a1, a2 ∈ [a− 1]. Thus, we have shown that π must have the form

π = αabβ(a− 1) · · · 1n(n− 1) · · · (b + 1)γ,

where α, β and γ denote subsequences whose union is [a+ 1, b− 1] and α is possibly empty.

Note that α, β and γ must all decrease, α since it precedes a, β since π avoids 1234, and γ
since π avoids 4123. Furthermore, we have min(β) = x < y = max(γ) and thus V consists of
two decreasing runs. To enumerate members of Wn, we now consider cases on V . First assume
V = [b−m, b−1], where 2 ≤ m ≤ b−1−a, and thus α = [a+1, b−1−m]. If j denotes the number
of elements in β, then 1 ≤ j ≤ m − 1 and there are

(

m

j

)

− 1 possibilities for β and γ since they

are both decreasing with min(β) < max(γ) (the latter condition preventing β from being the set
[b− j, b− 1]). Since the letters to the left of b within π comprise an interval in this case, one may
verify that there are no further restrictions on β and γ and that each corresponding permutation
π obtained in this manner is T -avoiding. Considering all possible a, b, m and j implies that the
number of permutations in Wn for which V is of the stated form is given by

n−5
∑

a=2

n−2
∑

b=a+3

b−1−a
∑

m=2

m−1
∑

j=1

[(

m

j

)

− 1

]

=

n−5
∑

a=2

n−2
∑

b=a+3

b−1−a
∑

m=0

(2m −m− 1)

=

n−5
∑

a=2

n−2
∑

b=a

[

2b−a − 1−
(

b− a+ 1

2

)]

=

n−1
∑

n=2

[

2n−1−a − (n− a)−
(

n− a

3

)]

= 2n−2 − 1−
(

n− 1

2

)

−
(

n− 1

4

)

.

Now assume V does not comprise an interval of the form [b−m, b−1]. Let q be the largest letter in
α. Then all v ∈ V with v < q must occur in β, for otherwise there is a 2341 of the form qb(b+1)v.
In order for there to be an increase in the subsequence V , we must have q ≤ b − 2. Then the
elements of [q+1, b− 1] can go in either β or γ, with at least one element going in γ, for otherwise
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V would be decreasing. Also, members of [a + 1, q − 1] can go in either α or β with at least one
going in β since α is not an interval of the form [a+ 1, a+ r] for some r ≥ 1. Note that at least
one element of [a + 1, q − 1] belonging to β ensures that V does not decrease. Given a, b and q,
there are thus 2q−1−a− 1 possibilities for the placement of elements of [a+1, q− 1] and 2b−1−q − 1
possibilities for the placement of elements of [q + 1, b − 1]. Since these positions may be chosen
independently, there are (2q−1−a − 1)(2b−1−q − 1) possibilities in all and one can check that all
permutations π so obtained are T -avoiding. Note that q ≥ a + 2 implies a + 4 ≤ b ≤ n − 2 and
2 ≤ a ≤ n− 6. Considering all possible a, b and q gives

n−6
∑

a=2

n−2
∑

b=a+4

b−2
∑

q=a+2

(2q−1−a − 1)(2b−1−q − 1)

=

n−6
∑

a=2

n−2
∑

b=a+4

[

(b − 3− a)2b−2−a − 2(2b−2−a − 2) + (b − 3− a)
]

=

n−6
∑

a=2

n−2
∑

b=a+4

(b− 5− a)2b−2−a +

n−6
∑

a=2

[

4(n− 5− a) +

(

n− 4− a

2

)]

=

n−6
∑

a=2

n−2
∑

b=a+4

(b− 5− a)2b−2−a + 4

(

n− 6

2

)

+

(

n− 5

3

)

additional members of Wn. Combining this case with the previous completes the proof. �

We have the following formula for en in terms of the prior sequences.

Lemma 27. If n ≥ 6, then

(24) en = vn + wn + Cn−2 − 3 · 2n−3 + 1 +

n−2
∑

ℓ=1

Cℓ,

with e5 = 2, where vn and wn are as defined above.

Proof. To show this, we need only enumerate the members of En in which no element of [a+1, b−1]
occurs to the right of n. Let π ∈ En be of this form. Then π may be written as

π = (n− ℓ− 1) · · · (b + 1)π′n(n− 1) · · · (n− ℓ), 0 ≤ ℓ ≤ n− 1− b,

where π′ is a permutation of length b whose leftmost ascent is a, b with a ≥ 2. Note that π′ is
123-avoiding, but that there are no further restrictions on π′ imposed by the letters in [b + 1, n],
which implies that they may be deleted. Upon subtracting 123-avoiding permutations starting
with b or having leftmost ascent 1, b, we get Cb − Cb−1 − 2b−2 possibilities for π′. Considering all
b and ℓ gives

n−2
∑

b=3

n−1−b
∑

ℓ=0

(Cb − Cb−1 − 2b−2) = Cn−2 − 2n−3 +

n−4
∑

ℓ=1

n−1−ℓ
∑

b=3

(Cb − Cb−1 − 2b−2)

= Cn−2 − 2n−3 +

n−2
∑

ℓ=1

(Cn−1−ℓ − 2n−2−ℓ) = Cn−2 − 3 · 2n−3 + 1 +

n−2
∑

ℓ=1

Cℓ

additional members of En, which completes the proof. �
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3.5.4. Case IV. In this section, we complete our enumeration of Sn(T ) by finding gn, which is
given as follows.

Lemma 28. If n ≥ 3, then

(25) gn = gn−1 + Cn−1 + (n+ 1)2n−3 −
(

n

3

)

− n,

where g2 = 1.

Proof. We proceed as in the proof of Lemma 16 above and use the same terminology and notation,
but with respect to the new pattern set T . Let π = a1 · · · as1π′ be of the form enumerated by gn,
where n ≥ 4 and 1 < as < · · · < a1 ≤ n−1 and let S = {a1, . . . , as}. If S = ∅, then π = 1π′, where
π′ avoids 123, and thus there are Cn−1 possibilities. So assume S 6= ∅. If as = 2, then deleting 2
gives gn−1 possibilities, so assume as ≥ 3 henceforth. We consider the relative positions of large
and small letter within π, where large and small are defined as before.

First observe that large letters occurring to the left of any small letters must decrease in order to
avoid 2341, as do large letters occurring to the right due to 1234. Small letters must decrease, for
otherwise there would be a 4123 starting with a1, 1. First suppose that at least one large letter
occurs between the first and the last of the small letters. If x denotes the rightmost such large
letter, then all large letters to the left of x must decrease and are greater than x, while all large
letters to the right of x must decrease and are less than x. Thus, the full subsequence comprising
the large letters is decreasing. Furthermore, the set S in this case must comprise an interval of
the form [ℓ, ℓ + s − 1] for some 4 ≤ ℓ ≤ n − 1 and 1 ≤ s ≤ n − ℓ, for otherwise there would be a
2341. Note that there is no restriction on the number of large letters lying between the first and
the last small letters. Since there are ℓ− 2 small letters and n− ℓ− s+1 large letters, at least one
of which occurs between small letters, there are

(

n−s−1
ℓ−2

)

− (n− ℓ− s+2) possible arrangements of
these letters, by subtraction. It is seen that all permutations arising in this manner are T -avoiding.
Considering all ℓ and s gives

n−1
∑

ℓ=4

n−ℓ
∑

s=1

[(

n− s− 1

ℓ− 2

)

− (n− ℓ − s+ 2)

]

=

n−1
∑

ℓ=4

[(

n− 1

ℓ− 1

)

−
(

n− ℓ+ 2

2

)]

=

n
∑

ℓ=3

[(

n− 1

ℓ− 1

)

−
(

n− ℓ+ 2

2

)]

= 2n−1 − n−
(

n

3

)

permutations in this case.

Now suppose that no large letter occurs between the first and the last of the small letters. Then
π in this case consists of three runs of descending letters: (i) the initial decreasing run of length
s+1 (including 1), (ii) a decreasing run which includes all of the small letters, and (iii) a possibly
empty decreasing run of large letters. From this, one need only select the elements comprising (i)
and any large letters in (ii), which uniquely determines π. If m = a1, then there are

(

m−3
s−1

)

choices

for the additional letters in (i) and 2n−m choices for the large letters in (ii). Note that since 2 is a
small letter, we have m ≥ s+ 2. Considering all possible s and m then yields

n−3
∑

s=1

n−1
∑

m=s+2

2n−m

(

m− 3

s− 1

)

=

n−1
∑

m=3

2n−m

m−2
∑

s=1

(

m− 3

s− 1

)

=

n−1
∑

m=3

2n−3 = (n− 3)2n−3

additional permutations. Combining this case with the others gives (25). �
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For any of the sequence above, put zero if n is such that the corresponding set of permutations
is empty. For example, put en = 0 if n ≤ 4. Combining cases I through IV above, and including
permutations that start with the letter n, implies that the number of T -avoiding permutations of
length n is given by

(26) an = bn + dn + en + gn + Cn−1, n ≥ 2,

with a0 = a1 = 1.

Now we are ready to find a formula for the generating function A(x) =
∑

n≥0 anx
n. Define

B(x) =
∑

n≥3 bnx
n, D(x) =

∑

n≥4 dnx
n, E(x) =

∑

n≥5 enx
n and G(x) =

∑

n≥2 gnx
n. First we

rewrite the recurrences from the preceding lemmas in terms of generating functions by multiplying
both sides by xn and summing over all possible n. By Lemmas 23–28, we obtain

B(x) =
1

1− x

(

u(x) +
x4

(1− 2x)2
+

x7

(1 − x)6
− x4

(1− x)3

+ xq

(

x

1− x
, 1− x

)

− xq(x, 1)

)

,(27)

D(x) = xB(x) +
x5(3x4 − 5x3 + 6x2 − 4x+ 1)

(1− x)7(1− 2x)
,(28)

E(x) = 2x5 − x6(2x− 3)

(1 − x)4(1− 2x)2
− x7(x2 + x− 1)

(1− x)5(1− 2x)2
+ x2(C(x) − 5x3 − 2x2 − x− 1)(29)

− 24x6

1− 2x
+

x6

1− x
+

8x6

1− x
+

x2

1− x
(C(x) − 5x3 − 2x2 − x− 1),

G(x) =
x

1− x
(C(x) − 1) +

x4(2x4 − 8x3 + 10x2 − 7x+ 2)

(1 − x)5(1− 2x)2
.(30)

By solving (27)–(30), along with use of (5) and Lemma 12, we obtain

B(x) = x(1 − x)C2(x)

+
x(3x9 − 15x8 + 59x7 − 134x6 + 192x5 − 181x4 + 112x3 − 44x2 + 10x− 1)

(1 − x)7(1− 2x)2
,

D(x) = x2(1− x)C2(x) − x2(3x6 − 12x5 + 27x4 − 31x3 + 20x2 − 7x+ 1)

(1 − x)4(1− 2x)2
,

E(x) =
x3(2− x)

1− x
C2(x)− x3(3x6 − 14x5 + 38x4 − 49x3 + 34x2 − 13x+ 2)

(1− x)5(1 − 2x)2
,

G(x) =
x2

1− x
C2(x) +

x4(2x4 − 8x3 + 10x2 − 7x+ 2)

(1− x)5(1 − 2x)2
.

By (26), we have

A(x) = 1 + x+B(x) +D(x) + E(x) +G(x) + x(C(x) − 1),

which, upon substituting the expressions just found for the generating functions B(x), D(x), E(x)
and G(x), implies the following result.

Theorem 29. Let T = {1234, 2341, 4123}. Then

FT (x) =
1− 11x+ 51x2 − 130x3 + 199x4 − 183x5 + 91x6 − 15x7 − 6x8 + 4x9

(1− x)7(1 − 2x)2
+

1 + x

1− x
(C(x)− 1) .
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3.6. Case 209: {3142, 1432, 1243}. This is one of the shortest cases.

Theorem 30. Let T = {3142, 1432, 1243}. Then the generating function F = FT (x) satisfies

F = 1− xF + x

(

2 +
x2

(1− x)2

)

F 2 − x2F 3 .

Proof. To find Gm(x) for m ≥ 2, let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right
maxima. Since π avoids 1243, we see that π(2) · · ·π(m) < i2. We consider two cases:

• There is no letter in π(2) · · ·π(m) between i1 and i2, that is, π(2) · · ·π(m) < i1. Since π
avoids 3142, we see that π(1) > π(2) > · · · > π(m). Therefore, we have a contribution of
xmFm.

• There is some p ∈ [2,m ] minimal such that π(p) has a letter between i1 and i2. Then
π(2)π(3) · · ·π(p−1) < i1 by the minimality of p and also π(p+1) · · ·π(m) < i1 since π avoids
1243 and 1432. Furthermore, since π avoids 3142, π(2), π(3), . . . , π(p−1) are all empty.
Hence, i1 + 1, i1 + 2, . . . , i2 − 1 all lie in π(p) and furthermore occur in that order (or i1i2
is the 14 of a 1432).

So, with d = i2 − i1, we have d ≥ 2 and can write π(p) as

α1(i1 + 1)α2(i1 + 2) · · ·αd−1(i2 − 1)αd .

We also have π(1) > α1 > α2 > · · · > αd > π(p+1) > · · · > π(m) (a violator of any of these
inequalities would be the 12 of a 3142), and π(1) is decreasing (u < v in π(1) would make

uvi2(i1+1) a 1243). Hence, the contribution in this case is
∑m

p=2
xm

1−x
Fm−p

∑

d≥2 x
d−1F d.

Adding the two contributions, we have for m ≥ 2,

Gm(x) = xmFm +
xm+1

∑m

p=2 F
m+2−p

(1− x)(1 − xF )
.

Summing over m yields the stated expression for F . �

3.7. Case 216: {2143, 3142, 3412}. Let Hm = Hm(x) be the generating function for permutations
π = π1π2 · · ·πn ∈ Sn(T ) such that π1 < π2 < · · · < πm = n. Clearly, H1 = xFT (x).

Lemma 31. For m ≥ 2,

(1− 2x)Hm = x(1 − x)Hm−1 + x
∑

j≥m

(

(1− x)Hj − xHj−1

)

.

Proof. Consider a T -avoider π = π1π2 · · ·πn ∈ Sn(T ) counted by Hm, where m ≥ 2. If π1 = 1,
the contribution is xHm−1. Otherwise, π has the form π = π1π2 · · ·πmα1β, where β > πm−1 (or
πm−1πm1 is the 341 of a 3412) and β is increasing (or πm−11 is the 21 of a 2143). If β = ∅, the
contribution is xHm, and so Hm = xHm−1 + xHm + Jm where Jm is the contribution for the case
β 6= ∅.
Now let us write an equation for Jm. If n− 1 is in β, then n− 1 is the last letter in π and, deleting
n − 1, we have a contribution of x(Hm − xHm−1). Otherwise, n − 1 is in α, and π has the form
shown in Figure 1 below,
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α1

α2

βր

1

π1

πm−1

πm = n

b

n−1

..
.

2 1 4 3
•

3 4 1 2
•

Figure 1. A T -avoider counted by Jm with n− 1 before 1

where β is increasing and nonempty (bullet marked b), α1 is increasing (or (n − 1)b is the 43 of
a 2143), and shaded regions are empty for the indicated reason. Deleting πm = n leaves avoiders
counted by Jm+t where t is the number of letters in α1.

Adding the contributions in the two cases for n− 1 gives

Jm = x(Hm − xHm−1) + x
∑

t≥0

Jm+t .

Since Jm = (1− x)Hm − xHm−1, this implies

(1− x)Hm − xHm−1 = x(Hm − xHm−1) + x
∑

j≥m

(

(1− x)Hj − xHj−1

)

,

and the result follows. �

Lemma 32. We have
∑

m≥1

Hm(x) = xC(x)FT (x) .

Proof. Define H(x, v) =
∑

m≥1 Hm(x)vm−1. By Lemma 31, we have

(1− 2x)H(x, v) − x(1− 2x)FT (x)

= xv(1− x)H(x, v) +
xv(1− x)

1− v

(

H(x, 1)−H(x, v)
)

− x2v

1− v

(

H(x, 1)− vH(x, v)
)

,

which implies
(

1− 2x− xv(1 − x) +
xv(1− x− xv)

1− v

)

H(x, v) = x(1 − 2x)FT (x) +
xv(1 − 2x)

1− v
H(x, 1).

By taking v = C(x), we find that H(x, 1) = xC(x)FT (x). �

Theorem 33. Let T = {2143, 3142, 3412}. Then

FT (x) =
(1− 3x)C(x)

1− 2x− x(1− x)C(x)
.
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Proof. To write an equation for Gm(x) where m ≥ 2, suppose π = i1π
(1) · · · imπ(m) ∈ Sn(T ) has

m ≥ 2 left-right maxima. If π(m) = ∅, the contribution is xGm−1(x). Otherwise, there exists j
maximal, 1 ≤ j ≤ m, such that π(m) has a letter between ij−1 and ij (where i0 = 0). Since π

avoids 2143, π(1) · · ·π(j−1) = ∅ and π(j) · · ·π(m−1) > ij−1. Since π avoids 3142 and j is maximal,

we have π(j) · · ·π(m−1) > π(m). There are two cases:

• j = m. If π(m) < im−1, then π(m) is decreasing because we avoid 3412. So the contribution
is Hm − xm

(1−x)m−1 , where
xm

(1−x)m−1 counts all the permutations π with im−1 = n− 1.

• 1 ≤ j ≤ m− 1. Again, π(m) is decreasing, and we have a contribution of xj+1

(1−x)j Gm−j(x).

Adding all the contributions gives

Gm(x) = xGm−1(x) +Hm − xm

(1− x)m−1
+

m−1
∑

j=1

xj+1

(1− x)j
Gm−j(x) .

Sum over m ≥ 2 using Lemma 32 to obtain

FT (x) − xFT (x)− 1 = x
(

FT (x)− 1
)

+ xC(x)FT (x)− xFT (x) −
x2

1− 2x
+

x2

1− 2x

(

FT (x)− 1
)

.

Solving for FT (x) completes the proof. �

3.8. Case 225: {1243, 2413, 3142}.
Theorem 34. Let T = {1243, 2413, 3142}. Then

FT (x) =
1− x(1− x)C(x) −

√

1− 5x+ 10x2 − 5x3 − x(1 − x)(1 + x)C(x)

2x(1− x)
.

Proof. To find Gm(x) for m ≥ 2, let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right
maxima. Then π(j) < i2 for j = 1, 2, . . . ,m (a violator v makes i1i2ijv a 1243) and π has the form
shown in Figure 2 below,

β1

β2

β3

β4

βm

α2

α3

α4

αmi1

i2
i3

i4
im. . .

. . .

. . .

Figure 2. A T -avoider with m ≥ 2 left-right maxima
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where, for each j ∈ [2,m ], one has αj > i1 > βj as shown (or i1ij is the 24 of a 2413), with αj

avoiding 132 (or i1 is the 1 of a 1243). Also, for each j ∈ [2,m− 1], αj > αj+1 (or ijij+1 is the
34 of a 3142) and the same holds for the βj .

There are two cases:

• α1 · · ·αm = ∅. In this case, π avoids T if and only if βi avoids T for all i = 1, 2, . . . ,m,
giving a contribution of xmFT (x)

m.
• α1 · · ·αm 6= ∅. Let j be the maximal index such that αj 6= ∅ and say a is a letter in αj .
Then β2 = · · · = βj−1 = ∅ (or b in βi with 2 ≤ i ≤ j − 1 makes i1i2ba a 2413) and β1

is decreasing (or i2a is the 43 of a 1243). So π avoids T if and only if βi avoids T for
i = j, j + 1, . . . ,m and αi avoids 132 for i = 2, 3, . . . , j, giving a contribution of

m
∑

j=2

xm

1− x
C(x)j−2

(

C(x) − 1
)

FT (x)
m−j+1.

Hence,

Gm(x) = xmFT (x)
m +

m
∑

j=2

xm

1− x
C(x)j−2

(

C(x) − 1
)

FT (x)
m−j+1.

Summing over m ≥ 2, we obtain

FT (x) = 1 + xFT (x) +

(

(1 − x)
(

1− xC(x)
)

FT (x) + C(x) − 1
)

x2FT (x)

(1− x)
(

1− xC(x)
)(

1− xFT (x)
) ,

and solving for FT (x) completes the proof. �

3.9. Case 228: {2341, 2413, 3412}. In this case, we find a cubic equation for FT .

Theorem 35. Let T = {2341, 2413, 3412}. Then the generating function F = FT (x) satisfies

F = (1− x)2 + xF + x(2− 3x+ 2x2)F 2 − x2(1− x)F 3.

Proof. First, we write an equation for Gm(x) with m ≥ 3. Suppose π = i1π
(1)i2π

(2) · · · imπ(m) ∈
Sn(T ) with m ≥ 3 left-right maxima. Since π avoids 2341, we see that π(j) > ij−2 for all

j = 2, 3, . . . ,m (with i0 = 0). If π(2) > i1, then π avoids T if and only if π(1) avoids T and
i2π

(2) · · · imπ(m) avoids T , which gives a contribution of xFGm−1(x). Otherwise, π(2) has a letter
smaller than i1, which implies π(3) > i2 (π avoids 2413), and π avoids T if and only if i1π

(1)i2π
(2)

and i3π
(3) · · · imπ(m) both avoid T , which gives a contribution of

(

G2(x)−x2F 2
)

Gm−2(x). Hence,
for m ≥ 3,

(31) Gm(x) = xFGm−1(x) +
(

G2(x) − x2F 2
)

Gm−2(x) .

Next, to find G2(x), suppose π = iπ′nπ′′ ∈ Sn(T ) has 2 left-right maxima. Let k be the number
of letters smaller than i in π′′. If k = 0, the contribution is x2F 2. Otherwise, k ≥ 1 and these k
letters, say i1, i2, . . . , ik, are decreasing (to avoid 3412) and occur at the end of π′′ (or in is the 24
of a 2413). Also, the letters n− 1, n− 2, . . . , i+ 1 in π′′ occur in that order (to avoid 2341). So π
has the form

iπ′n(n− 1) · · · (i+ 1)i1i2 · · · ik .
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Set i0 = i. Then the letters in [ik, i0 ]\{i1, i2, . . . , ik} are decreasing (or nik is the 41 of a 2341)
and they split iπ′ = i0π

′ into segments as follows:

i0π
′ = i0α0,0(i0 − 1)α0,1(i0 − 2)α0,2 · · · (i1 + 1)α0,i0−i1−1

(i1 − 1)α1,1(i1 − 2)α1,2 · · · (i2 + 1)α1,i1−i2−1

...

(ik−1 − 1)αk−1,1(ik−1 − 2)αk−1,2 · · · (ik + 1)αk−1,ik−1−ik−1 ,

where α0,0 < α0,1 < · · · < α1,1 < α1,2 < · · · , i.e., each α is less than its successor (to avoid 2413).
Now π avoids T if and only if each αi,j avoids T . Hence, for each k ≥ 1, we have a contribution of

xk+1

1− x
× xF

(1− xF )k
.

Adding the contributions gives

G2(x) = x2F 2 +
∑

k≥1

xk+2F

(1− x)(1 − xF )k
= x2F 2 +

x3F

(1− x)(1 − x− xF )
.

Summing (31) over m ≥ 3, we obtain

F = 1 + xF +G2(x) + xF (F − 1− xF ) + (F − 1)
(

G2(x) − x2F 2
)

.

Now substitute for G2(x) and solve for F to complete the proof. �

3.10. Case 230: {2341, 1243, 1234}. Note that all three patterns in T contain 123. We count
by initial letters and define a(n; i1, i2, . . . , im) to be the number of T -avoiders in Sn whose first
m letters are i1, i2, . . . , im, with a(n) := |Sn(T )|. Clearly, a(n;n) = a(n;n − 1) = a(n − 1). So
we need to consider T -avoiders with first letter ≤ n − 2. Accordingly, for m ≥ 1, denote the
generating function for T -avoiders π = π1π2 · · ·πn such that n − 2 ≥ π1 > π2 > · · · > πm and
πm+1 is arbitrary (resp. πm+1 = n− 1) by Am (resp. Bm). Also for m ≥ 1, denote the generating
function for T -avoiders π = π1π2 · · ·πn such that n− 1 ≥ π1 > π2 > · · · > πm by Dm (which will
be needed to define a recursion).

Lemma 36. We have

Dm =

{

Am + xDm−1 if m ≥ 2,

A1 + x(FT − 1) if m = 1.

Proof. Split T -avoiders counted by Dm into those with π1 ≤ n− 2, counted by Am, and those for
which π1 = n− 1. Deleting n− 1 from the latter avoiders gives the result. �

Corollary 37. For m ≥ 1,

(32) Am = Am+1 +Bm + xAm + x2Am−1 + · · ·+ xmA1 + xm+1A0 ,

where A0 := FT − 1.

Proof. For π counted by Am, consider πm+1. Note that πm+1 cannot lie in the interval [πm+1, n−2]
for then πmπm+1 would be the 12 of either a 1234 or a 1243 involving {n−1, n}. So, if πm+1 < πm,
the contribution is Am+1, if πm+1 = n−1, the contribution is Bm, and if πm+1 = n, then by deleting
n, the contribution is xDm. The result follows by applying Lemma 36 repeatedly to Dm. �
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Since a(n;n) = a(n;n− 1) = a(n− 1) for n ≥ 2, we have a(n) =
∑n

i=1 a(n; i) = a(n;n) + a(n;n−
1) +

∑n−2
i=1 a(n; i) = 2a(n− 1) + [xn]A1, which implies

FT − 1− x = 2x(FT − 1) +A1.(33)

To obtain a recurrence for Bm, define Bn,m;j = {π1π2 · · ·πn ∈ Sn(T ) : n − 2 ≥ π1 > π2 > · · · >
πm, πm+1 = n− 1, πm+2 = n− j}.

Lemma 38. For all 3 ≤ j ≤ m+ 1,
∑

n≥0

|Bn,m;j|xn = xm+3Cm+3−j(x).

Proof. Let π = π1π2 · · ·πn ∈ Sn(T ) such that n − 2 ≥ π1 > π2 > · · · > πm, πm+1 = n − 1 and
πm+2 = n−j. Since πm < πm+2 and n lies to the right of πm+2, the letters n−2, n−3, . . . , n−j+1
all lie to the left of πm+2 (otherwise π contains 1234 or 1243). Thus, π = (n− 2)(n− 3) · · · (n− j+
1)πj−1 · · ·πn−1πn ∈ Sn(T ) with πj−1 > πj > · · · > πm, πm+1 = n − 1, and πm+2 = n − j. Since
π avoids 2341 and π1 = n − 2 < πm+1 = n − 1, we have that πn = n. Therefore, π avoids T if
and only if π′ = πj−1 · · ·πmπm+3 · · ·πn−1 avoids 123 and πj−1 > · · · > πm. Hence, Bn,m;j equals
the number of permutations in Sn−1−j(123) with initial descent sequence (IDS) of length at least
m+2− j. Using Lemma 11, one can show that the generating for permutations in Sn(123) having

IDS of length at least m′ is given by xm′

Cm′+1(x). Thus, for j = 3, 4, . . . ,m+ 1,
∑

n≥0

|Bn,m;j|xn = xm+3Cm+3−j(x),

as required. �

Lemma 39. For all m ≥ 1,

Bm(x) = Bm+1(x) + xm+3
m
∑

i=2

Ci(x) + xBm(x) + xm+2 1− x

1− 2x
.

Proof. By Lemma 38,

Bm(x) =
∑

n≥0





∑

n−1>i1>i2>···>im+1≥1

a(n; i1i2 · · · im(n− 1)im+1)



 xn

+
∑

n≥0





∑

n−1>i1>i2>···>im≥1

m+1
∑

j=3

a(n; i1i2 · · · im(n− 1)(n− j))



 xn

= Bm+1(x) +

m+1
∑

j=3

∑

n≥0

|Bn,m;j|xn

+
∑

n≥0





∑

n−1>i1>i2>···>im≥1

a(n; i1i2 · · · im(n− 1)(n− 2))



xn
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+
∑

n≥0





∑

n−1>i1>i2>···>im≥1

a(n; i1i2 · · · im(n− 1)n)



 xn

= Bm+1(x) + xm+3
m
∑

i=2

Ci(x) + xBm(x) + xm+2 1− x

1− 2x
,

which completes the proof. �

Define B(x, u) =
∑

m≥1Bm(x)um and A(x, u) =
∑

m≥1Am(x)um. Rewriting the recurrence

relations from Lemmas 38 and 39 in terms of A(x, y) and B(x, u) using (33), we obtain

(1− x)B(x, u) =
1

u
(B(x, u)−B1(x)u) +

x5u2C2(x)

(1− xu)(1 − xuC(x))
+

x3(1 − x)u

(1− 2x)(1 − xu)
,

A(x, u) =
1

u(1− xu)
A(x, u) +

x2u

1− xu
(FT (x)− 1)− ((1− 2x)FT (x) − 1 + x) +B(x, u).

Taking u = 1/(1− x), we obtain

B1(x) =
x5C4(x)

1− 2x
+

x3(1− x)

(1− 2x)2
,

which leads to

(1− x− 1/u)B(x, u) =
x5u2C2(x)

(1 − xu)(1− xuC(x))
− x5C4(x)

1− 2x

+
x3(1− x)u

(1− 2x)(1 − xu)
− x3(1− x)

(1− 2x)2
.

Thus, letting u = C(x), we have

B(x,C(x)) =
x3(4x2 − 3x+ 1− 2x2C(x))

(2x2C(x) − xC(x) − 3x+ 1)(1− 2x)2
.

Hence, substituting u = C(x) into the equation for A(x, u), we obtain

x2C2(x)(FT (x)− 1)− ((1− 2x)FT (x) − 1 + x) +B(x,C(x)) = 0,

which implies the following result.

Theorem 40. Let T = {2341, 1243, 1234}. Then

FT (x) =
x(4x4 + 3x3 − 11x2 + 6x− 1)C(x) + 2x4 − 12x3 + 16x2 − 7x+ 1

(1− 2x)2
(

1− 4x+ 2x2 − x(1− 3x)C(x)
) .

�

For the final three cases, denoting the set of triples involved by T , we recall the generating trees
method. The notion of generating tree to enumerate pattern avoiders was introduced by West [18].
To enumerate Sn(T ) for each T ∈ T , we consider the generating forest whose vertices are identified
with S :=

⋃

n≥2 Sn(T ) where 12 and 21 are the roots and each non-root π ∈ S is a child of the
permutation obtained from π by deleting its largest element. We will show that it is possible to
label the vertices so that if v1 and v2 are any two vertices with the same label and ℓ is any label,
then v1 and v2 have the same number of children with label ℓ. Indeed, we will specify (i) the labels
of the roots, and (ii) a set of succession rules explaining how to derive from the label of a parent
the labels of all of its children. This will determine a labelled generating forest depending on T .
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A permutation π = π1π2 · · ·πn ∈ Sn determines n + 1 positions, called sites, between its entries.
The sites are denoted 1, 2, . . . , n + 1 left to right. In particular, site i is the space between πi−1

and πi if 2 ≤ i ≤ n. Site i in π is said to be active (with respect to T ) if, by inserting n+ 1 into
π in site i, we get a permutation in Sn+1(T ), otherwise inactive. For the next two triples T under
consideration and π ∈ Sn(T ), sites 1 and n + 1 are always active, and if πn = n, then site n is
active.

Given T ∈ T and π ∈ Sn(T ), define A(π) to be the set of all active sites for π, and define
L(π) to be the set of active sites lying to the left of n. For example, for T = {3412, 3421, 2341},
L(23154) = {1, 2, 4} since there are 4 possible sites to insert 6 to the left of n = 5 and, of these
insertions, only 236154 is not in S6(T ).

Lemma 41. If T denotes one of the following two cases and π ∈ Sn(T ), then A(π) = L(π)∪{n+1}
unless πn < n and site n is active, in which case A(π) = L(π) ∪ {n, n+ 1}.

Proof. No site to the right of n is active except (possibly) site n and (definitely) site n + 1 for
if n + 1 is inserted after n in a site ≤ n − 1, then n (n + 1)πn−1 πn is a 3412 or a 3421, both
forbidden. �

3.11. Case 240: {3412, 3421, 2341}. Here, if site n is inactive, then 1 and n+1 are the only active
sites iff π1 = n. In particular, there are at least 3 active sites unless site n is inactive and π1 = n.

To construct the generating forest, we first specify the labels.

• Suppose π = π1π2 · · ·πn ∈ Sn(T ) has k active sites and n ≥ 2. If πn = n, then label π by

k. Otherwise, if the site n is active, then label π by k, and if the site n is inactive, then

label it by k.

For instance, all 3 sites for π = 12 are active and πn = n, so the label for 12 is 3. Also, 12 has
three children 312, 132 and 123 with active sites {1, 3, 4}, {1, 2, 3, 4} and {1, 2, 3, 4}, respectively,
hence labels 3̄, 4̄ and 4. All sites for 21 are active, so its label is 3̄, and it has three children 321,
231 and 213 with active sites {1, 3, 4}, {1, 2, 4} and {1, 2, 3, 4}, respectively, hence labels 3̄, ¯̄3 and
4.

To establish the succession rules, we need to know how the active sites of a child are related to those
of its parent. This relationship is given by the following proposition. The proof makes frequent
use of Lemma 41 and is left to the reader.

Proposition 42. Suppose π ∈ Sn(T ) and let πj denote the result of inserting n+1 into an active
site j.

If j ≤ n− 1, then for 1 ≤ i ≤ j, site i is active in πj iff site i is active in π; site n+1 is active in
πj iff site n is active in π; site n+ 2 is active in πj ; all other sites in πj are inactive.

Next, suppose n is an active site in π. Then for 1 ≤ i ≤ n − 1, site i is active in πn iff site i is
active in π; sites n and n+ 2 are active in πn; all other sites in πn are inactive. Also, site n+ 1
is active in π (as always) and for 1 ≤ i ≤ n − 1, site i is active in πn+1 iff site i is active in π;
sites n, n+ 1, n+ 2 are active in πn+1; all other sites in πn+1 are inactive.

Lastly, suppose n is not an active site in π. Then site n+ 1 is active in π and for 1 ≤ i ≤ n− 1,
site i is active in πn+1 iff site i is active in π; sites n+ 1, n+ 2 are active in πn+1; all other sites
in πn+1 are inactive. �
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Corollary 43. The labelled generating forest F is given by

Roots: 3, 3̄

Rules: k  3̄, 4̄, . . . , k + 1, k + 1 for k ≥ 3,

k̄  3̄, 4̄, . . . , k̄, ¯̄k, k + 1 for k ≥ 3,
¯̄k  ¯̄2, ¯̄3, ¯̄4, . . . , ¯̄k, k + 1 for k ≥ 2.

Proof. We treat the double-bar case (the others are similar). So suppose π ∈ Sn(T ) has label
¯̄k, k ≥

2. This means that site n is not active, L(π) has k−1 entries, all ≤ n−1, and A(π)\L(π) = {n+1}.
Say L(π) = {L1 = 1 < L2 < · · · < Lk−1 ≤ n − 1}. Then for 1 ≤ i ≤ k − 1, πLi does not end
with its largest letter and its active sites are {L1, . . . , Li, n+2}. In particular, its penultimate site,

namely n + 1, is not active. Hence, its label is i+ 1. Also, πn+1 does end with its largest letter
and its active sites are {L1, . . . , Lk−1, n+ 1, n+ 2} and so its label is k + 1. All told, the labels of

the children of π are ¯̄2, ¯̄3, ¯̄4, . . . , ¯̄k, k + 1. �

Theorem 44. Let T = {3412, 3421, 2341}. Then

FT (x) = 1 +
1 + rt

1 + 1/r + 1/t− 1/x
,

where

r = r(x) =

(√
5− 1

)

(

1−
√

1−
(

3 +
√
5
)

x+ 1
2

(

3−
√
5
)

x2

)

−
(

1 +
√
5
)

x

4x

and t is the same as r but with
√
5 replaced by −

√
5.

Proof. Let ak(x), bk(x) and ck(x) be the generating functions for the number of permutations in

the nth level of the labelled generating forest F with label k, k̄ and ¯̄k, respectively. By Corollary
43, we have

ak(x) = x2δk=3 + xak−1(v) + xbk−1(v) + xck−1(v),

bk(x) = x2δk=3 + v2b2(x) + x(bk(x) + bk+1(x) + · · · ) + x(ak−1(x) + ak(x) + · · · ),
ck(x) = xbk(x) + x(ck(x) + ck+1(x) + · · · ),
b2(x) = xb2(x) + x(c3(x) + c4(x) + · · · ),

for all k ≥ 3.

Now let A(x, v) =
∑

k≥3 ak(x)v
k, B(x, v) =

∑

k≥2 bk(x)v
k and C(x, v) =

∑

k≥3 ck(x)v
k. Hence,

the above recurrences can be written as

A(x, v) = x2v3 + xvA(x, v) + xvB(x, v) + xvC(x, v),(34)

B(x, v) = x2v3 + v2b2(x) +
x

1− v
(v3B(x, 1)− vB(x, v)) +

x

1− v
(v3A(x, 1)− v2A(x, v)),(35)

C(x, v) = x(B(x, v) − v2b2(x)) +
x

1− v
(v3C(x, 1)− vC(x, v)),(36)

where b2(x) =
x

1−x
C(x, 1).
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By finding C(x, v) from (34), and then substituting it in (35)-(36), we obtain
(

1 +
xv

1− v

)

B(x, v) +
xv2

1− v
A(x, v)

=
(1− v + xv)v2

1− v
A(x, 1)− xv2(1− 2v + xv)

(1 − x)(1 − v)
B(x, 1)− x2v2(1− v + xv)

1− x
,

−
(

1 + x+
xv

1− v

)

B(x, v) +
(1− xv)(1 − v + xv)

xv(1 − v)
A(x, v)

=
(v − x)v2

1− v
A(x, 1) +

xv2(x − v)

(1− x)(1 − v)
B(x, 1) +

xv2(1− x+ x2)

1− x
.

Multiplying the first equation by 1+x+ xv
1−v

and the second by 1+ xv
1−v

, then summing the results,
we have

K(x, v)A(x, v) = − (1− v + xv)xv3A(x, 1) +
x2v3(1− v)2

1− x
B(x, 1)

− x2v3(1− v)(1− v + xv)(xv − 2x+ 1)

1− x
,

(37)

where K(x, v) = x2v4 + x(1 − 3x)v3 + (x2 − 1)v2 + (2− x)v − 1.

There are two power series v′ and v′′ such that K(x, v′) = K(x, v′′) = 0 given by v′ = r + 1 and
v′′ = t+ 1, where r and t are as stated above. For example, the expansion of v′ begins

v′ = 1 + x+
1

2
(3 +

√
5)x2 + (4 + 2

√
5)x3 + (15 + 7

√
5)x4 +

1

2
(119 + 53

√
5)x5 + · · · .

Substituting v′ and v′′ for v in (37) gives a pair of equations for A(x, 1) and B(x, 1) with solution

A(x, 1) =
(v′′ − 1)(v′ − 1)(v′v′′ − v′ − v′′ + 2)x2

(x− 1)v′v′′ + v′ + v′′ − x− 1
,

B(x, 1) =
−(xv′′ − v′′ + 1)(xv′ − v′ + 1)(xv′ + xv′′ − 3x+ 1)

(x− 1)v′v′′ + v′ + v′′ − x− 1
,

which, by (34), implies

C(x, 1) =
(1 − x)((v′′ − 1)(v′ − 1) + (v′2v′′2 − v′2v′′ − v′′2v′ + 1)x− v′v′′(v′ + v′′ − 3)x2)

(x− 1)v′v′′ + v′ + v′′ − x− 1
.

Since FT (x) = 1 + x+A(x, 1) +B(x, 1) + C(x, 1), the result follows. �

3.12. Case 109: {3412, 3421, 2143}. In this case, if site n is inactive, then 1 and n + 1 are the
only active sites iff π1 ≥ 3. If site i is active for i ≤ n− 1, then all sites ≤ i are active. Hence, for
n ≥ 2, the active sites ≤ n− 1 form a nonempty initial segment of the positive integers.

For n ≥ 2, say π ∈ Sn is mostly increasing if it has exactly one descent and the descent bottom is
the last entry, that is, if π has the form π = 12 · · · (j−1)(j+1) · · ·nj for some j with 1 ≤ j ≤ n−1.

We now assign labels. So suppose n ≥ 2 and π ∈ Sn(T ) has k active sites.

If π is increasing (π = 12 · · ·n), then all sites are active, so k = n + 1 and label π by k. If π is
mostly increasing (π = 12 · · · (j− 1)(j+1) · · ·nj), then once again all sites are active, so k = n+1
and label π by k̄.
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Now suppose π is neither increasing nor mostly increasing. If site n is active, label π by k. If site

n is inactive, label π by k.

For instance, all 3 sites are active for both 12 and 21 and 12 is increasing while 21 is mostly
increasing, so their labels are 3 and 3̄ respectively; 12 has three children 312, 132 and 123 with
active sites {1, 3, 4}, {1, 2, 3, 4} and {1, 2, 3, 4}, respectively, hence labels ¯̄3, 4̄ and 4 because the
second is mostly increasing and the third is increasing; 21 has three children 321, 231 and 213 with

active sites {1, 3, 4}, {1, 2, 3, 4} and {1, 2, 4}, respectively, hence labels ¯̄3, 4̄ and 3.

To establish the succession rules, we have the following proposition. The proof is left to the reader.

Proposition 45. Suppose n ≥ 2 and π ∈ Sn(T ) has k active sites.

If π is increasing, then all sites {1, 2, . . . , n+ 1} are active (hence, k = n+ 1) and

A(πi) =

{

{1, 2, . . . , i, n+ 1, n+ 2} if 1 ≤ i ≤ n,

{1, 2, . . . , n, n+ 1, n+ 2} if i = n+ 1.

If π is mostly increasing, then all sites {1, 2, . . . , n+ 1} are active (hence, k = n+ 1) and

A(πi) =

{

{1, 2, . . . , i, n+ 1, n+ 2} if 1 ≤ i ≤ n,

{1, 2, . . . , n, n+ 2} if i = n+ 1.

Now suppose π is neither increasing nor mostly increasing.

If site n is active so that the active sites for π are {1, 2, . . . , k − 2, n, n+ 1}, then

A(πi) =











{1, 2, . . . , i, n+ 1, n+ 2} if 1 ≤ i ≤ k − 2,

{1, 2, . . . , k − 2, n+ 1, n+ 2} if i = n,

{1, 2, . . . , k − 2, n+ 2} if i = n+ 1.

If site n is inactive so that the active sites for π are {1, 2, . . . , k − 1, n+ 1}, then

A(πi) =

{

{1, 2, . . . , i, n+ 2} if 1 ≤ i ≤ k − 1,

{1, 2, . . . , k − 1, n+ 2} if i = n+ 1.

�

An immediate consequence is

Corollary 46. The labelled generating forest F is given by

Roots: 3, 3

Rules: k  3, 4, . . . , k, k + 1, k + 1, for k ≥ 3,

k  3, 4, . . . , k, k + 1, k for k ≥ 3,

k  3, 4, . . . , k − 1, k, k, k − 1 for k ≥ 3,

k  2, 3, . . . , k − 1, k, k for k ≥ 2.

Theorem 47. Let T = {3412, 3421, 2143}. Then

FT (x) =
1− 8x+ 23x2 − 27x3 + 12x4 − 5x5

(1− 3x+ x2)3
.
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Proof. Let ak(x), bk(x), ck(x) and dk(x) be the generating functions for the number of permutations

in the nth level of the labelled generating forest F with label k, k, k and k, respectively. By
Corollary 46, we have

ak(x) = xak−1(x), k ≥ 4,

bk(x) = x(ak−1(x) + bk−1(x)), k ≥ 4,

ck(x) = xck(x) + x
∑

j≥k

(cj(x) + bj(x) + aj(x)), k ≥ 3,

dk(x) = xdk(x) + xbk(x) + xck+1(x) + x
∑

j≥k

dj(x), k ≥ 2,

with a3(x) = b3(x) = x2. Clearly, ak(x) = xk−1 and bk(x) = (k − 2)xk−2 for all k ≥ 3.

Now let A(x, v) =
∑

k≥3 ak(x)v
k, B(x, v) =

∑

k≥3 bk(x)v
k, C(x, v) =

∑

k≥3 ck(x)v
k and D(x, v) =

∑

k≥2 dk(x)v
k. Thus, A(x, v) = x2v3

1−xv
and B(x, v) = x3v3

(1−xv)2 . Hence, the above recurrences can be

written as
(

1− x+
xv

1− v

)

C(x, v) =
xv3

1− v
C(x, 1) +

x3v3(2− x− xv)

(1− x)2(1− xv)2
,(38)

(

1− x+
xv

1− v

)

D(x, v) = xB(x, v) +
x

v
C(x, v) +

xv2

1− v
D(x, 1).(39)

To solve the first functional equation, we apply the kernel method and take v = 1−x
1−2x . This gives

C(x, 1) =
x3(2− 6x+ 3x2)

(1− x)2(1− 3x+ x2)2
.

Multiplying (39) by 1− x+ xv
1−v

, and using (38), yields

(

1− x+
xv

1− v

)2

D(x, v) = x

(

1− x+
xv

1− v

)

B(x, v)

+
x

v

(

xv3

1− v
C(x, 1) +

x3v3(2− x− xv)

(1 − x)2(1− xv)2

)

+
xv2

1− v

(

1− x+
xv

1− v

)

D(x, 1).

Differentiating this functional equation with respect to v and then substituting v = 1−x
1−2x , we have

D(x, 1) =
x3(1− 2x− x3)

(1− 3x+ x2)3
.

The result now follows from the fact FT (x) = 1 + x+A(x, 1) +B(x, 1) + C(x, 1) +D(x, 1). �

3.13. Case 188: {1432, 2143, 3214}. To find FT (x), we modify the generating trees of the last
two cases as follows.

For any set of patterns R, to enumerate Sn(R) one may consider the generating forest whose
vertices are identified with S :=

⋃

n≥2 Sn(R) where 12 and 21 are the roots and each non-root
π ∈ S is a child of the permutation obtained from π by deleting its largest element. We will show
that it is possible to label the vertices by irreducible permutations (as defined below) so that if
c1 and c2 are any two vertices, then c1 and c2 have the same number of children. Indeed, we will
specify (i) the irreducible permutations of the roots, and (ii) a set of succession rules explaining
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how to derive from the irreducible permutation of a parent the labels (presented by irreducible
permutations) of all of its children. This will determine a generating forest depending on R.

For σ = σ1 · · ·σk ∈ Sk(R), we say that σ is reducible if there is a subsequence σ′ of length k − 1
such that by inserting k in some position in the set A(σ′) of active sites we obtain σ. Otherwise,
σ is irreducible. Thus, to specify the generating forest F , we need to know the set of irreducible
permutations and the succession rules (what irreducible permutations are obtained by inserting a
letter in a given irreducible permutation).

For instance, if R = {132}, then 12 is reducible because if π = π′1π′′2π′′′ avoids 132 then π′′ = ∅,
which leads to the conclusion that π avoids 132 if and only if π′1π′′ avoids 132, thus 2 is a letter
verifying the reducibility of 12. In general, it is not hard to see that there is exactly one irreducible
permutation in Sk(132), namely, k · · · 21. Moreover, by inserting k + 1 in k · · · 21, we obtain
the following irreducible permutations (k + 1)k · · · 21, k · · · 21, . . . , 1, thus we have the following
succession rule

k · · · 21 (k + 1)k · · · 21, k · · · 21, . . . , 1,
for all k ≥ 1 (as expected, see [18]).

Now, we are ready to consider our case, T = {1432, 2143, 3214}. The irreducible permutations and
the succession rules are given in the next proposition; the proof is left to the reader.

Proposition 48. The irreducible permutations of Sk(T ) are given by αi,k = i(i+1) · · ·k12 · · · (i−
1), α′

i,k = i(i + 1) · · · (k − 2)1(k − 1)2k34 · · · (i − 1), α′′
i,k = i(i + 1) · · · (k − 1)1k23 · · · (i − 1),

βk = 1k23 · · · (k−1), β′
k = 1(k−1)2k34 · · · (k−2), γk = 23 · · · (k−1)1k, γ′

k = 2k34 · · · (k−2)1(k−1),
and δk = 67 · · · k14253.
The generating forest F is given by

Roots: α1,2, α2,2

Rules: α1,k  α1,k+1β3 · · ·βk+1αk+1,k+1, for k ≥ 2,
αi,k  γk+3−iα

′′
3,k+4−i · · ·α′′

i,k+1αi,k+1β3 · · ·βk+2−iαk+2−i,k+2−i, for 2 ≤ i ≤ k,

α′
i,k  α′

3,k+3−i · · ·α′
i,k(361425)γ

′
5 · · · γ′

k+2−iαk−i,k−i, for 3 ≤ i ≤ k − 2,

α′′
i,k  α′

3,k+4−i · · ·α′
i,k+1α

′′
i,kβ3γ

′
5 · · · γ′

k+3−iαk+1−i,k+1−i, for 3 ≤ i ≤ k − 1,

βk  γ3β
′
5 · · ·β′

k+1βkα2,2, for k ≥ 3,
β′
k  (142536)β′

5 · · ·β′
kδ6, for k ≥ 5,

γk  γkγ3γ
′
5 · · · γ′

k+1αk−1,k−1, for k ≥ 3,
γ′
k  (253614)β′

5 · · ·β′
k−1γ

′
kα2,2, for k ≥ 5,

δk  δk+1β3 · · ·βk−4αk−4,k−4, for k ≥ 6,
(361425) (361425)α2,2,
(142536) (142536)δ6,
(253614) (253614)δ6.

Let Ai,k = Ai,k(x) be the generating function for the number of nodes αi,k in F at level n (the roots
are at level 2). Similarly, we define A′

i,k, A
′′
i,k, Bk, B

′
k, Gk, G

′
k, Dk, L, L

′ and L′′, for the number

of nodes α′
i,k, α

′′
i,k, βk, β

′
k, γk, γ

′
k, δk, 361425, 142536 and 253614 in F at level n, respectively.

Define Ak(v) =
∑k

i=1 Ai,kv
k−i, A′

k(v) =
∑k−2

i=3 A′
i,kv

k−2−i and A′′
k(v) =

∑k−1
i=3 Ai,kv

k−1−i. Also,

define A(v, w) =
∑

k≥2 Ak(v)w
k−2, A′(v, w) =

∑

k≥5 A
′
k(v)w

k−5, A′′(v, w) =
∑

k≥4 A
′′
k(v)w

k−4 ,

B(w) =
∑

k≥3 Bkw
k−3, B′(w) =

∑

k≥5 B
′
kw

k−5, G(w) =
∑

k≥3 Gkw
k−3, G′(w) =

∑

k≥5 G
′
kw

k−5,

D(w) =
∑

k≥6 Dkw
k−6, L(w) =

∑

k≥6 Lkw
k−6, L′(w) =

∑

k≥6 L
′
kw

k−6, L′′(w) =
∑

k≥6 L
′′
kw

k−6.
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Proposition 48 leads to the following system of equations:

A(v, w) = vx2 + vwxA(v, w) +A(0, w),

A(0, w) =
x2

1− wx
+ xL+ x(B(1) +G′(1)) + xG(w) + xD(w)

+ x(A(w, 1) − wx2/(1− wx)) + x(A′(w, 1) +A′′(w, 1)),

A′(v, w) =
x

1− w
(A′(vw, 1)− wA′(v, w)) +

x

1− w
(A′′(vw, 1)− wA′′(v, w)),

(1− x)A′′(v, w) =
x

(1− w)(1 − vw)
(A(0, 1)−A(0, w)) − vx

(1− v)(1 − vw)
(A(0, w) −A(0, vw)),

B(w) =
x

1− w
(A(1, 1)−A(w, 1)) + xA′′(1, 1) + xB(w) +

x

1− w
(D(1)−D(w)),

B′(w) =
x

1− w
(B(1)−B(w)) +

x

1− w
(B′(1)− wB′(w)) +

x

1− w
(G′(1)−G′(w)),

G(w) = xG(w) + xG(1) + xB(1) + x(A(w, 1) − wx2/(1− wx)),

(1 − x)G′(w) =
x

1− w
(A′(1, 1)−A′(1/w,w)) +

x

1− w
(A′′(1, 1)−A′′(1/w,w))

+
x

1− w
(G(1)−G(w)),

(1− x)D(w) =
x

1− wx
(B′(1) + xG′(1)),

(1− x)L = xA′(1, 1),

(1 − x)L′ = xB′(1),

(1− x)L′′ = xG′(1).

Let K = 5x8−44x7+128x6−208x5+209x4−132x3+51x2−11x+1. Then, by computer algebra,
one can show the solution of the above system is given by

A(v, w) =
x2(x − 1)5(wx3 + 4x3 − 9x2 + 5x− 1) + vx2K(1− wx)

(1− wx)(1 − vwx)K
,

A′(v, w) =
x5(1− 2x)(1 − x)4

(1− wx)(1 − vwx)K
,

A′′(v, w) =
x4(1− 2x)2(1 − x)4

(1− wx)(1 − vwx)K
,

B(w) =
x3(1 − x)(1 − 7x+ 19x2 − (w + 25)x3 + 2(2w + 7)x4 − (4w + 1)x5)

(1− wx)K
,

B′(w) =
x5(1 − 2x)(1− x)4

(1− wx)K
,

G(w) =
x3(1 − x)2(1− 4x− 2(w − 4)x2 + 3(2w − 3)x3 + 5(1− w)x4)

(1− wx)K
,

G′(w) =
x5(1 − 3x+ 3x2)(1 − x)2

(1− wx)K
,

D(w) =
x6(1 − 3x+ 2x2 + x3)

(1− wx)K
,
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L =
x6(1 − 2x)(1− x)

K
,

L′ =
x6(1 − 2x)(1− x)2

K
,

L′′ =
x6(1 − 3x+ 3x2)

K
.

Hence, by Proposition 48, we have

FT (x) = 1+ x+L+L′ +L′′ +D(1)+G′(1) +G(1) +B′(1) +B(1) +A′′(1, 1)+A′(1, 1)+A(1, 1),

which leads to the following result.

Theorem 49. Let T = {1432, 2143, 3214}. Then

FT (x) =
(1− x)4(1− 6x+ 12x2 − 9x3 + x4)

1− 11x+ 51x2 − 132x3 + 209x4 − 208x5 + 128x6 − 44x7 + 5x8
.
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[19] Wikipedia, Permutation pattern, https://en.wikipedia.org/wiki/Permutation pattern
[20] Wikipedia, Enumerations of specific permutation classes,

https://en.wikipedia.org/wiki/Enumerations of specific permutation classes

4. Appendix

http://arxiv.org/abs/1605.04969
http://oeis.org


ENUMERATION OF PERMUTATIONS AVOIDING A TRIPLE OF 4-LETTER PATTERNS IS ALL DONE 49

Table 2: Small Wilf classes of three 4-letter patterns counted by INSENC.

Begin of Table

No. FT (x)

1 F{4321,3412,1234}(x) = 73x9 + 199x8 + 240x7 + 162x6 + 69x5 + 21x4 + 6x3 + 2x2 + x+ 1

2 F{4321,3142,1234}(x) = 85x9 + 221x8 + 252x7 + 164x6 + 69x5 + 21x4 + 6x3 + 2x2 + x+ 1

3 F{2143,4312,1234}(x) =
18x7+31x6+22x5+8x4+2x3+2x2−2x+1

(1−x)3

4 F{4231,2143,1234}(x) =
2x10−6x9+6x8+4x7+4x6+8x5+6x4−4x3+7x2−4x+1

(1−x)5

5 F{2143,3412,1234}(x) =
2x5+10x4−11x3+11x2−5x+1

(1−x)6

7 F{3421,4312,1234}(x) =
−9x7+24x6+23x5+8x4+2x3+2x2−2x+1

(1−x)3

8 F{2431,4213,1234}(x) =
26+21x+15x2

2(1−x−x2−x3)
+ 4x10(1+3x)−62x9−28x8+66x7+27x6−15x5−53x4+41x3+51x2−75x+24

(x−1)3(1−x−x2)2

9 F{2134,4312,1243}(x) =
−3x7−5x6+3x5+10x4−11x3+11x2−5x+1

(1−x)6

10 F{4213,1432,1234}(x) =
2x11+4x10+10x9+12x8+6x7−19x6−19x5−7x4−x3+2x−1

(x−1)(x5+3x4+2x3+x2+x−1)(x3+x2+x−1)

11 F{4231,1432,1234}(x) =
5x9−2x8−x7+9x6+9x5+6x4−4x3+7x2−4x+1

(1−x)5

12 F{2341,4312,1324}(x) =
x10−4x9+3x8+5x7−7x5+21x4−22x3+16x2−6x+1

(1−x)7

13 F{3214,1432,1234}(x) = − x5+x3+x2+x−1
x12+16x11+10x10+17x9+25x8+25x7−7x6−14x5−5x4−2x3−x2−2x+1

14 F{4231,2134,1243}(x) =
4x9−11x8+10x7+2x6−7x5+21x4−22x3+16x2−6x+1

(1−x)7

16 F{2314,1432,4123}(x) =
2x9−x8+x7+3x6+6x5−6x4+11x3−13x2+6x−1

(x2−3x+1)(x3+x2+x−1)(1−x)3

17 F{2341,2143,4123}(x) =
x7−13x5+25x4−29x3+20x2−7x+1

(x2−3x+1)(1−x)5

18 F{2341,1432,4123}(x) =
x10−7x9+19x8−25x7+12x6+10x5−20x4+25x3−19x2+7x−1

(x2+1)(x2−3x+1)(x3−x2−2x+1)(x−1)3

19 F{2431,4312,1234}(x) =
6x9−7x8−7x7+4x6+10x5+6x4−4x3+7x2−4x+1

(1−x)5

20 F{4312,1432,1234}(x) =
(x+1)(2x9−18x8+33x7−20x6+12x5−22x4+16x3−12x2+5x−1)

(x−1)5

21 F{4312,3142,1234}(x) =
2x9−3x8−2x6−6x5+21x4−22x3+16x2−6x+1

(1−x)7

22 F{2134,4312,1432}(x) =
x6+6x5−21x4+22x3−16x2+6x−1

(x−1)7

23 F{2431,4132,1234}(x) =
1−2x

x2−3x+1
+

(24x9−116x8+213x7−158x6+9x5+37x4−9x3+x2−3x+1)x3

(x−1)5(2x−1)3

24 F{4231,3412,1234}(x) =
2x6−6x5+21x4−22x3+16x2−6x+1

(1−x)7

25 F{3412,4132,1234}(x) =
3x6−6x5+21x4−22x3+16x2−6x+1

(1−x)7

26 F{2134,4312,1342}(x) = −x8−9x6+27x5−43x4+38x3−22x2+7x−1
(1−x)8

27 F{2314,4312,1432}(x) = − 3x9−x8−18x7+17x6+15x5−44x4+47x3−27x2+8x−1
(2x−1)(x2+x−1)(x−1)6

28 F{4231,3142,1234}(x) =
2x8−10x7+40x6−70x5+81x4−60x3+29x2−8x+1

(1−x)9

31 F{2314,4312,1342}(x) =
5x10−22x9+12x8+89x7−249x6+354x5−316x4+179x3−62x2+12x−1

(x2−3x+1)(2x−1)3(x−1)4

32 F{2134,1432,4123}(x) =
x10−4x9+4x8−x6−5x5+6x4−11x3+13x2−6x+1

(x2−3x+1)(x3+x2+x−1)(x−1)3

33 F{2134,3412,4132}(x) =
2x7−16x5+36x4−42x3+26x2−8x+1

(2x−1)3(x−1)3

34 F{2143,4132,1234}(x) = −x9−2x8−x7+4x6−x5−2x4+3x3−8x2+5x−1
(x2−3x+1)(x−1)(2x−1)

35 F{1324,2143,3412}(x) =
1−9x+33x2−62x3+64x4−38x5+10x6

(1−3x+x2)(1−2x)2(1−x)3

36 F{3412,3124,1432}(x) = −x8+2x7−26x6+62x5−83x4+69x3−34x2+9x−1
(x−1)5(x2−3x+1)(2x−1)

37 F{3142,1432,1234}(x) =
(x3−2x2+3x−1)2

x8−x7+4x6−7x5+19x4−24x3+18x2−7x+1

38 F{4321,1423,1234}(x) = 147x9 + 359x8 + 367x7 + 198x6 + 72x5 + 21x4 + 6x3 + 2x2 + x+ 1

39 F{4321,4123,1234}(x) = 185x9 + 400x8 + 396x7 + 205x6 + 72x5 + 21x4 + 6x3 + 2x2 + x+ 1

40 F{2341,4312,1234}(x) =
x9−5x8+6x7+x6+5x5−21x4+22x3−16x2+6x−1

(x−1)7
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Continuation of Table 2

No. FT (x)

41 F{4312,1342,1234}(x) = − 2x7−8x6+26x5−43x4+38x3−22x2+7x−1
(x−1)8

42 F{2341,4132,1234}(x) =
4x8−5x7−7x6−7x5+22x4−28x3+20x2−7x+1

(2x−1)2(x−1)4

43 F{2314,4213,1432}(x) = − 9x6−35x5+54x4−49x3+27x2−8x+1
(3x3−5x2+4x−1)(2x−1)(x−1)3

44 F{4213,1342,1234}(x) =
x10−6x9+9x8+9x7−54x6+94x5−104x4+76x3−35x2+9x−1

(x3−2x2+3x−1)(2x−1)(x−1)5

45 F{4213,2134,1432}(x) =
x10−2x9−x8−13x7+54x6−99x5+108x4−77x3+35x2−9x+1

(x−1)2(3x3−5x2+4x−1)2

46 F{2341,4132,1324}(x) =
2x7+5x6−3x5+3x4+6x3−12x2+6x−1

(x−1)(2x−1)(x2−3x+1)(x2+x−1)

47 F{2413,4132,1234}(x) = − 3x6−21x5+40x4−43x3+26x2−8x+1
(2x−1)(x−1)4(x2−3x+1)

48 F{4312,3124,1342}(x) = −x9−15x8+73x7−175x6+247x5−228x4+138x3−52x2+11x−1
(x2−3x+1)2(x−1)6

51 F{4213,3124,1432}(x) =
x6−7x4+12x3−13x2+6x−1
(x2−3x+1)(3x3−5x2+4x−1)

52 F{1432,4123,1234}(x) = −x8−4x7+3x6+4x5−11x4+20x3−18x2+7x−1
(x−1)2(x2−3x+1)2

53 F{2134,4132,1243}(x) =
x10−4x9−6x8+68x7−186x6+291x5−283x4+170x3−61x2+12x−1

(2x−1)2(x2−3x+1)2(x−1)3

54 F{3124,1432,1234}(x) =
(1−x)3(2x3−2x2+3x−1)

2x9−7x8+7x7−10x6+16x5−27x4+29x3−19x2+7x−1

57 F{2143,1432,1234}(x) =
x7+x6−x5+3x3+2x2+2x−1

x7+x6−x5−x4+2x3+x2+3x−1

58 F{4321,1243,1234}(x) = 144x9 + 396x8 + 382x7 + 202x6 + 73x5 + 21x4 + 6x3 + 2x2 + x+ 1

59 F{4321,1324,1234}(x) = 334x9 + 669x8 + 484x7 + 215x6 + 73x5 + 21x4 + 6x3 + 2x2 + x+ 1

60 F{4312,4132,1234}(x) =
x7+16x6+12x5+6x4−4x3+7x2−4x+1

(1−x)5

61 F{4312,1243,1234}(x) =
x10−4x9+3x8+2x7+x6+4x5−21x4+22x3−16x2+6x−1

(x−1)7

62 F{4231,4312,1234}(x) =
3x8−8x7+4x6−4x5+21x4−22x3+16x2−6x+1

(1−x)7

63 F{4312,1324,1234}(x) =
x10−5x9+6x8+2x7−5x6+4x5−21x4+22x3−16x2+6x−1

(x−1)7

64 F{4312,3412,1234}(x) =
3x7+5x6−4x5+21x4−22x3+16x2−6x+1

(1−x)7

65 F{4213,4132,1234}(x) = − 3x8+5x7+13x6+7x5+2x4+x3+5x2−4x+1
(x2+x−1)(x3+x2+x−1)(x−1)3

66 F{4231,4132,1234}(x) =
2x7+8x6−4x5+21x4−22x3+16x2−6x+1

(1−x)7

67 F{4312,1324,1243}(x) =
2x10−7x8+65x7−187x6+274x5−248x4+145x3−53x2+11x−1

(x−1)6(2x−1)3

68 F{4312,1342,1243}(x) =
3x7−4x6−14x5+36x4−42x3+26x2−8x+1

(x−1)3(2x−1)3

70 F{4312,3124,1243}(x) = − 11x7−62x6+128x5−146x4+102x3−43x2+10x−1
(2x−1)3(x−1)5

71 F{4231,1243,1234}(x) = − 4x8−2x7−17x6+25x5−43x4+38x3−22x2+7x−1
(x−1)8

73 F{4231,1324,1234}(x) = −x10−15x8+55x7−111x6+149x5−141x4+89x3−37x2+9x−1
(x−1)10

79 F{2134,4132,1234}(x) =
2x11+x10−10x9−9x8+12x7+17x6−30x5+2x4+28x3−24x2+8x−1

(x2+2x−1)(2x−1)(x−1)3(x2+x−1)2

81 F{2431,4312,1324}(x) =
145x3+11x−1−248x4−193x6+274x5−53x2−x9−13x8+80x7)

(2x−1)3(x−1)6

82 F{4312,3142,1243}(x) =
x7+2x6−27x5+59x4−61x3+33x2−9x+1

(x−1)2(2x−1)4

83 F{4312,3412,1243}(x) =
x7+2x6+4x5−23x4+36x3−25x2+8x−1

(x−1)(2x−1)4

85 F{2314,4132,1432}(x) = −x5+5x4−11x3+13x2−6x+1
(2x−1)(x2−3x+1)(x−1)2

87 F{4312,3124,1432}(x) = − 2x9−46x7+143x6−226x5+221x4−137x3+52x2−11x+1
(x−1)5(x2−3x+1)(2x−1)2

89 F{3142,4132,1234}(x) = − 4x5−16x4+24x3−19x2+7x−1
(2x−1)(x2−3x+1)(x−1)3

91 F{4213,1342,1243}(x) = − 4x5−14x4+17x3−14x2+6x−1
(3x−1)(x2−x+1)(x−1)3

92 F{2314,3124,1432}(x) =
(x3−2x2+3x−1)(x2+x−1)(1−x)3

x9−2x8+6x7−4x6−7x5+32x4−40x3+25x2−8x+1

95 F{2314,4132,1342}(x) = − 4x6−25x5+51x4−56x3+32x2−9x+1
(2x−1)(x−1)2(x2−3x+1)2
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Continuation of Table 2

No. FT (x)

96 F{2134,4132,1342}(x) = − 4x8+6x7−45x6+100x5−126x4+95x3−42x2+10x−1
(2x−1)2(x2−3x+1)(x−1)4

97 F{2341,4312,4123}(x) = − (x−1)4(x3−2x2+3x−1)
x8−4x7+18x6−35x5+51x4−47x3+26x2−8x+1

98 F{2134,3124,1432}(x) =
(x−1)3(x3+2x−1)

4x6−7x5+9x4−15x3+13x2−6x+1

100 F{4312,1342,4123}(x) = − 4x6−16x5+30x4−31x3+20x2−7x+1
(x−1)3(2x4−7x3+8x2−5x+1)

101 F{3124,4132,1342}(x) = − 4x6−16x5+30x4−31x3+20x2−7x+1
(x−1)3(2x4−7x3+8x2−5x+1)

102 F{2413,3142,1234}(x) = −
(x−1)3(x3−2x2+3x−1)

x7−4x6+12x5−23x4+28x3−19x2+7x−1

104 F{2134,4132,1423}(x) = − 3x7−4x6+17x5−46x4+55x3−32x2+9x−1
(x−1)(x2−3x+1)(2x−1)3

105 F{4213,2134,1342}(x) = − 7x6−25x5+51x4−56x3+32x2−9x+1
(2x−1)(x−1)2(x2−3x+1)2

107 F{4213,3412,1342}(x) = −
(x2−x+1)(2x−1)3

(4x3−7x2+5x−1)(x−1)3

110 F{2134,3142,1432}(x) = −
(x−1)(3x3−5x2+4x−1)2

x9+2x8−27x7+86x6−144x5+150x4−100x3+42x2−10x+1

111 F{2143,3142,1234}(x) =
(x3−2x2+3x−1)2

(2x3−3x2+4x−1)(x−1)3

113 F{2134,1432,1234}(x) =
2x5−x4−3x3−2x2−2x+1

2x5−2x3−x2−3x+1

114 F{4312,1423,1234}(x) = −x10−3x9+2x8+4x7−9x6+24x5−43x4+38x3−22x2+7x−1
(x−1)8

115 F{4231,1423,1234}(x) = − 2x10−17x9+66x8−158x7+256x6−289x5+230x4−126x3+46x2−10x+1
(x−1)11

116 F{4312,4123,1243}(x) =
x9−23x8+133x7−315x6+419x5−350x4+188x3−63x2+12x−1

(2x−1)4(x−1)5

117 F{3124,4132,1234}(x) =
x9−6x8+22x7−53x6+92x5−104x4+76x3−35x2+9x−1

(x3−2x2+3x−1)(2x−1)(x−1)5

119 F{4312,1432,1324}(x) =
−350x4−63x2+419x5−26x8+138x7−317x6+188x3+x9−1+12x

(2x−1)4(x−1)5

120 F{4132,1423,1234}(x) = −x8+4x7−41x6+99x5−126x4+95x3−42x2+10x−1
(x2−3x+1)(2x−1)2(x−1)4

122 F{4213,1432,1324}(x) = − 5x5−19x4+25x3−19x2+7x−1
(x−1)(x2−3x+1)(3x3−5x2+4x−1)

123 F{4132,1342,1234}(x) = − 3x8−46x7+141x6−225x5+221x4−137x3+52x2−11x+1
(x2−3x+1)(2x−1)2(x−1)5

124 F{2341,4132,4123}(x) = −
(2x−1)(x−1)4

2x6−8x5+19x4−27x3+19x2−7x+1

128 F{2341,3142,4123}(x) =
(x2−3x+1)(x−1)5

4x7−23x6+55x5−78x4+66x3−33x2+9x−1

135 F{1432,4123,1243}(x) = − 5x5−14x4+22x3−18x2+7x−1
(x−1)4(2x2−4x+1)

136 F{4213,1342,4123}(x) =
x5−3x3+4x2−4x+1

x5+x4−6x3+7x2−5x+1

137 F{3124,1432,1342}(x) = −
(x2−3x+1)(x2+2x−1)

(x−1)(x4−2x3−5x2+5x−1)

138 F{2134,3142,1243}(x) = −
(x2−3x+1)(x2+2x−1)

(x−1)(x4−2x3−5x2+5x−1)

139 F{2143,3124,1342}(x) = −
(x2−3x+1)(x2+2x−1)

(x−1)(x4−2x3−5x2+5x−1)

140 F{3124,1432,1243}(x) =
(3x−1)(x−1)3

9x4−19x3+17x2−7x+1

141 F{2143,1423,1234}(x) =
2x4−4x3+7x2−5x+1
4x4−9x3+11x2−6x+1

142 F{1432,1342,4123}(x) =
x3+3x−1

x3−2x2+4x−1

143 F{4312,4123,1234}(x) = −x8−3x7−12x6+23x5−43x4+38x3−22x2+7x−1
(x−1)8

144 F{4231,4123,1234}(x) = − 3x8−15x7+40x6−66x5+81x4−60x3+29x2−8x+1
(x−1)9

145 F{4312,1423,1243}(x) =
2x7−2x6−25x5+59x4−61x3+33x2−9x+1

(x−1)2(2x−1)4

146 F{4132,1243,1234}(x) =
x9−4x8+20x6−58x5+83x4−69x3+34x2−9x+1

(2x−1)(x2−3x+1)(x−1)5

147 F{4132,1324,1234}(x) = − 13x10−45x9+83x8−38x7−141x6+308x5−306x4+178x3−62x2+12x−1
(x2−3x+1)(x2+x−1)(2x−1)2(x−1)5

148 F{2134,4132,1324}(x) = − 5x8−51x7+172x6−288x5+283x4−170x3+61x2−12x+1
(2x−1)2(x2−3x+1)2(x−1)3

152 F{4231,2341,4123}(x) =
(x−1)6(x2−3x+1)

5x8−31x7+83x6−134x5+144x4−99x3+42x2−10x+1
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154 F{4312,1342,1423}(x) = − 3x5−14x4+21x3−18x2+7x−1
(x−1)(2x3−4x2+4x−1)(x2−3x+1)

155 F{3124,4132,1243}(x) = − 3x5−14x4+21x3−18x2+7x−1
(x−1)(2x3−4x2+4x−1)(x2−3x+1)

160 F{4312,1432,1342}(x) =
2x5−4x4−10x3+16x2−7x+1

(x−1)(3x−1)(2x−1)(x2+2x−1)

161 F{4312,4132,1342}(x) = − 7x5−22x4+33x3−24x2+8x−1
(x3−3x2+4x−1)(x−1)(2x−1)2

167 F{3142,3124,1432}(x) = − (2x−1)(x−1)(x2−3x+1)
x5−7x4+18x3−17x2+7x−1

168 F{3124,1432,1423}(x) = −
(x2−3x+1)(2x−1)2

(x−1)(x4−13x3+16x2−7x+1)

169 F{3142,1423,1234}(x) = −
(x2−3x+1)(2x−1)2

(x−1)(x4−13x3+16x2−7x+1)

179 F{2134,1432,1423}(x) = − 2x5−8x4+12x3−12x2+6x−1
(x4−5x3+10x2−6x+1)(x2−x+1)

181 F{2143,1324,1234}(x) = − 2x3+3x−1
x4−2x3+2x2−4x+1

183 F{4132,4123,1234}(x) =
x8−8x7+31x6−75x5+98x4−75x3+35x2−9x+1

(2x−1)2(x−1)6

186 F{4132,4123,1243}(x) = −−27x5+55x4−57x3+32x2−9x+1+4x6

(3x−1)(x2−3x+1)(x−1)4

189 F{2143,2134,1432}(x) = − x4−7x3+8x2−5x+1
x5−5x4+13x3−12x2+6x−1

200 F{2143,3124,1243}(x) =
x3−6x2+5x−1

(x−1)(5x2−5x+1)

202 F{1432,1423,1234}(x) =
x4−4x3+10x2−6x+1

3x4−11x3+15x2−7x+1

205 F{1432,1324,1234}(x) = −x7−2x6+4x5−17x4+24x3−18x2+7x−1
2x6−14x5+34x4−38x3+24x2−8x+1

206 F{1432,1243,1234}(x) = − x6+5x4−12x3+12x2−6x+1
2x5−13x4+21x3−17x2+7x−1

End of Table
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