
On Uniquely Closable and Uniquely Typable Skeletons
of Lambda Terms

Olivier Bodini1 and Paul Tarau2

1 Laboratoire d’Informatique de Paris-Nord
UMR CNRS 7030

olivier.bodini@lipn.univ-paris13.fr
2 Department of Computer Science and Engineering

University of North Texas
paul.tarau@unt.edu

Abstract. Uniquely closable skeletons of lambda terms are Motzkin-trees that
predetermine the unique closed lambda term that can be obtained by labeling
their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of closed
lambda terms predetermine the unique simply-typed lambda term that can be
obtained by labeling their leaves with de Bruijn indices.
We derive, through a sequence of logic program transformations, efficient code
for their combinatorial generation and study their statistical properties.
As a result, we obtain context-free grammars describing closable and uniquely
closable skeletons of lambda terms, opening the door for their in-depth study
with tools from analytic combinatorics.
Our empirical study of the more difficult case of (uniquely) typable terms reveals
some interesting open problems about their density and asymptotic behavior.
As a connection between the two classes of terms, we also show that uniquely
typable closed lambda term skeletons of size 3n+1 are in a bijection with binary
trees of size n.
Keywords: deriving efficient logic programs, logic programming and compu-
tational mathematics, combinatorics of lambda terms, inferring simple types,
uniquely closable lambda term skeletons, uniquely typable lambda term skele-
tons.

1 Introduction

The study of combinatorial properties of lambda terms has theoretical ramifications
ranging from their connection to proofs in intuitionistic logic via the Curry-Howard
correspondence [1] and their role as a foundation of Turing-complete as well as expres-
sive but terminating computations in the case of simply typed lambda terms [2]. At the
same time, lambda terms are used in the internal representations of compilers for func-
tional programming languages and proof assistants, for which the generation of large
random lambda terms helps with automated testing [3].

This paper focuses on binary-unary trees that are obtained from lambda terms in de
Bruijn form, represented as trees, by erasing the de Bruijn indices labeling variables at

ar
X

iv
:1

70
9.

04
30

2v
1

 [
cs

.P
L

]
 1

3
Se

p
20

17

their leaves. Such “skeletons” of the lambda terms turn out to predetermine some non-
trivial properties the lambda terms they host, e.g., if such terms are closed or simply-
typed. Of particular interest are the cases when unique such terms exist.

Our declarative meta-language is Prolog, which turns out to provide everything we
need: easy combinatorial generation via backtracking over the set of all answers, spec-
ified as a Definite Clause Grammar (DCG) that enforces size constraints and allows
placing more complex constraints at points in the code where they ensure the earliest
possible pruning of the search space.

Our meta-language also facilitates program transformations that allow us to derive
step-by-step faster programs as well as simpler expressions of the underlying com-
binatorial mechanisms, e.g., a context-free grammar in the case of uniquely closable
skeletons, that in turn makes them amenable to study with powerful techniques from
analytical combinatorics.

The paper is organized as follows. Section 2 describes generators for closed lambda
terms and their Motzkin-tree skeletons. Section 3 introduces closable skeletons and
studies their statistical properties. Section 4 derives algorithms (including a CF-grammar)
for efficient generation of uniquely closable skeletons. Section 5 discusses typable and
untypable closed skeletons. Section 6 introduces uniquely typable closed skeletons,
studies the special case of uniquely closable and uniquely typable skeletons and es-
tablishes their connection to members of the Catalan family of combinatorial objects.
Section 7 overviews related work and section 8 concludes the paper.

The paper is structured as a literate Prolog program to facilitate an easily replicable,
concise and declarative expression of our concepts and algorithms.

The code extracted from the paper, tested with SWI-Prolog [4] version 7.5.3, is
available at: http://www.cse.unt.edu/~tarau/research/2017/uct.pro .

2 Closed Lambda Terms and their Motzkin-tree Skeletons

A Motzkin tree (also called binary-unary tree) is a rooted ordered tree built from binary
nodes, unary nodes and leaf nodes. Thus the set of Motzkin trees can be seen as the free
algebra generated by the constructors v/0, l/1 and a/2.

We define lambda terms in de Bruijn form [5] as the free algebra generated by the
constructors l/1, and a/2 and leaves labeled with natural numbers wrapped with the
constructor v/1.

A lambda term in de Bruijn form is closed if for each of its de Bruijn indices it
exists a lambda binder to which it points, on the path to the root of the tree representing
the term. They are counted by sequence A135501 in [6].

The predicate closedTerm/2 specifies an all-terms generator, which, given a natu-
ral number N backtracks one member X at a time, over the set of terms of size N.

closedTerm(N,X):-closedTerm(X,0,N,0).

closedTerm(v(I),V)-->{V>0,V1 is V-1,between(0,V1,I)}.

closedTerm(l(A),V)-->l,{succ(V,NewV)},closedTerm(A,NewV).

closedTerm(a(A,B),V)-->a,closedTerm(A,V),closedTerm(B,V).

2

http://www.cse.unt.edu/~tarau/research/2017/uct.pro

The size definition is expressed by the work of the predicates l/1, consuming 1 size
unit for each lambda binder and a/2 consuming 2 size units for each a/2 application
constructor and 0 units for variables v/1. The initial term which is just a unique variable
has size 0.

Given that the number of leaves in a Motzkin tree is the number of binary nodes +
1, if follows that:

Proposition 1 The set of terms of size n for the size definition {application=2, lambda=1,
variable=0} is equal to the set of terms of size n+1 for the size definition {application=1,
lambda=1, variable=1}.

Thus our size definition gives the sequence A135501 of counts, first introduced in [7],
shifted by one. For instance, the term l(a(v(0),v(0))) will have size 3 = 1+2 with our
definition, which corresponds to size 4 = 1+1+1+1 using the size definition of [7].

Our size definition is implemented as

l(SX,X):-succ(X,SX).

a-->l,l.

with Prolog’s DCG notation controlling the consumption of size units for N to 0.
The predicate toMotSkel/2 computes the Motzkin skeleton of a term.

toMotSkel(v(_),v).

toMotSkel(l(X),l(Y)):-toMotSkel(X,Y).

toMotSkel(a(X,Y),a(A,B)):-toMotSkel(X,A),toMotSkel(Y,B).

The predicate motSkel/2 generates Motzkin trees X of size N, using the same size
definition as the lambda terms for which they serve as skeletons.

motSkel(N,X):-motSkel(X,N,0).

motSkel(v)-->[].

motSkel(l(X))-->l,motSkel(X).

motSkel(a(X,Y))-->a,motSkel(X),motSkel(Y).

3 Closable and Unclosable Skeletons

We call a Motzkin tree closable if it is the skeleton of at least one closed lambda term.
The predicate isClosable/1 tests if it exists a closed lambda term having X as its

skeleton. For each lambda binder it increments a count V (starting at 0), and ensures
that it is strictly positive for all leaf nodes.

isClosable(X):-isClosable(X,0).

isClosable(v,V):-V>0.

isClosable(l(A),V):-succ(V,NewV),isClosable(A,NewV).

isClosable(a(A,B),V):-isClosable(A,V),isClosable(B,V).

We define generators for closable and unclosable skeletons by filtering the stream of
answers of the Motzkin tree generator motSkel/2 with the predicate isClosable/1

and its negation.

3

closableSkel(N,X):-motSkel(N,X),isClosable(X).

unClosableSkel(N,X):-motSkel(N,X),not(isClosable(X)).

It immediately follows that:

Proposition 2 A Motzkin tree is a skeleton of a closed lambda term if and only if it
exists at least one lambda binder on each path from the leaf to the root.

In Fig. 1 we show 3 closable and 3 unclosable Motzkin skeletons.

a) 3 closable skeletons b) 3 unclosable skeletons
a

l

v

l

l

a

vv

a

l

a

vv

l

l

v

a

a

l

v

l

v

l

v

a

va

l

v

l

l

v

a

l

v

a

va

vv

a

l

v

a

l

l

v

v

Fig. 1. Closable vs. unclosable skeletons of size 7

Next, we derive the predicate quickClosableSkel/2 that generates closable skele-
tons about 3 times faster by testing directly that lambda binders are available at each
leaf node, resulting in earlier pruning of those that do not satisfy this constraint.

quickClosableSkel(N,X):-quickClosableSkel(X,0,N,0).

quickClosableSkel(v,V)-->{V>0}.

quickClosableSkel(l(A),V)-->l,{succ(V,NewV)},quickClosableSkel(A,NewV).

quickClosableSkel(a(A,B),V)-->a,

quickClosableSkel(A,V),

quickClosableSkel(B,V).

We observe that there are slightly more unclosable Motzkin trees than closable ones
as size grows:

closable: 0,1,1,2,5,11,26,65,163,417,1086,2858,7599,20391,55127,150028,410719, ...
unclosable: 1,0,1,2,4,10,25,62,160,418,1102,2940,7912,21444,58507,160544,442748, ...

One step further, we can derive, based on Proposition 2, a grammar generating clos-
able skeletons, by observing that they require at least one lambda (l/1 constructor)

4

on each path, with Motzkin trees below the l/1 constructor generated by the predicate
motSkel/3 introduced in section 2. This runs about 3 times as fast as closableSkel/2.

closable(N,X):-closable(X,N,0).

closable(l(Z))-->l,motSkel(Z).

closable(a(X,Y))-->a,closable(X),closable(Y).

By entering this grammar as input to Maciej Bendkowski’s Boltzmann sampler gen-
erator [8] we have obtained a Haskell program generating uniformly random closable
skeletons of one hundred thousand nodes in a few seconds. The probability to pick l/1

and enter a Motzkin subtree instead of an a/2 constructor was 0.8730398709632761.
The threshold within the Motzkin subtree to pick a leaf was 0.3341408333975344,
then 0.667473848839429 for a unary constructor, over which a binary constructor
was picked. See the Appendix for the equivalent Prolog code.

Let us denote by M(z) = ∑mnzn the ordinary generating function for Motzkin trees
(mn is the number of Motzkin trees of size n). It is well known [9] that M(z) follows
the algebraic functional equation M = z+ zM + zM2 which can be obtained directly

from the symbolic method and we get M(z) = 1−z−
√
−3z2−2z+1
2z . From this, we obtain

the classical result that asymptotically the number mn of Motzkin trees of size n is

equivalent to

√
3

2
√

π
3nn−3/2.

Now, following the proposition 1 (and the predicate closable/2 providing the cor-
responding grammar definition), we can deduce that the ordinary generating function
C(z) for closable lambda terms satisfies C(z) = zC(z)2+ zM(z). Indeed, a closable term
has either an application at the root followed by two sub-closable terms (which gives
rise to zC(z)2), either an abstraction at the root followed by a term (which gives rise to

zM(z)). Consequently, C(z) =
1−
√

2z
√
−3z2−2z+1+2z2−2z+1

2z . Now, we are in the frame-
work of the Flajolet-Odlysko transfer theorems [10] which gives directly the asymp-

totics of the number cn of closable skeletons: cn ∼
√

15
10
√

π
3nn−3/2. By dividing cn with

mn we obtain:

Proposition 3 When n tends to the infinity, the proportion of closable lambda term

skeletons tends to
1√
5

.
= 44.7%.

It is possible to calculate very efficiently the coefficients cn. For that purpose, from
the equation C(z) = zC(z)2 + zM(z), an easy calculation gives that C(z) satisfies the
algebraic equation z2C(z)4 − 2zC(z)3 + (−z2 + z+ 1)C(z)2 + (z− 1)C(z) + z2. Thus,
dealing with classical tools (in order to pass from an algebraic equation into a holonomic
one), we can deduce a linear differential equation from it:

0 =−208z6−168z5 +12z4 +94z3−42z2 +6z+(
−16z6 +24z5 +36z4−92z3 +60z2−12z

)
C (z)+(

768z9−480z8−1088z7−64z6 +216z5 +44z4 +30z3−54z2 +18z−2
) d

dzC (z)+(
384z10−32z9−368z8−56z7−4z6 +110z5−21z4−21z3 +9z2− z

) d2

dz2 C (z)

5

with the initial condition C (0) = 0. Now, extracting a relation on the coefficients from
this holonomic equation, we obtain the following P-recurrence for the coefficient cn:(

384n2 +384n
)

cn +(
−32n2−512n−480

)
cn+1 +(

−368n2−2192n−2928
)

cn+2 +(
−56n2−344n−504

)
cn+3 +(

−4n2 +188n+852
)

cn+4 +(
110n2 +1034n+2328

)
cn+5 +(

−21n2−201n−390
)

cn+6 +(
−21n2−327n−1272

)
cn+7 +(

9n2 +153n+648
)

cn+8 +(
−n2−19n−90

)
cn+9 = 0

with the initial conditions c0 = 0,c1 = 0,c2 = 1,c3 = 1,c4 = 2,c5 = 5,c6 = 11,c7 =
26,c8 = 65

Note that by a guess-and-prove approach, we can a little simplify the recurrence
into:

(
1200n5 +18480n4 +90816n3 +161088n2 +87552n

)
cn +(

800n5 +13520n4 +79024n3 +202312n2 +231768n+95760
)

cn+1 +(
−100n5−1840n4−12848n3−38792n2−44100n−9576

)
cn+2 +(

−100n5−1990n4−14648n3−48254n2−66276n−23940
)

cn+3 +(
−225n5−4815n4−38883n3−147519n2−260286n−167580

)
cn+4 +(

150n5 +3435n4 +29817n3 +120441n2 +218739n+131670
)

cn+5 +(
−25n5−610n4−5642n3−24128n2−45405n−26334

)
cn+6 = 0

with the initial conditions c0 = 0,c1 = 0,c2 = 1,c3 = 1,c4 = 2,c5 = 5
This recurrence is extremely efficient in order to calculate the coefficient cn.
Alternatively, the expansion into Taylor series of C(z) gives z2 + z3 + 2z4 + 5z5 +

11z6+26z7+65z8+163z9+417z10+1086z11+2858z12+7599z13+20391z14+55127z15...
with its coefficients matching the number of terms of sizes given by the exponents, cor-
responding to the number of solutions of the predicate closableSkel/2.

4 Uniquely Closable Skeletons

We call a skeleton uniquely closable if it exists exactly one closed lambda term having
it as its skeleton.

6

Proposition 4 A skeleton is uniquely closable if and only if exactly one lambda binder
is available above each of its leaf nodes.

Proof. Note that if more than one were available for any leaf v, one could choose more
then one de Bruijn index at the corresponding leaf v/1 of a lambda term, resulting in
more than one possible lambda terms having the given skeleton.

The predicate uniquelyClosable1/2 derived from quickClosableSkel1/2 en-
sures that for each leaf v/0 exactly one lambda binder is available.

uniquelyClosable1(N,X):-uniquelyClosable1(X,0,N,0).

uniquelyClosable1(v,1)-->[].

uniquelyClosable1(l(A),V)-->l,{succ(V,NewV)},uniquelyClosable1(A,NewV).

uniquelyClosable1(a(A,B),V)-->a,uniquelyClosable1(A,V),

uniquelyClosable1(B,V).

As a skeleton is uniquely closable if on any path from a leaf to the root there’s ex-
actly one l/1 constructor, we derive the predicate uniquelyClosable2/2 that marks
subtrees below a lambda l1/1 constructor to ensure no other l/1 constructor is used in
them.

uniquelyClosable2(N,X):-uniquelyClosable2(X,hasNoLambda,N,0).

uniquelyClosable2(v,hasOneLambda)-->[].

uniquelyClosable2(l(A),hasNoLambda)-->l,

uniquelyClosable2(A,hasOneLambda).

uniquelyClosable2(a(A,B),Has)-->a,uniquelyClosable2(A,Has),

uniquelyClosable2(B,Has).

By specializing with respect to having or not having a lambda binder above, we
obtain uniquelyClosable/2 which mimics a context-free grammar generating all
uniquely closable skeletons of a given size.

uniquelyClosable(N,X):-uniquelyClosable(X,N,0).

uniquelyClosable(l(A))-->l,closedAbove(A).

uniquelyClosable(a(A,B))-->a,uniquelyClosable(A),uniquelyClosable(B).

closedAbove(v)-->[].

closedAbove(a(A,B))-->a,closedAbove(A),closedAbove(B).

In fact, if one wants to only count the number of solutions, the actual term (argument
1) can be omitted, resulting in the even faster predicate uniquelyClosableCount/1.

uniquelyClosableCount(N):-uniquelyClosableCount(N,0).

uniquelyClosableCount-->l,closedAboveCount.

uniquelyClosableCount-->a,uniquelyClosableCount,uniquelyClosableCount.

closedAboveCount-->[].

closedAboveCount-->a,closedAboveCount,closedAboveCount.

7

This sequence of program transformations results in code running an order of magni-
tude faster, with all counts up to size 30, shown in Fig. 2, obtained in less than a minute.
Fig. 2 shows the growths of the set of uniquely closable skeletons.

0 5 10 15 20 25 30

100

102

104

106

size

un
iq

ue
ly

cl
os

ab
le

sk
el

et
on

s
(l

og
.s

ca
le

)

Fig. 2. Uniquely closable skeletons by increasing sizes

If expressed as a Haskell data type, the grammar describing the set of closable skele-
tons becomes:

data UniquelyClosable = L ClosedAbove

| A UniquelyClosable UniquelyClosable deriving(Eq,Show,Read)

data ClosedAbove = V | B ClosedAbove ClosedAbove deriving(Eq,Show,Read)

With this notation, a skeleton, with the constructor B used for binary trees not containing
an L constructor, is A (A (L V) (L V)) (L (B (B V V) V)).

One can transliterate the Prolog DCG grammar into Haskell by using list compre-
hensions to mimic backtracking as follows.

genA 0 = []

genA n | n>0 =

[L x | x <- genB (n-1)] ++

[A x y | k <- [0..n-2], x <- genA k, y <- genA (n-2-k)]

genB 0 = [V]

genB n | n>0 = [B a b | k <- [0..n-2], a <- genB k, b <- genB (n-2-k)]

By entering the equivalent of this data type definition as input to Maciej Bend-
kowski’s Boltzmann sampler generator [8] we have obtained a Haskell program gen-
erating uniformly random terms of one hundred thousand nodes in a few seconds. The

8

probability threshold for a unary constructor was below 0.5001253328728457 and
then, once having entered a closed above subtree, it was 0.5001253328728457 to stop
at a leaf rather than continuing with a binary node. See the Appendix for the equivalent
Prolog code.

Let us denote by B(z) the ordinary generating function for binary trees. The series
B(z) follows the algebraic functional equation B = z+ zM2 and consequently B(z) =
1−
√
−4z2+1
2z .

The ordinary generating function U(z) for uniquely closable lambda terms satisfies
U(z) = zU(z)2+zB(z). Indeed, a uniquely closable term has either an application at the
root followed by two sub uniquely closable terms (which gives rise to zC(z)2), either
an abstraction at the root followed by a term with no abstraction (which gives rise to

zB(z)). Consequently, U(z) =
1−
√

2z
√
−4z2+1−2z+1

2z . We are again in the framework of
the Flajolet-Odlysko transfer theorems [10] which gives directly the asymptotics of the
number un of uniquely closable terms: un ∼ 21/4+n

4Γ (3/4)n5/4 .

We can follow the same approach that for C(z) to calculate quickly the coeffi-
cients un. In particular, U(z) satisfies the algebraic equation z2U(z)4− 2zU(z)3 +(z+
1)U(z)2−U(z)+ z2 = 0. From which we deduce a linear differential equation:

0 =−128z5−40z4 +52z3 +18z2−6z+(16z5 +56z4−20z3−20z2 +8z−2)U(z)+

(512z8−512z7−320z6 +96z5 +144z4 +16z3−24z2−6z+2)(d
dzU (z))+

(256z9−128z8−128z7−32z6 +64z5 +24z4−16z3−2z2 + z)(d2

dz2 U (z))

with the initial condition U (0) = 0.
Thus, we can efficiently compute the coefficient un using the P-recurrence:(

256n2 +256n
)

un +
(
−128n2−640n−512

)
un+1 +(

−128n2−704n−880
)

un+2 +
(
−32n2−64n+152

)
un+3 +(

64n2 +592n+1324
)

un+4 +
(
24n2 +232n+540

)
un+5 +(

−16n2−200n−616
)

un+6 +(
−2n2−32n−128

)
un+7 +

(
n2 +17n+72

)
un+8 = 0

with the initial conditions u0 = 0,u1 = 0,u2 = 1,u3 = 0,u4 = 1,u5 = 1,u6 = 2,u7 = 2
The Taylor series expansion of U(z) gives z2 + z4 + z5 + 2z6 + 2z7 + 7z8 + 5z9 +

20z10 + 19z11 + 60z12 + 62z13 + 202z14 + 202z15... with coefficients of z matching the
number of solutions of the predicate uniquelyClosable/2 for sizes given by the ex-
ponents of z.

Let us notice that the polynomial factor in the asymptotics is not in n−3/2 as it is
universal for the tree-like structure. Here we have an interesting polynomial factor in
n−5/4 which appears when two square-root singularities coalesce.

9

5 Typable and Untypable Closable Skeletons

We call a Motzkin skeleton typable if it exists at least one simply-typed closed lambda
term having it as its skeleton. An untypable skeleton is a closable skeleton for which no
such term exists.

We will follow the interleaving of term generation, checking for closedness and
type inference steps shown in [11], but split it into a two stage program, with the first
stage generating code to be executed, via Prolog’s metacall by the second, while also
ensuring that the terms generated by the second stage are closed.

The predicate genSkelEqs/4 generates type unification equations, that, if satisfied
by a closed lambda term, ensure that the term is simply-typable.

genSkelEqs(N,X,T,Eqs):-genSkelEqs(X,T,[],Eqs,true,N,0).

genSkelEqs(v,V,Vs,(el(V,Vs),Es),Es)-->{Vs=[_|_]}.

genSkelEqs(l(A),(S->T),Vs,Es1,Es2)-->l,genSkelEqs(A,T,[S|Vs],Es1,Es2).

genSkelEqs(a(A,B),T,Vs,Es1,Es3)-->a,genSkelEqs(A,(S->T),Vs,Es1,Es2),

genSkelEqs(B,S,Vs,Es2,Es3).

el(V,Vs):-member(V0,Vs),unify_with_occurs_check(V0,V).

Note that each lambda binder adds a new type variable to the list (starting empty at the
root) on the way down to a leaf node. A term is then closed if the list of those variables
Vs is not empty at each leaf node.

Thus, to generate the typable terms, one simply executes the equations Eqs, as
shown by the predicate typableClosedTerm/2.

typableClosedTerm(N,Term):-genSkelEqs(N,Term,_,Eqs),Eqs.

The predicate typableSkel/2 generates skeletons that are typable by running the
same equations Eqs and ensuring they have at least one solution using the Prolog built-
in once/1. The predicate untypableSkel/2 succeeds, when the negation of these
equations succeeds, indicating that no simply-typed lambda term exists having the given
skeleton. Clearly, this is much faster than naively generating all the closed lambda terms
and then finding their distinct skeletons.

typableSkel(N,Skel):-genSkelEqs(N,Skel,_,Eqs),once(Eqs).

untypableSkel(N,Skel):-genSkelEqs(N,Skel,_,Eqs),not(Eqs).

In Fig. 3 we show 3 typable and 3 untypable Motzkin skeletons.
An interesting question arises at this point about the relative density of closable and

typable skeletons. Fig. 4, shows how many typable skeletons are among the closable
skeletons for sizes up to 18. We leave as an open problem finding out the asymptotic
behavior of the relative density of the typable skeletons in the set of closable ones.

6 Uniquely Typable Skeletons and their Relation to Uniquely
Closable Skeletons

A uniquely typable skeleton is one for which it exists exactly one simply-typed closed
lambda term having it as a skeleton.

10

a) typable Motzkin skeletons b) untypable Motzkin skeletons
a

l

v

l

l

a

l

v

v

a

l

l

a

vv

l

l

v

l

a

a

a

vl

v

v

v

l

a

a

l

a

vv

v

v

l

a

a

va

vl

v

v

a

l

v

a

l

v

l

l

v

Fig. 3. Typable vs. untypable skeletons of size 8

0 5 10 15

100

101

102

103

104

105

106

107

size

C
lo

sa
bl

e
vs

.t
yp

ab
le

sk
el

et
on

s
(l

og
.s

ca
le

)

closable
typable

Fig. 4. Closable skeletons vs. typable skeletons by increasing sizes

11

0 5 10 15 20

100

101

102

103

104

105

size

un
iq

ue
ly

ty
pa

bl
e

sk
el

et
on

s
(l

og
.s

ca
le

)

Fig. 5. Uniquely typable skeletons by increasing sizes

The predicate uniquelyTypableSkel/2 generates unification equations for which,
with the use of the built-in findnsols/4, it ensures efficiently that they have unique
solutions. Fig. 5 shows the counts of the skeletons it generates up to size 21.

uniquelyTypableSkel(N,Skel):-

genSkelEqs(N,Skel,_,Eqs),has_unique_answer(Eqs).

has_unique_answer(G):-findnsols(2,G,G,Sols),!,Sols=[G].

The natural question arises at this point: are there (uniquely) typable skeletons
among the set of uniquely closable ones? The predicate uniquelyTypableSkel/2

generates them by filtering the answer stream of uniquelyClosable/2 with the pred-
icate isUniquelyTypableSkel/1.

uniquelyClosableTypable(N,X):-

uniquelyClosable(N,X),isUniquelyTypableSkel(X).

isUniquelyTypableSkel(X):-skelType(X,_).

The predicate isUniquelyTypableSkel/2 works by trying to infer the simple type of a
uniquely typable lambda term corresponding to the skeleton. Note that this is a spe-
cialization of a general type inferencer to the case when exactly one type variable is
available for each leaf node.

skelType(X,T):-skelType(X,T,[]).

skelType(v,V,[V0]):-unify_with_occurs_check(V,V0).

skelType(l(A),(S->T),Vs):-skelType(A,T,[S|Vs]).

skelType(a(A,B),T,Vs):-skelType(A,(S->T),Vs),skelType(B,S,Vs).

12

Proposition 5 Uniquely closable typable skeletons of size 3n+1 are in bijection with
Catalan objects (binary trees) of size n.

Proof. We will exhibit a simple bijection to binary trees. We want to show that terminal
subtrees must be of the form l(v(0)). As there’s a unique lambda above each leaf, closing
it, the leaf should be (in de Bruijn notation), v(0) pointing to the first and only lambda
above it. Assume a terminal node of the form a(v(0),v(0)). Then the two leaves must
share a lambda binder resulting in a circular term when unifying their types (i.e., as in
the case of the well-known term ω=l(a(v(0),v(0)))) and thus it could not be typable.

The following two trees illustrate the shape of such a skeletons and their bijection
to binary trees. Note that the skeleton is mapped into a binary tree simply by replacing
its terminal subtrees of the form l(v) with a leaf node v.

a

l

v

a

l

v

l

v

a

a

l

v

l

v

l

v

In this case, terms of size 3n+ 1 = 7 = 2+ 2+ 1+ 1+ 1+ 0+ 0+ 0 are mapped to
binary trees of size n = 2 = 1+1+0+0+0 (with a/2 nodes there counted as 1 and
v/0 nodes as 0) after replacing l(v) nodes with v nodes.

As a consequence, each uniquely closable term that is typable is uniquely typable,
as identity functions of the form l(v(0)) would correspond to the end of each path
from the root to a leaf in a lambda term having this skeleton. This tells us that there
no “interesting” uniquely closable terms that are typable. However, as there are nor-
malizable terms that are not simply typed, an interesting open problem is to find out if
closable terms, other than those ending with l(v(0)) are (weakly) normalizable.

7 Related work

The classic reference for lambda calculus is [12]. Various instances of typed lambda
calculi are overviewed in [2].

The first paper where de Bruijn indices are used in counting lambda terms is [7],
which also uses a size definition equivalent to ours (but shifted by 1). The idea of using
Boltzmann samplers for lambda terms was first introduced in [13].

The combinatorics and asymptotic behavior of various classes of lambda terms are
extensively studied in [14,15]. However, the concepts of closable and typable skeletons
of lambda terms and their uniquely closable and typable variants are new and have
not been studied previously. The second author has used extensively Prolog as a meta-
language for the study of combinatorial and computational properties of lambda terms

13

in papers like [16,11] covering different families of terms and properties, but not in
combination with the precise analytic methods as developed in this paper.

It has been a long tradition in logic programming to use step-by-step program trans-
formations to derive semantically simpler as well as more efficient code, going back
as far as [17], that we have informally followed. In [18] a general constraint logic pro-
gramming framework is defined for size-constrained generation of data structures as
well as a program-transformation mechanism. By contrast, we have not needed to use
constraint solvers in our code as our derivation steps allowed us to place constraints
explicitly at the exact program points where they were needed, for both the case of
closable and typable skeletons. Keeping our programs close to Horn Clause Prolog has
helped deriving CF-grammars for closable and uniquely closable skeletons and has en-
abled the use of tools from analytic combinatorics to fully understand their asymptotic
behavior.

8 Conclusion

We have used simple program transformations to derive more efficient or conceptually
simpler logic programs in the process of attempting to state, empirically study and solve
some interesting problems related to the combinatorics of lambda terms. Several open
problems have also been generated in the process with interesting implications on better
understanding structural properties of the notoriously hard set of simply-typed lambda
terms.

The lambda term skeletons introduced in the paper involve abstraction mechanisms
that “forget” properties of the difficult class of simply-typed closed lambda terms to
reveal classes of terms that are easier to grasp with analytic tools. In the case of the
combinatorially simpler set of closed lambda terms, we have found that interesting sub-
classes of their skeletons turn out to be easier to handle. The case of uniquely closable
terms turned out to be covered by a context free grammar, after several program trans-
formation steps, and thus amenable to study analytically.

The focus on uniquely closable and uniquely typable Motzkin-tree skeletons of
lambda terms, as well as their relations, has shown that closability and typability are
properties that predetermine which lambda terms in de Bruijn notation can have such
Motzkin trees as skeletons. Our analytic and experimental study has shown exponen-
tial growth for each of these families and suggests possible uses as positive or negative
lemmas for all-term and random lambda term generation in dynamic programming al-
gorithms.

Last but not least, we have shown that a language as simple as side-effect-free Pro-
log, with limited use of impure features and meta-programming, can handle elegantly
complex combinatorial generation problems, when the synergy between sound unifica-
tion, backtracking and DCGs is put at work.

Acknowledgement

This research has been supported by NSF grant 1423324. We thank to Maciej Bend-
kowski for salient comments on an earlier draft of this paper and the participants of

14

the 10th Workshop on Computational Logic and Applications (https:/cla.tcs.uj.
edu.pl) for enlightening discussions on the combinatorics of lambda terms and their
applications.

References
1. Howard, W.: The formulae-as-types notion of construction. In Seldin, J., Hindley, J., eds.:

To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic
Press, London (1980) 479–490

2. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer Science.
Volume 2. Oxford University Press (1991)

3. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by generat-
ing random lambda terms. In: Proceedings of the 6th International Workshop on Automation
of Software Test. AST’11, New York, NY, USA, ACM (2011) 91–97

4. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12 (1 2012) 67–96

5. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem. Indagationes Math-
ematicae 34 (1972) 381–392

6. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. (2017) Published elec-
tronically at https://oeis.org/.

7. Lescanne, P.: On counting untyped lambda terms. Theoretical Computer Science 474 (2013)
80 – 97

8. Bendkowski, M.: Boltzmann-brain. (2017) Software (Haskell stack module), published
electronically at https://github.com/maciej-bendkowski/boltzmann-brain.

9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. 1 edn. Cambridge University Press,
New York, NY, USA (2009)

10. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM Journal on
discrete mathematics 3(2) (1990) 216–240

11. Tarau, P.: On a Uniform Representation of Combinators, Arithmetic, Lambda Terms and
Types. In Albert, E., ed.: PPDP’15: Proceedings of the 17th international ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming, New York, NY, USA,
ACM (July 2015) 244–255

12. Barendregt, H.P.: The Lambda Calculus Its Syntax and Semantics. Revised edn. Volume
103. North Holland (1984)

13. Grygiel, K., Lescanne, P.: Counting and generating terms in the binary lambda calculus. J.
Funct. Program. 25 (2015)

14. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Program. 23(5)
(2013) 594–628

15. Bodini, O., Gardy, D., Jacquot, A.: Asymptotics and random sampling for BCI and BCK
lambda terms. Theoretical Computer Science 502 (2013) 227 – 238

16. Bendkowski, M., Grygiel, K., Tarau, P.: Boltzmann samplers for closed simply-typed lambda
terms. In Lierler, Y., Taha, W., eds.: Practical Aspects of Declarative Languages - 19th
International Symposium, PADL 2017, Paris, France, January 16-17, 2017, Proceedings.
Volume 10137 of Lecture Notes in Computer Science., Springer (2017) 120–135

17. Pettorossi, A., Proietti, M.: Transformation of logic programs: Foundations and techniques.
The Journal of Logic Programming 19 (1994) 261–320

18. Fioravanti, F., Proietti, M., Senni, V.: Efficient generation of test data structures using con-
straint logic programming and program transformation. Journal of Logic and Computation
25(6) (2015) 1263–1283

15

https:/cla.tcs.uj.edu.pl
https:/cla.tcs.uj.edu.pl
https://github.com/maciej-bendkowski/boltzmann-brain

Appendix

A Boltzmann sampler for closable lambda term skeletons

% generate uniformly random closable skeleton X

% of size between MinN and MaxN

genRanCL(MinN,MaxN):-

time(genRanCL(100000,MinN,MaxN,R,I)),

writeln(R), % comment out for large sizes

writeln(I),

fail

; true.

% restart until a convenient term is generated

genRanCL(Tries,MinN,MaxN,X,I):-

between(1,Tries,I),

tryRanCL(MinN,MaxN,X),

!.

% try to generate a term of size from MinN to MaxN

tryRanCL(MinN,MaxN,X):-

random(R),

ranCL(R,MaxN,X,MaxN,Dif),

MaxN-Dif>=MinN.

% ensure random value R is below threshold

below(R,P,MaxN,N,N):-R=<P,N<MaxN.

% follow the grammar steps with given Boltzmann probabilities

% and pick lambda node with Motzkin trees below it

% or subtrees with lambdas above them

ranCL(R,MaxN,l(Z))-->below(R,0.8730398709632761,MaxN),!,

l,

{random(R1)},

ranMot(R1,MaxN,Z).

ranCL(_,MaxN,a(X,Y))-->a,

{random(R1),random(R2)},

ranCL(R1,MaxN,X),

ranCL(R2,MaxN,Y).

% generate Random Motzkin tree

ranMot(R,MaxN,v)-->below(R,0.3341408333975344,MaxN),!.

ranMot(R,MaxN,l(Z))-->below(R,0.667473848839429,MaxN),!,

l,

{random(R1)},

ranMot(R1,MaxN,Z).

ranMot(_,MaxN,a(X,Y))-->a,

{random(R1),random(R2)},

ranMot(R1,MaxN,X),

ranMot(R2,MaxN,Y).

16

A Boltzmann sampler for uniquely closable lambda term skeletons

% generate uniformly random uniquely closable skeleton X

% of size between MinN and MaxN

genRanUC(MinN,MaxN):-

time(genRanUC(100000,MinN,MaxN,R,I)),

writeln(R), % to be commented out if too big

writeln(tries=I),

fail

;

true.

% restart until a convenient term is generated

genRanUC(Tries,MinN,MaxN,X,I):-

between(1,Tries,I),

tryRanUC(MinN,MaxN,X),

!.

% try to generate a uniquely closable term

% of size from MinN to MaxN

tryRanUC(MinN,MaxN,X):-

random(R),

ranUC(R,MaxN,X,MaxN,Dif),

MaxN-Dif>=MinN.

% follow the grammar steps with given Boltzmann probabilities

% and pick unique lambda node or subtrees with lambdas in them

ranUC(R,MaxN,l(A))-->below(R,0.5001253328728457,MaxN),!,

l,

{random(R1)},

ranCA(R1,MaxN,A).

ranUC(_,MaxN,a(A,B))-->a,

{random(R1),random(R2)},

ranUC(R1,MaxN,A),

ranUC(R2,MaxN,B).

% generate binary subtree with no lambda in it

ranCA(R,MaxN,v)-->below(R,0.5001253328728457,MaxN),!.

ranCA(_,MaxN,a(A,B))-->

a,

{random(R1),random(R2)},

ranCA(R1,MaxN,A),

ranCA(R2,MaxN,B).

sampler_test1:-

genRanCL(100000,200000).

sampler_test2:-

genRanUC(100000,200000).

17

Some counts for the combinatorial objects of given
sizes discussed in the paper, as generated by code at
http://www.cse.unt.edu/~tarau/research/2017/uct.pro

– Motzkin Numbers: 1,1,2,4,9,21,51,127,323,835,2188,5798,15511, A001006 in [6]
– Closed Terms: 0,1,2,4,13,42,139,506,1915,7558,31092 . . . A135501 in [6]
– Closable Skeletons: 0,1,1,2,5,11,26,65,163,417,1086,2858,7599,20391,55127,

150028,410719,1130245,3124770,8675210,24175809 . . .
– Uniquely Closable Skeletons: 0,1,0,1,1,2,2,7,5,20,19,60,62,202,202,679,711,2304,

2507,8046,8856,28434,31855,101288,115596,364710,421654,1323946,1549090 . . .
– Typable Closed Terms: 0,1,2,3,10,34,98,339,1263,4626,18099,73782,306295,

1319660,5844714,26481404,123172740 . . .
– Typable Closable Skeletons: 0,1,1,1,5,9,17,55,122,289,828,2037,5239,14578, 37942,

101307,281041,755726,2062288 . . .
– Untypable Closable Skeletons: 0,0,0,1,0,2,9,10,41,128,258,821,2360,5813,

17185,48721,129678,374519
– Uniquely Typable Skeletons: 0,1,0,0,2,0,1,7,1,13,34,20,100,226,234,

853,1877,2650,8128,18116,30483,85713 . . .
– Uniquely Closable Typable Skeletons: 0,1,0,0,1,0,0,2,0,0,5,0,0,14,0,0,42,0,0,132,

0,0,429,0,0,1430 . . . A000108, Catalan numbers in [6] for counts in position of the
form 3n+1.

18

http://www.cse.unt.edu/~tarau/research/2017/uct.pro

	 On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms

