A LOWER BOUND FOR HIGHER TOPOLOGICAL COMPLEXITY OF REAL PROJECTIVE SPACE

DONALD M. DAVIS

Abstract

We obtain an explicit formula for the best lower bound for the higher topological complexity, $\mathrm{TC}_{k}\left(R P^{n}\right)$, of real projective space implied by mod 2 cohomology.

1. Main theorem

The notion of higher topological complexity, $\mathrm{TC}_{k}(X)$, of a topological space X was introduced in [2]. It can be thought of as one less than the minimal number of rules required to tell how to move consecutively between any k specified points of X. In [1], the study of $\mathrm{TC}_{k}\left(P^{n}\right)$ was initiated, where P^{n} denotes real projective space. Using \mathbb{Z}_{2} coefficients for all cohomology groups, define $\operatorname{zcl}_{k}(X)$ to be the maximal number of elements in $\operatorname{ker}\left(\Delta^{*}: H^{*}(X)^{\otimes k} \rightarrow H^{*}(X)\right)$ with nonzero product. It is standard that

$$
\mathrm{TC}_{k}(X) \geqslant \operatorname{zcl}_{k}(X) .
$$

In [1], it was shown that

$$
\operatorname{zcl}_{k}\left(P^{n}\right)=\max \left\{a_{1}+\cdots+a_{k-1}:\left(x_{1}+x_{k}\right)^{a_{1}} \cdots\left(x_{k-1}+x_{k}\right)^{a_{k-1}} \neq 0\right\}
$$

in $\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{n+1}, \ldots, x_{k}^{n+1}\right)$. In Theorem 1.2 we give an explicit formula for $\operatorname{zcl}_{k}\left(P^{n}\right)$, and hence a lower bound for $\mathrm{TC}_{k}\left(P^{n}\right)$.

Our main theorem, 1.2, requires some specialized notation.
Definition 1.1. If $n=\sum \varepsilon_{j} 2^{j}$ with $\varepsilon_{j} \in\{0,1\}$ (so the numbers ε_{j} form the binary expansion of n), let

$$
Z_{i}(n)=\sum_{j=0}^{i}\left(1-\varepsilon_{j}\right) 2^{j}
$$

Date: September 19, 2017.
Key words and phrases. projective space, topological complexity.
2000 Mathematics Subject Classification: 55M30, 68T40, 70B15.
and let

$$
S(n)=\left\{i: \varepsilon_{i}=\varepsilon_{i-1}=1 \text { and } \varepsilon_{i+1}=0\right\} .
$$

Thus $Z_{i}(n)$ is the sum of the 2-powers $\leqslant 2^{i}$ which correspond to the 0 's in the binary expansion of n. Note that $Z_{i}(n)=2^{i+1}-1-\left(n \bmod 2^{i+1}\right)$. The i 's in $S(n)$ are those that begin a sequence of two or more consecutive 1's in the binary expansion of n. Also, $\nu(n)=\max \left\{t: 2^{t}\right.$ divides $\left.n\right\}$.

Theorem 1.2. For $n \geqslant 0$ and $k \geqslant 3$,

$$
\begin{equation*}
\operatorname{zcl}_{k}\left(P^{n}\right)=k n-\max \left\{2^{\nu(n+1)}-1,2^{i+1}-1-k \cdot Z_{i}(n): i \in S(n)\right\} . \tag{1.3}
\end{equation*}
$$

It was shown in [1] that, if $2^{e} \leqslant n<2^{e+1}$, then $\operatorname{zcl}_{2}\left(P^{n}\right)=2^{e+1}-1$, which follows immediately from our Theorem 1.6.

In Table 1, we tabulate $\mathrm{zcl}_{k}\left(P^{n}\right)$ for $1 \leqslant n \leqslant 17$ and $2 \leqslant k \leqslant 8$.
Table 1. Values of $\mathrm{zcl}_{k}(n)$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\operatorname{Zcl}_{2}(n)$	1	3	3	7	7	7	7	15	15	15	15	15	15	15	15	31	31
$\operatorname{Zcl}_{3}(n)$	2	6	6	12	14	14	14	24	26	30	30	30	30	30	30	48	50
$\operatorname{Zcl}_{4}(n)$	3	8	9	16	19	21	21	32	35	40	41	45	45	45	45	64	67
$\operatorname{Zcl}_{5}(n)$	4	10	12	20	24	28	28	40	44	50	52	60	60	60	60	80	84
$\operatorname{Zcl}_{6}(n)$	5	12	15	24	29	35	35	48	53	60	63	72	75	75	75	96	101
$\operatorname{Zcl}_{7}(n)$	6	14	18	28	34	42	42	56	62	70	74	84	90	90	90	112	118
$\operatorname{Zcl}_{8}(n)$	7	16	21	32	39	48	49	64	71	80	85	96	103	105	105	128	135

The smallest value of n for which two values of i are significant in (1.3) is $n=$ $102=2^{6}+2^{5}+2^{2}+2^{1}$. With $i=2$, we have $7-k$ in the max, while with $i=6$, we have $127-25 k$. Hence

$$
\operatorname{zcl}_{k}\left(P^{102}\right)=102 k- \begin{cases}127-25 k & 2 \leqslant k \leqslant 5 \\ 7-k & 5 \leqslant k \leqslant 7 \\ 0 & 7 \leqslant k\end{cases}
$$

For all k and $n, \mathrm{TC}_{k}\left(P^{n}\right) \leqslant k n$ for dimensional reasons ([1, Prop 2.2]). Thus we obtain a sharp result $\mathrm{TC}_{k}\left(P^{n}\right)=k n$ whenever $\operatorname{zcl}_{k}\left(P^{n}\right)=k n$. Corollary 3.4 tells exactly when this is true. Here is a simply-stated partial result.

Proposition 1.4. If n is even, then $\mathrm{TC}_{k}\left(P^{n}\right)=k n$ for $k \geqslant 2^{\ell+1}-1$, where ℓ is the length of the longest string of consecutive 1's in the binary expansion of n.

Proof. We use Theorem 1.2. We need to show that if $i \in S(n)$ begins a string of j 1 's with $j \leqslant \ell$, then $2^{i+1}-1 \leqslant\left(2^{\ell+1}-1\right) Z_{i}(n)$. If $j<\ell$, then $Z_{i}(n) \geqslant 2^{i-j}+1$, and the desired inequality reduces to $2^{i+1}+2^{i-j} \leqslant 2^{\ell+1+i-j}+2^{\ell+1}$, which is satisfied since $2^{\ell+1+i-j}$ is strictly greater than both 2^{i+1} and 2^{i-j}.

If $j=\ell$, then

$$
Z_{i}(n) \geqslant 1+\sum_{\alpha} 2^{i+1-\alpha(\ell+1)}
$$

where α ranges over all positive integers such that $i+1-\alpha(\ell+1)>0$. This reflects the fact that the binary expansion of n has a 0 starting in the $2^{i-\ell}$ position and at least every $\ell+1$ positions back from there, and also a 0 at the end since n is even. The desired inequality follows easily from this.

Theorem 1.2 shows that $\operatorname{zcl}_{k}\left(P^{n}\right)<k n$ when n is odd. In the next proposition, we give complete information about when $\operatorname{zcl}_{k}(n)=k n$ if $k=3$ or 4 .

Proposition 1.5. If $k=3$ or 4 , then $\operatorname{zcl}_{k}\left(P^{n}\right)=k n$ if and only if n is even and the binary expansion of n has no consecutive 1 's.

Proposition 1.5 follows easily from Theorem 1.2 and the fact that if $i \in S(n)$, then $Z_{i}(n) \leqslant 2^{i-1}-1$.

The following recursive formula for $\mathrm{zcl}_{k}\left(P^{n}\right)$, which is interesting in its own right, is central to the proof of Theorem 1.2. It will be proved in Section 2.

Theorem 1.6. Let $n=2^{e}+d$ with $0 \leqslant d<2^{e}$, and $k \geqslant 2$. If $z_{k}(n)=\operatorname{zcl}_{k}\left(P^{n}\right)$, then

$$
z_{k}(n)=\min \left(z_{k}(d)+k 2^{e},(k-1)\left(2^{e+1}-1\right)\right), \text { with } z_{k}(0)=0
$$

Equivalently, if $g_{k}(n)=k n-\operatorname{zcl}_{k}\left(P^{n}\right)$, then

$$
\begin{equation*}
g_{k}(n)=\max \left(g_{k}(d), k n-(k-1)\left(2^{e+1}-1\right)\right), \text { with } g_{k}(0)=0 . \tag{1.7}
\end{equation*}
$$

We now use Theorem 1.6 to prove Theorem 1.2.
Proof of Theorem 1.2. We will prove that $g_{k}(n)$ of Theorem 1.6 satisfies

$$
\begin{equation*}
g_{k}(n)=\max \left\{2^{\nu(n+1)}-1,2^{i+1}-1-k Z_{i}(n): i \in S(n)\right\} \tag{1.8}
\end{equation*}
$$

if $k \geqslant 3$, which is clearly equivalent to Theorem 1.2. The proof is by induction, using the recursive formula (1.7) for $g_{k}(n)$. Let $n=2^{e}+d$ with $0 \leqslant d<2^{e}$.

Case 1: $d=0$. Then $n=2^{e}$ and by (1.7) we have $g_{k}(n)=\max \left(0, k 2^{e}-(k-\right.$ $1)\left(2^{e+1}-1\right)$. If $e=0$, this equals 1 , while if $e>0$, it equals 0 , since $k \geqslant 3$. These agree with the claimed answer $2^{\nu(n+1)}-1$, since $S\left(2^{e}\right)=\varnothing$.

Case 2: $0<d<2^{e-1}$. Here $\nu(n+1)=\nu(d+1), S(n)=S(d)$, and $Z_{i}(n)=Z_{i}(d)$ for any $i \in S(d)$. Substituting (1.8) with n replaced by d into (1.7), we obtain $g_{k}(n)=\max \left\{2^{\nu(n+1)}-1,2^{i+1}-1-k Z_{i}(n): i \in S(n), k n-(k-1)\left(2^{e+1}-1\right)\right\}$.

We will be done once we show that $k n-(k-1)\left(2^{e+1}-1\right)$ is \leqslant one of the other entries, and so may be omitted. If i is the largest element of $S(n)$, we will show that $k n-(k-1)\left(2^{e+1}-1\right) \leqslant 2^{i+1}-1-k Z_{i}(n)$, i.e.,

$$
\begin{equation*}
k n_{i} \leqslant(k-1)\left(2^{e+1}-2^{i+1}\right), \tag{1.9}
\end{equation*}
$$

where $n_{i}=n-\left(2^{i+1}-1-Z_{i}(n)\right)$ is the sum of the 2-powers in n which are greater than 2^{i}. The largest of these is 2^{e}, and no two consecutive values of i appear in this sum, hence $n_{i} \leqslant \sum 2^{j}$, taken over $j \equiv e(2)$ and $i+2 \leqslant j \leqslant e$. If $k=3$, (1.9) is true because the above description of n_{i} implies that $3 n_{i} \leqslant 2\left(2^{e+1}-2^{i+1}\right)$, while for larger k, it is true since $\frac{k}{k-1}<\frac{3}{2}$. If $S(n)$ is empty, then $k n-(k-1)\left(2^{e+1}-1\right) \leqslant 2^{\nu(n+1)}-1$ by a similar argument, since $n \leqslant 2^{e}+2^{e-2}+2^{e-4}+\cdots$, so $3 n \leqslant 2\left(2^{e+1}-1\right)$, and values of $k>3$ follow as before.

Case 3: $d \geqslant 2^{e-1}$. If $e-1 \in S(d)$, then it is replaced by e in $S(n)$, while other elements of $S(d)$ form the rest of $S(n)$. If $e-1 \notin S(d)$, then $S(n)=S(d) \cup\{e\}$. If $i \in S(n)-\{e\}$, then $Z_{i}(n)=Z_{i}(d)$, so its contribution to the set of elements whose \max equals $g_{k}(n)$ is $2^{i+1}-1-k Z_{i}(n)$, as desired. For $i=e$, the claimed term is $2^{e+1}-1-k Z_{e}(n)=k n-(k-1)\left(2^{e+1}-1\right)$, which is present by the induction from (1.7). If $e-1 \in S(d)$, then the $i=e-1$ term in the max for $g_{k}(d)$ is $2^{e}-1-k Z_{i}(n)$ and contributes to $g_{k}(n)$ less than the term described in the preceding sentence, and hence cannot contribute to the max. The $2^{\nu(n+1)}-1$ term is obtained from the induction since $\nu(n+1)=\nu(d+1)$.

The author wishes to thank Jesus González for many useful suggestions.

2. Recursive formulas

In this section, we prove Theorem 1.6 and the following variant.
Theorem 2.1. Let $n=2^{e}+d$ with $0 \leqslant d<2^{e}$, and $k \geqslant 2$. If $h_{k}(n)=\operatorname{zcl}_{k}\left(P^{n}\right)-$ $(k-1) n$, then

$$
\begin{equation*}
h_{k}(n)=\min \left(h_{k}(d)+2^{e},(k-1)\left(2^{e+1}-1-n\right)\right), \text { with } h_{k}(0)=0 . \tag{2.2}
\end{equation*}
$$

Proof of Theorems 1.6 and 2.1. It is elementary to check that the formulas for z_{k}, g_{k}, and h_{k} are equivalent to one another. We prove (2.2). We first look for nonzero monomials in $\left(x_{1}+x_{k}\right)^{a_{1}} \cdots\left(x_{k-1}+x_{k}\right)^{a_{k-1}}$ of the form $x_{1}^{n} \cdots x_{k-1}^{n} x_{k}^{\ell}$ with $\ell \leqslant n$. Letting $a_{i}=n+b_{i}$, the analogue of $h_{k}(n)$ for such monomials is given by

$$
\begin{equation*}
\widetilde{h}_{k}(n)=\max \left\{\sum_{i=1}^{k-1} b_{i}:\binom{n+b_{1}}{n} \cdots\binom{n+b_{k-1}}{n} \text { is odd and } \sum_{i=1}^{k-1} b_{i} \leqslant n\right\}, \tag{2.3}
\end{equation*}
$$

since $\sum b_{i}$ is the exponent of x_{k}. We will begin by proving

$$
\begin{equation*}
\widetilde{h}_{k}(n)=\min \left(\widetilde{h}_{k}(d)+2^{e},(k-1)\left(2^{e+1}-1-n\right)\right) . \tag{2.4}
\end{equation*}
$$

For a nonzero integer m, let $Z(m)$ (resp. $P(m)$) denote the set of 2-powers corresponding to the 0 's (resp. 1's) in the binary expansion of m, with $Z(0)=P(0)=\varnothing$. By Lucas's Theorem, $\binom{n+b_{i}}{n}$ is odd iff $P\left(b_{i}\right) \subset Z(n)$. Note that the integers $Z_{i}(n)$ considered earlier are sums of elements of subsets of $Z(n)$.

For a multiset S, let $\|S\|$ denote the sum of its elements, and let

$$
\phi(S, n)=\max \{\|T\| \leqslant n: T \subset S\} .
$$

Note that $\|Z(n)\|=2^{\lg (n)+1}-1-n$, where $\lg (n)=\left\lfloor\log _{2}(n)\right\rfloor,(\lg (0)=-1)$. Let $Z(n)^{j}$ denote the multiset consisting of j copies of $Z(n)$, and let

$$
m_{j}(n)=\phi\left(Z(n)^{j}, n\right)
$$

Then, from (2.3), we obtain the key equation $\widetilde{h}_{k}(n)=m_{k-1}(n)$. Thus (2.4) follows from Lemma 2.5 below.

Lemma 2.5. If $n=2^{e}+d$ with $0 \leqslant d<2^{e}$, and $j \geqslant 1$, then

$$
m_{j}(n)=\min \left(m_{j}(d)+2^{e}, j\left(2^{e+1}-1-n\right)\right) .
$$

Proof. The result is clear if $j=1$ since $2^{e+1}-1-n<2^{e}$, so we assume $j \geqslant 2$. Let $S \subset Z(d)^{j}$ satisfy $\|S\|=m_{j}(d)$.

First assume $d<2^{e-1}$. Then $2^{e-1} \in Z(n)$. Let $T=S \cup\left\{2^{e-1}, 2^{e-1}\right\}$. No other subset of $Z(n)^{j}$ can have larger sum than T which is $\leqslant n$ due to maximality of $\|S\|$ and the fact that the 2-powers in $Z(n)^{j}-Z(d)^{j}$ are larger than those in $Z(d)^{j}$. Thus $m_{j}(n)=m_{j}(d)+2^{e}$ in this case, and this is $\leqslant j\left(2^{e+1}-1-n\right)=\left\|Z(n)^{j}\right\|$.

If, on the other hand, $d \geqslant 2^{e-1}$, then $Z(d)^{j}=Z(n)^{j}$. If $\left\|Z(n)^{j}-S\right\|<2^{e}$, then let $T=Z(n)^{j}$ with $\|T\|=j\left(2^{e+1}-1-n\right)$, as large as it could possibly be, and less than $m_{j}(d)+2^{e}$. Otherwise, since any multiset of 2-powers whose sum is $\geqslant 2^{e}$ has a subset whose sum equals 2^{e}, we can let $T=S \cup V$, where V is a subset of $Z(n)^{j}-S$ with $\|V\|=2^{e}$. As before, no subset of $Z(n)^{j}$ can have size greater than that.

Now we wish to consider more general monomials. We claim that for any multiset S and positive integers m and n,

$$
\begin{equation*}
\phi(Z(m-1) \cup S, n) \leqslant \phi(Z(m) \cup S, n)+1 \tag{2.6}
\end{equation*}
$$

This follows from the fact that subtracting 1 from m can affect $Z(m)$ by adding 1 , or changing $1,2, \ldots, 2^{t-1}$ to 2^{t}. These changes cannot add more than 1 to the largest subset of size $\leqslant n$. We show now that this implies that $h_{k}(n)=m_{k-1}(n)=\widetilde{h}_{k}(n)$, and hence (2.2) follows from (2.4).

Suppose that $x_{1}^{n-\varepsilon_{1}} \cdots x_{k-1}^{n-\varepsilon_{k-1}} x_{k}^{\ell}$ with $\varepsilon_{i} \geqslant 0$ and $\ell \leqslant n$ is a nonzero monomial in the expansion of $\left(x_{1}+x_{k}\right)^{n+b_{1}} \cdots\left(x_{k-1}+x_{k}\right)^{n+b_{k-1}}$. We wish to show that $\sum b_{i} \leqslant m_{k-1}(n)$. It follows from (2.6) that

$$
\phi\left(\bigcup_{i=1}^{k-1} Z\left(n-\varepsilon_{i}\right), n\right) \leqslant \phi\left(Z(n)^{k-1}, n\right)+\sum \varepsilon_{i}=m_{k-1}(n)+\sum \varepsilon_{i}
$$

The odd binomial coefficients $\binom{n+b_{i}}{n-\varepsilon_{i}}$ imply that $P\left(b_{i}+\varepsilon_{i}\right) \subset Z\left(n-\varepsilon_{i}\right)$. Thus

$$
\begin{equation*}
\phi\left(\bigcup_{i=1}^{k-1} P\left(b_{i}+\varepsilon_{i}\right), n\right) \leqslant m_{k-1}(n)+\sum \varepsilon_{i} . \tag{2.7}
\end{equation*}
$$

Since $\left\|P\left(b_{i}+\varepsilon_{i}\right)\right\|=b_{i}+\varepsilon_{i}$ and $\sum\left(b_{i}+\varepsilon_{i}\right) \leqslant n$, the left hand side of (2.7) equals $\sum\left(b_{i}+\varepsilon_{i}\right)$, hence $\sum b_{i} \leqslant m_{k-1}(n)$, as desired.

3. Examples and comparisons

In this section, we examine some special cases of our results (in Propositions 3.1 and 3.5) and make comparisons with some work in (1].

The numbers $z_{3}(n)=\operatorname{zcl}_{3}\left(P^{n}\right)$ are 1 less than a sequence which was listed by the author as A290649 at [3] in August 2017. They can be characterized as in Proposition 3.1, the proof of which is a straightforward application of the recursive formula

$$
z_{3}\left(2^{e}+d\right)=\min \left(z_{3}(d)+3 \cdot 2^{e}, 2\left(2^{e+1}-1\right)\right) \text { for } 0 \leqslant d<2^{e},
$$

from Theorem 1.6.
Proposition 3.1. For $n \geqslant 0, \operatorname{zcl}_{3}(n)$ is the largest even integer z satisfying $z \leqslant 3 n$ and $\binom{z+1}{n} \equiv 1$ (2).

We have not found similar characterizations for $z_{k}(n)$ when $k>3$.
In [1, Thm 5.7], it is shown that our $g_{k}(n)$ in Theorem 1.6 is a decreasing function of k, and achieves a stable value of $2^{\nu(n+1)}-1$ for sufficiently large k. They defined $s(n)$ to be the minimal value of k such that $g_{k}(n)=2^{\nu(n+1)}-1$. We obtain a formula for the precise value of $s(n)$ in our next result.

Let $S^{\prime}(n)$ denote the set of integers i such that the 2^{i} position begins a string of two or more consecutive 1 's in the binary expansion of n which stops prior to the 2^{0} position. For example, $S^{\prime}(187)=\{5\}$ since its binary expansion is 10111011 .

Proposition 3.2. Let $s(-)$ and $S^{\prime}(-)$ be the functions just described. Then $s(n)= \begin{cases}2 & \text { if } n+1 \text { is a 2-power } \\ 3 & \text { if } n+1 \text { is not a } 2 \text {-power and } S^{\prime}(n)=\varnothing \\ \max \left\{\left\lceil\frac{2^{i+1}-2^{\nu(n+1)}}{Z_{i}(n)}\right\rceil: i \in S^{\prime}(n)\right\} & \text { otherwise. }\end{cases}$

Proof. It is shown in [1, Expl 5.8] that $g_{k}\left(2^{v}-1\right)=2^{v}-1$ for all $k \geqslant 2$, hence $s\left(2^{v}-1\right)=2$. This also follows readily from (1.7).

If the binary expansion of n has a string of $i+1$ 1's at the end and no other consecutive 1's (so that $S(n)=\{i\}$ in (1.3)), then $Z_{i}(n)=0$. Thus by (1.8) $g_{k}(n)=$ $2^{i+1}-1=2^{\nu(n+1)}-1$ for $k \geqslant 3$. If $n \neq 2^{i+1}-1$, then $s(n)=3$, since $g_{2}(n)>2^{i+1}-1$.

Now assume $S^{\prime}(n)$ is nonempty. By (1.8), $s(n)$ is the smallest k such that

$$
\begin{equation*}
2^{i+1}-1-k Z_{i}(n) \leqslant 2^{\nu(n+1)}-1 \tag{3.3}
\end{equation*}
$$

for all $i \in S(n)$, which easily reduces to the claimed value. Note that if the string of 1 's beginning at position 2^{i} goes all the way to the end, then (3.3) is satisfied; this case is omitted from $S^{\prime}(n)$ in the theorem, because it would yield $0 / 0$.

The following corollary is immediate.
Corollary 3.4. If n is even and

$$
k \geqslant \max \left\{3,\left\lceil\frac{2^{i+1}-1}{Z_{i}(n)}\right\rceil: i \in S(n)\right\},
$$

then $\mathrm{TC}_{k}\left(P^{n}\right)=k n$. These are the only values of n and k for which $\mathrm{zcl}_{k}\left(P^{n}\right)=k n$.
In [1, Def 5.10], a complicated formula was presented for numbers $r(n)$, and in [1, Thm 5.11], it was proved that $s(n) \leqslant r(n)$. It was conjectured there that $s(n)=r(n)$. However, comparison of the formula for $s(n)$ established in Proposition 3.2 with their formula for $r(n)$ showed that there are many values of n for which $s(n)<r(n)$. The first is $n=50$, where we prove $s(50)=5$, whereas their $r(50)$ equals 7 . Apparently their computer program did not notice that

$$
\left(x_{1}+x_{5}\right)^{63}\left(x_{2}+x_{5}\right)^{63}\left(x_{3}+x_{5}\right)^{62}\left(x_{4}+x_{5}\right)^{62}
$$

contains the nonzero monomial $x_{1}^{50} x_{2}^{50} x_{3}^{50} x_{4}^{50} x_{5}^{50}$, showing that our $z_{5}(50)=250$ and $g_{5}(50)=0$, so $s(50) \leqslant 5$.

In Table 2, we present a table of some values of $s(-)$, omitting $s\left(2^{v}-1\right)=2$ and $s\left(2^{v}\right)=3$ for $v>0$.

Table 2. Some values of $s(n)$

$$
\begin{array}{c|cccccccccccccccccc}
n & 5 & 6 & 9 & 10 & 11 & 12 & 13 & 14 & 17-21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
s(n) & 3 & 7 & 3 & 3 & 3 & 5 & 7 & 15 & 3 & 7 & 3 & 5 & 5 & 7 & 7 & 11 & 15 & 31
\end{array}
$$

In [1], there seems to be particular interest in $\mathrm{TC}_{k}\left(P^{3 \cdot 2^{e}}\right)$. We easily read off from Theorem 1.2 the following result.

Proposition 3.5. For $k \geqslant 2$ and $e \geqslant 1$, we have

$$
\operatorname{zcl}_{k}\left(P^{3 \cdot 2^{e}}\right)= \begin{cases}(k-1)\left(2^{e+2}-1\right) & \text { if }(e=1, k \leqslant 6) \text { or }(e \geqslant 2, k \leqslant 4) \\ k \cdot 3 \cdot 2^{e} & \text { otherwise } .\end{cases}
$$

This shows that the estimate $s\left(3 \cdot 2^{e}\right) \leqslant 5$ for $e \geqslant 2$ in [1] is sharp.

References

[1] N.Cadavid-Aguilar, J.González, D.Gutiérrez, A.Guzmmán-Sáenz, and A.Lara, Sequential motion planning algorithms in real projective spaces: an approach to their immersion dimension, Forum Math, available online.
[2] Y.B.Rudyak, On higher analogs of topological complexity, Topology and Appl, 157 (2010) 916-920.
[3] N.J.A.Sloane, Online encyclopedia of integer sequences, https://oeis.org/.
Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
E-mail address: dmd1@lehigh.edu

