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Abstract

Let R be an associative commutative ring with unity and Mn(R) the ring of n×n matrices
over R. A zero pattern matrix ring is a subring of Mn(R) defined by the location of zero and
nonzero entries of matrices in the subring. It is known that the set of zero pattern matrix rings
of Mn(R) is in bijective correspondence with the set of transitive directed graphs on n vertices,
and also with the set of topologies on a set with n elements.

We define the weight of a zero pattern matrix ring P to be the maximum number of nonzero
entries of a matrix in P, which is the rank of P as an R-module. In this paper, we study the
set W (n) of possible weights of n × n zero pattern matrix rings. We prove that W (n) can be
determined recursively and describe the integers in the set. In particular, we prove that most
values in W (n) lie in a interval of N that can be determined recursively and independently of
W (n) itself. By establishing asymptotic bounds on this interval, we are able to provide effective
estimates of |W (n)|. Finally, we describe techniques to determine those elements of W (n) that
lie outside of the aforementioned interval. Since the weight corresponds to the number of edges
in a transitive directed graph, as well as to the number of containments among the minimal
open sets of a topology, our theorems are applicable to digraphs and topologies as well as to
matrix rings.

1 Introduction

Notation 1.1. Throughout, we shall use the following notations.

• N denotes the positive integers.

• n always denotes an element of N.

• For any n,m ∈ N, [n,m] = {x ∈ N | n 6 x 6 m}. Similarly, [0, n] = {x ∈ Z | 0 6 x 6 n}.
• For sets A,B ⊆ N and any c ∈ N, we let A + B = {a + b | a ∈ A, b ∈ B} and c + A =
{c+ a | a ∈ A}.

• R is an associative commutative ring with unity.
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• Mn×m(R) is the set of n × m matrices with entries from R, and Mn(R) is the ring of
n× n matrices with entries from R.

The purpose of this paper is to examine a class of subrings of Mn(R) that generalize the
familiar rings of upper and lower triangular matrices of Mn(R).

Definition 1.2. Let U ⊆ [1, n]× [1, n] be a set of ordered pairs containing (i, i) for all i ∈ [1, n].
For each i, j ∈ [1, n], let Eij be the matrix whose (i, j)-entry is 1 and all of whose other entries
are 0. Let P =

∑
(i,j)∈U EijR ⊆ Mn(R). If P is closed under matrix multiplication, we say

that P is a zero pattern matrix ring (zpmr, for short).

Other names for these rings are common in the literature. The above definition comes from
[5, Sec. 3], where a zpmr is called a “partial matrix ring.” When R = C, a zero pattern matrix
ring is often called a “zero pattern matrix algebra”. Other terms that have been used are
“structural matrix algebra” [3] or “zero-one matrix” [6, 10].

When U ⊆ [1, n] × [1, n] is known, the corresponding zpmr P can be denoted by an n × n
matrix where each entry (i, j) is either ∗ (if (i, j) ∈ U) or 0 (if (i, j) /∈ U). For instance, with
n = 3 and U = {(1, 1), (1, 3), (2, 2), (2, 3), (3, 3)} we have

P =
∑

(i,j)∈U

EijR =

∗ 0 ∗
0 ∗ ∗
0 0 ∗

 .
The condition that (i, i) ∈ U for all i guarantees that a zpmr always contains all the diagonal

matrices in Mn(R). When n = 1, the only zpmr is the 1 × 1 matrix ring [∗]. When n = 2,
there are four possible choices for U , all of which yield zpmrs:[

∗ 0
0 ∗

]
,

[
∗ ∗
0 ∗

]
,

[
∗ 0
∗ ∗

]
, and

[
∗ ∗
∗ ∗

]
. (1.3)

However, once n > 3, not every choice for U gives a ring. For instance,

P =

∗ ∗ 0
0 ∗ ∗
0 0 ∗


is not a ring, because 0 1 0

0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0

 /∈ P.

Recall that a preorder (or quasiorder) on a set is a binary relation that is reflexive and
transitive. It is well known that P is a zpmr exactly when U is a preorder on [1, n]. This
condition establishes a connection between zpmrs and other structures related to preorders
such as posets, transitive directed graphs, and finite topological spaces. The relationship among
these structures is formalized in Section 2.

Our main concern in this paper is with the combinatorial aspects of zero pattern matrix
rings. We are interested in questions such as:

• How many zpmrs are contained in Mn(R) for each n?

• How many isomorphism classes of zpmrs are contained in Mn(R) for each n?

• If P is a zpmr, then what are the possible values of |U|?
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n W (n) [n, n2] \W (n)
1 1 ∅
2 [2, 4] ∅
3 [3, 7], 9 8
4 [4, 13], 16 14, 15
5 [5, 19], 21, 25 20, [22, 24]
6 [6, 28], 31, 36 29, 30, [32, 35]
7 [7, 35], [37, 39], 43, 49 36, [40, 42], [44, 48]
8 [8, 52], 57, 64 [53, 56], [58, 63]
9 [9, 61], 63, [65, 67], 73, 81 62, 64, [68, 72], [74, 80]
10 [10, 77], 79, [82, 84], 91, 100 78, 80, 81, [85, 90], [92, 99]

11
[11, 95], 97, [101, 103],

111, 121
96, [98, 100], [104, 110],

[112, 120]

12
[12, 109], [111, 115], 117,

[122, 124], 133, 144
110, 116, [118, 121],
[125, 132], [134, 143]

Table 1: Possible weights of zpmrs in Mn(R), for n ∈ [1, 12].

The first two questions above are equivalent to questions about, respectively, the number of
topologies on an n-element set, and the number of homeomorphism classes of topologies on an
n-element set. In the context of topologies, both of these questions are open despite thorough
investigation, and are known to be computationally difficult; see, for instance, [2]. We will
give more details on the connections among matrices, digraphs, and topologies in Section 2.
However, the third question has received far less attention, and it is on this problem that we
will concentrate.

Notation 1.4. Given A ∈Mn×m(R), for each (i, j) ∈ [1, n]×[1,m] we let Aij be the (i, j)-entry
of A. When P ⊆Mn×m(R), we define Pij = {Aij | A ∈ P} to be the set of all the (i, j)-entries
of the matrices in P. Note that if P corresponds to U ⊆ [1, n]× [1, n] as in Definition 1.2, then
each Pij is equal to either R (if (i, j) ∈ U) or 0 (if (i, j) /∈ U).

Definition 1.5. Let P ⊆ Mn×m(R) be such that Pij is 0 or R for each i ∈ [1, n], j ∈ [1,m].
The weight of P, denoted by w(P), is equal to the number of components Pij that are equal to
R. We say that P is full or has full weight if P = Mn×m(R), so that w(P) = nm. We define
W (n) = {w(P) | P ⊆Mn(R) is a zpmr} to be the set of possible weights of n×n zero pattern
matrix rings.

There are several equivalent ways to interpret the weight. When P is a zpmr corresponding
to U ⊆ [1, n]× [1, n], we have w(P) = |U|. Algebraically, w(P) is the rank of P as an R-module,
and when P is written in matrix form, the weight is the number of entries equal to ∗. If P is a
zpmr with associated loopless directed graph Γ and topology T , then w(P)− n is equal to the
number of edges of Γ, and w(P) is equal to the number of containments Ui ⊇ Uj among the
minimal open sets Ui, i ∈ [1, n] (see Section 2).

All of our major theorems deal with the weight sets W (n). For small values of n these sets
can be computed by hand. Clearly, W (1) = {1}, and the list of 2 × 2 zpmrs in (1.3) shows
that W (2) = [2, 4]. Since the diagonal components of a zpmr P are always equal to R and
P ⊆ Mn(R), we will always have W (n) ⊆ [n, n2]. However, once n > 2 there exist values
k ∈ [n, n2] such that k /∈ W (n). For instance, there is no 3 × 3 zpmr of weight 8, although
W (3) contains every number in [3, 9] except 8. Table 1 lists W (n) for n ∈ [1, 12], as well as the
complement of W (n) in [n, n2] (for readability, we have omitted union symbols and set braces).
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From Table 1, one can see that W (n) becomes more fragmented as n increases. Nevertheless,
there are intriguing patterns in this data. For instance, W (n) never includes integers in the
range [n2 − n+ 2, n2 − 1], and for n > 5, W (n) does not meet [n2 − 2n+ 5, n2 − n]. Moreover,
W (n) always begins with a single interval that contains the majority of the elements of the set.

Definition 1.6. For each n ∈ N, we define b(n) to be the least integer such that b(n) > n and
there does not exist an n× n zero pattern matrix ring P with w(P) = b(n) + 1. Equivalently,
b(n) is the largest positive integer such that [n, b(n)] ⊆W (n).

The first occurrence of a concept related to W (n) in the literature seems to be in the
context of finite topologies in [10]. As we will see in Section 2, the set of zero pattern matrix
rings in Mn(R) are in one-to-one correspondence with finite topologies on n points. Sharp [10]
noted this connection to matrices, and, given a finite topology T with corresponding zpmr P,
introduced the topological invariant τ(T ), which is the same as w(P). Sharp also proved that,
if T is a nontrivial topology on n points, then n 6 τ(T ) 6 n2 − n+ 1.

The weight set W (n) and the integer b(n) are independently studied in the context of
digraphs in [7]. There is a natural bijection between the weight set W (n) and the set S(n) of
the possible numbers of reachable pairs for a digraph on n vertices (see Section 2). Furthermore,
the function f(n) studied in [7] is related to b(n) by f(n) = b(n)− n. Indeed, [7, Theorem 6],
when translated into our notation, gives a lower bound of

b(n) > n2 − n · bn0.57c+ bn0.57c.

On the other hand, this bound is not asymptotically tight, as it is noted that the lower bound
holds for large enough n if the exponent 0.57 is replaced by 0.53. The set S(n) is calculated
for n ≤ 208 in [7], although an efficient method for calculating this set in general or even
estimating its size is left as an open problem.

The goal of this article is to prove general statements about W (n), b(n), and related phe-
nomena of the weight sets. First, we are able to calculate the set W (n) recursively.

Theorem 1.7. For each n > 1, let βn =
⋃n−1
k=1 (n(n− k) +W (k)). Then,

W (7) = [7, 35] ∪ β7 ∪ {49},

and if n 6= 7 then
W (n) = [n, d(3/4)n2e] ∪ βn ∪ {n2}.

We are also able to establish the following recursive formula for b(n), which can be computed
independently of W (n).

Theorem 1.8. Define L(z) := b(z)−z+3. Let z > 1 and let n be such that L(z) 6 n < L(z+1).
If n 6= 8, then b(n) = n2 − zn+ b(z).

Theorem 1.8 then allows us to provide the following alternative recursive procedure for
calculating W (n).

Theorem 1.9. Define L(z) := b(z)− z + 3. If n > 1, z ∈ N is such that L(z) 6 n < L(z + 1),
and ωn =

⋃z
k=1(n(n− k) +W (k)), then

W (n) = [n, b(n)] ∪ ωn ∪ {n2}.

Finally, we are able to provide bounds on |W (n)|.
Theorem 1.10. Define L(z) := b(z) − z + 3. Let n > 1, n 6= 8, and let z ∈ N be such that
L(z) 6 n < L(z + 1). For each r ∈ [1, z], let cr be the cardinality of the set {k ∈ W (r) |
b(r) + 1 6 k 6 n+ r − 2}. Then, the following hold:

4



(1) |W (n)| = n2 − (z + 1)n− (z − 1) +

z∑
r=1

(L(r) + cr).

(2) |W (n)| > n2 − (z + 1)n− (z − 1) +

z∑
r=1

L(r).

(3) |W (n)| 6 n2 − (z + 1)(n− 1) +

z∑
r=1

|W (r)|.

Throughout, our theorems are stated and proved in terms of matrices. However, each of
Theorems 1.7, 1.8, 1.9, and 1.10 can be translated into a theorem on the number of reachable
pairs possible in a digraph or a theorem on Sharp’s topological invariant τ . These alternate
interpretations are stated as consequences of the main theorems; see Corollaries 4.7, 5.13, 5.15
and Remark 6.9.

This paper is organized as follows. Section 2 makes explicit the connections among zero
pattern matrix rings, reachable pairs in digraphs, and Sharp’s topological invariant τ . In
Section 3, we prove that every zero pattern matrix ring is similar to a zero pattern matrix ring
in block diagonal form, a structural result that is crucial in later proofs. Section 4 is devoted
to the proof of Theorem 1.7, a recursive calculation of the set W (n). Section 5 contains the
proofs of Theorems 1.8 and 1.9. Finally, in Section 6, we analyze the gaps in the set W (n)
(i.e., those integers that are in [n, n2] \W (n)) and prove Theorem 1.10, which provides bounds
on the cardinality of W (n).

2 Connection to Graphs and Topologies

As mentioned in the introduction, P ⊆ Mn(R) is a zero pattern matrix ring if and only if
the associated subset U ⊆ [1, n] × [1, n] forms a preorder on [1, n]. Such preorders can also
be used to define directed graphs and topologies on the n-point set [1, n]. The results of this
section—especially the material on topologies—are well known. We direct the reader toward
references such as [1, 4, 6, 8, 10, 11] for proofs and details.

A directed graph or digraph Γ = (V,E) consists of a set V of vertices along with a set E
of ordered pairs of distinct vertices (referred to as directed edges). For a given digraph Γ, a
natural question is the reachability of the vertex j from the vertex i; that is, whether or not
there exists a sequence (or path) of directed edges which starts with i and ends with j. If
there does exist a path of directed edges from i to j, then we say that (i, j) is a reachable pair.
The concept of reachability has natural applications to the study of communication within a
network and has received significant attention; see [9] for a recent example. If one is concerned
only with determining or enumerating the reachable pairs in a digraph Γ, then it suffices to
consider the transitive closure of Γ = (V,E), i.e., the graph whose vertex set is V but whose
directed edge set is R, where R is the smallest binary relation on V that contains E and is
transitive. A digraph Γ = (V,E) is called a transitive digraph if E is a transitive relation on
the set V , and so questions about reachability may be reduced to questions about transitive
digraphs.

Given a preorder U on [1, n], we construct a directed graph Γ with vertex set [1, n] and with
an edge i → j if and only if (i, j) ∈ U and i 6= j. We want our graphs to be loopless, so even
though U contains (i, i) for all i ∈ [1, n], the graph Γ will not include edges corresponding to
such ordered pairs. The transitivity of U implies that if Γ has edges i → j and j → k, then
there is also an edge i→ k (as long as i 6= k), and so the graph constructed in this manner is
a transitive digraph. With this setup, it is clear that the corresponding zpmr P functions like
the adjacency matrix of Γ, in that Pij 6= 0 if and only if i 6= j and Γ contains an edge i→ j.

5



The construction of a topology from a preorder is slightly more complicated. Given a
topology T on [1, n], for each i we let Ui ∈ T be the minimal open set containing i. That is,

Ui =
⋂

U∈T ,i∈U

U.

The set Ui is open since T is finite, and the collection {Ui}i forms an open basis of T . Moreover,
given distinct i, j ∈ [1, n], the minimality of Ui and Uj means that either Ui∩Uj = ∅, or one of
the sets contains the other. This allows us to define a preorder U on [1, n] by defining (i, j) ∈ U
if and only if Ui ⊇ Uj . In other words, (i, j) ∈ U if and only if j is in every open set of T that
contains i.

It is also possible to construct the topology T directly from the zpmr P. To do this, for
each i ∈ [1, n] let Vi = {j ∈ [1, n] | Pij = R}. So, Vi indicates the columns of row i that have
nonzero entries. We can use {Vi}16i6n as an open basis for T , and the resulting topology is
the same one arising from the underlying preorder U . For instance, let

P =


∗ 0 ∗ ∗
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗

 .
Then, V1 = {1, 3, 4}, V2 = {2, 4}, V3 = {3}, and V4 = {4}. The corresponding topology is

T = {∅, {1, 3, 4}, {2, 4}, {3}, {4}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

As this discussion illustrates, the use of preorders allows us to formalize relationships among
zero pattern matrix rings, digraphs, and topologies.

Lemma 2.1. Let n > 1. Then, the following sets are in one-to-one correspondence:

• {zero pattern matrix rings P of Mn(R) }
• {Preorders U on [1, n] }
• {Transitive digraphs Γ on [1, n] }
• {Topologies T on [1, n] }

Moreover, let P1 and P2 be two n× n zero pattern matrix rings with corresponding graphs Γ1

and Γ2, and corresponding topologies T1 and T1. Then, P1 and P2 are isomorphic as rings if
and only if Γ1 and Γ2 are isomorphic as graphs, if and only if T1 and T2 are homeomorphic as
topologies.

Lemma 2.1 means that counting the number of zpmrs (respectively, isomorphism classes) in
Mn(R) is the same as counting the number of topologies (respectively, homeomorphism classes)
on [1, n], and the latter are well-studied problems. There are no known general formulas or
closed forms for either the number of topologies on [1, n], nor for the number of homeomorphism
classes, but counts have been made for small values of n. These can be found in the On-line
Encyclopedia of Integer Sequences (OEIS). The number of topologies on [1, n] is sequence
A000798 in OEIS (https://oeis.org/A000798), and the number of homeomorphism classes is
sequence A001930 (https://oeis.org/A001930).

We close this section by showing how the weight of a zpmr is reflected in the corresponding
digraph and topology.

Definition 2.2. Let T be a topology on [1, n] with minimal open sets U1, . . . , Un. Define
τ(T ) ∈ [n, n2] to be the number of ordered pairs (i, j) ∈ [1, n] × [1, n] such that Ui ⊇ Uj . In
other words, τ(T ) equals the number of containments among the minimal open sets U1, . . . , Un.
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Lemma 2.3.

(1) Let P ⊆Mn(R) be a zero pattern matrix ring with corresponding transitive digraph Γ and
topology T . Then, the following quantities are equal:

(a) w(P).

(b) The sum of n and the number of edges of Γ.

(c) τ(T ).

(2) Let S(n) be the set of integers m for which there exists a digraph (not necessarily transi-
tive) on n vertices with m reachable pairs. Then, S(n) = W (n)−n and |S(n)| = |W (n)|.

(3) Let T (n) be the set of integers m for which there exists a topology T on n points with
τ(T ) = m. Then, T (n) = W (n).

Proof. (1) The fact that w(P)−n is the number of edges of Γ is obvious from the construction
of Γ. For the other equality, note that Pij 6= 0 if and only if j is in every open set of T
containing i, if and only if Ui ⊇ Uj .

(2) A vertex pair (i, j) is reachable in a digraph if and only if there is an edge i → j in
the transitive closure of the digraph. Thus, a digraph on n vertices with m reachable pairs
corresponds to a zpmr with weight n+m. It follows that S(n) = W (n)−n and |S(n)| = |W (n)|.

(3) This is clear, since τ(T ) = w(P).

The topological invariant τ was introduced by Sharp in [10], but it seems not to have been
studied since. We will not pursue it here, but it would be interesting to know if it could be
useful in the enumeration of finite topologies or homeomorphism classes of finite topologies.

3 Triangular Forms

This section is devoted to proving (Theorem 3.3) that any zero pattern matrix ring is similar
to a zpmr in block triangular form. This form is not unique, but it provides a standard way
to construct zpmrs, and we use it often in later sections. We begin by giving some rules for
working with the components Pij of a zpmr that were defined in Notation 1.4; recall also
Definition 1.5. We will take these for granted throughout the remainder of the paper.

Lemma 3.1. Let P ⊆ Mn(R) be a zero pattern matrix ring. Then, the following hold for all
i, j ∈ [1, n].

(1) Pij = 0 if and only if for all k ∈ [1, n], at least one of Pik or Pkj is 0.

(2) Pij = R if and only if there exists k ∈ [1, n] such that Pik = Pkj = R.

Proof. By definition, each Pij is either 0 or R, and so the Pij can be added or multiplied using
the following rules for the operations:

+ 0 R

0 0 R
R R R

· 0 R

0 0 0
R 0 R

Since P is a zpmr, the rules for ordinary matrix multiplication imply that Pij =
∑n
k=1 PikPkj ,

and both (1) and (2) follow from this relation.

Lemma 3.2. Let P ⊆Mn(R) be a zero pattern matrix ring of the form

P =

[
P ′ C
0 P ′′

]
where both P ′ and P ′′ are full matrix rings. Then, either C = 0 or C is full.
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Proof. There is nothing to prove if C = 0, so assume that C 6= 0. Let m ∈ [1, n − 1] be such
that P ′ = Mm(R). Since C 6= 0, there exist k ∈ [1,m] and ` ∈ [m+1, n] such that Pk` = R. Let
i ∈ [1,m] and j ∈ [m+ 1, n]. Then, Pik, Pk`, and P`j are all nonzero, so Pij = PikPk`P`j = R.
It follows that C is full.

It is clear that if P ⊆ Mn(R) is a zpmr, then so is σPσ−1 for any permutation matrix
σ ∈ Mn(R). The matrix σPσ−1 is often called a similarity permutation of P. Computing
σPσ−1 is equivalent to starting with the matrix form of P and performing the row switches
determined by left multiplication by σ, and then the column switches determined by right
multiplication by σ−1.

Theorem 3.3. Let P ⊆Mn(R) be a zero pattern matrix ring. Then, there exists a permutation
matrix σ ∈Mn(R) such that σPσ−1 has the form

P1 C12 C13 · · · C1t

0 P2 C23 · · · C2t

0 0 P3 · · · C3t

...
...

. . .
. . .

...
0 0 · · · 0 Pt


where for each k ∈ [1, t], Pk = Mnk (R) for some nk ∈ N. Moreover, for each k ∈ [1, t− 1] and
each ` ∈ [k + 1, t], the matrix Ck` is either 0 or full.

Proof. We begin by proving that P is similar to a matrix of the form[
P ′ C
0 P ′′

]
where P ′ = Mm(R) for some m and P ′′ is a zpmr. Then, the same steps can be repeated for
P ′′ and its submatrices until we have achieved the form stated in the theorem.

First, switch the rows of P so that they are in decreasing order of their weights. Explicitly,
for each i ∈ [1, n], let wi be the weight of row i (that is, wi is the cardinality of {j ∈ [1, n] | Pij =
R}). Perform similarity permutations—which will reindex the wi—so that w1 > w2 > · · · > wn.
Call the matrix produced by this process Q.

We claim that if Qi1 = R, then row i of Q is the same as row 1 of Q. Indeed, if Qi1 = R
and Q1k = R, then Qik = Qi1Q1k = R. It follows that wi > w1; but, the rows of Q have been
ordered so that wi 6 w1, so we must have wi = w1. Thus, if Qi1 = R then Qij = R if and only
if Q1j = R, and so row i is identical to row 1.

Next, perform additional row and columns switches so that the first column of the matrix
has the form [∗ · · · ∗ 0 · · · 0]T . At this stage, we have produced a matrix R = τPτ−1, where τ
is a permutation matrix corresponding to our sequence of row switches. Let m be the weight
of the first column of R. Express R in block matrix form as

R =

[
P ′ C
D P ′′

]
where P ′ is m×m.

We claim that P ′ = Mm(R) and D = 0. By construction, the rows of P ′ are identical. So,
for all j ∈ [1,m], R1j = Rjj = R. Hence, the first row of P ′ has full weight, and therefore
P ′ = Mm(R).

To show that D = 0, we use contradiction. Suppose that Rij = R for some i ∈ [m + 1, n]
and some j ∈ [1,m]. Then, Ri1 = RijRj1 = R because Rij = Rj1 = R. However, this is
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a contradiction because the first column of R has the form [∗ · · · ∗ 0 · · · 0]T and so Ri1 = 0.
Thus, Rij = 0 for all i ∈ [m+ 1, n] and all j ∈ [1,m]. Hence, D = 0.

Our work so far proves that R has the form

R =

[
P ′ C
0 P ′′

]
.

Since R is subring of Mn(R), P ′′ must be a subring of Mn−m(R), and so P ′′ is a zpmr. We
may now apply a sequence of row and column switches to P ′′ to place it in the same kind of
form as R. Note that these switches will not affect P ′. Continuing in this manner will produce
a matrix similar to P and having the form

P1 C12 C13 · · · C1t

0 P2 C23 · · · C2t

0 0 P3 · · · C3t

...
...

. . .
. . .

...
0 0 · · · 0 Pt


with each Pk equal to Mnk (R) for some nk ∈ N.

It remains to prove that each Cij is either 0 or has full weight. For this, fix k ∈ [1, t − 1]
and ` ∈ [k + 1, t]. We may apply Lemma 3.2 to the zpmr[

Pk Ck`
0 P`

]
and conclude that Ck` is either 0 or is full. This completes the proof.

We will not always need the full strength of Theorem 3.3, so we record as a corollary the
following weaker form of the theorem.

Corollary 3.4. Let P ⊆ Mn(R) be a zero pattern matrix ring. Then, there exists a zero
pattern matrix ring Q ⊆Mn(R) such that w(Q) = w(P) and Q has the form

Q =

[
P ′ C
0 P ′′

]
where P ′ = Mm(R) for some m ∈ [1, n], P ′′ ⊆ Mn−m(R) is a zero pattern matrix ring, and
the rows of C are identical. Moreover, we may assume that m is the maximum dimension of a
full diagonal block.

Proof. Construct the block triangular form σPσ−1 for P as in Theorem 3.3. Then, permute
the rows and columns of blocks so that the dimension of P1 is maximal. Take P ′ = P1,
C = [C12 · · ·C1t], and P ′′ to be the submatrix below C.

We close this section by giving several examples demonstrating the limitations of Theorem
3.3 and Corollary 3.4.

Example 3.5.

1. Two zpmrs can have the same weight but not be isomorphic. Take

P1 =

∗ ∗ ∗
0 ∗ 0
0 0 ∗

 and P2 =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 .
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Then, w(P1) = w(P2) = 5, but the rings are not isomorphic. Indeed, the center of P1

consists of only the scalar matrices, but the center of P2 contains the matrix E33. So,
P1 6∼= P2. This could also be seen by constructing the corresponding transitive digraphs
Γ1 and Γ2. Then, Γ1 6∼= Γ2 because Γ1 is connected while Γ2 is not.

2. The form given by Theorem 3.3 is not unique. This is because different sequences of row
and column switches can produce different matrices that still satisfy the conclusion of the
theorem. Consider the 4× 4 zpmrs

P1 =


∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗

 and P2 =


∗ 0 0 ∗
0 ∗ ∗ 0
0 0 ∗ 0
0 0 0 ∗

 .
Let σ be the permutation matrix switching row 1 and row 2. Then, both zpmrs satisfy
the conclusion of Theorem 3.3, but P1 = σP2σ

−1.

3. Theorem 3.3 works by using similarity permutations to put the row weights of P in
decreasing order. The sequence of row weights obtained in this manner is an isomorphism
invariant, but two zpmrs can have identical sequences of row weights (and column weights)
and yet not be isomorphic. The following example of this is based on two matrices given
in [10, p. 1346].

Let

P1 =


∗ 0 0 ∗ ∗ ∗
0 ∗ 0 0 0 ∗
0 0 ∗ 0 ∗ 0
0 0 0 ∗ 0 ∗
0 0 0 0 ∗ 0
0 0 0 0 0 ∗

 and P2 =


∗ 0 0 ∗ ∗ ∗
0 ∗ 0 0 0 ∗
0 0 ∗ 0 0 ∗
0 0 0 ∗ ∗ 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗

 .
Then, the sequence of row weights is 4, 2, 2, 2, 1, 1 and the sequence of column weights is
1, 1, 1, 2, 3, 4, and these are the same for both zpmrs. It is easiest to see that P1 6∼= P2 by
looking at the associated transitive digraphs Γ1 and Γ2. Both graphs have two vertices
of outdegree 1 (vertices 2 and 3 in both Γ1 and Γ2). In Γ1, these vertices are adjacent to
different vertices (2 is adjacent to 5, and 3 is adjacent to 6), whereas in Γ2 the vertices
are both adjacent to vertex 6.

4. The matrix Q obtained in Corollary 3.4 need not be similar to P. This is because
permuting the rows and columns of blocks will preserve the weight of the zpmr, but
cannot always be accomplished via similarity permutations. For instance, the zpmrs

P1 =

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 and P2 =

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗


have the same weight, but they are not similarity permutations of one another.

4 The Weight Set of a Zero Pattern Matrix Ring

Our focus in this section is the determination of the weight sets W (n). In Theorem 1.7, we
prove that W (n) can be computed recursively, which is to say that we can construct W (n) by
using W (1), . . . ,W (n− 1). A number of results also concern the interval [n, b(n)] that is found
at the beginning of each weight set.

Lemma 4.1. For each n > 1, we have [n, n(n+ 1)/2] ⊆W (n).
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
b(n) lower bound 1 4 7 13 19 28 35 52 61 77 95 109 130 153 178 205 223 253 285 319 355 393 433 475
d(3/4)n2e 1 3 7 12 19 27 37 48 61 75 91 108 127 147 169 192 217 243 271 300 331 363 397 432

Table 2: Lower bounds for b(n), using Lem. 4.2

Proof. We will use induction on n and prove that every k ∈ [n, n(n+1)/2] occurs as the weight
of some upper triangular zpmr. The base case n = 1 is trivial, so assume that n > 2 and the
result holds for n− 1.

Let k ∈ [n − 1, (n − 1)n/2]. By induction, there exists a zpmr P ′′ ⊆ Mn−1(R) such that
w(P ′′) = k. We can form the n× n zpmr

P =

[
∗ 0
0 P ′′

]
which has w(P) = k + 1. This shows that [n, (n− 1)n/2 + 1] ⊆W (n). To complete the proof,
let m ∈ [1, n− 1] and let Tn−1(R) be the ring of (n− 1)× (n− 1) upper triangular matrices.
Consider the matrix

Q =

[
∗ C
0 Tn−1(R)

]
where

C = [0 · · · 0 ∗ · · · ∗︸ ︷︷ ︸
m-times

].

Then, one may easily verify that Q is a zpmr and w(Q) = (n−1)n/2+1+m. This construction
works for any m ∈ [1, n− 1], so we have [(n− 1)n/2 + 1, n(n+ 1)/2] ⊆W (n), as desired.

By Lemma 4.1, b(n) > n(n + 1)/2 for all n > 1, but Table 1 shows that this bound is
insufficient for n > 2. In Proposition 4.3, we will prove that b(n) > (3/4)n2 as long as n 6= 7.
Most of the work in that proof is accomplished by using a theorem of Rao [7] on transitive
digraphs, but small cases need to be checked by hand, and to do this we need to be able to form
the sets W (n). Lemma 4.2 shows how to form a subset of W (n) that is defined recursively.
This allows us to find lower bounds for b(n) (see Table 2), which will be used in later proofs.

Lemma 4.2. For each n > 1, let αn =
⋃n−1
k=1 (W (n− k) +W (k)) and βn =

⋃n−1
k=1 (n(n− k) +

W (k)). Then, W (n) ⊇ αn ∪ βn ∪ {n2}.

Proof. Certainly, n2 ∈W (n). The values in αn come from n× n zpmrs of the form[
P ′ 0
0 P ′′

]
where P ′′ is k × k, and the values in βn come from n× n zpmrs of the form[

full

0 P ′′
]

where P ′′ is k × k.

In [7, p. 1597], Rao defines f(n) to be the largest integer such that for all k ∈ [0, f(n)],
there exists a transitive digraph on n vertices with k edges. It is then shown in [7, Thm. 6] that
f(n) > (n−bn0.57c)(n−1) for all n > 1. In the notation of this paper, we have b(n) = f(n)+n,
and consequently Rao’s theorem provides a lower bound for b(n). However, the presence of
the floor function and the exponent of 0.57 make this bound somewhat awkward to work with.
The next proposition gives a coarser—but more convenient—lower bound for b(n).

11



Proposition 4.3. Let n > 1 such that n 6= 7. Then, b(n) > (3/4)n2.

Proof. The theorem can be verified by inspection for n 6 22 by using Lemma 4.2 to compute
a subset of W (n), and then using this subset to obtain a lower bound for b(n). The results
of this process are summarized in Table 2. Note that the proposition fails for n = 7, because
b(7) = 35 while (3/4) · 72 = 36.75. So, assume that n > 23.

Now, by [7, Thm. 6], b(n) > (n− bn0.57c)(n− 1) + n for all n > 1. So,

b(n) > (n− bn0.57c)(n− 1) + n

= n2 − bn0.57c(n− 1)

> n2 − n0.57(n− 1)

= n2 − n1.57 + n0.57.

We will show that n2−n1.57 +n0.57 > (3/4)n2 for all n > 23. Let g(x) = (1/4)x2−x1.57 +x0.57

for a real variable x. Then, the derivative of g is

g′(x) = 1
2
x− 1.57x0.57 + 0.57x−0.43

> 1
2
x− 1.57x0.57

= x0.57( 1
2
x0.43 − 1.57)

and this is positive for all x > (3.14)1/0.43 ≈ 14.31. Moreover, one may check that g(22) < 0
and g(23) > 0. It follows that g(n) > 0 for all n > 23, which completes the proof.

Proposition 4.3 shows that W (n) ⊇ [n, d(3/4)n2e] for all n 6= 7. The next two propositions
will be used to prove that a weight in W (n) that is greater than (3/4)n2 can be realized by a
zpmr of a certain form.

Proposition 4.4. Let P ⊆Mn(R) be a zero pattern matrix ring of the form

P =


P1 C12 C13 · · · C1t

0 P2 C23 · · · C2t

0 0 P3 · · · C3t

...
...

. . .
. . .

...
0 0 · · · 0 Pt


where for each k ∈ [1, t], Pk = Mnk (R) for some nk ∈ N. Assume that the blocks Pk have been
ordered so that n1 > n2 > · · · > nt. If n1 6 n/2, then w(P) 6 (3/4)n2.

Proof. Assume that n1 6 n/2. Then, t > 2. Most cases can be handled by induction on t. The
base case is t = 2, for which we must have n1 = n/2. In this case, the column of zero blocks
below P1 guarantees that w(P) 6 (3/4)n2. So, assume that t > 3 and that the result holds for
t− 1.

Let P ′′ be the (n− n1)× (n− n1) zpmr

P ′′ =


P2 C23 · · · C2t

0 P3 · · · C3t

...
. . .

. . .
...

0 · · · 0 Pt

 .
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If n2 6 (n − n1)/2, then by induction we have w(P ′′) 6 (3/4)(n − n1)2. Also, n1 < n/2,
because t > 3. So,

w(P) 6 n1n+ w(P ′′)

6 n1n+ 3
4
(n− n1)2

= 3
4
n2 − 1

2
n1n+ 3

4
n2
1

= 3
4
n2 − 3

4
n1( 2

3
n− n1)

< 3
4
n2.

We are left with the case where n2 > (n−n1)/2. Since n2 6 n1, this means that n1 > n/3.
Thus, we can be sure that n/3 < n1 < n/2.

Let P ′′ be as above. The minimum number of zeros in P ′′ occurs when t = 3, so that
the only zeros we can be certain of are those in the column of blocks below P2. The number
of such zeros is n2(n − n1 − n2). We claim that this quantity is minimized when n2 = n1.
Indeed, let g(x) = x(n − n1 − x) for a real variable x. Then, the maximum value of g occurs
at x = (n − n1)/2, and g is decreasing for x > (n − n1)/2. Since (n − n1)/2 < n2 6 n1, the
minimum value of n2(n− n1 − n2) occurs when n2 = n1.

With these assumptions, the number of zero entries below P1 and P2 is equal to

n1(n− n1) + n1(n− 2n1) = 2n1n− 3n2
1.

Let h(x) = 2nx − 3x2 for a real variable x. Then, h is decreasing for x > n/3. Since we are
assuming that n/3 < n1 < n/2, we conclude that

2n1n− 3n2
1 > 2

(n
2

)
n− 3

(n
2

)2
=
n2

4
.

Thus, w(P) < (3/4)n2, as desired.

Proposition 4.5. Let P $ Mn(R) be a zero pattern matrix ring such that w(P) > (3/4)n2.
Then, there exists a zero pattern matrix ring Q ⊆ Mn(R) such that w(Q) = w(P) and Q has
the form

Q =

[
full

0 Q′′
]

where Q′′ is a zero pattern matrix ring of dimension less than n.

Proof. If w(P) = (3/4)n2, then we may take Q′′ = Mn/2(R) and we are done. So, assume that
w(P) > (3/4)n2. By Corollary 3.4, we may assume that P has the form

P =

[
P ′ C
0 P ′′

]
where P ′ and P ′′ are zpmrs, P ′ has full weight, the rows of C are identical, and the dimension
of P ′ is at least as large as that of any other full diagonal block. Since w(P) > (3/4)n2, by
Proposition 4.4 the dimension of P ′ is greater than n/2.

Let r be the dimension of P ′′ and let c ∈ [0, r] be the number of nonzero columns of C. If
c = r, then C is full and we are done. So, assume that c < r. With these assignments for r
and c, we have

w(P) = w(P ′) + w(C) + w(P ′′)

= (n− r)2 + (n− r)c+ w(P ′′)

= n2 − 2nr + r2 + nc− rc+ w(P ′′)

= n(n− 2r + c) + (r − c)2 + c(r − c) + w(P ′′).
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Let Q′′ be the matrix formed by deleting the first n− 2r + c rows and columns of P. The
matrix Q′′ is square of dimension 2r − c, and is equal to[

Mr−c(R) C′

0 P ′′
]

where the columns of C′ that are nonzero are the same as in C. Note that Q′′ is a zpmr because
P is a zpmr, and w(Q′′) = (r − c)2 + c(r − c) + w(P ′′). Finally, we can take Q to be

Q =

[
full

0 Q′′
]

where the full block at the top of the matrix is (n− 2r+ c)× n. The matrix Q has the desired
form, and w(Q) = w(P), so we are done.

Because Proposition 4.3 does not apply when n = 7, we have to treat W (7) separately from
the other weight sets. Fortunately, we have built up enough theory that only one potential
weight between 7 and 49 requires a detailed analysis.

Lemma 4.6. 36 /∈W (7).

Proof. Let P $M7(R). By Corollary 3.4, we may assume that P has the form

P =

[
P ′ C
0 P ′′

]
where P ′ = Mm(R) for some m ∈ [1, 6], P ′′ is a zpmr, C has identical rows, and all full diagonal
blocks have dimension at most m. We will examine cases depending on m, and will show that
w(P) cannot equal 36.

If m = 1, then P must be upper triangular and hence w(P) 6 28. If m = 2, then the
maximum weight of P occurs when C is full and

P ′′ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 0 ∗

 ,
but such a 7× 7 zpmr has weight 31. Similarly, if m = 3 then the maximum weight of P is 34,
which occurs when C is full and

P ′′ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗

 .
So, we may assume that m ∈ [4, 6].

Now, the fact that the rows of C are identical means that w(C) must be a multiple of m.
Moreover, since m ∈ [4, 6], the dimension of P ′′ is in [1, 3], and it is easy to determine the
possible values of w(P ′′). The chart below summarizes the possible weights for P ′, P ′′, and C
in these cases.

m w(P ′) w(P ′′) w(C)

4 16 [3, 7], 9 0, 4, 8, 12
5 25 [2, 4] 0, 5, 10
6 36 1 0, 6
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Since w(P) = w(P ′) + w(P ′′) + w(C), we see that in each case there is no way for w(P) to
equal 36.

We can now prove Theorem 1.7, which—as mentioned previously—demonstrates how to
calculate the sets W (n) recursively.

Proof of Theorem 1.7. We know that βn ∪ {n2} ⊆ W (n) for all n from Lemma 4.2, and
[n, d(3/4)n2e] ⊆ W (n) for n 6= 7 by Proposition 4.3. For n = 7, one may use Lemma 4.2
to compute that b(7) > 35. So,

W (7) ⊇ [7, 35] ∪ β7 ∪ {49},

and when n 6= 7,
W (n) ⊇ [n, d(3/4)n2e] ∪ βn ∪ {n2}.

For the reverse containments, first assume that n 6= 7 and let P $ Mn(R) be a zpmr.
If w(P) 6 (3/4)n2, then we are done, so assume that w(P) > (3/4)n2. By Proposition 4.5,
w(P) = w(Q) for some zpmr Q whose weight is in βn. Thus, W (n) is equal to the union of the
stated sets, and we are done.

When n = 7, we have (3/4) · 72 = 36.75, so the arguments of the previous paragraph apply
to zpmrs in M7(R) of weight at least 37. We also know that [7, 35] ⊆ W (7), so the only
remaining question is whether M7(R) contains a zpmr of weight 36. However, this is ruled out
by Lemma 4.6. Hence, W (7) = [7, 35] ∪ β7 ∪ {49}, and the proof is complete.

Corollary 4.7. Let S(n) be the set of integers m for which there exists a digraph on n vertices
with m reachable pairs. Let T (n) be the set of possible values of τ(T ), where T is a finite
topology on n points and τ is Sharp’s topological invariant τ . For each n > 1, let δn =⋃n−1
k=1 ((n− 1)(n− k) + S(k)), and let βn =

⋃n−1
k=1 (n(n− k) +W (k)). Then,

S(7) = [0, 28] ∪ δ7 ∪ {42},

and if n 6= 7 then
S(n) = [0, d(3/4)n2 − ne] ∪ δn ∪ {n2 − n}.

Also,
T (7) = [7, 35] ∪ β7 ∪ {49},

and if n 6= 7 then
T (n) = [n, d(3/4)n2e] ∪ βn ∪ {n2}.

Proof. This follows immediately from Theorem 1.7 and Lemma 2.3.

Remark 4.8. Using Theorem 1.7 to compute W (n) and b(n) shows that the lower bounds
for b(n) given in Table 2 are actually the exact values of b(n). Some of these values will be
used later in the proof of Theorem 1.8, where we prove that b(n) can be calculated recursively
(without knowing W (n)).

5 The Weight Loss Sequence and b(n)

Definition 5.1. Recall that b(n) is the largest positive integer such that [n, b(n)] ⊆W (n). For
all z ∈ N, we define L(z) := b(z)− z+ 3. The sequence of integers {L(z)}z>1 = {3, 5, 7, 12, . . .}
is called the weight loss sequence.
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We call {L(z)}z>1 the weight loss sequence because it can be used to find gaps in the
weight sets W (n). For instance, L(1) = 3 and n = 3 is the first time that a gap appears
in a weight set: 8 /∈ W (3). This gap is the first instance of a general restriction on W (n),
namely that W (n) ∩ [n2 − n + 2, n2 − 1] = ∅ for all n > 3. Similarly, L(2) = 5, and the
fact that 20 /∈ W (5) is the first occurrence of a new gap. In this case, the general result is
W (n) ∩ [n2 − 2n + 5, n2 − n] = ∅ for all n > 5. Proofs of these restrictions (and others) on
W (n) can be found in Theorem 6.4.

Clearly, we must know b(z) to be able to calculate L(z). However, it turns out that knowing
L(z) allows us to compute b(n) for some values of n > L(z). The relationship (barring some
small exceptions) between b(n) and L(z) is that if L(z) 6 n < L(z + 1), then b(n) = n2 −
zn + b(z). Thus, if we know b(k) for k ∈ [1, n − 1], then we can calculate each L(k), find the
appropriate z, and then calculate b(n).

Most of this section is dedicated to proving the statements of the previous paragraphs.
The main theorem is Theorem 1.8, and most of the work is done in Propositions 5.4 and 5.9.
Computational lemmas are introduced as they are needed to prove the propositions.

Lemma 5.2. For all n > 1 and all m > 1, b(n) +m 6 b(n+m).

Proof. For any n > 1, we can form (n+ 1)-dimensional zpmrs of the form[
∗ 0
0 P ′′

]
where the weight of P ′′ ⊆Mn(R) varies between n and b(n). Hence, b(n+ 1) > b(n) + 1. The
lemma now follows easily by induction on m.

Lemma 5.3. Let z > 6. Then,

(1) L(z) > 4z.

(2) If n > L(z), then n2 − zn+ b(z) > (3/4)n2.

Proof. (1) We have L(6) = 25 and L(7) = 31, so assume that z > 8. By Proposition 4.3,
b(z) > (3/4)z2, so

L(z) = b(z)− z + 3 > (3/4)z2 − z + 3

and it is routine to verify that this is greater than 4z.
For (2), assume n > L(z) and let g(x) = (1/4)x2 − zx + b(z). Solving g(x) = 0 for x in

terms of z yields x = 2(z ±
√
z2 − b(z)). We have

2(z +
√
z2 − b(z)) < 4z < L(z) 6 n

so the desired inequality holds.

Proposition 5.4. Let z > 4 and let n be such that L(z) 6 n < L(z + 1). Then, b(n) >
n2 − zn+ b(z).

Proof. Since z > 4, n > L(4) = 12, so by Proposition 4.3, b(n) > (3/4)n2. Moreover, by
Lemma 5.3(2), n2 − zn+ b(z) > (3/4)n2. To get the stated result, we need to show that there
exists an n× n zpmr of weight k for every k ∈ [d(3/4)n2e, n2 − zn+ b(z)].

Consider n× n zpmrs of the form [
full

0 Pr

]
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where Pr is r × r. We can vary the choice of Pr so that w(Pr) is any integer between r and
b(r) (inclusive). This allows us to produce n× n zpmrs with weights in the interval

Ir := [n(n− r) + r, n(n− r) + b(r)],

and every weight in Ir is achievable. We will prove that the union
⋃n−1
r=z Ir covers the entire

interval [d(3/4)n2e, n2 − zn+ b(z)]. (Note that by our choice of notation, In−1 is the leftmost
interval and Iz is the rightmost interval.)

We claim that when z + 1 6 r, the lower endpoint of Ir−1 is at most one more than the
upper endpoint of Ir. That is, we seek to show that

n(n− (r − 1)) + (r − 1) 6 1 + n(n− r) + b(r) (5.5)

which is equivalent to
n+ r − 1 6 b(r) + 1.

Now, by assumption, n 6 L(z + 1) − 1, and by definition L(z + 1) = b(z + 1) − (z + 1) + 3.
From this, we get that n+ z 6 b(z + 1) + 1. Let m be such that z +m = r− 1. Using Lemma
5.2, we have

n+ r − 1 = n+ z +m

6 b(z + 1) + 1 +m

6 b(z + 1 +m) + 1

= b(r) + 1.

Thus, (5.5) holds. This means that the union of the intervals Ir comprises a single interval
[2n− 1, n2 − zn+ b(z)], which goes from the lower endpoint of In−1 to the upper endpoint of
Iz. Clearly, 2n− 1 6 (3/4)n2, so we conclude that

[n, d(3/4)n2e] ∪ [2n− 1, n(n− z) + b(z)] = [n, n2 − zn+ b(z)]

and the stated result follows.

Lemma 5.6. Assume that z > 4, n > L(z), and z + 1 6 r < n/2. Then,

n2 − rn+ r2 6 n2 − zn+ b(z).

Proof. First, we note that we need z to be at least 4 in order to have L(z)/2 > z+ 1. If z = 3,
then L(z) = 7, and z + 1 = 4 > 7/2. However, once z > 4, one can use Proposition 4.3 to
easily show that L(z) > 2z + 2. Hence, our assumptions on z, n, and r are necessary and can
be satisfied.

Now, let g(r) = n2 − rn+ r2. Then, g is decreasing for r < n/2, so

n2 − rn+ r2 6 n2 − (z + 1)n+ (z + 1)2. (5.7)

Next, we claim that 2b(z) > z2 + 3z − 2. This is clear when z ∈ [4, 7], and for z > 8 one may
apply Proposition 4.3 and verify that

2b(z) > (3/2)z2 > z2 + 3z − 2.

So,
2b(z) > z2 + 3z − 2 = (z + 1)2 + z − 3

which implies that

n+ b(z) > L(z) + b(z) = 2b(z)− z + 3 > (z + 1)2. (5.8)
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Combining (5.8) and (5.7) yields

n2 − rn+ r2 6 n2 − (z + 1)n+ (z + 1)2 6 n2 − zn+ b(z),

as desired.

The next proposition is the key to most of our remaining results.

Proposition 5.9. Let z > 6 and let n be such that n > L(z). Let P $Mn(R) be a zero pattern
matrix ring such that w(P) > n2 − zn+ b(z) + 1. Then, there exists a zero pattern matrix ring
Q ⊆Mn(R) such that w(Q) = w(P) and Q has the form

Q =

[
full

0 Q′′
]

where Q′′ is m×m for some m ∈ [1, z].

Proof. By Corollary 3.4, we may assume that P has the form

P =

[
P ′ C
0 P ′′

]
where P ′ and P ′′ are zpmrs, P ′ has full weight, the rows of C are identical, and the dimension
of P ′ is at least as large as that of any other full diagonal block. Let r = dim(P ′′). Since z > 6,
we have w(P) > n2−zn+ b(z) > (3/4)n2 by Lemma 5.3(2). So, dim(P ′) > n/2 by Proposition
3.3, and hence r < n/2.

Suppose that z + 1 6 r < n/2. Then, the maximum weight of P is

w(P) 6 n(n− r) + w(P ′′) 6 n(n− r) + r2 (5.10)

which by Lemma 5.6 is strictly less than n2 − zn+ b(z) + 1. So, we must have r 6 z.
Let c ∈ [0, r] be the number of nonzero columns of C and let m = 2r − c. Following the

steps used in the proof of Proposition 4.5 shows that there exists a zpmr Q ⊆Mn(R) such that
w(Q) = w(P) and Q has the form

Q =

[
full

0 Q′′
]

where Q′′ is m×m and the full block has n− 2r + c rows. By Lemma 5.3(1), n > 4z and we
are assuming that r 6 z, so we get r < n/4. This gives n− 2r + c > n/2 and m < n/2.

Finally, if z + 1 6 m < n/2, then using (5.10) and Lemma 5.6 shows that w(Q) < n2 −
zn+ b(z) + 1. Thus, m 6 z, as required.

We are now ready to prove Theorem 1.8, which asserts that if z > 1 and L(z) 6 n < L(z+1)
(but n 6= 8), then b(n) = n2 − zn+ b(z).

Proof of Theorem 1.8. For z ∈ [1, 5], the theorem can be proved by inspection using Table 2
(as mentioned in Remark 4.8, the lower bounds for b(n) in Table 2 are actually the exact values
of the function). Note that the case n = 8 occurs when z = 3; see the remark following this
theorem for an explanation of what goes wrong in that situation.

So, assume that z > 6. We know that b(n) > n2−zn+ b(z) by Proposition 5.4. Suppose by
way of contradiction that b(n) > n2 − zn + b(z). Then, there must exist a zpmr P ⊆ Mn(R)
such that w(P) = n2 − zn+ b(z) + 1. By Proposition 5.9, we may assume that P has the form

P =

[
full

0 Q′′
]
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where Q′′ ⊆Mm(R) for some m ∈ [1, z]. If m = z, then w(Q′′) = b(z) + 1, which is impossible
by the definition of b(z). So, we must have m 6 z − 1. In this situation, a lower bound for
w(P) is

w(P) = n(n−m) + w(Q′′)
> n(n−m) +m

= n2 −m(n− 1). (5.11)

Now, n2−m(n− 1) is decreasing as a function of m, so (5.11) and the fact that n > L(z) yield

n2 − zn+ b(z) + 1 = w(P)

> n2 − (z − 1)(n− 1)

= n2 − zn+ z − 1 + n

> n2 − zn+ z − 1 + (b(z)− z + 3)

= n2 − zn+ b(z) + 2,

a contradiction. Thus, b(n) = n2 − zn+ b(z).

Remark 5.12. When n = 8, the corresponding z is z = 3, for which L(z) = 7. Computing
n2 − zn+ b(z) in this case yields 47, but b(8) = 52 by Table 2. What goes wrong here is that,
when n = 8, (3/4)n2 = n2 − zn+ b(z) + 1, and there exists an 8× 8 zpmr

P =

[
M4(R) M4(R)

0 M4(R)

]
of weight 48. Lemma 5.3(2) shows that such coincidences cannot happen when z (and n) are
sufficiently large.

Corollary 5.13. Let z > 1 and let n be such that L(z) 6 n < L(z + 1). If n 6= 8, then n2 −
(z+1)n+b(z)+1 is the smallest nonnegative integer m for which there does not exist a digraph
on n vertices with exactly m reachable pairs. Furthermore, if n 6= 8, then n2 − zn+ b(z) + 1 is
also the smallest nonnegative integer m for which there does not exist a topology T on n points
with τ(T ) = m.

Proof. This follows immediately from Lemma 2.3 and Theorem 1.8.

We obtain the following corollary about the asymptotics of b(n), which is also a consequence
of [7, Theorem 6].

Corollary 5.14. As n→∞, b(n)/n2 → 1.

Proof. Let n and z be positive integers such that L(z) 6 n < L(z + 1); note that z → ∞ as
n → ∞. By Theorem 1.8, b(n) = n2 − zn + b(z), so it suffices to show that z/n → 0 and
b(z)/n2 → 0 as n→∞. For z > 8, we have b(z) > (3/4)z2 by Proposition 4.3, so

n > L(z) = b(z)− z + 3 > (3/4)z2 − z + 3

and it follows that z/n→ 0 as n→∞. Moreover, for z > 6, Lemma 5.3 gives z < n/4, so

b(z) = L(z) + z − 3 6 n+ z − 3 < (5n/4)− 3

and hence b(z)/n2 → 0 as n→∞, as required.
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We are also in a position to prove Theorem 1.9 and give a recursive form for W (n) different
than the one provided by Theorem 1.7.

Proof of Theorem 1.9. Recall that ωn =
⋃z
k=1(n(n − k) + W (k)). For n ∈ [1, 24], n 6= 7, one

may verify computationally that [n, b(n)] ∪ ωn ∪ {n2} equals the expression for W (n) given in
Theorem 1.7. So, assume that n > 25, which means that z > 6.

It is clear that W (n) ⊇ [n, b(n)]∪ωn∪{n2}, so we only need to prove the other containment.
Let P ⊆Mn(R) be a zpmr. There is nothing to prove if w(P) 6 b(n) or w(P) = n2, so assume
that b(z) < w(P) < n2. By Proposition 5.9, w(P) ⊆ n(n −m) + W (m) for some m ∈ [1, z].
Hence, w(P) ∈ ωn, completing the proof.

Corollary 5.15. Let S(n) be the set of integers m for which there exists a digraph on n vertices
with m reachable pairs. Let T (n) be the set of integers m for which there exists a finite topology
T on n points such that τ(T ) = m. If n > 1, z ∈ N is such that L(z) 6 n < L(z + 1),
γn =

⋃z
k=1((n− 1)(n− k) + S(k)), and ωn =

⋃z
k=1(n(n− k) +W (k)), then

S(n) = [0, b(n)− n] ∪ γn ∪ {n2 − n}, and

T (n) = [n, b(n)] ∪ ωn ∪ {n2}.

Proof. This follows immediately from Theorem 1.9 and Lemma 2.3.

The formula in Theorem 1.8 and the results obtained subsequently are recursive in nature;
if we want to know b(n), we need to know the value of z for which L(z) 6 n < L(z + 1). The
following proposition gives us bounds for z in terms of n, showing that z is approximately n0.5

when n is large enough.

Proposition 5.16. Let δ > 0. There exists N = N(δ) ∈ N such that if n > N and z is such
that L(z) 6 n < L(z + 1), then

n0.5 < z = n0.5+ε(n),

where

ε(n) <
ln
(

1 + 1

n0.25−2δ−δ2 + 1
n0.5−δ

)
2 ln(n)

.

In particular, for any n ≥ 5,

ε(n) <
ln
(
1 + 1

n0.1 + 1
n0.43

)
2 ln(n)

.

Proof. We will establish the lower bound first. By assumption, n < L(z + 1) = b(z + 1)− (z +
1) + 3. Let t ∈ N be such that L(t) ≤ z + 1 < L(t+ 1). Theorem 1.8 implies that

b(z + 1) = (z + 1)2 − t(z + 1) + b(t),

and this in turn gives us

n < z2 − (t− 1)z + b(t)− t+ 3 = z2 − (t− 1)z + L(t).

By assumption, L(t) 6 z + 1 < (t− 1)z when t > 3, and so

n < z2 − ((t− 1)z − L(t)) < z2,

which implies the lower bound on z.
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To establish the upper bound, we will assume that z = n0.5+ε(n), where ε(n) is a function
depending on n. We know already that ε(n) is bounded below by 0; we will now use Rao’s
result [7, Theorem 6] to obtain an absolute upper bound on ε(n). Since z = n0.5+ε(n), we have

0.5 + ε(n) =
ln(z)

ln(n)

6
ln(z)

ln(L(z))

=
ln(z)

ln(b(z)− z + 3)

6
ln(z)

ln(z2 − z1.57 − z + 3)
,

where the last line comes from Rao’s lower bound [7, Theorem 6]. A routine calculation shows
that this function is decreasing for z > 3, which implies that 0.5 + ε(n) is bounded above by
ln(3)/ ln(7). Indeed, 0.5 + ε(n) 6 ln(3)/ ln(7) < 0.57. Hence ε(n) < 0.07 for all n > 7, and
inspection shows that ε(n) < 0.07 when n = 5, 6, so such an absolute upper bound on ε(n)
exists.

Let δ > 0, and let N ∈ N be such that when m ≥ N , ε(m) < δ. Assume that z > N . Now,

n > L(z) = b(z)− z + 3 > z2 − z1.5+ε(z) − z,

which implies that
z2 < n+ z1.5+ε + z 6 n+ z1.5+δ + z.

Using the facts that z = n0.5+ε(n) and ε(n) < δ, we get

n1+2ε(n) < n+ n(1.5+δ)(0.5+δ) + n0.5+δ = n+ n0.75+2δ+δ2 + n0.5+δ.

Solving for ε(n), we obtain

ε(n) <
ln
(

1 + 1

n0.25−2δ−δ2 + 1
n0.5−δ

)
2 ln(n)

,

as desired.
Finally, when n > 5, we have ε(n) < 0.07 and so

ε(n) <
ln
(
1 + 1

n0.1 + 1
n0.43

)
2 ln(n)

.

As a corollary, we establish some bounds on b(n) when n is sufficiently large.

Corollary 5.17. Let δ > 0. There exists N = N(δ) ∈ N such that, if n > N , then

n2 − n1.5+δ < b(n) < n2 − n1.5 + n1+2δ.

Proof. This follows from Theorem 1.8 and Proposition 5.16.
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6 Gaps and Cardinalities of Weight Sets

In this section, we analyze the gaps in the weight sets, and obtain bounds on the cardinality of
W (n). When we speak of “gaps”, we mean integers or runs of integers that are in [n, n2]\W (n).
By the definition of b(n), any k ∈ [n, n2] \W (n) must be at least b(n) + 1. Hence, Proposition
5.9 and Theorem 1.8 will be relevant in our work. Ultimately, we will be able to use our
knowledge of the gaps in W (n) to give bounds on |W (n)|.

The gaps in W (n) can always be described by using two polynomials that depend on n and
z. These polynomials also shed some light on the mysterious nature of the weight loss function
L(z).

Notation 6.1. For positive integers n and z, we define φ(n, z) = n2 − zn + b(z) + 1 and
ψ(n, z) = n2 − (z − 1)n+ z − 2.

Lemma 6.2. Let z > 1.

(1) If n > L(z), then φ(n, z) 6 ψ(n, z). In particular, φ(L(z), z) = ψ(L(z), z).

(2) If n > L(z) and r ∈ [1, z], then the cardinality of the interval [φ(n, r), ψ(n, r)] is equal to
n− L(r) + 1.

(3) Let j ∈W (z). If φ(n, z) 6 n2 − zn+ j 6 ψ(n, z), then b(z) + 1 6 j 6 n+ z − 2.

Proof. All parts are straightforward computations.

Proposition 6.3. Let n ≥ 3 and let z ∈ N be such that L(z) 6 n < L(z + 1). Let k ∈ [n, n2].
If k /∈W (n), then k ∈ [φ(n, r), ψ(n, r)] for some r ∈ [1, z].

Proof. For each r ∈ [1, z], let Ir = [n2 − rn + r, n2 − rn + b(r)] and let Jr = [φ(n, r), ψ(n, r)].
By Theorem 1.8, we see that

[b(n) + 1, n2 − 1] = Jz ∪ Iz−1 ∪ Jz−1 ∪ Iz−2 ∪ · · · ∪ J1

for n 6= 8. If n = 8, then b(8) = 52 > 48 = φ(8, 3), so that [b(n) + 1, n2 − 1] is a subset of the
union of the Jr and Ir.

Now, assume that k ∈ [n, n2] \W (n). By the definition of b(n), we must have k > b(n) + 1.
As noted above, Theorem 1.8 shows that b(n) + 1 is equal to φ(n, z) when n 6= 8, and if n = 8,
then b(8) + 1 > φ(8, 3). Thus, in all cases we see that k is greater than the lower endpoint of
Jz. By considering n× n zpmrs of the form[

full

0 P ′′
]

where P ′′ is r × r, we can obtain all the weights in Ir. Since k is not an obtainable weight,
it is not contained in any Ir for 1 6 r 6 z, and so it must lie in one of the intervals Jr, as
required.

For fixed z, the set [φ(n, z), ψ(n, z)] first becomes nonempty when n > L(z), and then grows
as n increases. By Proposition 6.3, any gap in the weight set must occur in such an interval,
but not every number in [φ(n, z), ψ(n, z)] lies outside of W (n). For instance, when z = 3 and
n ≥ 7 the interval is

[φ(n, 3), ψ(n, 3)] = [n2 − 3n+ 8, n2 − 2n+ 1]

but we always have n2 − 3n+ 9 ∈W (n) because we can form the zpmr[
full

0 M3(R)

]
.
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However, we can prove that there are always few weights contained in [φ(n, z), ψ(n, z)], in the
sense that the number of possible weights between φ(n, z) and ψ(n, z) is bounded above by a
constant depending only on z.

Theorem 6.4. Let z > 1 and let n be such that n > L(z). Additionally, if z = 3 then assume
that n 6= 8. Then,

W (n) ∩ [φ(n, z), ψ(n, z)] =
{
n2 − zn+ k | k ∈W (z) and b(z) + 1 6 k 6 n+ z − 2

}
.

Proof. Assume first that z > 6. By Proposition 5.9, if P is an n × n zpmr such that w(P) ∈
[φ(n, z), ψ(n, z)], then we may assume that P has the form

P =

[
full

0 Q′′
]

(6.5)

where Q′′ ⊆Mm(R) for some m ∈ [1, z]. If m 6 z − 1, then as in the proof of Theorem 1.8 we
have

w(P) = n(n−m) + w(Q′′)

> n2 −m(n− 1)

> n2 − (z − 1)(n− 1)

= n2 − (z − 1)n+ z − 1

which is strictly greater than ψ(n, z). Thus, we must have m = z. This means that w(Q′′) is
equal to some k ∈W (z) such that

φ(n, z) 6 n2 − zn+ k 6 ψ(n, z).

By Lemma 6.2 part (3), k is between b(z) + 1 and n− z + 2. This proves that

W (n) ∩ [φ(n, z), ψ(n, z)] ⊆
{
n2 − zn+ k | k ∈W (z) and b(z) + 1 6 k 6 n+ z − 2

}
.

The reverse containment holds because we can always vary the choice of Q′′ in (6.5) to produce
a weight of n2 − zn+ k. Hence, the two sets are equal.

It remains to prove the theorem for smaller values of z. We will handle the cases where
z = 1 and z = 2. The remaining cases where z ∈ [3, 5] can be done using similar logic and are
left to the reader.

In what follows, P $Mn(R) will be a zpmr of the form

P =

[
P ′ C
0 P ′′

]
where P ′ and P ′′ are zpmrs, P ′ has full weight, and the rows of C are identical. Let r ∈ [1, n−1]
be the dimension of P ′′. With this setup, we have

w(P) 6 (n− r)2 + (n− r)r + r2 = n(n− r) + r2. (6.6)

Assume that z = 1, so that n > L(1) = 3, φ(n, 1) = n2 − n+ 2, and ψ(n, 1) = n2 − 1. We
will prove that W (n) does not meet [φ(n, 1), ψ(n, 1)]. As a function of r, the maximum value
of n(n− r) + r2 on the interval [1, n− 1] is achieved when r = 1 or r = n− 1. Thus, by (6.6)

w(P) 6 n(n− 1) + 1 < φ(n, 1)

and so W (n) ∩ [φ(n, 1), ψ(n, 1)] = ∅.
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Now, assume that z = 2. Then, n > 5, φ(n, 2) = n2− 2n+ 5, and ψ(n, 2) = n2−n. We will
show that W (n) has empty intersection with [φ(n, 2), ψ(n, 2)]. Applying (6.6) with r ∈ [2, n−2]
shows that

w(P) 6 n(n− 2) + 4 < φ(n, 2)

so if w(P) is to be in [φ(n, 2), ψ(n, 2)], we must have r = 1 or r = n − 1. If r = 1, then
w(P) = (n− 1)2 + w(C) + 1, and by Lemma 3.2 w(C) is either 0 or n− 1. If w(C) = 0, then
w(P) = n2 − 2n+ 2, which is too small; and if w(C) = n− 1, then w(P) = n2 − n+ 1, which
is too large. So, assume that r = n− 1.

Since r = n− 1, the two largest possible weights for P ′′ are (n− 1)2 and

(n− 1)2 − (n− 1) + 1 = n2 − 3n+ 3.

If w(P ′′) = n2 − 3n+ 3, then the maximum weight for P is (n2 − 3n+ 3) + n = n2 − 2n+ 3,
which is too small. So, we must have w(P ′′) = (n− 1)2. But, this returns us to the case of the
previous paragraph where w(C) is either 0 or n − 1. There are no more cases to consider, so
W (n) ∩ [φ(n, 2), ψ(n, 2)] = ∅.

Corollary 6.7. Let z > 1 and let n be such that n > L(z). Additionally, if z = 3 then
assume that n 6= 8. Then, the cardinality of W (n) ∩ [φ(n, z), ψ(n, z)] is bounded above by
|W (z)| − L(z) + 2.

Proof. By Theorem 6.4, the cardinality of W (n) ∩ [φ(n, z), ψ(n, z)] is equal to the number of
integers k such that k ∈W (z) and b(z) + 1 6 k 6 n+ z− 2. The lower bound on k guarantees
that k ∈W (z) \ [z, b(z)], and

|W (z) \ [z, b(z)]| = |W (z)| − (b(z)− z + 1) = |W (z)| − L(z) + 2,

as desired.

We can use Theorem 6.4 to obtain a recursive formula for |W (n)|. However, as this formula
depends on knowing the cardinalities of all the intersections W (r)∩[φ(n, r), ψ(n, r)], it is rather
tedious to calculate. In lieu of this, we prove Theorem 1.10 and derive more convenient lower
and upper bounds on |W (n)|.

Proof of Theorem 1.10. By Proposition 6.3, any gaps in the weight set W (n) must occur within
an interval of the form [φ(n, r), ψ(n, r)] for some r ∈ [1, z]. By Lemma 6.2(2), the cardinality
of [φ(n, r), ψ(n, r)] is equal to n − L(r) + 1. So, the number of weights in [n, n2] that are not
contained within any interval [φ(n, r), ψ(n, r)] is equal to

n2 − n+ 1−
z∑
r=1

(n− L(r) + 1) = n2 − n+ 1− nz − z +

z∑
r=1

L(r)

= n2 − (z + 1)n− (z − 1) +

z∑
r=1

L(r). (6.8)

Recall that cr denotes the cardinality of the set {k ∈ W (r) | b(r) + 1 6 k 6 n + r − 2}. To
obtain the exact value of |W (n)|, we can take (6.8) and add the cardinality of each intersection
W (n)∩ [φ(n, r), ψ(n, r)], which by Theorem 6.4 is equal to cr. The result is the formula stated
in part (1) of Theorem 1.10.

Ignoring the intersections W (n) ∩ [φ(n, r), ψ(n, r)] produces the lower bound in part (2) of
Theorem 1.10. For part (3), we apply Corollary 6.7 to get

L(r) + cr 6 L(r) + |W (r)| − L(r) + 2 = |W (r)|+ 2
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for each r. Combining this inequality with the equation from part (1) of Theorem 1.10 yields

|W (n)| 6 n2 − (z + 1)n− (z − 1) +

z∑
r=1

(
|W (r)|+ 2

)
= n2 − (z + 1)n+ z + 1 +

z∑
r=1

|W (r)|

= n2 − (z + 1)(n− 1) +

z∑
r=1

|W (r)|,

as claimed.

Remark 6.9. Let S(n) refer to the set of integers m for which there exists a digraph on n
vertices with m reachable pairs, and let T (n) refer to the set of integers m for which there exists
a finite topology T on n points with τ(T ) = m. By Lemma 2.3, |S(n)| = |T (n)| = |W (n)|, and
so Theorem 1.10 also provides bounds on |S(n)| and |T (n)|.

These bounds for |W (n)| are relatively accurate, as we can show that the relative error
between the upper and lower bounds goes to 0 as n→∞.

Proposition 6.10. Let W−(n) and W+(n) denote the lower and upper bounds for |W (n)|,
respectively, from Theorem 1.10. As n→∞, (W+(n)−W−(n))/|W (n)| → 0.

Proof. Let δ > 0. By Corollary 5.17, there exists a fixed N ∈ N such that, if m > N , then
b(m) > m2 −m1.5+δ. Assuming that z > N and that L(z) 6 n < L(z + 1), this implies that

W+(n)−W−(n) = 2z +

z∑
r=1

(|W (r)| − L(r))

6 2z +

z∑
r=1

(
r2 − b(r) + r − 3

)
6 2z +

N−1∑
r=1

(
r2 − b(r) + r − 3

)
+

z∑
r=N

(
r1.5+δ + r − 3

)
< 2z +

N−1∑
r=1

(
r2 − b(r) + r − 3

)
+

z∑
r=N

(
r1.5+δ + r

)
< 2z +

N−1∑
r=1

(
r2 − b(r) + r − 3

)
+

∫ z+1

N

(
r1.5+δ + r

)
dr

< 2z +

N−1∑
r=1

(
r2 − b(r) + r − 3

)
+

1

2.5 + δ
(z + 1)2.5+δ +

1

2
(z + 1)2,

and so W+(n)−W−(n) = O(z2.5+δ).
On the other hand, |W (n)| > b(n)− n+ 1, n > L(z) = b(z)− z + 3, and b is an increasing
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function by Lemma 5.2, and so, again assuming that z > N ,

|W (n)| > b(n)− n+ 1

= n2 − (z + 1)n+ b(z) + 1

> (b(z)− z + 3)2 − (z + 1) (b(z)− z + 3) + b(z) + 1

= b(z)2 − 3zb(z) + 6b(z) + 2z2 − 8z + 7

>
(
z2 − z1.5+δ

)2
− 3z(z2) + 6

(
z2 − z1.5+δ

)
+ 4z2 − 8z + 7,

and so |W (n)| = z4 −O(z3.5+δ). The results follows.

Empirical evidence suggests that the upper and lower bounds from Theorem 1.10 are fairly
accurate even for small values of n. Figures 1 and 2 show the relative errors corresponding
to W−(n) and W+(n) for n ∈ [1, 166]. From these graphs, one can see that W+(n) is more
accurate than W−(n), but both bounds are consistently within 1% of the true value of |W (n)|.

Figure 1: Relative error
∣∣W−(n)− |W (n)|

∣∣/|W (n)|
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Figure 2: Relative error
∣∣W+(n)− |W (n)|

∣∣/|W (n)|
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