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Abstract

We introduce a new framework called linear algebraic number theory (LANT) that
reformulates the number-theoretic problem as a regression model and solves it using
matrix algebra. This framework restricts all computations to log space, therefore
replaces multiplication with addition and allows to capture variation in the natural
numbers from variation in the prime numbers. This automatically puts prime num-
bers to their designated place of atomic particles of natural numbers and enables
fruitful new formulations of number-theoretic functions. We outline the theory, de-
rive some basic results, make connections to standard number theory and give an
outlook regarding the Riemann hypothesis, number theory’s long-standing enigma.
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1 Introduction

Let n be a positive natural number. The fundamental theorem of arithmetic states that
there is a unique factorization by which n can be written as a product of prime powers:

n =
k∏

i=1

pni
i . (1)

In this product, k is the number of primes that divide n, p1 < . . . < pk are prime numbers
and n1, . . . , nk are positive integers. This is called the canonical representation or standard
form of n. For example,

360 = 23 × 32 × 51 . (2)

We can take the natural logarithm of equation (1) and obtain

lnn =
k∑

i=1

ni ln pi . (3)

Applied to the example, this gives

ln 360 = 3 ln 2 + 2 ln 3 + 1 ln 5 . (4)

We can write equation (3) as a vector product and obtain

lnn =
[
n1 · · · nk

] ln p1
...

ln pk

 . (5)

Applied to the example, this gives

ln 360 =
[
3 2 1

] ln 2
ln 3
ln 5

 . (6)

Note that, as p0 = 1 for any p ∈ R, p 6= 0, one might insert prime powers with exponent
zero in equation (1) or log primes with factor zero in equation (3) without changing the
value of n. This means that the second vector in equation (5) will be the same for all n,
namely a column vector of all log primes, and just the first vector has to be adapted in
order to achieve the correct combination of primes.
The basic idea of this paper is to make use of this insight and rewrite the prime factor-
ization of natural numbers (or, log-prime summation of log integers) as a linear equation
system which has the logarithmized natural numbers on its left-hand side and a matrix
product of a factorization matrix and the log primes on its right-hand side. This is referred
to as linear algebraic number theory (LANT).
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2 Definitions

An example for such a linear equation system is

ln 1 = 0 ln 2 + 0 ln 3 + 0 ln 5

ln 2 = 1 ln 2 + 0 ln 3 + 0 ln 5

ln 3 = 0 ln 2 + 1 ln 3 + 0 ln 5

ln 4 = 2 ln 2 + 0 ln 3 + 0 ln 5

ln 5 = 0 ln 2 + 0 ln 3 + 1 ln 5

ln 6 = 1 ln 2 + 1 ln 3 + 0 ln 5

(7)

which, in matrix algebra notation, can be written as
ln 1
ln 2
ln 3
ln 4
ln 5
ln 6

 =


0 0 0
1 0 0
0 1 0
2 0 0
0 0 1
1 1 0


ln 2

ln 3
ln 5

 . (8)

In order to formulate this for the general case, we will introduce some definitions.

Definition 1: (element-wise logarithm) Whenever the natural logarithm is
applied to a vector v ∈ Rn, it is calculated element-wise:

ln v = ln

v1
...
vn

 =

ln v1
...

ln vn

 . (9)

Definition 2: (natural number vector) Let n be a positive natural number.
Then, the n× 1 vector zn is defined as

zn =


1
2
...
n

 . (10)

Definition 3: (prime number vector) Let n be a positive natural number.
Then, the π(n)× 1 vector pn is defined as

pn =


2
3
5
...
p

 (11)

where p is the largest x ∈ P for which x ≤ n, P is the set of prime numbers
and π(n) is the number of primes less than or equal to n.
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Obviously, as implied by the fundamental theorem of arithmetic (1) and instantiated by
the above example (8), zn and pn can be related to each other in log space by a matrix
of coefficients. We will call this the factorization matrix.

Definition 4: (prime factorization matrix ) Let n be a positive natural num-
ber. Then, the prime factorization matrix is the n×π(n) matrix Fn for which

ln zn = Fn ln pn . (12)

We know that Fn exists for a given n > 1, because every natural number greater 1 is
either prime or can be factorized into primes smaller than itself, and equation (12) is
nothing but a restatement of that fact. We also know that Fn is unique as there is only
one prime factorization for every n > 1 which can be proven with recourse to Euclid’s
lemma (Euclid, VII, 30). An example for n = 20 is given in Figure 1.

ln z
n

0.0000

0.6931

1.0986

1.3863

1.6094

1.7918

1.9459

2.0794

2.1972

2.3026

2.3979

2.4849

2.5649

2.6391

2.7081

2.7726

2.8332

2.8904

2.9444

2.9957

F
n

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

2 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

4 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

1 2 0 0 0 0 0 0

0 0 0 0 0 0 0 1

2 0 1 0 0 0 0 0

=

=

ln p
n

0.6931

1.0986

1.6094

1.9459

2.3979

2.5649

2.8332

2.9444

*

*

Figure 1. Log integers ln zn, factorization matrix Fn and log primes ln pn for n = 20.
This figure illustrates the log-space analogue of integer factorization in which log integers
are represented as sums of log primes, weighted by the factorization matrix.
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Suppose we didn’t know the primes up to a certain number n. A natural consequence
would be that we try to derive, solve for, infer on or estimate them. To this end, we
introduce the concept of candidate primes.

Definition 5: (candidate prime vector) Let n be a positive natural number.
A candidate prime vector q is an m×1 vector with m ≤ n which only contains
pairwise different natural numbers smaller than or equal to n.

For example, the following would be possible candidate primes for n = 10:

q1 =

[
2
5

]
, q2 =


2
3
5
7

 = p10, q3 =


2
3
4
5
7
8

 , q4 =



1
2
3
4
5
6
7
8
9
10


= z10 . (13)

It would now be tempting to take a certain vector q and somehow calculate its associated
matrix Fn in order to factorize potentially large numbers. However, this is neither possible
nor necessary. It is not possible as this equation system would contain more unknowns
than equations. It is not necessary as every set of candidate primes already implies a
factorization matrix which we call a candidate factorization.

Definition 6: (candidate factorization matrix ) Let q be a candidate prime
vector. The candidate factorization matrix Fn(q) is the n × m matrix that
would be the prime factorization matrix, if q were the true primes.

For example, as 2 is a prime number, every second number is factorized by 21, every
fourth number is factorized by 22, every eigth number is factorized by 23 and so on.
Consequently, the first column of Fn has a 1 in every second row, a 2 in every fourth
row, a 3 in every eigth row (see Figure 1). Similarly, if 4 were prime (which it is not), the
corresponding column of Fn would have a 1 in every fourth row, a 2 in every sixteenth
row, a 3 in every sixty-fourth row etc.
To continue with the example from above, the candidate factorizations for the candidate
primes in equation (13) would be:

F10(q1) =



0 0
1 0
0 0
2 0
0 1
1 0
0 0
3 0
0 0
1 1


, F10(q2) =



0 0 0 0
1 0 0 0
0 1 0 0
2 0 0 0
0 0 1 0
1 1 0 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0


, F10(q3) =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 1 0
3 0 1 0 0 1
0 2 0 0 0 0
1 0 0 1 0 0


, (14)
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F10(q4) =



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 3 0 1 0 0 0 1 0 0
1 0 2 0 0 0 0 0 1 0
1 1 0 0 1 0 0 0 0 1


. (15)

To express general candidate factorizations, we will introduce some more definitions.

Definition 7: (basic vectors) The zero vector and the ones vector:

0n =

0
...
0


 n zeros, 1n =

1
...
1


 n ones . (16)

Definition 8: (elementary vectors) The i-th elementary vector in n-dimensional
vector space is an n-dimensional zero vector with a one in its i-th entry:

ei|n =


0
...
1
...
0

 ← i-th position

← n-th position

. (17)

Definition 9: (periodic elementary vectors) The i-th periodic elementary
vector in n-dimensional vector space is an n-dimensional zero vector with a
one in its k-th entries where k = i, 2i, . . . , bn/ici:

eī|n =

bn/ic∑
k=1

ek·i|n =

[
1bn/ic ⊗ ei|i

0mod(n,i)

]
=



0
...
0
1
0
...
0
1
0
...
0



← i-th position

← 2i-th position

← n-th position

. (18)
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With these definitions, we are now able to express arbitrary factorization matrices:

Definition 10: (factorization vector) The i-th factorization vector in n-
dimensional vector space describes how often i would occur as a factor in
the prime factorization of the numbers zn, if i were prime. It is given by

fi|n =

blogi nc∑
j=1

eij |n . (19)

By definition, we set
f1|n = 1n . (20)

Theorem 1: Let q be a candidate prime vector. Then, the corresponding
candidate factorization matrix is given by

Fn(q) =
[
fq1|n . . . fqm|n

]
. (21)

Proof 1: This follows from Def. 6 and 10. The sum over periodic elementary
vectors in equation (19) ensures that the j-th power of each candidate prime
qi repeats every qji -th entry, because qji would be part of these factorizations,
if qi was prime. �
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We conclude this section with two definitions that will later become relevant for the
inversion of quadratic candidate factorization matrices.

Definition 11: (elementary matrix ) An elementary matrix is an n×n matrix
which performs an elementary row operation on another n × n matrix when
being multiplied from the left:

Pij =



1
. . .

0 1
. . .

1 0
. . .

1


, (22)

Mi(λ) =



1
. . .

1
λ

1
. . .

1


, (23)

Gij(λ) =



1
. . .

1
. . .

λ 1
. . .

1


. (24)

Pij exchanges rows i and j of a matrix, Mi(λ) multiplies the i-th row of a
matrix with λ and Gij(λ) multiplies row j by λ and adds it to row i of a
matrix when being multiplied from the left.

Definition 12: (extended elementary matrix ) An extended elementary ma-
trix is a matrix which performs more than one row operation when being
multiplied from the left. An example would be

A = M3(8) +M7(5)− I10 (25)

which multiplies the third row with 8 and the seventh row with 5.
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3 Modelling the Natural Numbers

The factorization matrix is at the heart of LANT and appears in its fundamental theorem:

ln zn = Fn ln pn . (26)

We will now again assume that pn is unknown, so that we have to solve for it. This
can be nicely connected to linear models and statistical modelling as, when searching the
optimal solution for ln pn, we are seeking the best way to capture the values of the natural
numbers, just like we are seeking the best way to capture the variance in measured data
when applying linear models to empirical phenomena.
The univariate linear regression model is given by

y = Xβ + ε . (27)

In this equation, certain data (n × 1 vector y) are modelled as a linear combination of
independent variables (n× p matrix X), weighted by some coefficients (p× 1 vector β),
plus some residuals that cannot be explained (n×1 vector ε) where y is called the signal,
X is called the design matrix, β are called regression coefficients and ε is called noise.
We observe the following parallels between (26) and (27):

• The log integers ln zn are the signal y that we want to explain.

• The factorization matrix Fn is the design matrix X that we use to explain.

• The log primes ln pn are the regression coefficients β that we want to estimate.

• If we use the prime factorization matrix Fn as the design matrix, there are no residuals
ε as the natural numbers are completely explained by the prime numbers (see Figure 1).
However, if we use a candidate factorization matrix lacking some primes, we will fail
to resolve the complete variation in the natural numbers, so that there will be errors ε
(see Figure 2).

We can therefore write down the statistical version of equation (26):

ln zn = Fn(q) ln q + εn . (28)

With the concepts of candidate primes and candidate factorization, we have a simple
method of constructing the design matrix for our linear regression (28). The next step
is therefore to estimate the model, i.e. to find some parameters, given the data and the
design:

β̂ = f(y,X) . (29)

Naturally, when performing linear regression, one wants to keep the residuals ε as small
as possible in order to achieve “the best possible fit” of the model to the data. A common
framework for assigning parameter values following this rationale is ordinary least squares
(OLS).

8



Definition 13: (ordinary least squares) Let zn be the natural numbers up
to n. Further, consider candidate primes q and the candidate factorization
X = Fn(q). Then

1) ln zn = Fn(q) ln q + εn is called a “linear factorization model” of zn;

2) ln q̂ = (XTX)−1XT (ln zn) is called the “log-prime estimator” (LPE);

3) ln q̂ are also referred to as the “estimated log primes”;

4) ln ẑn = Fn(q) ln q̂ are called the “predicted log integers”.

Theorem 2: The LPE minimizes the residual sum of squares.

Proof 2: The residual sum of squares for (27) is given by

RSS(β) =
n∑

i=1

ε2
i = εT ε = (y −Xβ)T (y −Xβ) (30)

which can be expanded to

RSS(β) = yTy − yTXβ − βTXTy + βTXTXβ (31)

and differentiated to

RSS′(β) = 2XTXβ − 2XTy . (32)

Setting this derivative to zero yields

β̂ = (XTX)−1XTy (33)

which conforms to the estimated log primes in Def. 13.2. �

With the OLS estimator at hand, we can now consider different cases of candidate primes:

• Case I: The candidate primes are a real subset of the prime numbers: q ⊂ pn.

• Case II: The candidate primes equal the prime numbers: q = pn.

• Case III: The candidate primes are a real superset of the prime numbers: q ⊃ pn.

• Case IV: The candidate primes equal the natural numbers: q = zn.

Note that these cases generalize the examples from equation (13). Figure 2 shows one
example for each case and compares (i) the log natural numbers ln zn to the predicted
log integers ln ẑn as well as (ii) the log candidate primes ln q to the estimated log primes
ln q̂, as given in Def. 13. The candidate primes used in the figure are:

• Case I: q1 = [3, 5, 11, 17]T .

• Case II: q2 = [2, 3, 5, 7, 11, 13, 17, 19]T = p20.

• Case III: q3 = [2, 3, 4, 5, 7, 8, 11, 12, 13, 15, 17, 19]T .

• Case IV: q4 = [1, 2, 3, . . . , 18, 19, 20]T = z20.

9



 3  5 11 17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0
2 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0
0 0 0 0
0 0 0 1
2 0 0 0
0 0 0 0
0 1 0 0

Case I: q  pn

true predicted

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0.0000 0.0000
0.6931 0.0000
1.0986 1.3493
1.3863 0.0000
1.6094 2.0666
1.7918 1.3493
1.9459 0.0000
2.0794 0.0000
2.1972 2.6987
2.3026 2.0666
2.3979 2.3979
2.4849 1.3493
2.5649 0.0000
2.6391 0.0000
2.7081 3.4159
2.7726 0.0000
2.8332 2.8332
2.8904 2.6987
2.9444 0.0000
2.9957 2.0666

log integers

candidate estimated

 3

 5

11

17

1.0986 1.3493

1.6094 2.0666

2.3979 2.3979

2.8332 2.8332

log primes

 2  3  5  7 11 13 17 19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
2 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0

Case II: q = pn

true predicted

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0.0000 0.0000
0.6931 0.6931
1.0986 1.0986
1.3863 1.3863
1.6094 1.6094
1.7918 1.7918
1.9459 1.9459
2.0794 2.0794
2.1972 2.1972
2.3026 2.3026
2.3979 2.3979
2.4849 2.4849
2.5649 2.5649
2.6391 2.6391
2.7081 2.7081
2.7726 2.7726
2.8332 2.8332
2.8904 2.8904
2.9444 2.9444
2.9957 2.9957

log integers

candidate estimated

 2

 3

 5

 7

11

13

17

19

0.6931 0.6931

1.0986 1.0986

1.6094 1.6094

1.9459 1.9459

2.3979 2.3979

2.5649 2.5649

2.8332 2.8332

2.9444 2.9444

log primes

 2  3  4  5  7  8 11 12 13 15 17 19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
3 0 1 0 0 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
2 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
4 0 2 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
2 0 1 1 0 0 0 0 0 0 0 0

Case III: q  pn

true predicted

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0.0000 0.0000
0.6931 0.6931
1.0986 1.0986
1.3863 1.3863
1.6094 1.6094
1.7918 1.7918
1.9459 1.9459
2.0794 2.0794
2.1972 2.1972
2.3026 2.3026
2.3979 2.3979
2.4849 2.4849
2.5649 2.5649
2.6391 2.6391
2.7081 2.7081
2.7726 2.7726
2.8332 2.8332
2.8904 2.8904
2.9444 2.9444
2.9957 2.9957

log integers

candidate estimated

 2

 3

 4

 5

 7

 8

11

12

13

15

17

19

0.6931 0.6931

1.0986 1.0986

1.3863 -0.0000

1.6094 1.6094

1.9459 1.9459

2.0794 -0.0000

2.3979 2.3979

2.4849 0.0000

2.5649 2.5649

2.7081 0.0000

2.8332 2.8332

2.9444 2.9444

log primes

 1  2  3  4  5  6  7  8  91011121314151617181920

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 2 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 4 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 2 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Case IV: q = zn

true predicted

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0.0000 -0.0000
0.6931 0.6931
1.0986 1.0986
1.3863 1.3863
1.6094 1.6094
1.7918 1.7918
1.9459 1.9459
2.0794 2.0794
2.1972 2.1972
2.3026 2.3026
2.3979 2.3979
2.4849 2.4849
2.5649 2.5649
2.6391 2.6391
2.7081 2.7081
2.7726 2.7726
2.8332 2.8332
2.8904 2.8904
2.9444 2.9444
2.9957 2.9957

log integers

candidate estimated

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

0.0000 -0.0000
0.6931 0.6931
1.0986 1.0986
1.3863 -0.0000
1.6094 1.6094
1.7918 -0.0000
1.9459 1.9459
2.0794 0.0000
2.1972 -0.0000
2.3026 -0.0000
2.3979 2.3979
2.4849 -0.0000
2.5649 2.5649
2.6391 0.0000
2.7081 -0.0000
2.7726 -0.0000
2.8332 2.8332
2.8904 0.0000
2.9444 2.9444
2.9957 0.0000

log primes

Figure 2. Four different cases of candidate primes for n = 20. Candidate prime vectors
are given in the text. Case II is also used in Figure 1 and Case IV is also used in Figure 3.
Each panel consists of the candidate factorization (left), comparison of log natural num-
bers ln zn vs. predicted log integers ln ẑn (middle) and comparison of log candidate primes
ln q vs. estimated log primes ln q̂ (right). All in all, we make the following observations:
(i) As soon as all primes smaller than or equal to n are included in q, the log integers are
predicted perfectly with maximal accuracy (upper right and lower panels) in which case
we call q “complete”. If some prime numbers are missing, not all variation in the natural
numbers can be captured (upper left panel). (ii) Only if q = pn, the candidate primes
are identical to the estimated primes (upper right panel) in which case we call q “valid”.
If some primes are missing or non-primes are present, there is disagreement (upper left
and lower panels). (iii) If q contains all primes smaller than or equal to n, non-primes
are automatically “switched off” by the LPE and receive a weight of zero whereas primes
receive their logarithm as weight (lower panels), consistent with the fundamental theorem
of arithmetic (1) and its logarithmized version (3). If some elements of pn are missing
in q, estimation tends to be unreliable (upper left panel), consistent with the view of
the primes as the atomic particles of the natural numbers. (iv) In summary, one can say
that the prime numbers are the sparsest set using which one can fully decompose the
natural numbers (upper right panel). Equivalently, one could say that the primes are
those numbers from the set of all possible candidate primes that minimize the prediction
error (ln zn− ln ẑn)T (ln zn− ln ẑn) and the estimation error (ln q− ln q̂)T (ln q− ln q̂). This
refines prime number identification as a model comparison problem in which the least
complex from the most accurate models is selected as the optimal solution.
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Based on these observations, we set up consistency conditions for candidate primes and
formulate a theorem about the behavior of the LPE for different candidate primes.

Definition 14: (consistency conditions) Let q be candidate primes and ln q̂
the LPE. Then, we call q

1) “valid”, if ln q = ln q̂;

2) “complete”, if ln zn = ln ẑn;

3) “consistent”, if it is valid and complete.

Theorem 3: Let q be candidate primes and X = Fn(q) the corresponding
candidate factorization. Then, ln q̂ = (XTX)−1XT (ln zn) and:

1) If q is consistent, then q = pn and vice versa.

2) If q = pn, then ln q̂ = ln pn.

3) If q ⊃ pn, then

(ln q̂)j =

{
ln qj , if qj ∈ P

0 , if qj /∈ P , j = 1, . . . ,m . (34)

4) If q = zn, then

(ln q̂)i =

{
ln i , if i ∈ P
0 , if i /∈ P , i = 1, . . . , n . (35)

Proof 3: We prove this theorem step by step.

1) If q is consistent, it follows from Def. 14.1, 14.2 and 13.4 that ln zn =
Fn(q) ln q. According to Def. 4, there is only one solution for q and this is
q = pn. Conversely, if q = pn, then Fn(q) = Fn by Def. 6. We also know that
ln zn = Fn ln pn from Def. 4 which implies that pn = q is consistent according
to Def. 14.3. �

2) If q = pn, then Fn(q) = Fn by Def. 6. For this case, Def. 4 gives a solution for
which εn = 0n, namely ln q = ln pn. If there is a solution for which RSS(ln q) =
0, the LPE must select this solution by Th. 2. Therefore, ln q̂ = ln pn. �

3) If q ⊃ pn, q contains primes and non-primes. For this case, we can construct
a solution for which εn = 0n, namely the solution given by (34). By Def. 5
and Th. 1, columns of Fn(q) are linearly independent. Therefore, this is the
only solution for which RSS(ln q) = 0. The rest follows the proof of 2). �

4) This is a special case of 3). �

This completes the proof. �
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4 Inverting the Factorization Matrix

In this section, we want to develop something like a collective primality test for the set
of all natural numbers up to n with the help of the following theorem:

Theorem 4: If q = zn, then Fn(q) is a quadratic n× n matrix and

1) Fn(q) is invertible;

2) ln q̂ = [Fn(q)]−1 (ln zn).

Proof 4: We prove this theorem step by step.

1) From Def. 6 and Th. 1, it follows that Fn(zn) is a lower triangular matrix.
The determinant of a triangular matrix equals the product of its diagonal
entries. Since all diagonal elements of Fn(zn) are 1, det [Fn(zn)] = 1 6= 0 and
Fn(zn) is invertible. �

2) The theory of linear equation systems states that an LES that can be
represented as Ax = b with the n × n invertible matrix A has exactly one
solution given by x̂ = A−1b. Translated to our example, this implies that
ln q̂ = [Fn(zn)]−1 (ln zn). �

This completes the proof. �

As we now know (i) that the LPE, quite comfortably, “switches off” non-prime entries in a
candidate prime vector (see Theorem 3.4) and (ii) that the LPE reduces to a simpler form
when the candidate primes equal the natural numbers (see Theorem 4.2), the problem
really reduces to finding the inverse of Fn(zn). We put forward the following solution:

Theorem 5: If q = zn, then Fn(q) is a quadratic n× n matrix and

[Fn(q)]−1 =
n∏

i=1

Mn+1−i(2)−

blog(n+1−i) nc∑
j=1

e(n+1−i)j |n

 eTn+1−i|n

 . (36)

Proof 5: We will use Gauss-Jordan elimination to invert the factorization
matrix. This means, we will transform Fn(zn) into the identity matrix In by
left-multiplication with elementary matrices and get [Fn(zn)]−1 as the product
of these matrices.

Let F = Fn(zn). According to Th. 1 and Def. 10, the i-th column of F is

fi|n =

blogi nc∑
j=1

eij |n . (37)

In order to remove fi|n from F , i.e. replace it by ei|n to reach In, we have to
left-multiply F with a matrix containing −fi|n. However, (i) −fi|n has to be
placed into the i-th column and (ii) it may not remove the diagonal 1 from

12



F . This is achieved by (i) right-multiplying −fi|n with the transposed ei|n and
(ii) subtracting it from the In that has a 2 in the i-th column. In this way, we
obtain the extended elementary matrix Ei:

Ei = Mi(2)− fi|n eTi|n . (38)

If F is successively left-multiplied with Ei, i = 1, . . . , n, it will become In.
Since we have to reverse the order in the product to account for successive
left-multiplication, we obtain:

F−1 =
n∏

i=1

En+1−i =
n∏

i=1

(
Mn+1−i(2)− fn+1−i|n e

T
n+1−i|n

)
. (39)

With application of (37), we have

F−1 =
n∏

i=1

Mn+1−i(2)−

blog(n+1−i) nc∑
j=1

e(n+1−i)j |n

 eTn+1−i|n

 (40)

which conforms to equation (36). �

Figure 3 displays an example for inversion of a quadratic candidate factorization matrix.

[Fn(zn)]-1

Fn(zn)1

|

2

*

3

*

4

*

5

*

6

*

7

*

8

*

9

*

10

*

11

*

12

*

13

*

14

*

15

*

16

*

17

*

18

*

19

*

20

= *

Figure 3. Example for inverting the factorization matrix with n = 20. The candidate
factorization Fn(zn) is shown in the lower right, the extended elementary matrices for
left-multiplication En, . . . , E1 are shown in the middle and the resulting matrix inverse
[Fn(zn)]−1 is shown in the upper left. Note that the matrices have a different color scale.
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5 Expressing Number-Theoretic Functions

In this section, we want to employ the results derived so far, especially Theorem 3, to
express certain functions that are important in the field of number theory.

5.1 IsPrime

The IsPrime function ip(x) is defined as (OEIS, A010051)

ip(x) =

{
1 , if x ∈ P
0 , if x /∈ P . (41)

Using LANT terminology, ip(x) can be expressed amazingly simple as

ip(i) =
(ln q̂)i

ln i
where ln q̂ = [Fn(zn)]−1 (ln zn) with n ≥ i (42)

which is a trivial consequence of Theorem 3.4. Note that ip(0) is not defined and that ip(1)
is an indeterminate form, consistent with 1 being considered neither prime nor composite.
Further, in contrast to ip(x), ip(i) is only defined for positive natural numbers.

5.2 PrimeCount

The PrimeCount function π(x) is defined as (OEIS, A000720)

π(x) = |{n ∈ P |n ≤ x}| . (43)

In the LANT framework, π(x) can be expressed similarly simple as

π(n) =
n∑

i=2

ip(i) =
n∑

i=2

(ln q̂)i
ln i

(44)

which follows from equation (42). Note that this sum starts at i = 2, because ip(1) is an
indeterminate form. Again, in contrast to π(x) which is defined for any number x ∈ R
(Platt, 2013), π(n) is only defined for positive natural numbers.

5.3 Chebyshev functions

The first Chebyshev function is given by (Dusart, 2010)

ϑ(x) =
∑
p≤x

ln p (45)

and the second Chebyshev function is given by (Dusart, 2010)

ψ(x) =
∑
pk≤x

ln p (46)

where the sums are extending over all prime numbers p ∈ P satisfying p ≤ x or pk ≤ x.
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Again following Theorem 3.4 and based on equation (42), we have

ϑ(n) =
n∑

i=1

(ln q̂)i = 1T
n (ln q̂) (47)

as a simple expression for the first Chebyshev function. The second Chebyshev function
cannot be easily represented using LANT quantities, but is related to the first one by

ψ(x) =
∞∑
n=1

ϑ(x1/n) . (48)

5.4 von Mangoldt function

The von Mangoldt function is given by (Conrey, 2003)

Λ(n) =

{
ln p , if n = pk, p ∈ P, k ≥ 1
0 , otherwise

. (49)

It can be related to the Chebyshev functions by (Conrey, 2003)

ψ(x) =
∑
n≤x

Λ(n) =

bxc∑
n=1

Λ(n) . (50)

Using LANT, we obtain the following reformulation of Λ(n)

Λ(i) =
n∑

j=1

(ln q̂)j [ln i = [Fn(zn)]i,j (ln q̂)j] (51)

where [a = b] is Iverson bracket notation and [A]i,j refers to the (i, j)-th entry of A.

5.5 Riemann ζ function

The previously mentioned functions π(x), ϑ(x), ψ(x) and Λ(n) are closely related to the
complex-valued Riemann ζ function that is given by (Riemann, 1859)

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ . . . (52)

which, due to the fundamental theorem of arithmetic, is equivalent to

ζ(s) =
∏
p∈P

1

1− p−s
=

1

1− 2−s
· 1

1− 3−s
· 1

1− 5−s
· . . . . (53)

Note that these equations only hold for Re(s) > 1, but ζ(s) can be analytically continued
to the the complete real-positive complex half-plane using a Dirichlet eta series by

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
=

1

1− 21−s ·
(

1

1s
− 1

2s
+

1

3s
− . . .

)
. (54)
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6 The Riemann Hypothesis

The Riemann ζ function has trivial zeros at s = −2,−4,−6, . . . and non-trivial zeros
which are known to lie in the critical strip 0 < Re(s) < 1. The Riemann hypothesis (RH)
states that all non-trivial zeros are located on the critical line with real part 1/2:

s ∈ {z ∈ C | ζ(z) = 0 ∧ Re(z) > 0} ⇒ Re(s) =
1

2
. (55)

RH remains one of number theory’s unsolved problems, as it has neither been proven nor
falsified so far. However, RH has a lot of important consequences in number theory and
is connected to the prime-counting function π(x). In particular, it has been shown that
RH is equivalent to the following statement (von Koch, 1901):

π(x) = Li(x) +O(
√
x lnx) . (56)

This means that, for a certain k > 0 and x0 ∈ R, it holds that

|π(x)− Li(x)| ≤ k ·
√
x lnx for all x ≥ x0 . (57)

Specifically, it has been shown that under RH (Schoenfield, 1976)

|π(x)− Li(x)| ≤ 1

8π
·
√
x lnx for all x ≥ 2657 . (58)

In these formulas, Li(x) is the logarithmic integral function:

Li(x) =

∫ x

2

1

ln t
dt . (59)

Remember that we have an explicit formula for π(x) (44) and note how structurally
similar this equation is to Li(x) (59). Therefore, proving RH through means of LANT
might be a promising direction. At first sight, there seem to be two strategies:

• Simplify the left-hand side of (57) by writing π(x) as an integral.

• Simplify the left-hand side of (57) by writing Li(x) as a sum.

Incidentally, we have also observed that the function ld(n) = ln
(
det
[
F T
n Fn

])
seems

to be asymptotically equivalent to Li(n). This conjecture and other questions will be
investigated in future research. A good point to start with might be the further inversion
of the factorization matrix (Soch, in prep.).
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