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Abstract. A permutation graph is a graph that can be derived from a per-

mutation, where the vertices correspond to letters of the permutation, and
the edges represent inversions. We provide a construction to show that there

are infinitely many connected r-regular permutation graphs for r ≥ 3. We

prove that all 3-regular permutation graphs arise from a similar construction.
Finally, we enumerate all 3-regular permutation graphs on n vertices.

1. Introduction

The graphs considered here are finite and simple. A graph on n vertices is a
permutation graph if there is a labeling v1, v2, . . . , vn of the vertices, and a permu-
tation π = [π(1), π(2), . . . , π(n)], such that vi and vj are adjacent in G if and only
if i < j and π(i) > π(j). In this case, the ordered pair (π(i), π(j)) is said to be an
inversion of π. This definition of permutation graphs was given in 1971 by Pneuli
et al. [14]. We note that this is different from the “generalized prisms“ [17] notion
of permutation graphs given by Chartrand and Harary [4].

Permutation graphs have received a considerable amount of attention in the
literature since their introduction (see, for example, [9, 15, 16]). Many algorithmic
problems have efficient solutions on permutation graphs. For example, it was shown
in [3] that the longest path problem (which is NP-complete on general graphs) can
be solved in linear time on permutation graphs.

There has been interest in enumerating various types of permutation graphs.
For instance, in [11], Koh and Ree gave a recurrence relation for the number of
connected permutation graphs. In [2], the number of permutation trees is shown to
be 2n− 2 for n ≥ 2. It is well known that permutation graphs cannot have induced
cycles of length five or greater. Therefore, it is easy to see that the only connected
2-regular permutation graphs are C3 and C4 [10]. In this direction, we will consider
r-regular permutation graphs. For r > 2, we show that the family is infinite.

Theorem 1.1. For every r ≥ 3, there are infinitely many connected r-regular
permutation graphs.

In particular, we give a complete characterization of 3-regular permutation graphs.
This will be given in terms of the construction mentioned above.

An interesting corollary of our construction is that almost all 3-regular permuta-
tion graphs are planar. The family of permutation graphs is closed under induced
subgraphs (see, for example, [5]), but a description in terms of minors, as planarity
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results are normally stated, is not tractable since permutation graphs are not closed
under subgraphs.

Corollary 1.2. Every 3-regular permutation graph except K3,3 is planar.

Finally, we use the characterization of 3-regular permutation graphs to enumer-
ate them with a recursive formula.

Theorem 1.3. Let a(n) be the number of connected 3-regular permutation graphs
on n vertices. If n is an odd integer or if n ∈ {2, 8, 12}, then a(n) = 0. If n ∈ {4,
6, 10, 14, 16, 18, 20}, then a(n) = 1. For even n > 20, we have

a(n) =

{
a(n− 4) + a(n− 6) if n ≡ 2 (mod 4)

a(n− 4) + a(n− 6)− t(n−204 ) if n ≡ 0 (mod 4),

where t(x) is the number of compositions of x into parts of size 2 or 3.

Proofs of Theorem 1.1, Corollary 1.2, and Theorem 1.3 can be found in Sections
3, 4, and 5, respectively.

2. preliminaries

If G is a permutation graph with corresponding permutation π, we say that π is
a realizer of G. When discussing a realizer and its graph, we will sometimes refer
to a vertex in the graph and an entry in the permutation with the same label. It is
well known (for example, in [14]) that G is a permutation graph if and only if its
complement G is also a permutation graph.

There are many known characterizations of permutation graphs. Recent charac-
terizations include one by Gervacio et al. [8] in terms of cohesive vertex-set orders,
and one by Limouzy [12] in terms of Seidel minors. Here we rely on the 1967 char-
acterization by Gallai [7] in terms of forbidden induced subgraphs (see also [6,13]).
All cycle graphs on five for more vertices are forbidden induced subgraphs. We
will refer to these as large holes. Table 1 illustrates all other forbidden induced
subgraphs with maximum degree 3.

Table 1. Forbidden induced subgraphs for permutation graphs
with ∆ ≤ 3

F1 F2 F3

F4
F5 F6
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Throughout this paper, we use Ki and Ii to denote the complete graph on i
vertices and the empty graph on i vertices, respectively. We will also use ⊕ to
denote graph disjoint union, and ⊗ to denote a Cartesian product of graphs.

3. Infinitely many r-regular permutation graphs for r ≥ 3

Let G be a graph of order n with vertices v1, v2, . . . , vn. Given n graphs H1, H2,
. . . , Hn, we define the composition of H1, H2, . . . ,Hn into G, denoted G[H1, H2,
. . . , Hn], as the graph which is obtained from G by replacing the vertex vi with
the graph Hi. More precisely, the vertex set of G[H1, H2, . . . ,Hn] is the disjoint
union of the vertex sets of every Hi, and uv is an edge of G[H1, H2, . . . ,Hn] if and
only if either uv ∈ E(Hi) for some i, or there are distinct indices i and j such that
u ∈ V (Hi), v ∈ V (Hj) and vivj ∈ E(G). If each graph Hi is a complete graph
or empty graph then G[H1, H2, . . . ,Hn] is called a blow-up of G, and we say that
vertex vi is blown up into Hi, or replaced with Hi.

Lemma 3.1. Let G be a permutation graph of order n and (H1, H2, . . . , Hn) be
permutation graphs. Then G∗ = G[H1, H2, . . . ,Hn] is also a permutation graph.

Proof. Let σ ∈ Sn be a realizer of G. Let the permutation τi = (τi(1), τi(2), . . . ,
τi(|V (Hi)|)) be a realizer of Hi for i = 1, . . . , n. We construct a permutation σ∗

from σ by replacing σ(i) in σ with the list

τi(1) + ti, τi(2) + ti, . . . , τi(|V (Hi)|) + ti

where

t1 = 0 and ti =
∑
j: j<i

|V (Hj)|.

To see that σ∗ is a realizer for G∗, let τi(a) and τi(b) be vertices of Hi. Then
(τi(a) + ti, τi(b) + ti) is an inversion of σ∗ (and thus the vertices are adjacent) if
and only if (τi(a), τi(b)) is an inversion of τ . Moreover, if u is a vertex of G∗ that
comes from Hi, and v is a vertex of G∗ that comes from a distinct Hj , then u and v
are adjacent if and only if (σ(i), σ(j)) is an inversion of σ, which implies that (u, v)
is an inversion of σ∗ by our construction. �

Using the above lemma, we prove that there are infinitely many connected r-
regular permutation graphs for every r ≥ 3.

Proof of Theorem 1.1. Let r ≥ 3. For every n ≥ 0, we construct an r-regular
permutation graph Gn of order 2nr + r + 1 by taking a blow-up of a path. Let
m = 4n+2 and take a path graph Pm with vertices v1, v2, . . . , vm in standard order.
Note that Pm is a permutation graph because its maximum degree is 2 and it does
not have an induced subgraph from Table 1. Replace the first vertex vi with K2

and the last vertex vm with Kr−1. For vertices vi with i ≡ 2 (mod 4), replace them
with Ir−1; with i ≡ 3 (mod 4), replace vi with Ir−2; with i ≡ 0 (mod 4), replace
vi with I1; and for i ≡ 1 (mod 4), replace vi with I2. The resulting graph Gn is
r-regular, and since complete graphs and empty graphs are permutation graphs,
by Lemma 3.1, Gn is a permutation graph. Hence, we obtain an infinite list of
r-regular permutation graphs
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G0 = P2[K2,Kr−1]

G1 = P6[K2, Ir−1, Ir−2, I1, I2,Kr−1]

G2 = P10[K2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2,Kr−1]

G3 = P14[K2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2, Ir−1, Ir−2, I1, I2,Kr−1]

...

and the result follows. �

4. Characterization of 3-regular permutation graphs

Table 2 shows subgraphs we use in our construction of 3-regular permutation
graphs. Let S1 be G1 from Table 2, and let S2 be one of {G2, G3, G4}. Take the
rightmost vertex of S1 and identify it with the leftmost vertex of S2. Set S1 = S2

and repeat the above process, stopping when S1 is G4. We will call graphs with
such a structure boxcar graphs.

Table 2. Some induced subgraphs of boxcar graphs

G1 G2 G3 G4

Lemma 4.1. A 3-regular graph that is a blow-up of a path is isomorphic to K4,
K3,3, or a boxcar graph.

Proof. Let G be a path graph Pn with vertices (v1, v2, . . . , vn) in standard order,
and consider a blow-up G∗ = G[H1, H2, . . . ,Hn]. There are four possibilities for
the graph H1.

Suppose the first vertex v1 is blown up into Kk or Ik, with k ≥ 4. If v2 exists,
then the vertices resulting from blowing up v2 will have degree at least 4. Thus to
obtain a 3-regular graph, v1 must be the only vertex of G, and it must be blown
up into K4.

Now suppose H1
∼= K3. Then v2 must be blown up into a graph of order 1

because the vertices from K3 require one more neighbor to have degree 3. Since
all the vertices have degree 3, we see that G must be P2, and it blows up into
P2[K3,K1] ∼= K4.

Suppose H1
∼= Ik, where k ≤ 3. Since the vertices of H1 require 3 neighbors, v2

must be blown up into a graph of order 3. If H2
∼= K3, then k = 1 and we have K4

as in the case above. If H2
∼= I3, then the vertices of H2 have k neighbors on left

and they requre 3− k neighbors on the right. In order to not exceed degree 3, we
must have H3

∼= Ik−3. Thus we obtain P2[I3, I3], P3[I1, I3, I2], or P3[I2, I3, I1], all
of which are isomorphic to K3,3.

The only remaining cases are when H1 is isomorphic to K2. If H1
∼= K2, then

H2 must have order 2. If H2
∼= K2, then we have G∗ = P2[K2,K2] ∼= K4. If
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H2
∼= I2, then H3 must have order 1, so H3

∼= K1 and we see that G∗ must begin
with G1 from Table 2. Then H4

∼= K1, and H5 must have order 2. If H5
∼= K2,

then H6 must have order 1, and we have G2 as an induced subgraph on ∪6i=3V (Hi).
If instead H5

∼= I2, then we must have either H6
∼= I2 and H7

∼= K1, giving us
G3, or H6

∼= K2, giving us G4. In the former case, we can continue building our
graph and we will get another one of {G2, G3, G4}. In the latter case, our graph is
3-regular. �

The following lemmas will be useful in our characterization of 3-regular permuta-
tion graphs. We say that vertices v1 and v2 are twins if N(v1)−{v2} = N(v2)−{v1},
where N(vi) is the set of vertices that neighbor vi. We do not distinguish between
twins that are adjacent and those that are not.

Lemma 4.2. Every permutation graph G has a realizer π where, for every pair
of twins u and v in G, there is a contiguous, consecutive increasing or decreasing
subsequence s of π that contains u and v. Moreover, u and v are adjacent in G if
and only if s is decreasing.

Proof. Let π be a realizer of a graph G, and define Gπ to be a graph isomorphic
to G with vertex labels corresponding to π. Let u and v be twins in Gπ with
u < v. We will first assume u and v are nonadjacent. If u and v are not part of
a contiguous, consecutive increasing subsequence of π, then we can obtain another
realizer π′ of G by removing v from π, shifting all of the entries greater than u
and less than v up by 1, and inserting u + 1 to the immediate right of u. Clearly
π and π′ realize isomorphic graphs, and if a and b are entries of π that belong
to a contiguous, consecutive increasing or decreasing subsequence of π, then this
transformation does not separate them.

If we assume instead that u and v are adjacent in Gπ, then we apply a similar
transformation, ultimately placing u+ 1 to the left of u instead of the right. This
results in u and u+1 being part of a contiguous, consecutive decreasing subsequence,
instead of increasing. �

Lemma 4.3. If G∗ is a graph with maximum degree d, and if G is a graph of
minimum order such that G∗ is a blow-up of G, then G has no degree d twins.

Proof. Observe that by our construction of blow-ups given in Lemma 3.1, if G∗ is a
blow-up of G, than any realizer of G can be used to obtain a realizer for G∗ by blow-
up. Let u and v be degree d twins of G. By Lemma 4.2, G has a realizer π where
u and v are adjacent and consecutive. Let {u1, u2, . . . , uj} and {v1, v2, . . . , vk} be
the entries of a realizer π∗ for G∗ obtained by blowing up u and v, respectively.
Then u must be blown up into Ij and v must be blown up into Ik, because if they
were blown up into Kj or Kk for k ≥ 2, then we would have vertices with degree
exceeding d. Moreover, unless j = k = 1, the vertices u and v must be nonadjacent.
In the case that j = k = 1, u1 and v1 are twins in G∗, and they are adjacent and
consecutive in π∗, which means that there is a graph such that {u, v} is blown up
from a single vertex. In the remaining cases, {u1, u2, . . . , uj , v1, v2, . . . , vk} is part of
a twin class of G∗, and part of a contiguous, consecutive increasing sequence of π∗,
so they can also be blown up from a single vertex. This contradicts the assumption
that G has minimum order. �

Recall that a ladder is a graph P2 ⊗ Pn, where n is the number of rungs.
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Lemma 4.4. A 3-regular permutation graph cannot have a ladder with four or
more rungs as a subgraph.

Proof. Suppose G has a ladder as a subgraph, and let ui and vi be adjacent vertices
on the ith rung of a maximal ladder for i in {1, 2, . . . , k}. We will prove the lemma
by considering three propositions.

(1) A ladder with three or more rungs cannot have an edge between opposite
vertices on the same side of the ladder, such as v1 and vk.

(2) A ladder with four or more rungs cannot have an edge between opposite
vertices on the different sides of the ladder, such as v1 and uk.

(3) There cannot be a ladder with three or more rungs without an edge between
the first and last rung of the ladder.

To prove proposition (1), suppose that i = 3. Let v1 and vk be adjacent, and
suppose first that u1 and uk are not. Then we have an odd hole using vertices
{v1, u1, u2, u3, v3}. However, if u1 and uk are also adjacent, then we have F6. Next
suppose i = 4. If (v1, vk) is an edge and (u1, uk) is not, then {v1, u1, u3, u4, v4} is a
large hole. If (u1, uk) is also an edge, then the graph is isomorphic to a cube, which
has C6 as an induced subgraph by deleting a pair of opposite vertices. Finally,
suppose i ≥ 5. Then {v1, v2, . . . , vk} is a large hole.

Similarly, for proposition (2), if v1 and uk are adjacent, we have an odd hole
using {v1, v2, u2, u3, . . . , uk}.

Finally, for proposition (3), suppose v1 and u1 have a common neighbor v. Then
v cannot have vk or uk as neighbors, or else we have a large hole. So v has another
neighbor v′, but this gives us F5 using {v′, v, v1, v2, u1, u2}. Suppose instead that
the third neighbors of v1 and u1 are v and u, respectively, with v 6= u. Then we
have F4 using {v, v1, v2, u, u1, u2, u3}. �

We now prove that the graphs from Lemma 4.1 are the only 3-regular permuta-
tion graphs.

Theorem 4.5. Every connected 3-regular permutation graph is the blow-up of a
path.

Proof. Suppose G∗ is a 3-regular permutation graph that is not a blow-up of a
path. Let G be a graph of minimum order such that G∗ is a blow-up of G. Then
G is either a cycle or G has a degree 3 vertex.

If G is a cycle, then G must be C3 or C4, because larger cycles are forbidden as
induced subgraphs. In C3, since all the vertices are adjacent to each other and they
all have degree 2, only one vertex can be blown up or else we would have a vertex
with degree exceeding 3. Moreover, the vertex must be blown up into K2 in order
for every vertex to have degree 3. The resulting graph is K4. In C4, since every
vertex has degree 2, at most one of the neighbors of every vertex can be blown up.
The only possibility that gives a 3-regular graph is blowing up each of two adjacent
vertices into I2. This gives a graph isomorphic to K3,3.

Suppose instead that G has a degree 3 vertex v. Note that the maximum degree
∆(G) = 3. We will show that there are four possibilities for the configuration of
the induced subgraph H in a neighborhood of v:

(1) H is admissible as the induced subgraph of a blow-up of a path,
(2) H has a forbidden induced subgraph,
(3) H cannot be blown up into a 3-regular graph,
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(4) H has degree 3 twins.

Case (3) occurs when there is a vertex u of degree 3 such that neither u nor any
of its neighbors can be blown up without having a vertex exceed degree 3. Note
that case (4) is forbidden by Lemma 4.3.

Let the neighbors of v N(v) be {v1, v2, v3}. We will consider the possible sub-
graphs induced by N(v).

Suppose N(v) induces I3, that is, none of the vertices in N(v) are adjacent.
Observe that if v is adjacent to a leaf, then v must be blown up into I3 in order
to obtain a 3-regular graph. This implies that all the neighbors of v in G must be
leaves, and the resulting graph of this blow-up is K3,3. Thus we may assume that
all vertices adjacent to a degree 3 vertex have degree at least 2.

We will proceed by considering the number of squares that use v. If v is not
involved in any squares, then the subgraph induced by N(v) and its neighbors has
either F2 or a large hole as an induced subgraph. Suppose instead that {v, v2, v3}
are used in a square. Let v4 be the remaining vertex of the square. If each of
{v2, v3, v4} have degree 2, then this falls under case (1), because v4 can be blown
up into K2 to realize G4 from Table 2. Similarly, if v2 and v3 have degree 2 and v4
has degree 3, then v4 can be blown up into I2 to realize G3. If, however, only one of
{v2, v3} has degree 3, or they both have degree 3 and v4 has degree 2, then we have
a situation described in case (3). If all of {v2, v3, v4} have degree 3, then depending
the configuration of the remaining edges, we either have F4, F5, or a large hole as
a subgraph.

Suppose v is used in two squares. One possibility is for two neighbors of v to be
involved in both squares; say {v, v2, v3} are involved in two distinct squares. This
implies that v2 and v3 are degree 3 twins. Another possibility is for the two squares
to share a single edge. Observe that if the largest ladder subgraph using v has
three rungs, and there is an edge between two opposite vertices in a cycle around
the ladder, then v is involved in at least three squares. The remaining possibilities
for a ladder on three or more rungs using v contradict cases (1), (2), and (3) from
Lemma 4.4.

The final possibility when N(v) induces I3 is for v to be involved in three or
more squares. In this case, either there is an induced 6-cycle around v, or the
neigbhorhood around v is admissible a subgraph of G3. If v is used in more than
three squares, then G ∼= K3,3.

Now suppose N(v) induces K2⊕I1, and suppose that {v, v2, v3} forms a triangle.
If one of {v2, v3} has degree 2, then the graph cannot be blown up to be 3-regular.
If they both have degree 3 and are not in a square with v1, then either they have a
common neighbor other than v, giving us G2 from Table 2, or they have different
neighbors, giving us F3. Suppose that {v, v2, v3} is a triangle and {v, v1, v2, v4} is
a square for a new vertex v4. If v3 has degree 2, then G cannot be blown up into
a 3-regular graph. If v3 is adjacent to v4, then this is isomorphic to G1. If v3 is
adjacent to a new vertex v5, then we have F5 as an induced subgraph.

Finally, let {v, v2, v3} be a triangle, and suppose there are squares {v, v1, v2, v4}
and {v, v1, v3, v5}. If v4 = v5, then v4 and v are twins; a contradiction. Suppose
v4 6= v5. If v4 and v5 are nonadjacent, then {v1, v2, v3, v4, v5} is a large hole, and if
they are adjacent, then our subgraph is isomorphic to F6.

The remaining possibilities are if N(v) induces P3 or K3. In both of these cases,
we have twin vertices of degree 3, contradicting Lemma 4.3. �
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This theorem and Lemma 4.1 immediately imply the following corollary.

Corollary 4.6. Every 3-regular permutation graph is isomorphic to K4, K3,3, or
a boxcar graph.

Note that this also implies Corollary 1.2, since every boxcar graph has a planar
embedding.

Corollary 4.7. Every 3-regular permutation graph has a Hamiltonian path.

Proof. Clearly K4 and K3,3 are Hamiltonian. Observe that every graph in {G1,
G2, G3, G4} from Table 2 also has a Hamiltonian path. By merging the degree 1
vertices to obtain a boxcar graph, we find that Hamiltonian path of each of the
graphs {G1, G2, G3, G4} connected in sequence give a Hamiltonian path for the
boxcar graph. �

5. Enumeration of connected 3-regular permutation graphs

We conclude with a proof of Theorem 1.3, which gives a recursive formula for
the number of connected 3-regular permutation graphs on n vertices. Let m be an
integer. In the following proof, we will use sequences for m to mean equivalence
classes of compositions of m into parts of size 2 and 3 where a composition and its
reverse are considered to be the same. We will refer to the parts of size 2 or 3 as
symbols.

Proof of Theorem 1.3. Clearly there cannot be a 3-regular graph on an odd number
of vertices.

Using Corollary 4.6, we can easily count the number of connected 3-regular
permutation graphs on 20 or fewer vertices, and we know that the ones on more
than 20 vertices must be boxcar graphs. Boxcar graphs can be thought of as
beginning with G1 from Table 2, continuing with a sequence of copies of G2 and G3

in any order and of any length, and ending with G4. Note that because we merge
vertices, the G1 and G4 subgraphs together contribute 10 vertices to the graph,
each G2 contributes 4 vertices, and each G3 contributes 6 vertices. Let m = n−10

2 .
The problem of enumerating connected 3-regular permutation graphs on n vertices
reduces to that of enumerating compositions of 2m into parts of size 4 and 6 for
every nonnegative integer m, or equivalently, enumerating compositions of m into
parts of size 2 and 3. Moreover, because we are only concerned with graphs up
to isomorphism, we must count a composition and its reverse as being the same.
These are our sequences for m; when working them, we will rely on the following
fact.

5.0.1. Consider all sequences for m. If a sequence has an odd number of symbols
consider the sequence obtained by deleting the middle symbol, and if it has an even
number of symbols, then delete one of the two symbols closest to the middle. This
gives all sequences for m − 2 and m − 3. The converse is also true; that is, by
considering all sequences for m − i for i in {2, 3}, inserting the symbol i to the
middle if there are an even number of symbols, and inserting i to the immediate
left or the immediate right of the middle if there are an odd number of symbols, we
get all sequences for m.

We now create an auxiliary bipartite graph B with sides X and Y . Let the
vertices on side X represent the sequences for m−2 and m−3, and let the vertices
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on side Y represent the sequences for m; we will use the same labels for the vertices
and for the sequences that they represent. Place an edge between a vertex x in X
and a vertex y in Y if and only if it is possible to get one sequence from the other
by using 5.0.1.

Since there are only one or two options for getting one sequence from the other
through deleting (or inserting) a symbol according to 5.0.1, each vertex of B has
degree 1 or 2.

Consider a vertex y in Y . It will have degree 2 precisely when its sequence has
an even number of symbols and the middle two symbols are different. It will have
degree 1 otherwise. A vertex x in X, however, will have degree 1 if and only if one
of the following conditions hold:

(1) Its sequence has an even number of symbols.
(2) Its sequence has an odd number of symbols, and the middle symbol is the

same as the symbol that needs to be inserted to get a sequence for m.
(3) Its sequence has an odd number of symbols, the middle symbol is different

from the symbol that needs to be inserted to get a sequence for m, and the
sequence and its reverse are the same.

Case (1) is clear. To see case (2), observe that if x is a sequence for m− i with
i in {2, 3}, and the middle symbol is i, then the sequences we get from inserting i
to the left or the right of the middle are indistinguishable. For case (3), if x is its
own reverse, then the two sequences we get from inserting a symbol immediately
to the left or to the right of the middle are reverses of each other and are therefore
equivalent. If none of these cases hold, that is, x has an odd number of symbols,
the middle symbol is different from the symbol to be inserted, and the sequences
and its reverse are different, then x has degree 2 because two distinct sequences
arise from the insertions.

Note that in cases (1) and (2), the neighbor of x will necessarily have degree 1.
We must now show the following.

5.0.2. Case (3) can only occur when m ≡ 1 (mod 2), or equivalently, n ≡ 0
(mod 4).

Consider a sequence x for m− 3 that is the reverse of itself, and suppose x has
odd length and that its middle symbol is 2. Because the subsequences on either
side of the middle symbol must be reverses of each other, the sum of all the parts
of the sequence must be even, so m− 3 is even and m is odd. A similar argument
holds if x is a sequence for m− 2 that is the reverse of itself, x has odd length, and
the middle symbol is 3. Recalling that m = n−10

2 , we see that 5.0.2 holds.
We can now conclude the proof of Theorem 1.3 by counting the number of

sequences of m for m even and m odd. Suppose m is even, and let a sequence y
in Y have even length. If the middle two symbols of y are the same, then y has
degree 1, and its neighbor in X also has degree 1 by case (2) above. Otherwise,
y has degree 2, and its neighbors in X also have degree 2 because cases (1)–(3)
do not apply. If we asssume instead that y has odd length, then it has degree
1, and its neighbor in X also has degree 1 by case (1). Thus B is the disjoint
union of isolated edges and cycles, so by Hall’s Marriage Theorem, it has a perfect
matching. If a(m) is the number of sequences for m, then when m is even, we have
a(m) = a(m− 2) + a(m− 3) for m > 3. This gives us a(n) = a(n− 4) + a(n− 6)
for n > 16.



10 AYSEL EREY, ZACHARY GERSHKOFF, AMANDA LOHSS, AND RANJAN ROHATGI

Now suppose m is odd. If a vertex x in X falls into case (1) or (2), then by the
above argument, it can be matched to a vertex in y. Observe that if x is in case
(3), then its neighbor y in Y has degree 2, because deleting either of the middle
symbols of y will produce different sequences. Both neighbors x1 and x2 of y will
fall under case (3). Moreover, x1 and x2 must be the same except for the symbol
in the middle. Therefore one of the sequences, say x1, must be for m− 3, and the
other sequence x2 must be for m− 2.

To count the number of such pairs x1 and x2, it suffices to count the number of
sequences of m− 3 that are their own reverse. This is equal to the number of com-
positions of m−52 into parts of size 2 and 3 because the subsequences to the left and
to the right of the central 2 must be reverses of each other, and these subsequences
are precisely the above compositions. If t(x) is the number of compositions of x into
size 2 and 3, then when m is odd, we have a(m) = a(m−2)+a(m−3)− t

(
m−5
2

)
for

m > 5. Since m = n−10
2 , this is equivalent to a(n) = a(n− 4) + a(n− 6)− t

(
n−20

4

)
for n > 20. �

The number of compositions of m into parts of size 2 or 3 is given in OEIS
sequence 000931 [1].

6. Conclusion

We have proven that there are infinitely many r-regular permutation graphs for
r ≥ 3 and given a complete characterization of 3-regular permutation graphs in
terms of blow-ups of paths. It is perhaps surprising that all 3-regular permutation
graphs are blow-ups of a path. Unfortunately, this is not the case for all r-regular
graphs in general. In particular, we found a counterexample when r = 4 (see
Figure 1).

Figure 1. A 4-regular permutation graph that is not a blow-up
of a path (π = [5, 4, 7, 2, 1, 10, 3, 12, 11, 6, 9, 8]).

The graph from Figure 1 can be constructed by blowing up a 4-runged ladder.
More specifically, if G is the 4-runged ladder whose vertices are labeled as they ap-
pear in a Hamiltonian path starting and ending on a degree 2 vertex, then the graph
from Figure 1 is G[K2,K1,K1,K2,K2,K1,K1,K2]. Note that G is a permutation
graph with realizer [3, 5, 1, 7, 2, 8, 4, 6]. This observation, along with the lemma be-
low, indicates that the permutation graph from Figure 1 is not the blow-up of a
path.

Lemma 6.1. For each graph G, there is unique graph G′ of minimal order such
that G is a blow-up of G′.

Proof. Let P = (p1, p2, . . . , pm) be the partition of V (G) such that two vertices are
in the same part if and only if they are twins. We construct an m-vertex graph
G′, where distinct vertices vi, vj of V (G′) are adjacent if and only if the members
of pi and pj are adjacent in G. Then G is a blow-up of G′, obtained by replacing
each vertex vi with the vertices of pi. We know that G′ is minimal because if H is
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a graph such that G is a blow-up of H, and u1 and u2 are vertices of G that arise
from the same vertex of H, then u1 and u2 must be twins. Moreover, G′ is unique
because P is unique. �

By taking complements of our graphs from Corollary 4.6 and applying Lemma 6.1,
we find other counterexamples for r-regularity for certain even values of r. Coun-
terexamples to show that not every r-regular permutation graph is a blow-up of a
path for odd values of r > 4 are not known.
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