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Abstract

There are left and right actions of the 0-Hecke monoid of the affine symmetric group S̃n on
involutions whose cycles are labeled periodically by nonnegative integers. Using these actions
we construct two bijections, which are length-preserving in an appropriate sense, from the set
of involutions in S̃n to the set of N-weighted matchings in the n-element cycle graph. As an
application, we show that the bivariate generating function counting the involutions in S̃n by
length and absolute length is a rescaled Lucas polynomial. The 0-Hecke monoid of S̃n also acts on
involutions (without any cycle labelling) by Demazure conjugation. The atoms of an involution
z ∈ S̃n are the minimal length permutations w which transform the identity to z under this
action. We prove that the set of atoms for an involution in S̃n is naturally a bounded, graded
poset, and give a formula for the set’s minimum and maximum elements. Using these properties,
we classify the covering relations in the Bruhat order restricted to involutions in S̃n.

1 Introduction

For each integer n ≥ 1, let S̃n be the affine symmetric group of rank n, consisting of the bijections
w : Z → Z with w(i+ n) = w(i) + n for all i ∈ Z and w(1) +w(2) + · · ·+w(n) =

(n+1
2

)
. Note that

when n = 1 these conditions imply that S̃1 = {1}. Assume n ≥ 2, and define si ∈ S̃n for i ∈ Z as
the permutation which exchanges i+mn and i+1+mn for each m ∈ Z, while fixing every integer
not congruent to i or i+ 1 modulo n. The elements s1, s2, . . . , sn generate S̃n, and with respect to
these generators S̃n is the Coxeter group of type Ãn−1 [2, §8.3].

If W is any Coxeter group with simple generating set S and length function ℓ : W → N, then
there is a unique associative product ◦ : W ×W → W such that w ◦ s = w if ℓ(ws) < ℓ(w) and
w ◦ s = ws if ℓ(ws) > ℓ(w) for w ∈ W and s ∈ S [16, Theorem 7.1]. The product ◦ is often
called the Demazure product, and the pair (W, ◦) is usually referred to as the 0-Hecke monoid or
Richardson-Springer monoid of (W,S). We frame the results of this paper around the discussion
of three actions of the 0-Hecke monoid of S̃n. Each action will be on objects related to the group’s
involutions, that is, the elements z ∈ S̃n with z2 = 1.

Let In be the set of involutions in the finite symmetric group Sn, which we identify with the
parabolic subgroup of S̃n generated by s1, s2, . . . , sn−1. Recall that a matching in a graph is a
subset of edges with no shared vertices; with slight abuse abuse of notation, a matching on a set is
a matching in the complete graph on that set. Elements of In are permutations whose cycles have
length at most two, and so may be viewed as matchings on {1, 2, . . . , n}. For example,

(1, 4)(2, 7)(3, 6) ∈ I8 corresponds to • • • • • • • •
1 2 3 4 5 6 7 8

. (1.1)
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There are several ways to adapt this combinatorial model to the elements of Ĩn = {z ∈ S̃n : z2 = 1}.
The simplest method is to represent z ∈ Ĩn as the matching on Z in which i and j are connected by
an edge whenever z(i) = j 6= i = z(j). This gives a bijection between Ĩn and matchings on Z which
are “n-periodic” in the sense of having {i, j} as an edge if and only if {i+n, j+n} is also an edge.
One can make this model more compact by converting n-periodic matchings on Z to Z-weighted
matchings on {1, 2, . . . , n}: to represent z ∈ Ĩn, include the edge {i, j} labeled by m ∈ Z whenever
i < j and z(i) = j +mn and z(j) = i−mn. For example,

•
1

•

−1

•
0

• • • • •
1 2 3 4 5 6 7 8

(1.2)

would correspond to z =
∏

m∈Z(1+mn, 12+mn)(7+mn, 10+mn)(3+mn, 6+mn) ∈ Ĩ8. Diagrams of

this type are most useful when S̃n is viewed as a semidirect product Sn⋉Z
n−1. When the structure

of S̃n as a Coxeter group is significant, a better approach is to view n-periodic matchings as winding
diagrams. To construct the winding diagram of z ∈ Ĩn, arrange 1, 2, . . . , n clockwise on a circle,
and whenever i < z(i) ≡ j (mod n), connect i to j by an arc winding z(i)−i

n times in the clockwise
direction around the circle’s exterior. For the involution in (1.2), this produces the picture

•
1 •

2

•3

•
4

•
5•

6

• 7

•
8

. (1.3)

Formally, a winding diagram is a collection of continuous paths between disjoint pairs of marked
points on the boundary of the plane minus an open disc, up to homotopy. Each winding dia-
gram corresponds to a unique involution in some affine symmetric group. For our purposes, this
construction is the correct generalisation of (1.1) to the affine case.

Write ℓ(w) for the usual Coxeter length of w ∈ S̃n, and define the absolute length ℓ′(z) of z ∈ Ĩn
to be the number of arcs in its winding diagram. Our first main result, Theorem 5.4, identifies two
bijections ωR and ωL from Ĩn to the set Mn of N-weighted matchings in Cn, the cycle graph on
n vertices. These bijections preserve length and absolute length, where the absolute length of an
N-weighted matching is its number of edges and the length is its number of edges plus twice the
sum of their weights. The images of the element z ∈ Ĩ8 in our running example (1.3) are

ωR(z) =

•
1 •

2

•3

•
4

•
5•

6

• 7

•
8

8
1

2

and ωL(z) =

•
1 •

2

•3

•
4

•
5•

6

• 7

•
8

8

2

1

and indeed it holds that ℓ′(z) = 3 and ℓ(z) = 25. The proof of Theorem 5.4 relies on the construction
of a left and right action of the 0-Hecke monoid of S̃n on the set of weighted involutions, which
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may be defined informally as n-periodic, N-weighted matchings on Z; see Section 3. Our results
provide a fourth model for Ĩn, which makes it easy to count the elements of Ĩn by length. As an
application, we show that Ĩn(q, x) =

∑
z∈Ĩn

qℓ(z)xℓ
′(z) ∈ N[[q, x]] has the formula

Ĩn(q, x) =
1

1+qnLucn(1 + q, qs)

where Lucn(x, s) is the nth bivariate Lucas polynomial, defined by the recurrence Lucn(x, s) =
xLucn−1(x, s)+ sLucn−2(x, s) with Luc0(x, s) = 2 and Luc1(x, s) = x; see Corollary 5.5. This is an
analogue of a more complicated identity proved in [24].

The 0-Hecke monoid of S̃n also acts directly on Ĩn by Demazure conjugation: the right action
mapping (z, w) 7→ w−1 ◦ z ◦ w for z ∈ Ĩn and w ∈ S̃n. This monoid action is a degeneration of
the Iwahori-Hecke algebra representation studied by Lusztig and Vogan in [21, 22]. The orbit of
the identity under Demazure conjugation is all of Ĩn, and we define A(z) for z ∈ Ĩn as the set
of elements w ∈ S̃n of minimal length such that z = w−1 ◦ w. Following [7, 8], we call these
permutations the atoms of z. There are a few reasons why these elements merit further study,
beyond their interesting combinatorial properties. The sets A(z) may be defined for involutions
in any Coxeter group and, in the case of finite Weyl groups, are closely related to the sets W (Y )
which Brion [3] attaches to B-orbit closures Y in a spherical homogeneous space G/H (where G is
a connected complex reductive group, B a Borel subgroup, and H a spherical subgroup). Results
of Hultman [14, 15], extending work of Richardson and Springer [25, 26], show the atoms to be
intimately connected to the Bruhat order of a Coxeter group restricted to its involutions. Finally,
the atoms of involutions in finite symmetric groups play a central role in recent work of Can, Joyce,
Wyser, and Yong on the geometry of the orbits of the orthogonal group on the type A flag variety;
see [4, 5, 28, 29].

Our object in the second half of this paper is to generalise a number of results about the
atoms of involutions in finite symmetric groups to the affine case. In Section 6, extending results
in [8, 13], we show that there is a natural partial order which makes A(z) for z ∈ Ĩn into a
bounded, graded poset. We conjecture that this poset is a lattice. Generalising results of Can,
Joyce, and Wyser [4, 5], we show in Section 7 that there is an explicit set of inequalities governing
the “one-line” representation of a permutation in S̃n which determines whether it belongs to A(z).
This result translates to a “local” criterion for membership in A(z) involving a notion of (affine)
standardisation; see Corollary 7.11. In Section 8, extending [9, 17], we describe all covering relations
in the Bruhat order of S̃n restricted to Ĩn. Using this information, we prove that involutions in S̃n
have what we call the Bruhat covering property :

Theorem 1.1 (Bruhat covering property). If y ∈ Ĩn and t ∈ S̃n is a reflection, then there exists
at most one z ∈ Ĩn such that {wt : w ∈ A(y) and ℓ(wt) = ℓ(w) + 1} ∩ A(z) 6= ∅.

The analogue of this result for involutions in Sn was shown in [9], and served as a key lemma
in proofs of “transition formulas” for certain involution Schubert polynomials. We conjecture that
the same property holds for arbitrary Coxeter systems, in the following sense.

Let (W,S) be a Coxeter system with length function ℓ : W → N and Demazure product
◦ :W ×W →W . Suppose w 7→ w∗ is an automorphism of W with S∗ = S. The corresponding set
of twisted involutions is I∗ = {w ∈ W : w−1 = w∗}. For y ∈ I∗ let A∗(y) be the set of elements of
minimal length with (w∗)−1 ◦ w = y, and write T = {wsw−1 : w ∈W, s ∈ S}.

Conjecture 1.2. If y ∈ I∗ is a twisted involution in an arbitrary Coxeter group and t ∈ T , then
there exists at most one z ∈ I∗ such that {wt : w ∈ A∗(y) and ℓ(wt) = ℓ(w) + 1} ∩ A∗(z) 6= ∅.
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This statement is analogous to [20, Lemma 21], but seems harder to prove. A useful consequence
of the new methods in this paper is that we are able to replace certain computer dependent proofs
for type An in [9] by simpler and more general arguments for type Ãn. Concerning future work,
we anticipate that our results will be useful in developing a theory of affine involution Stanley
symmetric functions, simultaneously generalising [19, 20] and [7, 9, 10, 11].
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Notation

Throughout, Z denotes the integers, N the nonnegative integers, and [n] the set {1, 2, . . . , n}. We
write S̃n for the rank n affine symmetric group and Ĩn for its subset of involutions. Having fixed
n ≥ 2, we define si ∈ Ĩn for i ∈ Z as the permutation interchanging i +mn and i + 1 +mn for
m ∈ Z while fixing all numbers outside of {i, i + 1} + nZ. Let ℓ denote the length function of S̃n
relative to the generating set {si : i ∈ [n]}, and write < for the (strong) Bruhat order on S̃n.

2 Preliminaries

This section recalls some basic facts about affine symmetric groups. We omit most proofs, since
the properties we mention are either well-known (see, e.g., [2, §8.3] or [16, §4]) or follow as simple
exercises. For any map w : Z → Z, write Inv(w) for the set of pairs (i, j) ∈ Z × Z with i < j and
w(i) > w(j). If w ∈ S̃n and (i, j) ∈ Inv(w) then (i+mn, j +mn) ∈ Inv(w) for all m ∈ Z.

Proposition 2.1. Let w ∈ S̃n. Then ℓ(w) is the number of equivalence classes in Inv(w) under
the relation on Z× Z generated by (i, j) ∼ (i+ n, j + n).

Let DesR(w) and DesL(w) denote the right and left descents sets of a permutation w ∈ S̃n,
consisting of the elements s ∈ {s1, s2, . . . , sn} with ℓ(ws) < ℓ(w) and ℓ(sw) < ℓ(w), respectively.

Corollary 2.2. Let w ∈ S̃n. Then DesR(w) = {si : i ∈ Z such that w(i) > w(i+ 1)}.

For i < j 6≡ i (mod n), let tij = tji ∈ S̃n be the permutation which interchanges i +mn and
j +mn for each m ∈ Z and which fixes all integers not in {i, j} + nZ. Note that ti,i+1 = si. The
elements tij are precisely the reflections in S̃n. The following is [2, Proposition 8.3.6].

Lemma 2.3. Let w ∈ S̃n and i, j ∈ Z with i < j 6≡ i (mod n). Suppose w(i) < w(j). Then
ℓ(wtij) ≥ ℓ(w)+ 1, with equality if and only if no e ∈ Z satisfies i < e < j and w(i) < w(e) < w(j).

Note for z ∈ Ĩn = {w ∈ S̃n : w2 = 1} and i ∈ Z that z(i) ≡ i (mod n) if and only if z(i) = i.

Lemma 2.4. If i ∈ Z and z ∈ Ĩn and i 6= z(i) < z(i+ 1) 6= i+ 1 then ℓ(sizsi) = ℓ(z) + 2.

For z ∈ Ĩn, let C(z) = {(i, j) ∈ Z × Z : i < j = z(i)}, so that C(z) is the set of ordered 2-cycles
of z. Note that if (i, j) ∈ C(z) then (i+mn, j +mn) ∈ C(z) for all m ∈ Z.

Definition 2.5. Define ℓ′(z) for z ∈ Ĩn as the number of equivalence classes in C(z) under the
relation on Z× Z generated by (i, j) ∼ (i+ n, j + n).
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Hultman shows in [14] that ℓ′ is the absolute length function on S̃n restricted to Ĩn: the function
which returns the minimum number of reflections whose product is a given permutation.

Lemma 2.6. If i and i+ 1 are fixed points of z ∈ Ĩn then zsi ∈ Ĩn and ℓ′(zsi) = ℓ′(z) + 1.

Lemma 2.7. Let z ∈ Ĩn. Then ℓ(z) = ℓ′(z) if and only if z is a product of commuting simple
generators, i.e., z = si1si2 · · · sil for distinct indices satisfying ij 6≡ ik ± 1 (mod n) for all j, k ∈ [l].

Say that j ∈ Z is a left endpoint of z ∈ Ĩn if j < z(j), a right endpoint if z(j) < j, and a fixed
point if z(j) = j. Let w ∈ S̃n act on Z× Z by w(a, b) = (w(a), w(b)).

Lemma 2.8. Let z ∈ Ĩn. If (i, i+1) /∈ C(z) then C(sizsi) = siC(z), and otherwise C(z) = C(sizsi).

Thus ℓ′(wzw−1) = ℓ′(z) for all w ∈ S̃n and z ∈ Ĩn. Our last two lemmas are more technical:

Lemma 2.9. Let z ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Assume j 6= z(i) < z(j) 6= i. If i is a
right endpoint of z or if j is left endpoint then ℓ(tijztij) > ℓ(tijz) = ℓ(ztij) > ℓ(z).

Proof. Note that ℓ(tijz) = ℓ(ztij) > ℓ(z). Assume z(i) < i. Since z(i) < i, we cannot have
z(i) ≡ i (mod n). If z(i) ≡ j (mod n) then z(j) ≡ i (mod n) so tijz(i) < z(i) < z(j) < tijz(j).
If z(i) 6≡ j (mod n) then z(j) 6≡ i (mod n), so either z(j) = j and tijz(i) = z(i) < i = tijz(j), or
z(j) 6≡ j (mod n) and tijz(i) = z(i) < z(j) = tijz(j). We deduce that ℓ(tijztij) > ℓ(tijz) > ℓ(z).
When j < z(j), the same conclusion follows by a similar argument.

Lemma 2.10. Let z ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Suppose that either i, i+1, . . . , j−1
are all right endpoints of z or i+ 1, . . . , j − 1, j are all left endpoints of z. Then:

(a) ℓ(tijztij) > ℓ(tijz) > ℓ(z) if z(i) < z(j) and ℓ(tijztij) < ℓ(tijz) < ℓ(z) if z(i) > z(j).

(b) ℓ(tijztij) = ℓ(z) + 2 if and only if ℓ(ztij) = ℓ(z) + 1.

Proof. The first half of part (a) follows from the previous lemma. The second half follows from
the first (with z replaced by tijztij) on noting that i, i+ 1, . . . , j − 1, j must be all left or all right
endpoints of z if z(i) > z(j). Part (a) implies that if ℓ(ztij) > ℓ(z) + 1 then ℓ(tijztij) > ℓ(z) + 2.
Assume ℓ(ztij) = ℓ(z) + 1 so that z(i) < z(j). By symmetry, it suffices to consider the case when
i, i+1, . . . , j − 1 are all right endpoints of z. Fix e ∈ Z with i < e < j, so that either z(e) < z(i) or
z(j) < z(e). If z(j) < z(e), then since i and e are right endpoints, j must also be a right endpoint
of z, so neither z(e) nor z(j) belongs to {i, j} + nZ and tijz(j) = z(j) < z(e) = tijz(e). Suppose
instead that z(e) < z(i). We claim that tijz(e) < tijz(i). We cannot have z(e) ≡ i (mod n) since i
and e are right endpoints, so if tijz(i) < tijz(e) then we must have i−mn < z(e) < j−mn = z(i) for
some m > 0. But if this occurred then f = z(e)+mn would have i < f < j and f < z(f) = e+mn,
contradicting our assumption that i, i+1, . . . , j−1 are right endpoints. This proves our claim, and
we conclude that no i < e < j has tijz(i) < tijz(e) < tijz(j), so ℓ(tijztij) = ℓ(tijz)+1 = ℓ(z)+2.

3 Weighted involutions

The goal of the next three sections is to construct a “length-preserving” bijection between Ĩn and the
set of N-weighted matchings of the cycle graph on n vertices. Our description of this correspondence
will rely on an action of the Richardson-Springer monoid of S̃n on pairs of the following type:
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Definition 3.1. A weighted involution in S̃n is a pair (w,φ) where w ∈ Ĩn and φ is a map C(w) → N

with φ(i, j) = φ(i+n, j+n) for all (i, j) ∈ C(w). We refer to φ as the weight map of (w,φ). Define
the weight of (w,φ) as the number wt(w,φ) =

∑
γ φ(γ) where the sum is over a set of cycles γ

representing the distinct equivalence classes in C(w) under the relation (i, j) ∼ (i+ n, j + n).

Let Wn be the set of all weighted involutions in S̃n.

Example 3.2. We can represent a weighted involution (w,φ) ∈ Wn graphically by drawing the
winding diagram of w with its arcs labeled by the values of φ. For example, if θ1, θ2, θ3 ∈ W5 are

•
1

•2

•
3

•
4

• 5

2

3

•
1

•2

•
3

•
4

• 5
2

2

•
1

•2

•
3

•
4

• 5

2

1

and we write θi = (wi, φi), then w1 = t1,2t3,10, w2 = t0,2t3,11, and w3 = t0,3t2,11, while φ1(1, 2) = 2
and φ1(3, 10) = 3, φ2(3, 11) = φ2(5, 7) = 2, and φ3(2, 11) = 2 and φ3(5, 8) = 1.

We identify Ĩn with the subset of weighted involutions of the form (w, 0) ∈ Wn with 0 denoting
the unique weight map C(w) → {0}. We extend ℓ : S̃n → N and ℓ′ : Ĩn → N to Wn by setting

ℓ(θ) = ℓ(w) + 2wt(θ) and ℓ′(θ) = ℓ′(w) for θ = (w,φ) ∈ Wn.

Given (w,φ) ∈ Wn, define the right form of φ to be the map φR : Z → N with φR(i) = φ(w(i), i) if
w(i) < i and with φR(i) = 0 otherwise. Likewise, define the left form of φ to be the map φL : Z → N

with φL(i) = φ(i, w(i)) if i < w(i) and with φL(i) = 0 otherwise. Clearly φL and φR each determine
φ, given w. We now define operators π1, π2, . . . , πn which act on Wn on the right and left.

Definition 3.3. Let θ = (w,φ) ∈ Wn and i ∈ Z.

(a) If φR(i) > φR(i+ 1) then let θπi = (siwsi, ψ) ∈ Wn where ψ is the unique weight map with

ψR(j) =





φR(i)− 1 if j ≡ i+ 1 (mod n)

φR(i+ 1) if j ≡ i (mod n)

φR(j) otherwise

for j ∈ Z.

If φR(i) ≤ φR(i+ 1) then let θπi = θ.

(b) If φL(i+ 1) > φL(i) then let πiθ = (siwsi, χ) ∈ Wn where χ is the unique weight map with

χL(j) =





φL(i+ 1)− 1 if j ≡ i (mod n)

φL(i) if j ≡ i+ 1 (mod n)

φL(j) otherwise

for j ∈ Z.

If φL(i+ 1) ≤ φL(i) then let πiθ = θ.

6



Example 3.4. Define θ1, θ2, θ3 ∈ W5 as in Example 3.2. Then θ1π5 = θ2π1 = θ2 and θ2π2 = θ3.
Form θ′2 ∈ W5 from θ2 by replacing the label of the short arc in the picture in Example 3.2 by 1
and the label of the long arc by 3. Then π5θ1 = θ′2 and π2θ

′
2 = θ3.

It may hold that (πiθ)πj 6= πi(θπj); for example, if θ = (w,φ) where w = s1 ∈ S̃2 and φ(1, 2) = 1,
then π0θ = (π0θ)π2 6= π0(θπ2) = θπ2. Note that πi = πi+n, as a right and left operator.

Proposition 3.5. The left (respectively, right) operators πi satisfy (a) π2i = πi, (b) πiπj = πjπi if
i 6≡ j ± 1 (mod n), and (c) πiπi+1πi = πi+1πiπi+1 for all i, j ∈ Z.

Proof. It is clear that π2i = πi and πiπj = πjπi if i 6≡ j ± 1 (mod n). Fix θ = (w,φ) ∈ Wn. Define
a = φR(i), b = φR(i+ 1), and c = φR(i+ 2). We check part (c) carefully as follows:

• If a > b > c then θπiπi+1πi = θπi+1πiπi+1 since sisi+1si = si+1sisi+1.

• If a > c ≥ b then θπiπi+1πi = θπi+1πiπi+1 is θπiπi+1 if a > c+ 1 and θπi if a = c+ 1.

• If b ≥ a > c then θπiπi+1πi = θπi+1πiπi+1 = θπi+1πi.

• If b > c ≥ a then θπiπi+1πi = θπi+1πiπi+1 = θπi+1.

• If c ≥ a > b then θπiπi+1πi = θπi+1πiπi+1 = θπi.

• If c ≥ b ≥ a then θπiπi+1πi = θπi+1πiπi+1 = θ.

One of these cases must occur, so we conclude that πiπi+1πi = πi+1πiπi+1 as a right operator. The
argument that πiπi+1πi = πi+1πiπi+1 as a left operator is symmetric.

By Matsumoto’s theorem, it follows that for each g ∈ S̃n, we may define a right (respectively,
left) operator πg on Wn by setting πg = πi1πi2 · · · πik where g = si1si2 · · · sik is any reduced
expression. Recall the definition of the Demazure product ◦ : S̃n× S̃n → S̃n from the introduction.

Corollary 3.6. The map g 7→ πg defines a right (also left) monoid action of (S̃n, ◦) on Wn.

Define τ : Z → Z by τ(i) = n + 1 − i and let w∗ = τwτ for w ∈ S̃n. Then w 7→ w∗ is an
automorphism of S̃n with s∗i = sn−i for i ∈ [n], so s∗n = s0 = sn. Note that if w ∈ Ĩn then

C(w∗) = {(τ(j), τ(i)) : (i, j) ∈ C(w)}.

For φ : C(w) → N let φ∗ be the map C(w∗) → N given by (τ(j), τ(i)) 7→ φ(i, j). Extend ∗ to Wn by
setting θ∗ = (w∗, φ∗) for θ = (w,φ) ∈ Wn. Clearly (θ∗)∗ = θ. The following is easy to check:

Lemma 3.7. Let i ∈ Z and θ ∈ Wn. Then wt(θ) = wt(θ∗) and (πiθ)
∗ = θ∗πn−i.

By definition πiθ (also θπi) is either θ or has weight one less than θ. For θ ∈ Wn, let DesL(θ)
and DesR(θ) be the sets of generators si for i ∈ [n] such that πiθ 6= θ and θπi 6= θ, respectively.
The map which fixes sn and maps si 7→ sn−i is a bijection DesL(θ) ↔ DesR(θ

∗). This means that
we only need to prove the right-handed version of the following lemma:

Lemma 3.8. Suppose θ ∈ Wn and wt(θ) > 0. Then DesL(θ) and DesR(θ) are both nonempty.
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Proof. Write θ = (w,φ). We have DesR(θ) = ∅ only if no right endpoints i of w have φ(w(i), i) > 0
or if whenever i is right endpoint it holds that i + 1 is also a right endpoint and φ(w(i), i) ≤
φ(w(i+1), i+1). The second case is impossible, and if wt(θ) > 0 then the first case is excluded.

Recall that ≤ denotes the Bruhat order on S̃n.

Theorem-Definition 3.9. Let θ = (w,φ) ∈ Wn. The following statements then hold:

(a) There are unique elements g, h ∈ S̃n with ℓ(g) = ℓ(h) = wt(θ) and wt(πgθ) = wt(θπh) = 0.

(b) For the elements in part (a), we have πgθ = gwg−1 and θπh = h−1wh.

(c) Any other elements g′, h′ ∈ S̃n with wt(πg′θ) = wt(θπh′) = 0 satisfy g ≤ g′ and h ≤ h′.

Define gL(θ) = g−1 and gR(θ) = h, and set ωL(θ) = πgθ = gwg−1 and ωR(θ) = θπh = h−1wh.

Note that gL(θ), gR(θ) ∈ S̃n while ωL(θ), ωR(θ) ∈ Ĩn ⊂ Wn.

Proof. Induction and Lemma 3.8 imply that wt(θπh′) = 0 for some h′ ∈ S̃n with wt(θ) ≤ ℓ(h′).
Let h′ = si1si2 · · · sik be a reduced expression. Let h0 = 1, for j ∈ [k] define hj to be either hj−1sij
if sij ∈ DesR(θπhj−1

) or hj−1 otherwise, and set h = hk. By construction h ≤ h′, θπh = θπh′,

ℓ(h) = wt(θ), and θπh = h−1wh. It remains to show that h ∈ S̃n is the unique element satisfying
both wt(θπh) = 0 and ℓ(h) = wt(θ). This obviously holds if wt(θ) = 0. Assume g, h ∈ S̃n are
such that wt(θπg) = wt(θπh) = 0 and ℓ(g) = ℓ(h) = wt(θ) > 0. If si is a left descent of both g
and h, then si ∈ DesR(θ) and it follows by induction that sig = sih, so g = h. Assume DesL(g)
and DesL(h) are disjoint, and choose si ∈ DesL(g) and sj ∈ DesL(h). Both si and sj must belong
to DesR(θ). It is not hard to check that (i) if i 6≡ j ± 1 (mod n) then θπiπj = θπjπi has weight
wt(θ)− 2, while (ii) if i ≡ j ± 1 (mod n) then θπiπjπi = θπjπiπj has weight wt(θ)− 3.

Assume case (i) occurs. By induction, we may assume that unique elements g′, g′′ ∈ S̃n exist
with wt(θ′g′) = wt(θ′′g′′) = 0, ℓ(g′) = wt(θ′) = wt(θ)−1, and ℓ(g′′) = wt(θ′′) = wt(θ)−2 for θ′ = θπi
and θ′′ = θπiπj = θπjπi. Uniqueness implies that sig = g′ and g′ = sjg

′′, so g = sisjg
′′ = sjsig

′′

where ℓ(g) = ℓ(g′′)+2. But this means that sj ∈ DesL(g), contradicting our assumption otherwise.
One reaches a similar contradiction in case (ii). This proves the right-handed version of theorem.
The left-handed version follows by symmetric arguments.

Example 3.10. If θ1, θ2, θ3 ∈ W5 are as in Example 3.2, then we have

ωR(θ1) = ωR(θ2) = ωR(θ3) = t1,13t5,9 =

•
1

•2

•
3

•
4

• 5 .

The arcs in the winding diagram are coloured red and blue to make them easier to distinguish.

The following is clear by induction from Lemma 3.7:

Lemma 3.11. If θ ∈ Wn then gL(θ
∗) = gR(θ)

∗ and ωL(θ
∗) = ωR(θ)

∗.
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4 Admissibility

Recall that ℓ(θ) = ℓ(w) + 2wt(θ) for θ = (w,φ) ∈ Wn. The following terminology identifies a class
of weighted involutions whose lengths are unaffected by the operators πi.

Definition 4.1. Given a weighted involution θ = (w,φ) ∈ Wn, we say that:

(a) θ is right-admissible if no sequence of cycles (x, y), (a0, b0), (a1, b1), . . . , (ak, bk) ∈ C(w) has
x < ak < bk < · · · < b1 < b0 < y and φ(ai, bi) + bi + i ≥ φ(x, y) + y for all i.

(b) θ is left-admissible if no sequence of cycles (x, y), (a0, b0), (a1, b1), . . . , (ak, bk) ∈ C(w) has
x < a0 < a1 < · · · < ak < bk < y and φ(ai, bi)− ai + i ≥ φ(x, y)− x for all i.

If w is non-nesting in the sense of having no cycles (x, y), (a, b) ∈ C(w) with x < a < b < y then
θ = (w, θ) ∈ Wn is both right- and left-admissible. The following is also easy to see:

Lemma 4.2. If θ is right-admissible (respectively, left-admissible) then θ∗ is left-admissible (re-
spectively, right-admissible).

Say that θ′ ∈ Wn is a descendant of θ ∈ Wn if θ′ = θπg for some g ∈ S̃n. The idea behind
right-admissibility is to give a condition ensuring that no descendant θ′ = (w′, φ′) of θ allows w′ to
have nesting cycles (i, k + 1), (j, k) ∈ C(w′) with i < j < k and φ′(j, k) > φ′(i, k + 1), since such a
weighted involution would have ℓ(θ′πk) < ℓ(θ′). Our formulation of left-admissibility is motivated
by symmetric considerations. This is enough to make the operators πi length-preserving:

Theorem 4.3. Suppose θ ∈ Wn and i ∈ Z.

(a) If θ is right-admissible then θπi is right-admissible and ℓ(θπi) = ℓ(θ).

(b) If θ is left-admissible then πiθ is left-admissible and ℓ(πiθ) = ℓ(θ).

Proof. Write θ = (w,φ) ∈ Wn. We only prove part (a), since part (b) is equivalent by Lemmas 3.7
and 4.2. Assume θ is right-admissible and si ∈ DesR(θ). Then w(i) < i and φR(i) > φR(i + 1).
It follows w(i) < w(i + 1) since otherwise we would have x < a0 < b0 < y for the cycles (x, y) =
(w(i + 1), i + 1) and (a0, b0) = (w(i), i), and it would hold that φR(b0) + b0 = φR(i) + i ≥ φR(i +
1) + i+ 1 = φR(y) + y. We conclude by Lemma 2.4 that ℓ(siwsi) = ℓ(w) + 2, so ℓ(θπi) = ℓ(θ). It
remains to check that θπi is right-admissible.

Relative to an arbitrary weighted involution θ = (w,φ), call a sequence of cycles satisfy-
ing the conditions in Definition 4.1(a) inadmissible. If such a sequence exists then θ is not
right-admissible. If (x, y), (a0, b0), (a1, b1), . . . , (ak, bk) ∈ C(w) is an inadmissible sequence with
bk < y − n, and j is the first index with bj < y − n, then j ≤ n and the sequence (x − n, y −
n), (aj , bj), (aj+1, bj+1), . . . , (ak, bk) ∈ C(w) is also inadmissible.

Now suppose si ∈ DesR(θ) but θπi is not right-admissible. Write θ′ = (w′, φ′) = θπi so that
w′ = siwsi and recall by Lemma 2.8 that C(w′) = siC(w). Note that i must be a right endpoint of
w so i+1 must be a right endpoint of w′. Suppose (x′, y′), (a′0, b

′
0), (a

′
1, b

′
1), . . . , (a

′
k, b

′
k) ∈ C(w′) is an

inadmissible sequence for θ′. By the observations in the previous paragraph, we may assume that
y′ − n < b′k < · · · < b′1 < b′0 < y′. Let (x, y) = (si(x

′), si(y
′)) and (aj , bj) = (si(a

′
j), si(b

′
j)) ∈ C(w)

for each j. If at most one number among b′k < · · · < b′1 < b′0 < y′ is congruent to i or i+ 1 modulo
n and y′ 6≡ i (mod n), then the obvious sequence of cycles (x, y), (a0, b0), (a1, b1), . . . , (ak, bk) is
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inadmissible for θ. If y′ ≡ i (mod n) and b′k ≡ i + 1 (mod n) then (x − n, y − n), (ak, bk) is an
inadmissible sequence for θ. If y′ ≡ i (mod n) and b′k 6≡ i+ 1 (mod n) then

(x, y), (w(y′), y′), (a0, b0), (a1, b1), . . . , (ak, bk)

is inadmissible for θ. If b′j ≡ i (mod n) and b′j−1 ≡ i+ 1 (mod n) for j ∈ [k − 1], then the sequence

(x, y), (a0, b0), (a1, b1), . . . , (aj , bj), (aj−1, bj−1), . . . , (ak, bk)

is inadmissible for θ. Similarly, if k > 0 and b′k ≡ i (mod n) and b′k−1 ≡ i+ 1 (mod n) then

(x, y), (a0, b0), (a1, b1), . . . , (ak−2, bk−2), (ak, bk)

is inadmissible for θ. Finally, it cannot happen that b′0 ≡ i (mod n) and y′ ≡ i+1 (mod n), since then
the condition φ′R(b

′
0)+ b′0 ≥ φ′R(y

′)+ y′ would imply that φ′R(i) > φ′R(i+1) and φR(i) ≤ φR(i+1),
contradicting the fact that si ∈ DesR(θ). In this way, we deduce the contrapositive of part (a), i.e.,
that if θπi is not right-admissible then θ is also not right-admissible.

It is obvious from Theorem-Definition 3.9 that ℓ′(ωR(θ)) = ℓ′(ωL(θ)) = ℓ′(θ) for all θ ∈ Wn.
The following statement is immediate from the previous theorem by induction.

Corollary 4.4. Let θ ∈ Wn. If θ is right-admissible then ℓ(ωR(θ)) = ℓ(θ). If θ is left-admissible
then ℓ(ωL(θ)) = ℓ(θ).

One natural set of “extremal” elements on Wn is given by the subset Ĩn. Another is this:

Definition 4.5. Define Mn as the set of weighted involutions θ = (w,φ) ∈ Wn with ℓ′(w) = ℓ(w),
i.e., such that w is a product of commuting simple reflections.

Every element of Mn is both left- and right-admissible. The elements of Mn are in bijection
with N-weighted matchings in Cn, the cycle graph on n vertices, which explains our notation.

Example 4.6. The set M4 consists of the weighted involutions of the form

•
1

•2

•
3

• 4

a •
1

•2

•
3

• 4

a

•
1

•2

•
3

• 4

a

•
1

•2

•
3

• 4

a •
1

•2

•
3

• 4

b

a

•
1

•2

•
3

• 4

b

a

where a, b ∈ N are arbitrary natural numbers.

Proposition 4.7. There are n
n−k

(n−k
k

)
distinct k-element matchings in Cn.

Proof. This is well-known (see [27, A034807]) and also follows as an instructive exercise.

In the next section we show that the length-preserving maps ωR : Mn → Ĩn and ωL : Mn → Ĩn
are bijections. Here we construct the maps which will turn out to be their inverses.
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Proposition-Definition 4.8. Fix θ = (w,φ) ∈ Wn and m ∈ Z. Let k = ℓ′(w) and suppose

a1 < a2 < · · · < ak and a′1 < a′2 < · · · < a′k

are the respective sequences of left and right endpoints of w in m+ [n]. For j ∈ [k], define pj, p
′
j ,

qj, and q
′
j as the numbers of cycles (x, y) ∈ C(w) respectively satisfying

x < aj < y, x < a′j < y, x < aj < y < w(aj), and w(a′j) < x < a′j < y.

Let ij = aj + pj and i′j = a′j − p′j − 1, and let u = si1si2 · · · sik and v = si′1si′2 · · · si′k . Finally:

(a) Let λR(θ) = (u, ψ) ∈ Wn where ψ : C(u) → N is the weight map with

ψ(ij , ij + 1) = φ(aj , w(aj)) + w(aj)− aj − qj − 1 for j ∈ [k].

(b) Let λL(θ) = (v, χ) ∈ Wn where χ : C(v) → N is the weight map with

χ(i′j , i
′
j + 1) = φ(w(a′j), a

′
j) + a′j − w(a′j)− q′j − 1 for j ∈ [k].

The weighted involutions λR(θ) and λL(θ) then both belong Mn, and do not depend on m.

Note that if w ∈ Ĩn ⊂ Wn then λR(w) = λR(w, 0) and λL(w) = λL(w, 0). We delay the proof
of the proposition to give an example and state a lemma.

Example 4.9. Suppose n = 4, k = 2, m = 0, and

w = t1,8t2,7 =

•
1

•2

•
3

• 4 .

Then (a1, a2) = (1, 2) and (a′1, a
′
2) = (3, 4) and the numbers pj, p

′
j , qj, q

′
j , ij , i

′
j are computed as

follows. First, we have (p1, p2) = (2, 3) and (q1, q2) = (2, 2) so (i1, i2) = (3, 5) and λR(w) = (s1s3, ψ)
where ψ(3, 4) = 4 and ψ(1, 2) = 2.We have (p′1, p

′
2) = (3, 2) and (q′1, q

′
2) = (2, 2) so (i′1, i

′
2) = (−1, 1)

and λL(w) = (s1s3, χ) where χ(3, 4) = 2 and χ(1, 2) = 4. In terms of winding diagrams,

λR(w) =

•
1

•2

•
3

• 4

2

4

and λL(w) =

•
1

•2

•
3

• 4

4

2

.

Lemma 4.10. If θ ∈ Wn then λL(θ
∗) = λR(θ)

∗.

Proof. This is evident from the symmetric definitions of λR(θ) and λL(θ).
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Proof of Proposition-Definition 4.8. The fact that λR(θ) and λL(θ) do not depend on m holds since
w(i+n) = w(i)+n for all i ∈ Z. We must show that λR(θ) and λL(θ) actually belong to Mn. It is
enough to prove that λR(θ) ∈ Mn. For this, we need to check that ij +1 < ij+1 for j ∈ [k− 1] and
ik +1 < i1+n. Let a be any left endpoint of w and let ã be the smallest left endpoint greater than
a. Define p and p̃ as the respective numbers of cycles (x, y) ∈ C(w) with x < a < y and x < ã < y.
It is enough to verify that a + p + 1 < ã + p̃. This holds if and only if a + r + 1 < ã + r̃ where r
and r̃ are the respective numbers of cycles (x, y) ∈ C(w) with x < a < y < ã and a ≤ x < ã < y.
Clearly a+ r + 1 ≤ ã, with equality only if a < ã < w(a) in which case r̃ > 0.

Given θ = (w,φ) ∈ Wn, recall from Section 3 the definition of φR, φL : Z → N.

Lemma 4.11. Let θ = (w,φ) ∈ Wn. If si /∈ DesR(w) then λR(θπi) = λR(θ) and λL(πiθ) = λR(θ).

Proof. Choose i ∈ Z with si /∈ DesR(w). By Lemmas 3.7 and 4.10 it suffices to prove that
λR(θπi) = λR(θ). Assume θπi 6= θ. Let w̃ = siwsi and define φ̃ : C(w̃) → N such that θπi = (w̃, φ̃).
Choose m ∈ Z such that {i, i+ 1} ⊂ m+ [n], and define Define aj, bj , pj , qj, ij , and ψ relative to w
and φ as in Proposition-Definition 4.8. Define ãj , b̃j , p̃j , q̃j, ĩj , and ψ̃ analogously relative to w̃ and
φ̃. We deduce that λR(θπi) = λR(θ) by comparing these quantities as follows:

• If w(i) < w(i + 1) < i < i+ 1 then aj = ãj and pj = p̃j for all j, and there are two indices j
for which φR(bj), bj , qj and φ̃R(b̃j), b̃j, q̃j are different: for one index φ̃R(b̃j) = φR(bj)−1 and
b̃j = bj + 1 and q̃j = qj , and for the other φ̃R(b̃j) = φR(bj) and b̃j = bj − 1 and q̃j = qj − 1.

• If w(i) < i < i + 1 = w(i + 1) then aj = ãj and pj = p̃j for all j, and the numbers φR(bj),
bj , qj are the same as φ̃R(b̃j), b̃j, q̃j except when j is such that bj = i, in which case it holds
that φ̃R(b̃j) = φR(bj)− 1 and b̃j = bj + 1 and q̃j = qj.

• If w(i) < i < i+1 < w(i+1) then aj = ãj and pj = p̃j except when aj = i+1, in which case
ãj = aj − 1 and p̃j = pj + 1. Likewise, the numbers φR(bj), bj , qj are the same as φ̃R(b̃j), b̃j ,
q̃j, except when bj = i, in which case φ̃R(b̃j) = φR(bj)− 1 and b̃j = bj + 1 and q̃j = qj.

One of these cases must occur as since it cannot hold that w(i+ 1) < w(i) < i < i+ 1. We deduce
that ij = ĩj for all j and ψ = ψ̃, so λR(θπi) = λR(θ).

Corollary 4.12. If θ ∈ Wn is right-admissible (respectively, left-admissible) then λR(θπg) = λR(θ)
(respectively, λL(πgθ) = λL(θ)) for all g ∈ S̃n.

Proof. This follows from the previous lemma and Theorem 4.3.

Corollary 4.13. If θ ∈ Mn then λR (ωR(θ)) = λR(θ) = θ and λL (ωL(θ)) = λL(θ) = θ.

Proof. Apply the previous corollary after checking that any θ ∈ Mn has λR(θ) = λL(θ) = θ.

5 Order isomorphisms

Recall the definition of tij ∈ S̃n for i < j 6≡ i (mod n). Write u ⋖ v if v covers u in the Bruhat
order on S̃n, i.e., if v = utij for some i, j and ℓ(v) = ℓ(u) + 1. Let ≺ be the partial order on Mn

with (w,φ) � (w′, φ′) if and only if w = w′ and φ(a, b) ≤ φ′(a, b) for all (a, b) ∈ C(w).

Lemma 5.1. Let θ ∈ Mn and z, z′ ∈ Ĩn with ωR(θ) = z. The following are then equivalent:
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(a) There exist i, j ∈ Z with z(i) < i < j = min{e ∈ Z : i < e and z(i) < z(e)} and z′ = tijztij .

(b) There exists θ′ ∈ Mn which covers θ in the order ≺ such that z′ = ωR(θ
′).

Moreover, if these conditions hold then gR(θ)⋖ gR(θ)tij = gR(θ
′).

This lemma has a left-handed version, given by applying the ∗-operator and Lemma 3.11.

Proof. Let w ∈ Ĩn and φ : C(w) → N be such that θ = (w,φ). The theorem will derive from
simple arguments involving the following specialised notation. Consider an integer sequence I =
(i1, i2, . . . , il) ∈ Z

l. For each 0 ≤ t ≤ l, define wI,t ∈ Ĩn and φI,t : C(wI,t) → N such that
θπi1πi2 · · · πit = (wI,t, φI,t), so that (w,φ) = (wI,0, φI,0). As usual, write φI,tR for the right form of
φI,t as given after Definition 3.1. Let αI,0 = 1 ∈ S̃n and for i ∈ [l], define αI,t ∈ S̃n to be αI,tsit if
wI,t 6= wI,t−1, and otherwise set αI,t = αI,t−1. Note that if φI,t = 0 for any t then we have z = wI,t

and gR(θ) = αI,t. As an abbreviation, write wI = wI,l and φI = φI,l and αI = αI,l. We refer to
αI,t(x) as the trajectory of x ∈ Z at time t, relative to the index sequence I. By construction, a
given integer x is a left endpoint, right endpoint, or fixed point of w if and only if its trajectory at
any time t is respectively a left endpoint, right endpoint, of fixed point of wI,t. Moreover, if X is
the set of numbers i ∈ Z with φI,tR (x) = 0 for x = αI,t(i), then the trajectories of any two i, j ∈ X
have the same relative order at all times greater than or equal to t.

Choose a right endpoint a ∈ Z of w. Corresponding to this choice, we define a particular integer
sequence I. This sequence will be the concatenation of three subsequences J , K, and L, given as
follows. If φR(a) = 0 then define J to be the empty sequence. Otherwise, let i0 be an arbitrary
integer and define J = (i1, i2, . . . , il) as the sequence characterised by the following properties:

• For each t ≥ 0, it+1 is the smallest integer x > it such that φJ,tR (x− 1) = 0 < φJ,tR (x).

• The first time t at which φJ,t(x) = 0 for x = αJ,t(a) is t = l.

Let k = αJ(a). Consider the sequence given by the infinite repetition of k+1, k+2, . . . , k+ n− 2.
Define K as the shortest initial subsequence of this sequence such that φJK(k + 1) = 0, where JK
denotes the concatenation of J and K. We then have k = αJK(a). Define b ∈ Z as the integer with
k + 1 = αJK(b). Note that if wJK(k + 1) < wJK(k), then we must also have wJ,l−1(αJ,l−1(b)) <
wJ,l−1(αJ,l−1(a)) and φJ,l−1(αJ,l−1(b)) = 0 < φJ,l−1(αJ,l−1(a)) = 1. But this is impossible, since
the way we have constructed J means that the weighted involution (wJ,t, φJ,t) never has nesting
cycles in which the outer cycle has weight zero while the inner cycle has a positive weight. We
conclude, therefore, that wJK(k) < wJK(k + 1). Finally, let L be any sequence such that φI = 0
and z = ωR(θ) = wI , where I = JKL. Define i = αI(a) and j = αI(b) and note that z(i) < i < j
and z(i) < z(j).

Since θ is right-admissible and since the right operators π1, π2, . . . preserve right-admissibility,
each t ∈ {i + 1, i + 2, . . . , j − 1} must be a left endpoint of z with z(t) < z(i). Thus j = min{e ∈
Z : i < j and z(j) < z(i)}. Moreover, it is easy to see that any pair (i, j) ∈ Z with j = min{e ∈
Z : i < j and z(j) < z(i)} arises in this way for some choice of a: given i, the desired value of a is
w(z(i) + p) where p is the number of pairs (x, y) ∈ C(z) with x < z(i) < y.

Now consider the unique weighted involution θ′ = (w,φ′) ∈ Wn which covers θ is the order ≺
and has φ′R(a) = φR(a) + 1. Define z′ ∈ Ĩn such that ωR(θ

′) = z′. If we define K ′ by adding the
index k to the end of K and set I ′ = JK ′L, then it holds by construction that z = ωR(θ

′) = wI′

and gL(θ
′) = αI′ = gsg−1h for g = αJ , s = sk, and h = αI = gR(θ). Since g−1h(k) = i and

13



g−1h(k + 1) = j, it follows that gL(θ
′) = h(g−1h)−1s(g−1h) = gR(θ)tij, and therefore z′ = tijztij .

This suffices to show the equivalence of (a) and (b). For the last assertion, note that it follows from
Theorem-Definition 3.9 and Corollary 4.4 that ℓ(gR(θ

′)) = ℓ(gR(θ)) + 1, so gR(θ)⋖ gR(θ)tij .

Define ≺R as the transitive closure of the relation on Ĩn with z ≺R tijztij whenever z(i) < i
and j = min{e ∈ Z : i < e and z(i) < z(e)}. Define ≺L similarly as the transitive closure of the
relation on Ĩn with z ≺L tijztij whenever j < z(j) and i = max{e ∈ Z : e < j and z(e) < z(j)}.
Recall that a partially ordered set is graded if all maximal chains between two elements have the
same length. A rank function for a graded poset P is a map P → Z, the difference of whose values
gives the common length of all maximal chains between two comparable elements.

Proposition 5.2. The posets (Ĩn,≺R) and (Ĩn,≺L) are isomorphic via the map z 7→ z∗. Both are
graded subposets of (Ĩn, <) with rank function z 7→ 1

2ℓ(z).

Proof. The first assertion is clear from the definitions. For the second claim, note by Lemma 2.10
that if z covers y in ≺R or ≺L then y < z and ℓ(z) = ℓ(y) + 2.

Lemma 5.3. An element z ∈ Ĩn is minimal in ≺R (respectively, ≺L) if and only if ℓ(z) = ℓ′(z).

Proof. We may just consider (Ĩn,≺R) since the other poset is isomorphic. Assume z ∈ Ĩn is minimal
with respect to ≺R. We cannot have z(i + 1) < i + 1 and z(i + 1) < z(i) for any i ∈ Z since then
sizsi ≺R z. This implies that if i+ 1 is a right endpoint of z then either i is also a right endpoint
with z(i) < z(i + 1), or z(i) = i+ 1. Applying this property in succession, we deduce that in fact
z(i) = i + 1 whenever i + 1 is a right endpoint of z, so ℓ(z) = ℓ′(z). Conversely, any involution
z ∈ Ĩn with ℓ(z) = ℓ(z′) is evidently minimal with respect to ≺R.

Putting everything together gives the following.

Theorem 5.4. The maps ωR : (Mn,≺) → (Ĩn,≺R) and ωL : (Mn,≺) → (Ĩn,≺L) are isomorphisms
of partially ordered sets which preserve ℓ and ℓ′, and have respective inverses λR and λL.

Proof. By Corollaries 4.4 and 4.13, the maps ωR and ωL preserve ℓ and ℓ′, are injective with left
inverses λR and λL, and restrict to bijections {θ ∈ Mn : wt(θ) = 0} → {w ∈ Ĩn : ℓ(w) = ℓ′(w)}.
Given these facts, the maps’ surjectivity follows from Lemmas 5.1 and 5.3 by induction.

Slightly abusing notation, we write Ĩn(q, x) =
∑

w∈Ĩn
qℓ(w)xℓ

′(w) ∈ N[[q, x]].

Corollary 5.5. If n ≥ 1 then Ĩn(q, x) =

⌊n/2⌋∑

k=0

n

n− k

(
n− k

k

)(
qx

1− q2

)k

.

Proof. Corollary 4.4 and Theorem 5.4 imply that Ĩn(q, x) =
∑

θ∈Mn
q2wt(θ)(qx)ℓ

′(θ). By Proposi-

tion 4.7, the coefficient of xk in the latter power series is n
n−k

(n−k
k

)
qk(1 + q2 + q4 + q6 + . . . )k.

Corollary 5.6. If n ≥ 3 then Ĩn(q, x) = Ĩn−1(q, x) +
qx

1−q2
Ĩn−2(q, x).

Define ℓ̂(w) = 1
2(ℓ(w) + ℓ′(w)) for w ∈ Ĩn. Corollary 5.5 shows that ℓ̂(w) ∈ N.
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Corollary 5.7. For each n ≥ 2 and m ≥ 1, let Nn(m) and N̂n(m) be the number of involutions
w ∈ Ĩn with ℓ(w) = m and ℓ̂(w) = m, respectively. Then

Nn(m) =
∑

1≤j≤⌊n/2⌋
j≡m (mod 2)

n

n− j

(
n− j

j

)( j+m
2 − 1

j − 1

)
and N̂n(m) =

⌊n/2⌋∑

j=1

n

n− j

(
n− j

j

)(
m− 1

j − 1

)
.

Proof. Extract the coefficients of qm in Ĩn(q, 1) and q
2m in Ĩn(q, q) =

∑
w∈Ĩn

q2ℓ̂(w).

Remark. The sequence {N̂n(n)}n=1,2,3,... = (0, 2, 3, 10, 25, 71, 196, 554, 1569, . . . ) coincides with
[27, A246437], which gives the “type B analog for Motzkin sums,” while {N̂n(2n)}n=1,2,3,... =
(0, 2, 3, 18, 50, 215, 735, 2898, . . . ) gives [27, A211867], which counts certain Motzkin paths.

Define ζR, ζL : Ĩn → Ĩn as the maps ζR = ∗ ◦ ωL ◦ λR = ωR ◦ ∗ ◦ λR = ωR ◦ λL ◦ ∗ and
ζL = ∗ ◦ ωR ◦ λL = ωL ◦ ∗ ◦ λL = ωL ◦ λR ◦ ∗. Corollary 4.4 and Theorem 5.4 imply this property:

Corollary 5.8. The maps ζR and ζL are involutions of (Ĩn,≺R) and (Ĩn,≺L), respectively, which
preserve length ℓ and absolute length ℓ′, and it holds that ζL ◦ ∗ = ∗ ◦ ζR.

Consider the following variation of the permutations gL(θ) and gR(θ) for θ ∈ Wn.

Definition 5.9. For each z ∈ Ĩn let αR(z) = gR(λR(z)) ∈ S̃n and αL(z) = gL(λL(z)) ∈ S̃n.

As our final result in this section, we derive a more explicit formula for these elements.

Proposition-Definition 5.10. If a1, a2, . . . , an ∈ Z represent the distinct congruence classes mod-
ulo n then there is a unique m ∈ Z and a unique w ∈ S̃n such that w(m + i) = ai for i ∈ [n].
Moreover, it holds that m = 1

n

∑n
i=1(ai − i). Define [a1, a2, . . . , an] = w ∈ S̃n.

Proof. If an affine permutation exists with the desired property, it must be given by the map
w : Z → Z with w(m+ i+ jn) = ai + jn for i ∈ [n] and j ∈ Z. As this map is in S̃n if and only if∑

i∈[n] i =
∑

i∈[n]w(i) =
∑

i∈[n]w(m+ i)− nm =
∑

i∈[n] ai − nm, the result follows.

If N > n and a1, a2, . . . , aN ∈ Z represent all congruence classes modulo n, then we define
[a1, a2, . . . , aN ] ∈ S̃n inductively by the condition that [a1, a2, . . . , aN ] = [a1, . . . , âj , . . . , aN ] if there
are indices 1 ≤ i < j ≤ N with ai ≡ aj (mod n). As usual, here ̂ denotes omission.

Theorem 5.11. Let z ∈ Ĩn and m ∈ Z. Suppose a1 < a2 < · · · < al and d1 < d2 < · · · < dl are
the elements of m+ [n] with ai ≤ z(ai) and z(di) ≤ di. Define bi = z(ai) and ci = z(di). Then

αR(z) = [a1, b1, a2, b2, . . . , al, bl]
−1 and αL(z) = [c1, d1, c2, d2, . . . , cl, dl]

−1.

In particular, these formulas do not depend on the choice of m.

Note that l is necessarily n− ℓ′(z). Before the proof, we give an example.

Example 5.12. One has αR(1) = αL(1) = [1, 1, 2, 2, . . . , n, n]−1 = 1. If z = t1,8t2,7 ∈ Ĩ4 then
αR(z) = [1, 8, 2, 7]−1 = [3, 5, 2, 0] and αL(z) = [−2, 3,−3, 4]−1 = [5, 3, 0, 2].
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Proof. By Lemma 3.11, we may just prove the assertions for gR(z). Replacing m by m + 1 has
no effect on the formula for gR(z) since [a2, b2, . . . , al, bl, a1 + n, b1 + n] = [a1, b1, a2, b2, . . . , al, bl],
and so we deduce that this formula is independent of the choice of m. When ℓ(z) = ℓ′(z), we
have [a1, b1, . . . , al, bl]

−1 = [1, 2, . . . , n]−1 = 1 = gR(z). For the general case, suppose z′ ∈ Ĩn covers
z in ≺R, so that z′ = tijztij for some i, j ∈ Z with z(i) < i and j = min{e ∈ Z : i < e :
z(i) < z(e)}. Let m = z(i) − 1, so that a1 = z(i) and b1 = i, and assume by induction that
gR(z) = [a1, b1, a2, b2, . . . , al, bl]

−1. Note that i, i + 1, . . . , j − 1 are necessarily all right endpoints
of z, and that consequently i < j < i+ n. Define ∆ = j − i ∈ [n − 1] and note that the only way
{i, z(i)} + nZ and {j, z(j)} + nZ can intersect is if j < z(j) ≡ i (mod n). We now compute the
product gR(z)tij . There are four cases to consider:

(a) Suppose z(j) < j. Let t ∈ {2, 3, . . . , l} be the unique index with at ≡ z(j) (mod n) and
bt ≡ j (mod n). Then gR(z)tij = [a1, b1 +∆, a2, b2, . . . , at−1, bt−1, at, bt −∆, at+1, bt+1, . . . ]

−1.

(b) Suppose z(j) = j. Let t ∈ {2, 3, . . . , l} be the unique index with at = bt ≡ j (mod n). Then
gR(z)tij = [a1, b1 +∆, a2, b2, . . . , at−1, bt−1, at −∆, at −∆, at+1, bt+1, . . . ]

−1.

(c) Suppose j < z(j) 6≡ i (mod n). Let t ∈ {2, 3, . . . , l} be the unique index with at ≡ j (mod n).
Then gR(z)tij = [a1, b1 +∆, a2, b2, . . . , at−1, bt−1, at −∆, bt, at+1, bt+1, . . . ]

−1.

(d) Finally suppose j < z(j) ≡ i (mod n). Then z(j) ≡ a1 (mod n) and j ≡ b1 (mod n), and we
have gR(z)tij = [a1 −∆, b1 +∆, a2, b2, . . . , al, bl]

−1.

Let a′1 < a′2 < · · · < a′l be the numbers in m + [n] with a′i ≤ z′(a′i) and set b′i = z′(a′i). In each
case (a)-(d), our computations reduce to the identity gR(z)tij = [a′1, b

′
1, . . . , a

′
l, b

′
l]
−1. For example,

in case (d) we have a′i = ai+1 and b′i = bi+1 for i ∈ [l−1] while a′l = a1−∆+n and b′l = a1+∆+n,
so gR(z)tij = [a′l − n, b′l − n, a′2, b

′
2, . . . , a

′
l−1, b

′
l−1]

−1 = [a′1, b
′
1, . . . , a

′
l, b

′
l]
−1. Since gR(z

′) = gR(z)tij
by Lemma 5.1, the desired formula for gR(z) holds for all z ∈ Ĩn by induction.

6 Demazure conjugation

Recall the definition of the Demazure product ◦ : S̃n × S̃n → S̃n from the introduction. The
operation (z, w) 7→ w−1 ◦ z ◦ w for z ∈ Ĩn and w ∈ S̃n defines another right action of the monoid
(S̃n, ◦), now on Ĩn. We refer to this action as Demazure conjugation. If z ∈ Ĩn and i ∈ Z then

si ◦ z ◦ si =





sizsi if z(i) < z(i+ 1) and (i, i+ 1) /∈ C(z)

zsi if z(i) < z(i+ 1) and (i, i+ 1) ∈ C(z)

z otherwise.

(6.1)

It follows by induction from this formula that the orbit of 1 under Demazure conjugation is all of
Ĩn, so every z ∈ Ĩn can be expressed as z = w−1 ◦ w for some w ∈ S̃n.

Definition 6.1. For z ∈ Ĩn let A(z) be the set of shortest elements w ∈ S̃n with z = w−1 ◦ w.

Example 6.2. If z = t0,5 = [−4, 2, 3, 9] ∈ Ĩ4 then A(z) = {s1s2s3s4, s2s1s3s4, s3s2s1s4}.

The set A(z) is nonempty for all z ∈ Ĩn, and we refer to its elements as the atoms of z. Recall
from Corollary 5.7 that ℓ̂(z) = 1

2 (ℓ(z) + ℓ′(z)). By [24, Proposition 2.6] or (6.1), we have:
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Proposition 6.3. If z ∈ Ĩn then ℓ̂(z) is the common value of ℓ(w) for w ∈ A(z).

Results in [8], building on work of Can, Joyce, and Wyser [4, 5], show that the set of atoms
of an involution in any finite symmetric group naturally has the structure of a bounded, graded
poset. Here, we prove that this phenomenon generalises to involutions in the infinite group S̃n.

Let ⋖A be the relation on S̃n with u ⋖A v if and only if u < si+1u = siv > v for some i ∈ Z.
Note that this relation is empty when n ∈ {1, 2}. Given w ∈ S̃n, write w[j : k] for the sequence of
values w(j)w(j + 1) · · ·w(k). We note two additional characterisations of ⋖A:

Lemma 6.4. Let u, v ∈ S̃n. Then u ⋖A v if and only if for some a, b, c, i ∈ Z with a < b < c we
have u−1[i : i+ 2] = cab, v−1[i : i+ 2] = bca, and u−1(j) = v−1(j) for all j /∈ {i, i + 1, i+ 2}+ nZ.

Proof. This follows as a simple exercise from Corollary 2.2.

Lemma 6.5. Let u, v ∈ S̃n. Then u ⋖A v if and only if for some i ∈ Z and w ∈ S̃n it holds that
u = sisi+1w, v = si+1siw, and ℓ(w) + 2 = ℓ(u) = ℓ(v).

Proof. This is easy to derive from the preceding lemma given Lemma 2.3.

Corollary 6.6. Let z ∈ Ĩn and u, v ∈ S̃n with u⋖A v. Then u ∈ A(z) if and only if v ∈ A(z).

Proof. This follows from Lemma 6.5 since ◦ is associative and si+1si ◦ sisi+1 = sisi+1 ◦ si+1si.

Recall the maps λR, λL : Ĩn → Wn and the elements αR(z), αL(z) from Definitions 3.9 and 5.9.

Definition 6.7. Given z ∈ Ĩn, write (wR, φR) = λR(z) and (wL, φL) = λL(z) and define

αmin(z) = wR · αR(z) = αR(z) · z and αmax(z) = wL · αL(z) = αL(z) · z.

Proposition 6.8. For each z ∈ Ĩn both αmin(z) and αmax(z) belong to A(z).

Proof. Let g = αR(z) and w = wR. By Theorem-Definition 3.9(b) and Corollary 4.4 we have
ℓ(z) = ℓ

(
g−1wg

)
= ℓ(w)+2ℓ(g), so z = g−1wg = g−1◦w◦g. Since ℓ(w) = ℓ′(w), Lemma 2.7 implies

that w = w−1 ◦w, and therefore z = g−1 ◦w−1 ◦w◦g = (wg)−1 ◦wg. As ℓ(wg) = ℓ(w)+ℓ(g) = ℓ̂(z),
we conclude that wg ∈ A(z). The argument that wL · αL(z) ∈ A(z) is similar.

The atoms αmin(z) and αmax(z) have this convenient formula:

Corollary 6.9. Let z ∈ Ĩn, m ∈ Z, and l = n − ℓ′(z). Define ai, bi, ci, di ∈ Z for i ∈ [l] as in
Theorem 5.11. Then αmin(z) = [b1, a1, b2, a2, . . . , bl, al]

−1 and αmax(z) = [d1, c1, d2, c2, . . . , dl, cl]
−1.

Proof. As z[a1, b1, . . . , al, bl] = [b1, a1, . . . , bl, al] and z[c1, d1, . . . , cl, dl] = [d1, c1, . . . , dl, cl] by con-
struction, the result follows from Theorem 5.11.

Example 6.10. If z = t1,8t2,7 ∈ Ĩ4 then αmin(z) = [8, 1, 7, 2]−1 = [4, 6, 1,−1] and αmax(z) =
[3,−2, 4,−3]−1 = [6, 4,−1, 1].

Lemma 6.11. Let z ∈ Ĩn and w ∈ A(z). Then no i ∈ Z has w−1[i : i+ 2] = cba where a < b < c.

Proof. If w−1(i) > w−1(i + 1) > w−1(i + 2) for i ∈ Z then we could write w = sisi+1siv for some
v ∈ S̃n with ℓ(w) = ℓ(v) + 3. But then we would have z = w−1 ◦ w = (sisi+1siv)

−1 ◦ (sisi+1siv) =
(si+1siv)

−1◦(si+1siv) despite ℓ(si+1siv) = ℓ(v)+2 < ℓ(w), contradicting the definition of A(w).
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Lemma 6.12. Let z ∈ Ĩn and v ∈ A(z).

(a) If no u ∈ A(z) exists with u⋖A v then v = αmin(z).

(b) If no w ∈ A(z) exists with v ⋖A w then v = αmax(z).

Proof. Assume no u ∈ A(z) exists with u⋖Av. Lemmas 6.4 and 6.11 then imply that if v−1(i+1) >
v−1(i + 2) for some i ∈ Z then v−1(i) < v−1(i + 2). Therefore v = [b1, a1, b2, a2, . . . , bl, al]

−1 for
some numbers with a1 < a2 < · · · < al, ai ≤ bi for all i, and bi 6= bj for all i 6= j. Thus v = αmin(y)
for the involution y ∈ Ĩn with y(ai) = bi for i ∈ [l] by Corollary 6.9. Since αmin(y) ∈ A(y) we must
have y = z. This proves part (a). The proof of part (b) is similar, proceeding from the observation
if no w ∈ A(z) exists with v ⋖A w then v−1(i) > v−1(i+ 1) implies v−1(i) < v−1(i+ 2).

Fix z ∈ Ĩn and w ∈ S̃n. Define two sets

Lz = {a ∈ Z : a ≤ z(a)} and Rz = {b ∈ Z : z(b) < b}.

Let InvA(w; z) be the set of pairs (p, q) ∈ Z×Z with w(p) > w(q) and either p < q and {p, q} ⊂ Lz,
or p > q and {p, q} ⊂ Rz. Note that InvA(w; z) is closed under the relation generated by (i, j) ∼
(i + n, j + n). Define rankA(w; z) as the number of equivalence classes under this relation (which
a priori could be infinite) in the set difference InvA(w; z) \ InvA (αmin(z); z).

Remark. All of our arguments would go through if we redefined Lz to be {a ∈ Z : a < z(a)} and
Rz to be {b ∈ Z : z(b) ≤ b}. It makes no difference which set contains the fixed points of z.

Example 6.13. Suppose z = t1,8t2,7 ∈ Ĩ4 so that αmin(z) = [4, 6, 1,−1] and w = [6, 4,−1, 1] ∈ A(z)
by Example 6.10. Then Lz = {1, 2} + 4Z and Rz = {3, 4} + 4Z, so we have

InvA(αmin(z); z) = {(i+mn, j + ln) : i, j ∈ {3, 4} and l < m}

and InvA(w; z) = {(1 +mn, 2 +mn) : m ∈ Z} ⊔ {(4 +mn, 3 +mn) : m ∈ Z} ⊔ InvA(αmin(z); z).
Therefore rankA(w; z) = 2.

Finally, let <A be the transitive closure of ⋖A. The following generalises [8, Theorem 6.10].

Theorem 6.14. Let z ∈ Ĩn. Restricted to the set A(z), the relation <A is a bounded, graded
partial order with rank function w 7→ rankA(w; z). Moreover, it holds that

A(z) =
{
w ∈ S̃n : αmin(z) ≤A w

}
=

{
w ∈ S̃n : w ≤A αmax(z)

}
. (6.2)

Remark. Let ∼A be the symmetric closure of <A. The theorem implies that each set A(z) for
z ∈ Ĩn is an equivalence class under ∼A. This weaker statement is equivalent to the main results
of [12, 23] specialised to type Ã; see [23, Corollary 1.6] or [12, Theorem 1.2].

Proof. Fix v ∈ A(z) and let rank(v) = rankA (v; z). Since A(z) is a subset of the finite set of
elements w ∈ S̃n with ℓ(w) = ℓ̂(z), Lemma 6.12 implies that αmin(z) ≤A v ≤A αmax(z). Equation
(6.2) therefore follows from Corollary 6.6, though it remains to show that <A is a partial order.

To prove this, we argue (i) that rank(v) is finite, (ii) that InvA(αmin(z)) ⊂ InvA(v), and (iii)
that (a, c) ∈ C(z) whenever c = u−1(j) > u−1(j + 1) = a for some j ∈ Z. If v = αmin(z) then
these properties hold by Corollary 6.9. Otherwise, there exists an atom u ∈ A(z) with u ⋖A v by
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Lemma 6.12. We may assume by induction that properties (i)-(iii) hold for u. By Lemma 6.4, we
know that u−1[i : i + 2] = cab and v−1[i : i + 2] = bca where a < b < c for some i ∈ Z. Property
(iii) implies that (a, c) ∈ C(z), so InvA(v; z) is either

InvA(u; z) ⊔ {(a+mn, b+mn) : m ∈ Z} or InvA(u; z) ⊔ {(c+mn, b+mn) : m ∈ Z}

according to whether b ≤ z(b) or z(b) < b. We conclude from (i) and (ii) that rank(v) = rank(u) +
1 < ∞ and InvA(αmin(z)) ⊂ InvA(v). Finally suppose v−1(j) > v−1(j + 1) for some j ∈ Z. If
u−1[j : j + 1] = v−1[j : j + 1] then (v−1(j + 1), v−1(j)) ∈ C(z) by property (iii) for u. Otherwise,
Lemma 6.4 implies that for some integers a < b < c we have one of the following:

• u−1[j + 1 : j + 3] = cab and v−1[j + 1 : j + 3] = bca and u−1(j) = v−1(j).

• u−1[j − 2 : j] = cab and v−1[j − 2 : j] = bca and u−1(j + 1) = v−1(j + 1).

• u−1[j − 1 : j + 1] = cab and v−1[j − 1 : j + 1] = bca.

The first two cases cannot occur since they contradict Lemma 6.11, while in the third case we have
(v−1(j + 1), v−1(j)) = (a, c) = (u−1(j), u−1(j − 1)) ∈ C(z) by induction. We conclude that the
desired properties hold for all v ∈ A(z).

Since all atoms have properties (i)-(iii), we can repeat the argument in the preceding paragraph
to deduce that rank(v) = rank(u)+1 <∞ whenever u, v ∈ A(z) have u⋖A v. This shows precisely
that <A restricted to A(z) is a graded partial order with rank function w 7→ rank(w).

Corollary 6.15. Let z ∈ Ĩn and w ∈ A(z).

(a) If b = w−1(i) > w−1(i+ 1) = a for some i ∈ Z then (a, b) ∈ C(z).

(b) It holds that InvA(αmin(z);w) ⊂ InvA(w; z) ⊂ InvA(αmax(z); z).

(c) If (a, b) ∈ C(z) then w(b) < w(a).

Proof. Parts (a) and (b) were shown in the proof of Theorem 6.14. It follows from part (a) that if
part (c) holds for w then the same property holds for any w′ ∈ S̃n with w ⋖A w

′. Since (c) is true
for w = αmin(z), we conclude from Theorem 6.14 that this property holds for all atoms of z.

Figure 1 shows an example of (A(z), <A). The lattice structure evident in this picture appears to
be typical; we have used a computer to check the following conjecture for z ∈ Ĩn in the 333,307 cases
when 0 < ℓ̂(z)n ≤ 100. As a graded lattice, (A(z), <A) is not necessarily Eulerian, distributive, or
semi-modular, but its Möbius function seems to always take values in {−1, 0, 1}.

Conjecture 6.16. The graded poset (A(z), <A) is a lattice for all n and z ∈ Ĩn.

A permutation w ∈ S̃n is 321-avoiding if no integers a < b < c satisfy w(a) > w(b) > w(c). An
element w ∈ S̃n is fully commutative if we cannot write w = usisi+1siv for any u, v ∈ S̃n and i ∈ Z

with ℓ(w) = ℓ(u) + ℓ(v) + 3. The following extends [8, Corollary 6.11] to affine type A.

Corollary 6.17. Let z ∈ Ĩn. The following are equivalent: (a) |A(z)| = 1, (b) αmin(z) = αmax(z),
(c) αR(z) = αL(z), (d) z is 321-avoiding, and (e) z is fully commutative.

Remark. Biagioli, Jouhet, and Nadeau [1, Proposition 3.3] have derived a length generating func-
tion for the involutions in S̃n with these equivalent properties.
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[4, 6, 8, 7,−1,−3]

[4, 7, 8, 5, 0,−3] [5, 6, 8, 7,−3,−2]

[4, 8, 6, 5, 1,−3] [5, 7, 8, 3, 0,−2] [6, 4, 8, 7,−3,−1]

[5, 8, 6, 3, 1,−2] [6, 7, 8, 3,−2,−1] [7, 4, 8, 5,−3, 0]

[5, 9, 6, 1, 2,−2] [6, 8, 4, 3, 1,−1] [7, 5, 8, 3,−2, 0] [8, 4, 6, 5,−3, 1]

[6, 9, 4, 1, 2,−1] [7, 8, 4, 3,−1, 0] [8, 5, 6, 3,−2, 1]

[6, 10, 2, 1, 3,−1] [7, 9, 4,−1, 2, 0] [8, 6, 4, 3,−1, 1] [9, 5, 6, 1,−2, 2]

[7, 10, 2,−1, 3, 0] [8, 9, 4,−1, 0, 1] [9, 6, 4, 1,−1, 2]

[8, 10, 0,−1, 3, 1] [9, 7, 4,−1, 0, 2] [10, 6, 2, 1,−1, 3]

[9, 10, 0,−1, 1, 2] [10, 7, 2,−1, 0, 3]

[10, 8, 0,−1, 1, 3]

Figure 1: Hasse diagram of (A(z), <A) for z = t1,12t2,11t3,4 ∈ Ĩ6

Proof. The equivalence of (a), (b), and (c) is clear from Theorem 6.14. Properties (d) and (e) are
equivalent for all affine permutations z ∈ S̃n; see the results of Green [6, Theorem 2.7] or Lam [19,
Proposition 35]. If z is fully commutative then it follows from [8, Proposition 7.12] that |A(z)| = 1;
this can also be shown by a direct argument. Conversely, if z is not 321-avoiding, then there must
exist a, a′ ∈ Z with a < a′ ≤ z(a′) < z(a), in which case the formulas in Corollary 6.9 show that
αmin(z) 6= αmax(z). Thus (e) ⇒ (a) and (b) ⇒ (d), which completes the proof.

7 Cycle removal process

A doubly infinite sequence S = (. . . a−2a−1a0a1a2 . . . ) is an orbit of a map f : Z → X under the
action of Z by translation. If for some m ∈ Z we have f(m + i) = ai for all i ∈ Z, then we call
S the string representation of f . We sometimes use the term string as a shorthand for doubly
infinite sequence. By Proposition-Definition 5.10, no two elements of S̃n have the same string
representation.

For the remainder of this section, we fix the following notation. Let y ∈ Ĩn and w ∈ S̃n with
w−1 ∈ A(y), and write S for the string representation of w. We construct a sequence of strings
S0, S1, . . . , Sp and pairs (a1, b1), (a2, b2), . . . , (ap, bp) ∈ Z× Z by the following algorithm.

Definition 7.1 (Cycle removal process). Start with S0 = S. Then, for each i = 0, 1, 2, . . . , define
(ai+1, bi+1) to be any pair of integers with ai+1 < bi+1 such that bi+1ai+1 appears as a consecutive
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subsequence of Si. If no such pair exists, so that Si is an increasing sequence, then the process
terminates with p = i. Otherwise, we form Si+1 by removing all numbers congruent to ai+1 or bi+1

modulo n from Si and continue.

We refer to this procedure as the cycle removal process for w. The process must terminate in
a finite number of steps since each iteration removes two congruence classes of integers modulo n
from the current string. By construction the last string Sp is a strictly increasing sequence.

Example 7.2. Suppose y = t1,8t2,7 ∈ Ĩ4 and w = [3, 4,−3,−2] ∈ A(y)−1, so that

S = (. . . ,−5,−4,−11,−10,−1, 0,−7,−6, 3, 4,−3,−2, 7, 8, 1, 2, 11, 12, 5, 6, . . . ).

For our first cycle, choose (a1, b1) = (1, 8). Then

S1 = (. . . ,−5,−10,−1,−6, 3,−2, 7, 2, 11, 6, . . . ).

For our second cycle, choose (a2, b2) = (2, 7). Removing all numbers congruent to 2 or 7 modulo 4
from S1 leaves the empty string S2 = ∅, so our process terminates with p = 2.

Theorem 7.3. No matter how the cycle removal process for w is carried out, ℓ′(y) = p and
C(y) = {(ai +mn, bi +mn) : i ∈ [p], m ∈ Z}, and Sp is the increasing sequence of fixed points of y.

Proof. Fix j ∈ [p] and suppose a, b ∈ Z are such that a− aj = b− bj ∈ nZ, so that a < b. Then ba
must be a consecutive subsequence of Sj−1, so there are integers c1, c2, . . . , cm such that bc1c2 · · · cma
is a consecutive subsequence of S = S0. The number of such integers must satisfy m ≤ n− 2, since
if m = n − 1 then we would have a = b + n 6< b, while if m ≥ n then cn = b + n would appear
between b and a in Sj−1. It follows that a, b, c1, c2, . . . , cm belong to distinct congruences classes
modulo n.

Since none of the numbers between b and a in S are present in Sj−1, there is a subset I ⊂ [j−1]
and integers gi, hi ∈ Z with gi − ai = hi − bi ∈ nZ for each i ∈ I such that {c1, c2, . . . , cm} =
{gi : i ∈ I} ∪ {hi : i ∈ I}. Note, as such, that m = 2|I|. Let ∼ be the equivalence relation on
finite integer sequences generated by setting α ∼ β whenever it is possible to obtain β from α by
replacing a consecutive subsequence of the form e2e3e1 by e3e1e2 where e1 < e2 < e3. We claim
that bc1c2 · · · cma ∼ hi1gi1hi2gi2 · · · hikgikba where i1, i2, . . . , ik are the elements of I in some order.
Applying this property inductively with (a, b) replaced by the pairs (gi, hi), we deduce that at
least bc1c2 · · · cma ∼ bhi1gi1hi2gi2 · · · hikgika. Corollary 6.6 and Lemma 6.11 imply that no sequence
equivalent to bc1c2 · · · cma under ∼ contains a consecutive subsequence e3e2e1 with e1 < e2 < e3.
From this property, it is easy to see that bhi1gi1hi2gi2 · · · hikgika is equivalent under ∼ to a sequence
of the same form with gik = max{gi : i ∈ I}, as well as to a (possibly different) sequence of the
same form with hi1 = min{hi : i ∈ I}. But then it follows that

gi < a < b < hi for all i ∈ I (7.1)

so bhi1gi1hi2gi2 · · · hikgika ∼ hi1gi1hi2gi2 · · · hikgikba as desired. We conclude by Corollary 6.6 that
there exists v ∈ A(y)−1 whose string representation contains ba as a consecutive subsequence, so
(a, b) ∈ C(y) by Corollary 6.15(a). Hence (aj , bj) ∈ C(y) for each j ∈ [p]. Corollary 6.15(c) implies
that each element of the increasing sequence Sp is a fixed point of y, so the theorem follows.

Given a, b, c, . . . , we say that a string “has the form —a—b— c— . . . —” as a shorthand for
the statement that the string contains (a, b, c, . . . ) as a not necessarily consecutive subsequence.
Maintain the notation of Definition 7.1 and Theorem 7.3 in the following corollaries.
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Corollary 7.4. If S has the form — b′— b—a—a′— where (a, b), (a′, b′) ∈ C(y), then a < a′ <
b′ < b.

Proof. This is equivalent to property (7.1) shown in the proof of Theorem 7.3.

Corollary 7.5. None of S0, S1, . . . , Sp contains a consecutive subsequence cba where a < b < c.

Proof. If any string Si had a consecutive subsequence of the form cba where a < b < c, then
Theorem 7.3 would imply that both (a, b) and (b, c) belong to C(y), which is impossible.

We can use the preceding results to give a more explicit set of conditions characterising the
elements of A(y). Restricted to involutions in the finite symmetric group Sn ⊂ S̃n, the following
theorem is equivalent to a result of Can, Joyce, and Wyser [5, Theorem 2.5].

Theorem 7.6. Let y ∈ Ĩn and let S be the string representation of an affine permutation w ∈ S̃n.
Then w−1 ∈ A(y) if and only if the following properties hold:

1. If X,Y ∈ Z are fixed points of y with X < Y then S has the form —X—Y —.

2. If (a, b) ∈ C(y) then S has the form — b—a—.

3. If X ∈ Z is a fixed point of y and (a, b) ∈ C(y) then:

(a) S does not have the form — b—X—a—.

(b) If X < a < b then S has the form —X— b—a—.

(c) If a < b < X then S has the form — b—a—X—.

4. If (a, b), (a′, b′) ∈ C(y) and a < a′ < b′ < b then S has one of the forms

—b—a— b′—a′— or —b′—b—a—a′— or — b′—a′—b—a—

while if a < a′ and b < b′ then S has the form — b—a— b′—a′—.

Proof. First suppose w−1 ∈ A(y). Property 1 holds by Theorem 7.3, and property 2 follows by
Corollary 6.15(c). Property 3(a) holds since ba must occur as a consecutive subsequence of some
intermediate string Si in the cycle removal process for w. Following this observation, one can deduce
properties 3(b) and 3(c) from Corollary 6.15(b). By similar reasoning, if (a, b), (a′, b′) ∈ C(y) then
S cannot have the form — b—b′—a—a′—, so property 4 follows from Corollary 6.15(b) and
Corollary 7.4.

Conversely, suppose S has the given properties. Then b appears to the left of a in S whenever
(a, b) ∈ C(y), and in this case no fixed points of y appear between b and a in S. Moreover,
if (a, b), (a′, b′) ∈ C(y) and either a or b appears between b′ and a′ in S, then S has the form
— b′— b—a—a′— and a < a′ < b′ < b. Recall the definition of the relation ∼A from the remark
following Theorem 6.14. By an inductive argument similar to the one in the proof of Theorem 7.3,
we deduce from the preceding observations that w−1 ∼A (w′)−1 for a permutation w′ ∈ S̃n whose
string representation S′ also satisfies the given conditions and has that property that ba appears as a
consecutive subsequence for each (a, b) ∈ C(y). Property 1 implies that all fixed points of y appear in
order in S′. If cab is a consecutive subsequence of S′ where (a, c) ∈ C(y) and b = y(b), then property
3 implies that a < b. If bca is a consecutive subsequence of S′ where (a, c) ∈ C(y) and b = y(b), then
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property 3 implies that either b < a or a < b < c. Finally, if (a, b), (a′, b′) ∈ C(y) where a < a′, then
S′ may contain bab′a′ or b′baa′ or b′a′ba as a consecutive subsequence, and in the second two cases,
property 4 implies that a < a′ < b′ < b. Given these observations, it is straightforward to show
that (w′)−1 ∼A (w′′)−1 for a permutation w′′ ∈ S̃n whose string representation S′′ contains ba as a
consequence subsequence for each (a, b) ∈ C(y), and has the property that a appears to the left of
a′ whenever a < a′ and a ≤ y(a) and a′ ≤ y(a′). By Corollary 6.9, the unique such permutation is
w′′ = αmin(y)

−1, so by Theorem 6.14 we have w−1 ∈ A(y).

Fix a subset E ⊂ [n] of size m. Let φE : [m] → E and ψE : E → [m] be order-preserving
bijections. If w ∈ Sn is a permutation in a finite symmetric group, then its standardisation is the
permutation [w]E = ψw(E) ◦ w ◦ φE ∈∈ Sm. If w2 = 1 and w(E) = E, then ([w]E)

2 = 1.

The Demazure product ◦ on S̃n restricts to an associative product Sn × Sn → Sn and each
involution y ∈ In = Ĩn ∩Sn has A(y) ⊂ Sn. Can, Joyce, and Wyser’s description of A(y) for y ∈ In
in [5] implies that w ∈ Sn belongs to A(y) if and only if [w]E ∈ A([y]E) for all subsets E ⊂ [n]
which are invariant under y and contain at most two y-orbits; cf. [9, Corollary 3.19]. This “local”
criterion for membership in A(y) was an important tool in the proofs of the main results in [9].

Example 7.7. The atoms of the reverse permutations in S2, S3, and S4 are given by A(21) = {21},
A(321) = {312, 231}, and A(4321) = {4213, 3412, 2431}. If y = n · · · 321 ∈ In and E ⊂ [n] is y-
invariant with at most two orbits, then [y]E is either 21, 321, or 4321, and one can check that
requiring [w]E ∈ A([y]E) imposes precisely the sort of conditions we saw in Theorem 7.6.

This result can be extended to the affine case, provided we give the right definition of the
standardisation of an affine permutation. Fix a subset E ⊂ Z with |(E+nZ)∩ [n]| = m, and define
φ̃E,n as the unique order-preserving Z → E + nZ with φ̃E,n([m]) ⊂ [n].

Lemma 7.8. If w ∈ S̃n then there is a unique order-preserving bijection ψ̃E,w : w(E) + nZ → Z

such that ψ̃E,w ◦ w ◦ φ̃E,n ∈ S̃m. If w ∈ Ĩn and w(E) = E then φ̃E,n and ψ̃E,w are inverses.

Proof. Let w ∈ S̃n. The first assertion follows on checking that the images of 1, 2, . . . ,m under
w◦φ̃E,n represent the distinct congruences classes in w(E)+nZ modulo n. For the second assertion,
one uses the fact that if w is an involution, then for each i ∈ [n] with w(i) 6= i, there is a unique
j ∈ [n] with w(i) ≡ j (mod n) and w(i) +w(j) = i+ j. The details are left as an exercise.

Given w ∈ S̃n and E ⊂ Z with |(E + nZ) ∩ [n]| = m, define [w]E,n = ψ̃E,w ◦ w ◦ φ̃E,n ∈ S̃m.
We refer to [w]E,n as the (affine) standardisation of w. One has [w]E,n = [w]E+mn,n for all m ∈ Z.
When n is clear from context, we write [w]E instead of [w]E,n. This is consistent with our earlier
notation since if E ⊂ [n] and w ∈ Sn ⊂ S̃n, then φ̃E,n|[m] = φE and ψ̃E,w|E = ψw(E).

Corollary 7.9. If E ⊂ Z, y ∈ Ĩn, and y(E) = E, then [y]E ∈ Ĩn.

Proof. By Lemma 7.8, both ψ̃E,y ◦ φ̃E,n and φ̃E,n ◦ ψ̃E,y are identity maps so ([y]E)
2 = 1.

Example 7.10. Standardisation has a simple interpretation in terms of winding diagrams. If
E = y(E) ⊂ Z then the winding diagram of [y]E is formed from that of y ∈ Ĩn by erasing the
vertices in [n] \ (E + nZ) along with their incident edges, and then replacing the numbers that
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remain by 1, 2, . . . ,m = |(E+nZ)∩ [n]| in order. For example, if n = 8 and E = {2, 4, 6, 7, 8}, then

•
1 •

2

•3

•
4

•
5•

6

• 7

•
8

and

•
1

•2

•
3

•
4

• 5

represent y = t1,3t2,12t6,8 ∈ Ĩ8 and [y]E = t1,7t3,5 ∈ Ĩ5, respectively.

The following is a corollary of Theorem 7.6 via the preceding lemmas.

Corollary 7.11. Let y ∈ Ĩn, w ∈ S̃n, and X = {1, y(1), . . . , n, y(n)}. The following are equivalent:

(a) w ∈ A(y).

(b) [w]E ∈ A([y]E) for each subset E ⊂ X with y(E) = E.

(c) [w]E ∈ A([y]E) for each subset E ⊂ X with y(E) = E and containing at most two y-orbits.

Proof. If E ⊂ Z has y(E) = E, then C([y]E) consists of the pairs (i, j) ∈ Z×Z such that (a, b) ∈ C(y)
for a = φ̃E,n(i) and b = φ̃E,n(j). If w ∈ S̃n, then applying φ̃E,n to each term in the string
representation of ([w]E)

−1 gives the same thing as removing all numbers not in E + nZ from the
string representation of w−1. Since φ̃E,n is order-preserving, it follows from Theorem 7.6 that (a)
⇒ (b) ⇒ (c). The conditions in Theorem 7.6 each apply to the relative ordering, within the string
representation of w−1, of numbers from a set of at most two cycles of y, so (c) ⇒ (a).

8 Covering transformations

The sets A(z) for z ∈ Ĩn are closely related to the restriction of the Bruhat order < on S̃n to Ĩn.
Recall that if z ∈ Ĩn then ℓ̂(z) = 1

2(ℓ(z) + ℓ′(z)) = ℓ(w) for all w ∈ A(z), where ℓ′ is given by
Definition 2.5. The following statements derive from results of Hultman [14, 15]; see [9, §3.1].

Proposition 8.1. The poset (Ĩn, <) is graded with rank function ℓ̂.

Lemma 8.2. If y, z ∈ Ĩn and w ∈ A(z). Then y ≤ z if and only if some v ∈ A(y) has v ≤ w.

In the usual Bruhat order on S̃n all covering relations have the form w⋖wt where t is a reflection.
Describing the covering relations in the subposet (Ĩn, <) is a more delicate problem, but one we
can attack using Lemma 8.2 and the results of the previous two sections.

Incitti [17, 18] solves the analogue of this problem for involutions in the finite Weyl groups of
type A, B, and D, by associating to each reflection a covering transformation to play the role of
right multiplication. In this section, we define our own covering transformations τnij : Ĩn → Ĩn.

Restricted to involutions in Sn ⊂ S̃n, these operators will coincide with the maps τij in [9], which
are themselves just a different notation for the maps ctij in [17].
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Definition 8.3. Let ∼graph be the equivalence relation on vertex-coloured graphs with integer
vertices in which G ∼graph H if and only there exists a graph isomorphism G → H which is an
order-preserving bijection.

Definition 8.4. Fix y ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Define Gij(y) as the graph with
vertex set {i, j, y(i), y(j)} and edge set {{i, y(i)}, {j, y(j)}} \ {{i}, {j}}, in which the vertices i and
j are coloured white and all other vertices are coloured black. Let k be the number of vertices in
Gij(y) and define Dij(y) as the unique vertex-coloured graph on [k] with Dij(y) ∼graph Gij(y).

We use these definitions to simplify our notation. There are only 20 possibilities for Dij(y),
which we draw by arranging the vertices 1, 2, . . . , k in order from left to right, using ◦ for the white
vertices and • for the black vertices.

Example 8.5. If y, z ∈ Ĩn are such that y(i) < j = y(j) < i and i < z(j) < j < z(i) then

Dij(y) = • ◦ ◦ and Dij(z) = ◦ • ◦ • .

Definition 8.6. Fix y ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Set tii = tjj = 1 and define

(◦, ◦) = tij, (◦, •) = ti,y(j), (•, ◦) = ty(i),j , y =

{
y · ti,y(i) if i ≡ y(j) (mod n)

y · ti,y(i) · tj,y(j) if i 6≡ y(j) (mod n).

Using this notation, let τnij(y) ∈ Ĩn be given as follows:

τnij(y) =





(◦, ◦) · y · (◦, ◦) if Dij(y) is ◦ ◦ • , • ◦ ◦ , • ◦ ◦ • , ◦ ◦ • • or • • ◦ ◦

(◦, •) · y · (◦, •) if Dij(y) is ◦ • ◦

(•, ◦) · y · (•, ◦) if Dij(y) is ◦ • ◦

(◦, •) · y · (◦, •) if Dij(y) is ◦ • • ◦ and i 6≡ y(j) (mod n)

(◦, ◦) · y if Dij(y) is ◦ • • ◦ and i ≡ y(j) (mod n)

(◦, ◦) · y if Dij(y) is ◦ • • ◦

(◦, •) · y if Dij(y) is ◦ • ◦ •

(•, ◦) · y if Dij(y) is • ◦ • ◦

(◦, ◦) · y if Dij(y) is ◦ ◦

y otherwise.

Remark. There is a lot to unpack here. We include a few remarks about our notation:

(a) Let i′ be the number adjacent to i in Gij(y), if one exists, and define j′ similarly. Then (◦, ◦)
transposes i and j (as well as i + mn and j + mn for all m ∈ Z), while (◦, •) transposes
i and j′ and (•, ◦) transposes i′ and j. The unique order-preserving graph isomorphism
Gij(y) → Dij(y) maps i and j to vertices labeled ◦ and i′ and j′ to vertices labeled •.

(b) If i ≡ y(j) (mod n) then ti,y(i) = tj,y(j), so y is the unique element of S̃n which fixes each
element of {i, j, y(i), y(j)} + nZ and which agrees with y at all integers outside this set.
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(c) If i 6≡ y(j) (mod n) then both Gij(y) and Gij(τ
n
ij(y)) have vertex set V = {i, j, y(i), y(j)}.

In this case, given V , the value of τnij(y) is uniquely determined by the graphs Dij(y) and
Dij(τ

n
ij(y)). If i ≡ y(j) (mod n) then j ≡ y(i) (mod n) also holds, and Dij(y) must be

• ◦ ◦ • or ◦ • • ◦ or • ◦ ◦ • or ◦ • • ◦ .

When this occurs Gij(y) and Gij(τ
n
ij(y)) may have different vertex sets; see Table 1.

Dij(y) for y ∈ Ĩn and i < j 6≡ i (mod n) Dij(τ
n
ij(y))

◦ ◦ ◦ ◦
◦ • • ◦ if i ≡ y(j) (mod n) ◦ ◦
◦ • • ◦ if i ≡ y(j) (mod n) ◦ ◦

◦ • ◦ ◦ • ◦
• ◦ ◦ • ◦ ◦
◦ • ◦ ◦ • ◦
◦ ◦ • ◦ ◦ •

• ◦ ◦ • • ◦ ◦ •

◦ • • ◦ if i 6≡ y(j) (mod n) ◦ • • ◦
◦ • ◦ • ◦ • ◦ •
• ◦ • ◦ • ◦ • ◦

◦ • • ◦ if i 6≡ y(j) (mod n) ◦ • • ◦
◦ ◦ • • ◦ ◦ • •
• • ◦ ◦ • • ◦ ◦

Table 1: Possible values for Dij(y) and Dij(τ
n
ij(y)). If Dij(y) does not match any of the listed cases,

then τnij(y) = y. Only in the second two cases do Dij(y) and Dij(τ
n
ij(y)) have different vertex sets.

Example 8.7. For z = t1,3t5,7 ∈ Ĩ7 we have

τ71,4




•
1 •

2

•3

•
4

•
5

• 6

•
7


 =

•
1 •

2

•3

•
4

•
5

• 6

•
7

and τ71,14




•
1 •

2

•3

•
4

•
5

• 6

•
7


 =

•
1 •

2

•3

•
4

•
5

• 6

•
7

.

Lemma 8.8. Let y ∈ Ĩn and i, j ∈ Z with i < j 6≡ i (mod n). Then y ≤ τnij(y).

Proof. Maintain the notation of Definition 8.6. In the cases when τnij(y) ∈ {y, ty, tyt} for some
t ∈ {(◦, ◦), (◦, •), (•, ◦)}, the relation y ≤ τnij(y) follows from Lemmas 2.3 and 2.9. If Dij(y) is

◦ • • ◦ and i ≡ y(j) (mod n), then one can check using Lemma 2.3 that for any integer j′ with
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i < j′ < y(j) and j′ ≡ j (mod n), we have y < y · tj′y(j) < y · tj′y(j) · tij′ = τnij(y). If Dij(y) is

◦ • • ◦ and i ≡ y(j) (mod n), then the same statement holds with j′ = y(i). In the remaining
cases, the set {i, j, y(i), y(j)} has four elements a < b < c < d which represent distinct congruence
classes modulo n, and we have y < y · tbc = tad · y < tad · y · tab < tad · y · tab · tcd = τnij(y).

The following result is useful for determining when ℓ̂(τnij(y)) = ℓ̂(y) + 1.

Proposition 8.9. Suppose y ∈ Ĩn and z = τnij(y) 6= y for some integers i < j 6≡ i (mod n).

(a) Suppose y(i) ≤ i or j ≤ y(j). Then ℓ̂(z) = ℓ̂(y) + 1 if and only if ℓ(ytij) = ℓ(y) + 1.

(b) Suppose i < y(i) < y(j) < j ≡ y(i) (mod n). Then ℓ̂(z) = ℓ̂(y) + 1 if and only if y(j) = i+ n
and no e ∈ Z satisfies either pair of conditions

j − n < e < i+ n and i < y(e) < j or i < e < j − n and i− n < y(e) < j.

(c) Suppose i < y(j) < y(i) < j ≡ y(i) (mod n). Then ℓ̂(z) = ℓ̂(y) + 1 if and only if y(j) = i+ n
and no e ∈ Z satisfies either pair of conditions

j − 2n < e < i+ n and i− n < y(e) < j or i < e < j − 2n and i− 2n < y(e) < j.

Remark. If z = τnkl(y) 6= y for any integers k, l, then it is always possible to find some other
integers i, j such that z = τnij(y) = τnkl(y) and the hypotheses of (a), (b), or (c) hold.

Proof. Maintain the notation of Definition 8.6. First assume y(i) ≤ i or j ≤ y(j). If i and j are
both fixed points of y, then z = ytij and ℓ̂(z)− ℓ̂(y) = 1

2(1 + ℓ(ytij)− ℓ(y)). If instead

Dij(y) ∈ { ◦ ◦ • , • ◦ ◦ , • ◦ ◦ • , ◦ ◦ • • , • • ◦ ◦ } ,

then z = tijytij and ℓ̂(z) − ℓ̂(y) = 1
2 (ℓ(z) − ℓ(y)), and it is straightforward, using Lemma 2.9, to

check that ℓ(z)− ℓ(y) = 2 if and only if ℓ(ytij) = ℓ(y) + 1. If i = y(i) < y(j) < j then

z = tij′ytij′ = τnij(y) = τnij′(y)

for j′ = y(j), and ℓ(ytij) = ℓ(ytij′). Our claim that ℓ̂(z) = ℓ̂(y) + 1 if and only if ℓ(ytij) = ℓ(y) + 1
therefore follows from the previous case with j replaced by j′. If i < y(j) < y(j) = j then the same
conclusion follows likewise. Finally, if i < i′ < j′ < j for i′ = y(i) and j′ = y(j), then

y < y · ti′j < y · ti′j · tii′ < y · ti′j · tii′ · tjj′ = z

and ℓ̂(z)−ℓ̂(y) = 1
2(ℓ(z)−ℓ(y)−1), and in this case it is again an exercise to check that ℓ(z) = ℓ(y)+3

if and only if ℓ(ytij) = ℓ(y) + 1. In the symmetric case when i′ < i < j < j′, we reach the same
conclusion by a similar argument. This sketch suffices to prove part (a).

The proofs of (b) and (c) are similar. Assume we are in either case. Define i′ = y(i) and
j′ = y(j). In case (b) let i′′ = i′ and in case (c) let i′′ be the smallest integer greater than i with
i′′ ≡ j (mod n). As noted in the proof of Lemma 8.8, we then have y < y · ti′′j′ < y · ti′′j′ · tii′′ = z

and ℓ̂(z)− ℓ̂(z) = 1
2(ℓ(z)− ℓ(y)). We can only have y⋖ y · ti′′j′ if j

′ = i+n and no integer e satisfies
i′′ < e < i + n and y(i′′) < y(e) < j. This translates to the first set of conditions in (b) and (c).
One checks that the second pair of conditions in each case is equivalent to y · ti′′j′ ⋖ y · ti′′j′ · tii′′ .
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Let w ∈ S̃n be an affine permutation. Refining the terminology of Theorem 7.6 slightly, we say
that “w has the form —a1a2 · · · ak—b1b2 · · · bl—c1c2 · · · cm— . . . —” if the string representation
of w contains a1a2 · · · ak and b1b2 · · · bl and c1c2 · · · cm and so forth as consecutive subsequences,
with every ai appearing to left of every bj, every bi appearing to the left of every cj , and so on.
The following statement is a constructive version of Theorem 1.1 from the introduction:

Theorem 8.10. Suppose y, z ∈ Ĩn and i, j ∈ Z are such that i < j 6≡ i (mod n). If w ∈ A(y) and
w ⋖ wtij ∈ A(z) then z = τnij(y).

Proof. Let t = tij and suppose w ∈ S̃n is such that w−1 ∈ A(y), ℓ(tw) = ℓ(w) + 1, and (tw)−1 ∈

A(z), so that ℓ̂(z) = ℓ̂(y)+1. It suffices to show that z = τnij(y). Our strategy will be to compare the
cycle removal processes for w and tw, which differ in predictable ways, and then invoke Theorem 7.3.
Note, from Lemma 2.3, that ℓ(tw) = ℓ(w) + 1 if and only if i appears to the left of j in the string
representation of w and no integer e ∈ Z with i < e < j appears between i and j in this string.

Define tγ = (t(a), t(b)) for γ = (a, b) ∈ Z × Z, so that if γ ∈ C(y) then tγ ∈ C(tyt) if and only
if t(a) < t(b). Throughout, we let p = ℓ′(y) and suppose the cycle removal process for w outputs
the sequence γ1, γ2, . . . , γp ∈ C(y). First assume i, j ∈ {a, b, a′, b′} where (a, b), (a′, b′) ∈ C(y). The
following useful observation then holds:

Lemma 8.11. If tγ1, tγ2, . . . , tγp all belong to C(tyt) then the cycle removal process for tw can be
carried out to have these cycles as output, and it follows from Theorem 7.3 that z = tyt.

Continuing the proof of the theorem, suppose w has the form

— b—a— b′—a′— where a 6≡ a′ (mod n) and b 6≡ b′ (mod n).

One of the following cases must then occur:

• Suppose i = a < a′ = j, so that tw has the form — b—a′— b′—a— and a < b′. If a′ < b then
it follows from Lemma 8.11 that z = tyt, so a < a′ < b < b′ as otherwise Lemma 2.3 implies
that z = tyt < y, contradicting Lemma 8.2. In this case we therefore have τnij(y) = tyt = z.

Assume instead that b < a′ so that a < b < a′ < b′. We claim that one may assume
that γp = (a, b), i.e., that ba is the last subsequence removed in the cycle removal process
for w. The only way this can fail is if some intermediate string Sk in the cycle removal
process has the form —Y baX— for a cycle (X,Y ) ∈ C(y), which by Corollary 7.4 must have
a < X < Y < b < a′. But if this occurs then w must have the form

—Y — b—a—X— b′—a′— or —Y —b—a— b′—a′—X— .

which contradicts either ℓ(tw) = ℓ(w) + 1 or Theorem 7.6. Our claim therefore holds. By
similar reasoning, we deduce that no fixed point of y less than a′ (respectively, greater than
b) can appear to the right of a (respectively, to the left of b) in the string representation
of w. It follows that the cycle removal process for tw can be carried out to have output
tγ1, tγ2, . . . , tγp−1, which by Theorem 7.3 implies that z = tab′ · y · tab · ta′b′ = τnij(y).

• If i = b < b′ < j, then the situation is symmetric to the previous case, and we deduce that
z = τnij(y) by similar arguments.

• If i = b < a′ = j, so that a < b < a′ < b′, then Lemma 8.11 implies that z = tyt = τnij(y).
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• Finally suppose i = a < b′ = j, so that tw has the form — b—b′—a—a′—. By Theorem 7.6,
we cannot have both a′ < a and b′ < b, and the cases when a < a′ < b′ < b or a′ < a < b < b′

each lead to contradiction. For example, suppose a < a′ < b′ < b. By considering what
happens if we try to remove the same consecutive subsequences during the cycle removal
process for tw as we remove for w, we deduce from Theorem 7.3 that (b′, b) ∈ C(z) and that
either a is a fixed point of z or (a, c) ∈ C(z) for an integer c < b′. Both cases contradict
Theorem 7.6 since a appears to the right of b′ in tw. If a′ < a < b < b′ then we obtain a
similar contradiction by symmetric arguments.

Instead suppose both a < a′ and b < b′. We claim that one may assume that some intermedi-
ate string Sk in the cycle removal process for w contains bab′a′ as a consecutive subsequence.
To check this, first note that no fixed points of y can appear in the string representation of
w between a and b′ by Theorem 7.6 since ℓ(tw) = ℓ(w) + 1. By Corollary 7.4, the only way
our claim can fail is if w has the form

—Y — b—a—X—b′—a′— or —b—a—Y ′— b′—a′—X ′—

for some (X,Y ) ∈ C(y) with a < X < Y < b or some (X ′, Y ′) ∈ C(y) with a′ < X ′ < Y ′ < b′.
Both cases would contradict the fact that ℓ(tw) = ℓ(w) + 1, so our claim holds.

If a′ < b, then it follows from our claim that we may construct the cycle removal processes
for w and tw to be identical, except that at steps k and k + 1 the process for w removes the
subsequences ba and then b′a′, while the process for tw removes b′a and then ba′. In this case
we deduce by Theorem 7.3 that z = taa′ · y · taa′ = ti,y(j) · y · ti,y(j) = τnij(y).

Instead suppose b < a′. We then make the further claim that the index k can chosen to
be p − 1, i.e., so that the subsequences ba and b′a′ are the last ones removed in the cycle
removal process for w. This can only fail if an intermediate string in the cycle removal
process for w has the form —Y bab′a′X— for some (X,Y ) ∈ C(y), but this never occurs
since Corollary 7.4 would imply that Y < b < a′ < X, contradicting X < Y . We can
therefore assume (ap−1, bp−1) = (a, b) and (ap, bp) = (a′, b′). Under this hypothesis, it follows
using Corollary 7.5 that the cycle removal process for tw can be carried out to have output
γ1, γ2, . . . , γp−2, (a, b

′), whence by Theorem 7.3 we have z = tab′ · y · tab · ta′b′ = τnij(z).

This concludes the most complicated portion of our analysis. For the next case, continue to let
(a, b), (a′, b′) ∈ C(y) and assume i, j ∈ {a, b, a′, b′}, but now suppose w has the form

— b—a— b′—a′— where a ≡ a′ (mod n) and b ≡ b′ (mod n).

One of the following must then occur:

• Suppose i = a < b′ = j. Since ℓ(tw) = ℓ(w) + 1, Theorem 7.6 implies that no fixed points of
y appear between a and b′ in the string representation of w. We may assume that γp = (a, b),
since if some string Sk in the cycle removal process for w had the form —Y baX—Y ′b′a′X ′—
for (X,Y ), (X ′, Y ′) ∈ C(y), then Corollary 7.4 would imply that a < X < Y < b < b′,
contradicting ℓ(tw) = ℓ(w) + 1. Hence the cycle removal process for tw can be carried out to
have output γ1, γ2, . . . , γp−1, (a, b

′), so by Theorem 7.3 we have z = tab′ · y · tab = τnij(y).

• If i = b < a′ = j, then it follows from Lemma 8.11 that z = tba′ · y · tba′ = τnij(y).
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Still with (a, b), (a′, b′) ∈ C(y) and i, j ∈ {a, b, a′, b′}, finally suppose w has the form

— b—b′—a′—a—

so that a 6≡ a′ (mod n) and b 6≡ b′ (mod n). Since w has the form — i— j—, Theorem 7.6 implies
that a′ < a < b < b′ and either i = a′ < a = j or i = b < b′ = j. It follows by Lemma 8.11
that z = tyt so (a, b′), (a′, b) ∈ C(z). This contradicts Theorem 7.6, however, since tw has the form
— b—b′—a—a′— or — b′— b—a′—a—. Hence this last case cannot occur.

By Theorem 7.6, the preceding discussion exhausts the possibilities for i and j when these
numbers belong to distinct 2-cycles of y. We next consider the case when i, j ∈ {a, b, e} where
e ∈ Z is fixed point of y and (a, b) ∈ C(y). Suppose this happens and w has the form

—e— b—a— .

Since i must appear to the left of j, one of the following must occur:

• Suppose i = e < a = j < b so that tw has the form —a—b—e—. Since ℓ(tw) = ℓ(w) + 1,
it follows by Theorem 7.6 that no fixed points of y less than a can appear between to the
right of e in the string representation of w, and that likewise no fixed points greater than a
can appear to the left of e. Hence, by Theorem 7.3 the cycle removal process for tw can be
carried out to have output tγ1, tγ2, . . . , tγp so z = tyt = τnij(y).

• Suppose a < i = e < b = j so that tw has the form — b—e—a—. We argue that this leads
to contradiction. By considering what happens if we try to remove the same consecutive
subsequences during the cycle removal process for tw as we remove for w, we deduce from
Theorem 7.3 that (a, e) ∈ C(z) and that either b is a fixed point of z or (e′, b) ∈ C(z) for an
integer e′ > e. Both cases contradict Theorem 7.6 since b appears to the left of e in tw.

• Finally suppose i = e < a < b = j so that tw again has the form —b—e—a—. Since
ℓ(tw) = ℓ(w)+1, it follows by Theorems 7.3 and 7.6 that no fixed points of y appear between
e and a in the string representation of w. Moreover, by Theorem 7.6, all fixed points of y
appearing in w to the right of a are bounded below by a, and all fixed points of y appearing
to the left of e are bounded above by e. We can assume γp = (a, b), since otherwise some
intermediate string Sk in the cycle removal process of w must have the form —e—Y baX—
for a cycle (X,Y ) ∈ C(y), in which case Corollary 7.4 would imply that e < a < X <
Y < b, contradicting ℓ(tw) = ℓ(w) + 1. Hence the penultimate string Sp−1 contains eba as
a consecutive subsequence, so the cycle removal process for tw can be carried out to have
output γ1, γ2, . . . , γp−1, (e, b). By Theorem 7.3, we therefore have z = tea · y · tea = τnij(y).

If w has the form —b—a—e— then z = τnij(y) follows by a symmetric argument. The only
remaining possibility is that y(i) = i < j = y(j). Since no fixed points can occur between i and j in
the string representation of w, the cycle removal process for tw can be carried out to have output
γ1, γ2, . . . , γp, (j, i), and hence z = ty = τnij(y). We conclude that z = τnij(y) in all cases.

Write y ⋖I z for y, z ∈ Ĩn if z covers y in the Bruhat order of S̃n restricted to Ĩn, i.e., if
{w ∈ Ĩn : y ≤ w < z} = {y}. Note that y ⋖ z implies y ⋖I z if y, z ∈ Ĩn, but not vice versa.

Corollary 8.12. If y, z ∈ Ĩn then y ⋖I z if and only if ℓ̂(z) = ℓ̂(y) + 1 and z = τnij(y) for some i, j.

Proof. If ℓ̂(z) = ℓ̂(y) + 1 and z = τnij(y) then Lemma 8.8 implies that y ⋖I z. Suppose conversely

that y ⋖I z. By Proposition 8.1, we then have y < z and ℓ̂(z) = ℓ̂(y) + 1, so by Lemma 8.2 there
exists v ∈ A(y) and w ∈ A(z) with v⋖w, so by Theorem 8.10 we have z = τnij(y) for some i, j.
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analogues of Chebyshev polynomials, Adv. Appl. Math. 82 (2017), 129–154.

[25] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Ded-
icata 35 (1990), 389–436.

[26] R. W. Richardson and T. A. Springer, Complements to: The Bruhat order on symmetric
varieties, Geom. Dedicata 49 (1994), 231–238.

[27] N. J. A. Sloane, editor (2003), The On-Line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org/.

[28] B. J. Wyser, K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles
with symmetric or skew-symmetric bilinear form, Transform. Groups 18 (2013), 557–594.

[29] B. J. Wyser and A. Yong, Polynomials for symmetric orbit closures in the flag variety, Trans-
form. Groups 22(1) (2017), 267–290.

32

http://oeis.org/

	1 Introduction
	2 Preliminaries
	3 Weighted involutions
	4 Admissibility
	5 Order isomorphisms
	6 Demazure conjugation
	7 Cycle removal process
	8 Covering transformations

