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José Manuel Rodŕıguez Caballero
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Abstract

We introduce a method to derive theorems from Elementary Number Theory by
means of relationships among formal languages. Using σ-algebras, we define what a

proof of a number-theoretical statement by Language Theory means. We prove that
such a proof can be transformed into a traditional proof in ZFC. Finally, we show
some examples of non-trivial number-theoretical theorems that can be proved by formal
languages in a natural way. These number-theoretical results concern densely divisible
numbers, semi-perimeters of Pythagorean triangles, middle divisors and partitions into
consecutive parts.

1 Introduction

It is a rather subjective matter to decide whether a given statement in ZFC belongs to
the field of Elementary Number Theory or not. A typical example is Goodstein’s Theorem,
which, even if it concerns positive integers, it has been traditionally classified as belonging
to the field of Symbolic Logic (see [3]).

Throughout this paper, we will be interested in theorems of the form “R = S” in ZFC,
where R and S are subsets of the set of positive integers, denoted Z≥1. Beside the above-
mentioned remark, we will say, in a rather informal way, that “R = S” is an elementary
number-theoretical statement if R and S concern some kind of integers traditionally studied
in Elementary Number Theory, e.g. prime numbers, perfect numbers, square free numbers,
integers which are the sum of two squares, etc. We will leave open the question of what is
not an elementary number-theoretical theorem.

Our standpoint is to assign a word γ(n) ∈ Σ∗ over a finite alphabet Σ to any n ∈ U ,
where U is a subset of Z≥1. The traditional way to do it is by means of the decimal positional
numeration system, where Σ = [0..9] and U = Z≥1. In this case, γ−1(w) is either the empty
set (g.e. γ−1(0001) = ∅) or a singleton (g.e. γ−1(29) = {29}).
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Each choice of U , Σ and γ gives rise to an structure T := (U ,Σ, γ) that we will call
arithmétique langagière. In this structure it is natural to define a notion of proof (see
Definition 7) using the minimal σ-algebra containing the family of sets (γ−1(w))w∈Σ∗. This
notion of proof is a refinement of the ordinary notion of proof in ZFC (see Lemma 8). In the
case of the decimal positional numeration system, considered as an arithmétique langagière,
it is easy to write a proof that a positive integer, which is divisible by 10, it is also divisible
by 5 (just look at the last character).

In this paper we are particularly interested in a family of arithmétiques langagières,
denoted KRλ and parametrized by a real number λ > 1. The original motivation for the
definition of KRλ is that, for λ = 2, γ(n) encodes, up to an injective morphism of monoids,
the non-zero coefficients of the polynomials Cn(q), introduced in [7] and [8]. A quickly
way to define Cn(q) is as the number of ideals I of the group algebra Fq [Z⊕ Z] such that
Fq [Z⊕ Z] /I is an n-dimensional vector space. It is remarkable that these polynomials are
related to classical multiplicative functions via modular forms (see [9]).

We will show that the arithmétique langagière KR2 can be used to prove, in a natural
way, statements (Theorems 21 and 26) concerning semi-perimeters of Pythagorean triangles
(Definition 17), even-trapezoidal numbers (Definition 20) and 2-densely divisible numbers
(Definition 25). Also, we will show a statement (Theorem 12) about generalized middle
divisors (Definition 10), due to Höft [6], whose proof using our approach involves the whole
family of arithmétiques langagières (KRλ)λ>1.

2 Preliminaries

2.1 Symmetric Dyck words

Definition 1 (Definition 1 in [10]). Let λ > 1 be a real number. For any integer n ≥ 1
define the word

〈〈n〉〉λ := w1w2...wk ∈ {a, b}∗,
by means of the expression

wi :=

{
a if ui ∈ Dn\ (λDn) ,
b if ui ∈ (λDn) \Dn,

where Dn is the set of divisors of n, λDn := {λd : d ∈ Dn} and u1, u2, ..., uk are the
elements of the symmetric difference Dn△λDn written in increasing order.

Definition 2. For each real number λ > 1 define the language

Lλ := {〈〈n〉〉λ : n ∈ Z≥1} .
The Dyck language, denoted D, is defined as the ⊆-smallest language over the alphabet

{a, b} satisfying ε ∈ D, aDb ⊆ D and DD ⊆ D. Words in D are called Dyck words.
The symmetric Dyck language, denoted Dsym, is defined by

Dsym := {w ∈ D : w̃ = σ (w)},
where w̃ is the mirror image of w and σ : {a, b}∗ −→ {a, b}∗ is the morphism of monoids
given by a 7→ b and b 7→ a. Words in Dsym are called symmetric Dyck words.
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2.2 Irreducible Dyck words

Let (D, ·) be the monoid of Dyck words endowed with the ordinary concatenation (usually
omitted in notation).

It is well-known that D is freely generated by the language of irreducible Dyck words
Dirr := aDb, i.e. every word in D may be formed in a unique way by concatenating a sequence
of words from Dirr. So, there is a unique morphism of monoids Ω : (D, ·) −→ (Z≥1,+), such
that the diagram

D
(
Dirr

)∗

Z≥1

Ω

commutes, where D −→
(
Dirr

)∗
is the identification of D with the free monoid

(
Dirr

)∗
and(

Dirr
)∗ −→ Z≥1 is just the length of a word in

(
Dirr

)∗
considering each element of the set

Dirr as a single letter (of length 1). In other words, Ω(w), with w ∈ D, is the number of
irreducible Dyck words needed to obtain w as a concatenation of them.

2.3 The central concatenation

Definition 3 (from [12]). Consider the set S := {aa, ab, ba, bb} endowed with the binary
operation, that we will call central concatenation,

u ⊳ v := ϕ−1 (ϕ(u)ϕ(v)) ,

where ϕ : S∗ −→ S∗ is the bijection given by

ϕ (ε) = ε,

ϕ (xu y) = (xy)ϕ (u) ,

for all x, y ∈ {a, b} and u ∈ S∗.

It is easy to check that (S, ⊳) is a monoid freely generated by S and having ε as identity
element.

Definition 4 (from [12]). For any x ∈ S, let

ℓx : (S∗, ⊳) −→ (Z≥0,+)

be the unique morphism of monoids satisfying

ℓx(y) :=

{
1 if x = y,
0 if x 6= y,

for all y ∈ S.
It is easy to prove that (D, ⊳) is a monoid freely generated by I := D•\ (D• ⊳D•),

where D• := D\{ε}. The following definition corresponds to the notion of centered tunnels
introduced for the first time, in an equivalent way, in [2].
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Definition 5 (from [2] and [12]). Let ct : (D, ⊳) −→ (Z≥0,+) be the morphism of monoids
given by

ct (w) :=

{
1 if w = ab,
0 if w 6= ab,

for all w ∈ I. We say that ct (w) is the number of centered tunnels of w.

3 Logical framework

3.1 Théorie langagière

Let Σ be a finite alphabet. Consider the measurable space (Σ∗,P (Σ∗)) of subsets of Σ∗

(languages over the alphabet Σ), where P (Σ∗) is the ordinary σ-algebra of subsets of Σ∗.

Definition 6. Let U be a set. A théorie langagière1 is a 3-tuple (U ,Σ, γ), where γ : U −→ Σ∗

is an application.

Definition 7. Let T = (U ,Σ, γ) be a théorie langagière. Denote by UT the minimal σ-
algebra containing the family of sets (γ−1(w))w∈Σ∗. Given R, S ∈ P (U), we say that the
theorem “R = S” is provable in T if the following statements are provable in ZFC,

(i) “R, S ∈ UT ”,

(ii) “γ (R) = γ (S)”.

Lemma 8 (Fundamental Lemma of Théories Langagières). Let T = (U ,Σ, γ) be a théorie
langagière. For all R, S ∈ P (U), if “R = S” is provable in T then “R = S” is provable in
ZFC.

Proof. Suppose that R, S ∈ UT and γ (R) = γ (S).
The statement R, S ∈ UT and the minimality of UT imply the existence of two languages

LR, LS ∈ P (Σ∗) such that

R =
⋃

w∈LR

γ−1(w) and S =
⋃

w∈LS

γ−1(w).

Without lost of generality we will assume that γ−1(w) 6= ∅ for all w ∈ LR ∪ LS. It
follows that γ(R) = LR and γ(S) = LS. The equality γ (R) = γ (S) implies that LR = LS.
Therefore R = S.

A théorie langagière T = (U ,Σ, γ) satisfying U ⊆ Z≥1 will be called arithmétique lan-
gagière2.

Definition 9. Let λ > 1 be a real number. Define KRλ := (U ,Σ, γ), where U := Z≥1,
Σ := {a, b} and γ(n) := 〈〈n〉〉λ.

1In English we could say language-theoretic theory, but it is longer than the French expression.
2In English we could say language-theoretic arithmetic.
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4 Middle divisors

Let Cn(q) be the polynomial mentioned in the introduction. It was proved in [8] that
Cn(q) = (q−1)2Pn(q), for some polynomial Pn(q) whose coefficients are non-negative integers.

Divisors d|n satisfying
√

n/2 < d ≤
√
2n are called middle divisors of n. These divisors

were studied in [8], [6] and [14]. The coefficient of qn−1 in Pn(q), denoted an,0, counts the
number of middle divisors of n. The following definition provides a generalization of the
arithmetical function an,0.

Definition 10 (from [12]). Consider a real number λ > 1. Let n ≥ 1 be an integer. The
number of λ-middle divisors of n, denoted middleλ(n), is the number of divisors d of n
satisfying √

n

λ
< d ≤

√
λn.

A block polynomial is a polynomial of the form B(q) = qi + qi+1 + qi+2 + ... + qj, with
0 ≤ i < j. The smallest number k of block polynomials B1(q), B2(q), ..., Bk(q) such that

Pn(q) = α1B1(q) + α2B2(q) + ... + αkBk(q),

for some α1, α2, ..., αk ∈ Z, will be called the number of blocks of n and denoted blocks(n) :=
k. The arithmetical function blocks(n) is generalized in the following definition.

Definition 11 (from3 [11]). Consider a real number λ > 1. Let n ≥ 1 be an integer.
We define the number of λ-blocks of n, denoted blocksλ(n), as the number of connected
components of ⋃

d|n

[d, λd] .

Theorem 3 in [6] (we call it Höft’s theorem) states the equivalent between middle2(n) > 0
and blocks2(n) ≡ 1 (mod 2), for any integer n ≥ 1. The following result is a generalization
of Höft’s original result.

Theorem 12 (Generalized Höft’s theorem). Let λ > 1 be a real number. For each integer
n ≥ 1, we have that middleλ(n) > 0 if and only if blocksλ(n) is odd. Furthermore, this
theorem is provable in KRλ.

Höft’s proof in [6] follows the general lines of traditional proofs in Elementary Number
Theory. Our proof of Theorem 12 will be based on properties of Dyck words. We will use
the following auxiliary results.

Lemma 13. For any integer n ≥ 1 and any real number λ > 1, we have that 〈〈n〉〉λ is a
symmetric Dyck word, i.e. Lλ ⊆ Dsym.

Proof. See Theorem 2(i) in [10].

Lemma 14. Let λ > 1 be a real number. For any integer n ≥ 1, ct (〈〈n〉〉λ) = middle2(n).

3In [11], the function blocksλ(n) is called the number of connected components of Tλ(n).
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Proof. See Lemma 3.7 in [12].

Lemma 15. Let λ > 1 be a real number. For any integer n ≥ 1, Ω (〈〈n〉〉λ) = blocksλ(n).

Proof. See Theorem 2 in [11].

Lemma 16. Consider the languages over the alphabet {a, b},

LR := {w ∈ Dsym : ct(w) > 0} ,
LS := {w ∈ Dsym : Ω(w) odd} .

We have that LR = LS.

Proof. Take w ∈ LS . By definition of LS , we have that Ω(w) is odd. By Lemma 13, there
are u, v ∈ D such that w = u v σ (ũ) and v is irreducible. By definition of Dirr, there is
v′ ∈ D satisfying v = av′b. So, w = u a v′ b σ (ũ). It follows that ct(w) > 0. Hence w ∈ LR.

Now, take w ∈ LR. By definition of LR we have that ct(w) > 0. By Lemma 13, there
are u, v′ ∈ D such that w = u a v′ b σ (ũ). The Dyck word v := av′b is irreducible and
w = u v σ (ũ). It follows that Ω(w) = 1 + 2Ω(u). Hence, w ∈ LS.

Therefore, LR = LS .

Proof of Theorem 12. Consider a fixed real number λ > 1. Define the sets

R := {n ∈ Z≥1 : middleλ(n) > 0} ,
S := {n ∈ Z≥1 : blocksλ(n) odd} .

Let LR and LS be the languages defined in Lemma 16. In virtue of Lemmas 14 and 15,

R =
⋃

w∈LR

γ−1(w) ∈ UKRλ
and S =

⋃

w∈LS

γ−1(w) ∈ UKRλ
,

where γ is from KRλ = (U ,Σ, γ). By definition of Lλ, it follows that γ (R) = LR ∩ Lλ and
γ (S) = LS ∩ Lλ. In virtue of Lemma 16, LR = LS. So, γ (R) = γ (S). By Definition 7,
“R = S” is provable in KRλ. Using Lemma 8, we conclude that R = S.

5 Semi-perimeters of Pythagorean triangles

Definition 17. Let n ≥ 1 be an integer. We says that n is the semi-perimeter of a
Pythagorean triangle if there are three integers x, y, z ∈ Z≥1 satisfying

x2 + y2 = z2 and
x+ y + z

2
= n.

In order to work with semi-perimeters of Pythagorean triangles, we will need the following
language-theoretical characterization.

Lemma 18. An integer n ≥ 1 is not the semi-perimeter of a Pythagorean triangle if and
only if 〈〈n〉〉2 ∈ (ab)∗.
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We will use the following auxiliary result.

Lemma 19. For any integer n ≥ 1 and any real number λ > 1, the height of the Dyck path
〈〈n〉〉λ is the largest value of h such that we can find h divisors of n, denoted d1, d2, ..., dh,
satisfying

d1 < d2 < ... < dh < λd1.

Proof. See Theorem 2(ii) in [10].

Proof of Lemma 18. From the explicit formula for Pythagorean triples (see [13]), it follows in
a straightforward way that an integer n ≥ 1 is the semi-perimeter of a Pythagorean triangle
if and only if there are two divisors of n, denoted d1 and d2, satisfying,

d1 < d2 < 2d1.

By Lemma 13, 〈〈n〉〉2 is a Dyck word, so its height as Dyck path is well-defined. In
virtue of Lemma 19, such divisors d1 and d2 do exist if and only if the height of 〈〈n〉〉2 at
least 2. Therefore, n is not the semi-perimeter of a Pythagorean triangle if and only if
〈〈n〉〉2 ∈ (ab)∗.

5.1 Even-trapezoidal numbers

The number of partitions of a given integer n ≥ 1 into an even number of consecutive parts
was study in [5].

Definition 20. Let n ≥ 1 be an integer. We says that n even-trapezoidal if there is at least
a partition of n into an even number of consecutive parts, i.e.

n =

2m−1∑

k=0

(a + k)

for two integers a ≥ 1 and m ≥ 1.

It is rather easy to check that a power of 2 is neither even-trapezoidal nor the semi-
perimeter of a Pythagorean triangle. Nevertheless, the converse statement is non-trivial.

Theorem 21. Let n ≥ 1 be an integer. We have that n is a power of 2 (including n = 1) if
and only if n is neither even-trapezoidal nor the semi-perimeter of a Pythagorean triangle.
Furthermore, this theorem is provable in KR2.

We will use the following auxiliary results.

Lemma 22. For all integers n ≥ 1, we have that n is a power of 2 (including n = 1) if and
only if 〈〈n〉〉2 = ab.
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Proof. Take n ∈ Z≥1.
Suppose that 〈〈n〉〉2 = ab. By definition of 〈〈n〉〉2, the length of 〈〈n〉〉2 is two times the

number of odd divisors of n. So, n has exactly 1 odd divisors. It follows that n is a power
of 2 (including n = 1).

Suppose that n is a power of 2 (including n = 1). It follows that

Dn△2Dn = {1 < 2n} ,

with 1 ∈ Dn\ (2Dn) and 2n ∈ (2Dn) \Dn. By definition of 〈〈n〉〉2, we conclude that 〈〈n〉〉2 =
ab.

Lemma 23. For any integer n ≥ 1 and any real number λ > 1, we have

ℓab (〈〈n〉〉λ) = #
{
d|n : d 6∈ λDn and d <

√
λn

}
,

where Dn is the set of divisors of n.

Proof. See Lemma 3.4. in [12].

Lemma 24. For all n ≥ 1, we have that n is not even-trapezoidal if and only if 〈〈n〉〉2 ∈{
ak bk : k ∈ Z≥1

}
.

Proof. It was proved in [5] that the number of partitions of n into an even number of
consecutive parts is precisely the cardinality of the set

{
d|n : d 6∈ 2Dn and d >

√
2n

}
.

Notice that if d =
√
2n is a divisor of n, then d = 2n

d
is even. So, an integer n ≥ 1 is not

even-trapezoidal if and only if

#
{
d|n : d 6∈ 2Dn and d <

√
2n

}
=

1

2
|〈〈n〉〉2| .

By Lemma 13, 〈〈n〉〉2 is a Dyck word, so ℓab (〈〈n〉〉2) is well-defined. In virtue of Lemma
23, an integer n ≥ 1 is not even-trapezoidal if and only if

ℓab (〈〈n〉〉2) =
1

2
|〈〈n〉〉2| .

This last condition holds if and only if there is k ∈ Z≥1 such that 〈〈n〉〉2 = ak bk, be-
cause 〈〈n〉〉2 is a Dyck word. Therefore, n is not even-trapezoidal if and only if 〈〈n〉〉2 ∈{
ak bk : k ∈ Z≥1

}
.

Proof of Theorem 21. Define the sets

R := {2m : m ∈ Z≥0} ,

S :=

{
n ∈ Z≥1 :

¬ (n even-trapezoidal) and
¬ (n semi-perimeter of a Pythagorean triangle)

}
.
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Consider the languages

LR = {ab} ,
LS =

{
ak bk : k ∈ Z≥1

}
∩ (ab)∗ .

In virtue of Lemmas 22, 18 and 24,

R =
⋃

w∈LR

γ−1(w) ∈ UKR2
and S =

⋃

w∈LS

γ−1(w) ∈ UKR2
,

where γ is from KRλ = (U ,Σ, γ). Furthermore, γ (R) = LR ∩ L2 and γ (S) = LS ∩ L2.
It easily follows that LR = LS. So, γ (R) = γ (S). By Definition 7, “R = S” is provable

in KR2. Using Lemma 8, we conclude that R = S.

5.2 Densely divisible numbers

The so-called λ-densely divisible numbers were introduced in [1] by the project polymath8,
led by Terence Tao.

Definition 25. Consider a real number λ > 1. Let n ≥ 1 be an integer. We say that n is
λ-densely divisible if blocksλ(n) = 1.

Again, it can be proved in a straightforward way that powers of 2 are 2-densely divisible
number. But it is more complicated to prove that, for a given positive integer, to be a
2-densely divisible number, without being the semi-perimeter of a Pythagorean triangle, it
is enough to be a power of 2.

Theorem 26. Let n ≥ 1 be an integer. We have that n is a power of 2 (including n = 1)
if and only if both n is 2-densely divisible and it is not the semi-perimeter of a Pythagorean
triangle. Furthermore, this theorem is provable in KR2.

We will use the following auxiliary results.

Lemma 27. Let λ > 1 be a real number. For any integer n ≥ 1, we have that 〈〈n〉〉λ is
irreducible (i.e. 〈〈n〉〉λ ∈ Dirr) if and only if n is λ-densely divisible.

Proof. It is the case corresponding to blocks(n) = 1 in Lemma 15.

Proof of Theorem 26. Define the sets

R := {2m : m ∈ Z≥0} ,

S :=

{
n ∈ Z≥1 :

(n 2-densely divisible) and
¬ (n semi-perimeter of Pythagorean triangle)

}
.

Consider the languages

LR = {ab} ,
LS = {w ∈ D : w irreducible} ∩ (ab)∗ .
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In virtue of Lemma 22, 18 and 27,

R =
⋃

w∈LR

γ−1(w) ∈ UKR2
and S =

⋃

w∈LS

γ−1(w) ∈ UKR2
,

where γ is from KR2 = (U ,Σ, γ). Furthermore, γ (R) = LR ∩ L2 and γ (S) = LS ∩ L2.
It easily follows that LR = LS. So, γ (R) = γ (S). By Definition 7, “R = S” is provable

in KR2. Using Lemma 8, we conclude that R = S.

6 Conclusions

In this paper we showed that some non-trivial elementary number-theoretical theorems are
susceptible to be transformed into relationships among formal languages and then proved by
rather trivial arguments from Language Theory.
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[10] José Manuel Rodŕıguez Caballero, Symmetric Dyck Paths and Hooley’s ∆-function,
Combinatorics on Words. Springer International Publishing AG. 2017.
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