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Abstract

We consider a variant on the Tetranacci sequence, where one adds the previous

four terms, then divides the sum by two until the result is odd. We give an algorithm

for constructing “initially division-poor” sequences, where over an initial segment one

divides by two only once for each term. We develop a probabilistic model that suggests
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that “most” sequences are unbounded, and provide computational data to support the

underlying assumptions of the model.

1 Introduction

In their 2014 paper [2], Avila and Khovanova define n-free Fibonacci numbers via the recur-
rence, add the previous two terms and divide by the largest power of n dividing the sum. For
example, a 2-free sequence beginning with 2, 3 is as follows:

2, 3, 5, 1, 3, 1, 1, . . .

A 3-free sequence beginning with 2, 3 is as follows:

2, 3, 5, 8, 13, 7, 20, 9, 29, . . .

Avila and Khovanova prove that 2-free sequences are eventually constant, and conjecture
that 3-free sequences are all eventually periodic.

Guy, Khovanova, and Salazar [4] study a different variant of Fibonacci-like sequences
that they call subprime Fibonacci sequences—a variant suggested by Conway. To compute
a term of a subprime Fibonacci sequence, one takes the sum of the previous two terms and,
if the sum is composite, divides by its smallest prime divisor. They study periodic subprime
Fibonacci sequences and derive many interesting results; however, they are unable to prove
that any such sequence has infinite range. Indeed, it is difficult to imagine how one might
prove such a thing. The question, “Do all subprime Fibonacci sequences eventually end in
a cycle?” may belong to the class of extremely difficult (possibly even formally unsolvable)
problems [3]; one such example is the generalized Collatz problem, which was shown to be
undecidable [5].

The first two authors of the present paper studied a more tractable version of subprime-
like Fibonacci sequences that we called prime Fibonacci sequences [1]. In this version, one
takes the sum of the previous two terms and returns the smallest odd prime divisor of that
sum. We showed that every such sequence terminates in a power of 2, but they can be
extended infinitely to the left, i.e., “backwards”.

In the present paper, we consider 2-free Tetranacci sequences, that is, sequences where
one adds the previous four terms, then divides the sum by two until the result is odd. (See
Definition 1.)

Definition 1. Let a1, a2, a3, a4 be odd positive integers. Then (ai)
∞

i=1 is a 2-free Tetranacci
sequence if for all i ≥ 1,

ai+4 =
ai + ai+1 + ai+2 + ai+3

2di

where di is the largest integer such that 2di divides ai + ai+1 + ai+2 + ai+3.

In the rest of this paper, we try to determine the long-term behavior of these sequences.
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2 Periodic sequences

In this section, we consider possible periods of 2-free Tetranacci sequences.

Theorem 2. If a 2-free Tetranacci sequence has period p < 5, then it has period 1.

Proof. The cases p = 2 and p = 4 are quite straightforward, so we leave those proofs to the
reader.

Suppose a, b, c, a, b, c, . . . is a period-3 sequence. Then we have the following:

a+ b+ c+ a = b · 2i (1)

b+ c+ a + b = c · 2j (2)

c+ a + b+ c = a · 2k (3)

From these equations we get a+ b+ c = a · 2k−2+ b · 2i−2 + c · 2j−2. Let α = k− 2, β = i− 2,
and γ = j − 2, so we have

a + b+ c = a · 2α + b · 2β + c · 2γ , (4)

with α, β, γ ≥ −1. We cannot have all of α, β, and γ greater than zero, since that would
make the right-hand-side of (4) greater than the left-hand-side. Also, if any of α, β, γ is equal
to −1, then two of them are, since a, b, and c are odd yet the right-hand-side is an integer.
Thus we have three cases:

• α = β = γ = 0

• α > 0, β ≥ 0, γ = 0

• α > 0, β = γ = −1

The second case is easy to rule out. Suppose α > 0, β ≥ 0, and γ = 0. Then we have
a+ b+ c = a · 2α + b · 2β + c, so a+ b = a · 2α + b · 2β. Now if β > 0 we have a contradiction,
so suppose β = 0, so we get a = a · 2α, a contradiction.

Let us consider the third case, where α > 0 and β = γ = −1. Then a+b+c = a ·2α+ b+c
2
,

and
2a+ b+ c = a · 2α+1. (5)

Now since α > 0 we have 2c + a + b ≡8 0, and since β = γ = −1 we have 2a + b+ c ≡4

2b+a+c ≡4 2. Rearranging (5) we have b+c = 2a(2α−1). Hence 2a+b+c = 2a+2a(2α−1) =
a · 2α+1 ≡4 0 since α > 0. But this is a contradiction.

Therefore it must be the case that α = β = γ = 0. Then (1)-(3) express the fact that
each of a, b, and c is a weighted average of the other two. Therefore a = b = c.

Note that 3, 3, 1, 1, 1 . . . is a period-5 sequence. In fact, it appears to be possibly
the only nontrivial periodic sequence: every period-5 sequence we found was of the form
3a, 3a, a, a, a . . . , and we found no sequences with period larger than 5.
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3 Initially division-poor sequences

In this section, we show that there are sequences for which di = 1 over arbitrarily long initial
segments.

Let α be the positive real root of 2x4 − x3 − x2 − x− 1 = 0, the characteristic equation
for (6) below. (Note that α is irrational.) We can approximate α by a rational r = p

q
such

that |α− r| ≤ 1
q2
. Now, if we never divided by a higher power of 2 than 21, the recursion for

our sequence would be

an+4 =
an+3 + an+2 + an+1 + an

2
, (6)

and hence an would grow like c · αn for some constant c > 0. We will use this idea to build
a sequence that has di = 1 for some initial segment, by using backward recursion to make
an approximate c · αn over that initial segment. We will control the backward propagation
of error by increasing q, hence making r a better approximation to α.

Theorem 3. For any N > 0 there is a 2-free Tetranacci sequence (ai) such that for all

i ≤ N , di = 1.

Proof. Imagine that for some x > 0, a4 ≈ x, a3 ≈ x
α
, a2 ≈ x

α2 , and a1 ≈ x
α3 . We wish to

define a0 = 2 · a4 − [a1 + a2 + a3]. Suppose that a4 is within ǫ of x, a3 within ǫ of x
α
, etc. We

want to bound the error for a0, i.e., |a0 −
x
α4 |.

∣
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∣
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∣
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∣
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x
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∣

∣

∣
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∣

∣
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∣

∣

∣
+
∣

∣

∣
a1 −

x
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∣

∣

∣

≤ 5 · ǫ.

This shows that error propagation is at most 5-fold. Now we define a1, a2, a3, and a4.
Let r = p

q
be such that |α− r| ≤ 1

q2
. For k = q3, let

a1 = 2k + 1,

a2 = r2k + 1,

a3 = r22k + 1,

a4 = r32k + 1.

Then for n ≤ 0, we may define an = 2 · an+4 − (an+3 + an+2 + an+1), so that

an+4 =
an+3 + an+2 + an+1

2
.

Thus we may “go backward” for as many terms as we like, so long as the an’s are positive.
Since the an’s are approximately c · αn, to ensure that an > 0, we need 5n+1 · ǫ ≤ c · α−(n+1),
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where c = a1 = 2k+1 and ǫ is the max error among the terms a2, a3, a4, i.e., ǫ is the largest
of

|a2 − αa1|,

|a3 − α2a1|, and

|a4 − α3a1|.

It is easy to check that |a4 − α3a1| is the largest, and that

|a4 − α3a1| = |r32k + 1− α3(2k + 1)|

≤ 2k|r3 − α3|+ |α3 − 1|

≤ 2k|r − α||r2 + rα+ α2|+ |α3 − 1|

≤ 2q3 ·
1

q2
· (3α2 + o(1)) + 1.5

≤ (6 + o(1))q.

Hence ǫ ≤ (6 + o(1))q.
Now we need 5n+1 · ǫ ≤ a1 · α

−(n+1); since we have 5n+1 · ǫ ≤ 5n+1(6 + o(1))q, then

5n+1(6 + o(1))q ≤ (2q3 + 1)α−n+1 ⇐⇒ (5α)n+1 ≤
2q3 + 1

(6 + o(1))q
(7)

⇐⇒ n+ 1 ≤ log

[

2q3 + 1

(6 + o(1))q

]

/ log(5α), (8)

and the right-hand side of (8) clearly grows without bound.

Practical implementation of the above algorithm presents some problems, since it is
difficult to get arbitrarily good rational approximations to α; the best approximation (in
terms of decimal digits) we can get with Python is

1.3490344565611562810403256662539206445217132568359375

The longest initially division-poor sequence we could obtain from this approximation was 59
terms long. This was achieved using

r = [1; 2, 1, 6, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 67, 1, 1, 1, 5, 3, 3]

=
217560407

161271201

as the approximation to α. This approximation of α is accurate to 16 decimal places (actual
error about 2×10−17), but has denominator with only nine digits. Although we were able to
obtain more convergents for α, they did not increase the length of the initially division-poor
sequence so obtained.
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Figure 1: 59 division-poor terms, plotted against y = 438944974655058688rt

4 Rates of growth and a probabilistic model

Theorem 4. Every 2-free Tetranacci sequence is either periodic or unbounded.

This result applies more generally to sequences determined completely by a few initial
terms, and is doubtless not original, but we include a proof for completeness.

Proof. Suppose the range of (an) is bounded. We group the terms of (an) into blocks of 4
terms, the first being {a1, a2, a3, a4}. Since the range of (ak) is finite, there are but finitely
many distinct blocks, so there must be a repetition, i.e., there are i and k so that the block
{ai, ai+1, ai+2, ai+3} is the same as the block {ak, ak+1, ak+2, ak+3}. Since 4 consecutive terms
determine the remainder of the sequence, (an) is periodic with period dividing k − i.

Now we would like to develop a probabilistic model to study the growth rate of sequences.
Our measure will be the “average value” of

ak+4 −
ak, ak+1, ak+2, ak+3

4
.

Theorem 5. Let (an) be periodic. Then the average value of

ak+4 −
ak, ak+1, ak+2, ak+3

4
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is zero.

Proof. Let (an) be periodic with period p. Then the average value of

ak+4 −
ak, ak+1, ak+2, ak+3

4

is simply
p−1
∑

k=0

[

ak+4 −
ak, ak+1, ak+2, ak+3

4

]

,

where the indices are computed mod p. It is straightforward to verify that the sum is
zero.

For an arbitrary sequence (an), it is unclear how best to define the “average” value of

ak+4 −
ak, ak+1, ak+2, ak+3

4
.

However, we can model (an) by making the assumption that over all sequences (an), “half”
the terms are equivalent to 1 mod 4, and “half” are equivalent to 3 mod 4. Similarly, we
assume that each term has an equal probability of being equivalent to 1, 3, 5, or 7 mod 8,
an equal probability of being equivalent to 1, 3, 5, 7, 9, 11, 13, or 15 mod 16, and so on.

A consequence of this is that given terms a1, a2, a3, a4, it follows that

a5 =
a1 + a2 + a3 + a4

2k
,

where k is equal to n with probability 1
2n

so half the time we divide by 2, a quarter of the
time we divide by 4, an eighth of the time we divide by 8, and so on. To see this, we will
show that if a1+a2+a3+a4 ≡ 0 mod 2k, then the probability is 1

2
that a1+a2+a3+a4 ≡ 0

mod 2k+1. To keep the discussion concrete, we fix k = 3, but the generalization is obvious.
So suppose a1 + a2 + a3 + a4 ≡ 0 (mod 8). For each i, let αi be ai reduced mod 8 (so

0 ≤ αi < 8). Then α1 + α2 + α3 + α4 ≡ 0 (mod 8). Now for each i, either ai ≡ αi (mod 16)
or ai ≡ αi + 8 (mod 16). Let ǫi be ai − αi reduced mod 16, so ǫi = 0 or ǫi = 8.

Then if α1 + α2 + α3 + α4 ≡ 0 (mod 16), we have

a1 + a2 + a3 + a4 ≡ 0 (mod 16) iff ǫ1 + ǫ2 + ǫ3 + ǫ4 ≡ 0 (mod 16),

and if α1 + α2 + α3 + α4 ≡ 8 (mod 16), we have

a1 + a2 + a3 + a4 ≡ 0 (mod 16) iff ǫ1 + ǫ2 + ǫ3 + ǫ4 ≡ 8 (mod 16).

Based on the probabilistic model, ǫ1 + ǫ2 + ǫ3 + ǫ4 ≡ 0 (mod 16) with probability 1
2
, so half

the time that a1 + a2 + a3 + a4 ≡ 0 (mod 8), a1 + a2 + a3 + a4 ≡ 0 (mod 16) as well.
Based on these probabilistic assumptions, we show that “most” sequences are unbounded.
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Theorem 6. Consider the probabilistic model, where

ak+4 =
ak + ak+1 + ak+2 + ak+3

2dk
,

and dk is equal to j with probability 2−j. Then the average value of

ak+4 −
ak + ak+1 + ak+2 + ak+3

4

is positive, so (an) is unbounded.

Proof. Let s = ak + ak+1 + ak+2 + ak+4, so that

ak+4 −
ak + ak+1 + ak+2 + ak+3

4
=

s

2j
−

s

4

= s

(

1

2j
−

1

4

)

.

Then the average value is

s

∞
∑

i=1

(

1

2i
−

1

4

)

·
1

2i
=

s

12
.

Thus, on average the kth term is about 8.3% larger than the average of the previous four
terms. This equates to a growth rate of about 3.3% per term.

In order to check the reasonableness of our assumption, we calculated the first 1000 terms
of each sequence beginning a, b, c, d with 0 < a, b, c, d < 128, and recorded the remainder
mod 32. See Figure 2.
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Figure 2: Histogram of residues modulo 32 for 0 < a, b, c, d < 128, 1000 terms each
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