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Abstract

We prove, using a decision procedure based on finite automata, that every natural

number > 686 is the sum of at most 4 natural numbers whose canonical base-2 rep-

resentation is a binary square, that is, a string of the form xx for some block of bits

x.
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1 Introduction

Additive number theory is the study of the additive properties of integers [8]. In particular,
an additive basis of order h is a subset S ⊆ N such that every natural number is the sum of
h members, not necessarily distinct, of S. The principal problem of additive number theory
is to determine whether a given subset S is an additive basis of order h for some h, and if
so, to determine the smallest value of h. There has been much research in the area, and
deep techniques, such as the Hardy-Littlewood circle method, have been developed to solve
problems.

One of the earliest results in additive number theory is Lagrange’s famous theorem that
every natural number is the sum of four squares [3, 7]. In the terminology of the previous
paragraph, this means that S = {02, 12, 22, 32, . . .} forms an additive basis of order 4. The
celebrated problem of Waring (1770) (see, e.g., [2, 12, 13]) is to determine the corresponding
least order g(k) for k’th powers. Since it is easy to see that numbers of the form 4a(8k + 7)
cannot be expressed as the sum of three squares, it follows that g(2) = 4. It is known that
g(3) = 9 and g(4) = 19.

In a variation on this concept we say that S ⊆ N is an asymptotic additive basis of order
h if every sufficiently large natural number is the sum of h members, not necessarily distinct,
of S. The function G(k) is defined to be the least asymptotic order for k’th powers. From
above we have G(2) = 4. It is known that G(14) = 16, and 4 ≤ G(3) ≤ 7. Despite much
work, the exact value of G(3) is currently unknown.

In this paper we consider a variation on Lagrange’s theorem. Instead of the ordinary
notion of the square of an integer, we consider “squares” in the sense of formal language
theory [6]. That is, we consider x, the canonical binary (base-2) representation of an integer
n, and call N a binary square if N = 0, or if x = yy for some nonempty string y that
starts with a 1. Thus, for example, N = 221 is a binary square, since 221 in base 2 is
11011101 = (1101)(1101). The first few binary squares are

0, 3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, 238, 255, . . . ;

they form sequence A020330 in the On-Line Encyclopedia of Integer Sequences [9]. This is
a natural sequence to study, since the binary squares have density Θ(n1/2) in the natural
numbers, just like the ordinary squares.

In this paper we prove the following result.

Theorem 1. Every natural number N > 686 is the sum of four binary squares. There are
56 exceptions, given below:

1, 2, 4, 5, 7, 8, 11, 14, 17, 22, 27, 29, 32, 34, 37, 41, 44, 47, 53, 62, 95, 104, 107, 113, 116, 122, 125,

131, 134, 140, 143, 148, 155, 158, 160, 167, 407, 424, 441, 458, 475, 492, 509, 526, 552, 560,

569, 587, 599, 608, 613, 620, 638, 653, 671, 686.
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The novelty in our approach is that we obtain this theorem in additive number theory
using very little number theory at all. Instead, we use an approach based on formal language
theory. Previously we obtained similar results for palindromes [11].

Evidently, one could also consider the analogous results for other powers such as cubes,
and bases b ≥ 2, but we do not do that in this paper.

2 The main lemma

We are concerned with the binary representation of numbers, so let us introduce some nota-
tion. If N is a natural number, then by (N)2 we mean the string giving the canonical base-2
representation of N , having no leading zeroes. For example, (43)2 = 101011. The canonical
representation of 0 is ǫ, the empty string.

If 2n−1 ≤ N < 2n for n ≥ 1, we say that N is an n-bit integer in base 2. Note that
the first bit of an n-bit integer is always nonzero. The length of an integer N satisfying
2n−1 ≤ N < 2n is defined to be n; alternatively, the length of N is 1 + ⌊log2N⌋.

Our main lemma is

Lemma 2.

(a) Every length-n integer, n odd, n ≥ 13, is the sum of binary squares as follows: either

– one of length n− 1 and one of length n− 3, or

– two of length n− 1 and one of length n− 3, or

– one of length n− 1 and two of length n− 3, or

– one each of lengths n− 1, n− 3, and n− 5, or

– two of length n− 1 and two of length n− 3, or

– two of length n− 1, one of length n− 3, and one of length n− 5.

(b) Every length-n integer, n even, n ≥ 18, is the sum of binary squares as follows: either

– two of length n− 2 and two of length n− 4, or

– three of length n− 2 and one of length n− 4, or

– one each of lengths n, n− 4, and n− 6, or

– two of length n− 2, one of length n− 4, and one of length n− 6.

Lemma 2 almost immediately proves Theorem 1:

Proof. If N < 217 = 131072, the result can be proved by a straightforward computation.
There are

• 256 binary squares < 217;
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• 19542 numbers < 217 that are the sum of two binary squares;

• 95422 numbers < 217 that are the sum of three binary squares;

• 131016 numbers < 217 that are the sum of four binary squares.

Otherwise N ≥ 217, so (N)2 is a binary string of length n ≥ 18. If n is odd, the result
follows from Lemma 2 (a). If n is even, the result follows from Lemma 2 (b).

It now remains to prove Lemma 2. We do this in the next section.

3 Proof of Lemma 2

Proof. The basic idea is to use nondeterministic finite automata (NFAs) . These are finite-
state machines where each input corresponds to multiple computational paths; an input is
accepted iff some computational path leads to a final state. We assume the reader is familiar
with the basics of this theory; if not, please consult, e.g., [6]. For us, an NFA is a quintuple
(Q,Σ, δ, q0, F ), where Q is the set of states, Σ is the input alphabet, δ is the transition
function, q0 is the initial state, and F is the set of final states.

We construct an NFA that, on input an integer N written in binary, “guesses” a repre-
sentation as a sum of binary squares, and then verifies that the sum is indeed N . Everything
is done using a reversed representation, with least significant digits processed first. There
are some complications, however.

First, with an NFA we cannot verify that a guessed string is indeed a binary square, as
the language {xx : x ∈ 1{0, 1}∗} is not a regular language. So instead we only guess the
“first half” of a binary square. Now, however, we are forced to choose a slightly unusual
representation for N , in order to be able to compare the sum of our guessed powers with
the input N . If N were represented in its ordinary base-2 representation, this would be
impossible with an NFA, since once we process the guessed “first half” and compare it to
the input, we would no longer have the “second half” (identical to the first) to compare to
the rest of the input.

To get around this problem, we represent integers N in a kind of “folded representation”
over the input alphabet Σ2∪(Σ2×Σ2), where Σk = {0, 1, . . . , k−1}. The idea is to present our
NFA with two bits of the input string at once, so that we can add both halves of our guessed
powers at the same time, verifying that we are producing N as we go. Note that we use
slightly different representations for the two parts of Lemma 2. The precise representations
are detailed in their respective subsections.

We can now prove Lemma 2 by phrasing it as a language inclusion problem. For each of
the two parts of the lemma, we can build an NFA A that only accepts such folded strings if
they repesent numbers that are the sum of any of the combination of squares as described in
the lemma. We also create an NFA, B, that accepts all valid folded representations that are
sufficiently long. We then check the assertion that the language recognized by B is a subset
of that recognized by A.
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3.1 Odd-length inputs

In order to flag certain positions of the input tape, we use an extended alphabet. Define

Γ = {1f} ∪
⋃

α∈{a,b,c,d,e}

{[0, 0]α, [0, 1]α, [1, 0]α, [1, 1]α}.

Let N be an integer, and let n = 2i + 1 be the length of its binary representation. We
write (N)2 = a2ia2i−1 · · · a1a0 and fold this to produce the input string

[ai, a0]a[ai+1, a1]a · · · [a2i−5, ai−5]a[a2i−4, ai−4]b[a2i−3, ai−3]c[a2i−2, ai−2]d[a2i−1, ai−1]ea2if .

Let Aodd be the NFA that recognizes those odd-length integers, represented in this
folded format, that are the sum of binary squares meeting any of the 6 conditions listed
in Lemma 2 (a). We construct Aodd as the union of several automata A(tn−1, tn−3, ma) and
B(tn−1, tn−3, tn−5, mb). The parameters tp represent the number of summands of length p

we are guessing. The parameters ma and mb are the carries that we are guessing will be
produced by the first half of the summed binary squares. A-type machines try summands
of lengths n − 1 and n− 3 only, while B-type machines include at least one (n − 5)-length
summand. We note that for the purpose of summing, guessing t binary squares is equivalent
to guessing a single square over the larger alphabet Σt+1.

We now consider the construction of a single automaton

A(tn−1, tn−3, m) = (Q ∪ {qacc, q0, s1},Γ, δ, q0, {qacc}).

The elements of Q have 4 non-negative parameters and are of the form q(x1, x2, c1, c2). The
parameter x1 ≤ tn−3 is the last digit of the guessed summand of length n− 3 and x2 ≤ tn−3

is the previous higher guess of the length-n− 3 summand; this must be the next lower guess
of this summand. We use c1 to track the higher carry, and c2 to track the lower carry. We
must have c1, c2 < tn−1 + tn−3.

We now discuss the transition function, δ of our NFA. In this section, we say that the
sum of natural numbers, µ1 and µ2, “produces” an output bit of θ ∈ Σ2 with a “carry” of γ
if µ1 + µ2 ≡ θ (mod 2) and γ = ⌊µ1 + µ2⌋.

We allow a transition from q0 to q(x1, x2, c1, c2) on the letter [j, k]a iff there exists 0 ≤
r ≤ tn−1 such that x2+ r+m produces an output of j with a carry of c1 and x1+ r produces
an output of k with a carry of c2.

We allow a transition from q(x1, x2, c1, c2) to q(x
′
1, x

′
2, c

′
1, c

′
2) on the letters [j, k]a and [j, k]b

iff there exists 0 ≤ r ≤ tn−1 such that x′
2 + r + c1 produces an output of j with a carry of

c′1 and x2 + r + c2 produces an output of k with a carry of c′2. Elements of Q have identical
transitions on inputs with subscripts a and b. The reason we have the letters with subscript
b is for B-machines, which guess a summand of length n− 5.

There is only one letter of the input with the subscript c, and it corresponds to the last
higher guess of the summand of length n − 3. We allow a transition from q(x1, x2, c1, c2)
to q(x′

1, tn−3, c
′
1, c

′
2) on the letter [j, k]c iff there exists 0 ≤ r ≤ tn−1 such that tn−3 + r + c1

5



produces an output of j with a carry of c′1 and x2 + r + c2 produces an output of k with a
carry of c′2.

There is only one letter of the input with the subscript d, and it corresponds to the second-
last lower guess of the summand of length n−3. We allow a transition from q(x1, tn−3, c1, c2)
to q(x′

1, 0, c
′
1, c

′
2) on the letter [j, k]d iff there exists 0 ≤ r ≤ tn−1 such that r+ c1 produces an

output of j with a carry of c′1 and tn−3 + r + c2 produces an output of k with a carry of c′2.
There is only one letter of the input with the subscript e, and it corresponds to the last

lower guess of the summand of length n− 3. We allow a transition from q(x1, 0, c1, c2) to s1
on the letter [j, k]e iff tn−1 + c1 produces an output of j with a carry of 1 and x1 + tn−1 + c2
produces an output of k with a carry of m.

Finally, we add a transition from s1 to qacc on the letter 1f .
We now consider the construction of a single automaton

B(tn−1, tn−3, tn−5, m) = (P ∪Q ∪ {qacc, q0, s1},Γ, δ, q0, {qacc}).

The elements of P have 6 non-negative parameters and are of the form

q(x1, x2, y1, y3, c1, c2).

The parameter x1 ≤ tn−3 is the last digit of the guessed summand of length n − 3 and
x2 ≤ tn−3 is the previous higher guess of the length-n−3 summand. The parameter y1 ≤ tn−5

is the last digit of the guessed summand of length n− 5 and y3 ≤ tn−5 is the previous higher
guess of the length-n− 5 summand. We use c1 to track the higher carry, and c2 to track the
lower carry. We must have c1, c2 < tn−1 + tn−3 + tn−5.

The elements of Q have 8 non-negative parameters and are of the form

q(x1, x2, y1, y2, y3, y4, c1, c2).

The parameter x1 ≤ tn−3 is the last digit of the guessed summand of length n − 3 and
x2 ≤ tn−3 is the previous higher guess of the length-n − 3 summand. The parameters
y1, y2 ≤ tn−5 are the last digit and the second-last digit of the guessed summand of length
n− 5 respectively. The parameter y3, y4 ≤ tn−5 are the two most recent higher guess of the
length-n − 5 summand, with y4 being the most recent one. We use c1 to track the higher
carry, and c2 to track the lower carry. We must have c1, c2 < tn−1 + tn−3 + tn−5.

We now discuss the transition function, δ of our NFA. We allow a transition from q0 to
p(x1, x2, y1, y3, c1, c2) on the letter [j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x2+y3+r+m

produces an output of j with a carry of c1 and x1 + y1 + r produces an output of k with a
carry of c2.

We use a transition from p(x1, x2, y1, y3, c1, c2) to q(x1, x
′
2, y1, y

′
2, y3, y

′
4, c

′
1, c

′
2) on the letter

[j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x′
2 + y′4 + r + c1 produces an output of j with a

carry of c1 and x2 + y′2 + r + c2 produces an output of k with a carry of c2.
We use a transition from q(x1, x2, y1, y2, y3, y4, c1, c2) to q(x1, x

′
2, y1, y2, y4, y

′
4, c

′
1, c

′
2) on the

letter [j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x′
2 + y′4 + r + c1 produces an output of j

with a carry of c1 and x2 + y3 + r + c2 produces an output of k with a carry of c2.
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We use a transition from q(x1, x2, y1, y2, y3, tn−5, c1, c2) to q(x1, x
′
2, y1, y2, tn−5, tn−5, c

′
1, c

′
2)

on the letter [j, k]b iff there exists 0 ≤ r ≤ tn−1 such that x′
2 + r + c1 produces an output of

j with a carry of c1 and x2 + y3 + r + c2 produces an output of k with a carry of c2.
We use a transition from q(x1, x2, y1, y2, tn−5, tn−5, c1, c2) to q(x1, tn−3, y1, y2, tn−5, tn−5, c

′
1, c

′
2)

on the letter [j, k]c iff there exists 0 ≤ r ≤ tn−1 such that tn−3 + r + c1 produces an output
of j with a carry of c1 and x2 + y3 + r + c2 produces an output of k with a carry of c2.

We use a transition from q(x1, tn−3, y1, y2, tn−5, tn−5, c1, c2) to q(x1, tn−3, y1, y2, tn−5, tn−5, c
′
1, c

′
2)

on the letter [j, k]d iff there exists 0 ≤ r ≤ tn−1 such that r + c1 produces an output of j
with a carry of c1 and tn−3 + y1 + r + c2 produces an output of k with a carry of c2.

We use a transition from q(x1, tn−3, y1, y2, tn−5, tn−5, c1, c2) to s1 on the letter [j, k]e iff
tn−1+c1 produces an output of j with a carry of 1 and x1+y2+ tn−1+c2 produces an output
of k with a carry of m.

Finally, we add a transition from s1 to qacc on the letter 1f .
We now turn to verification of the inclusion assertion. We used the Automata Library

toolchain of the ULTIMATE program analysis framework [4, 5] to establish our results. The
ULTIMATE code proving our result can be found in the file OddSquareConjecture.ats at
https://cs.uwaterloo.ca/~shallit/papers.html. Since the constructed machines get
very large, we wrote a C++ program generating these machines, which can be found in the
file OddSquares.cpp at https://cs.uwaterloo.ca/~shallit/papers.html.

The final machine, Aodd, has 2258 states. The syntax checker, B, has 8 states. We then
asserted that the language recognized by B is a subset of that recognized by A. ULTIMATE
verified this assertion in under a minute. Since this test succeeded, the proof of Lemma 2
(a) is complete.

3.2 Even-length inputs

In order to flag certain positions of the input tape, we use an extended alphabet. Define

Γ =





⋃

α∈{a,b,c,d,e}

{[0, 0]α, [0, 1]α, [1, 0]α, [1, 1]α}



 ∪





⋃

β∈{f,g,h,i}

{0β, 1β}



 .

Let N be an integer, and let n = 2i + 4 be the length of its binary representation. We
write (N)2 = a2i+3a2i+2 · · ·a1a0 and fold this to produce the input string

[ai, a0]a[ai+1, a1]b[ai+2, a2]c[ai+3, a3]c · · · [a2i−3, ai−3]c[a2i−2, ai−2]d[a2i−1, ai−1]ea2ifa2i+1ga2i+2ha2i+3i .

Let Aeven be the NFA that recognizes the even-length integers, represented in this folded
format, iff the integer is the sum of binary squares meeting any of the 4 conditions listed in
Lemma 2 (b). We construct Aeven as the union of several automata A(tn, tn−2, tn−4, tn−6, m).
The parameters tp represent the number of summands of length p we are guessing. The
parameter m is the carry that we are guessing will be produced by the first half of the
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summed binary squares. We note that for the purpose of summing, guessing t binary squares
is equivalent to guessing a single square over the larger alphabet Σt+1.

We now consider the construction of a single automaton

A(tn, tn−2, tn−4, tn−6, m) = (Q ∪ {qacc},Γ, δ, q0, {qacc}).

The elements of Q have 8 non-negative parameters and are of the form

q(x1, x2, x3, y1, z1, z2, c1, c2).

The parameter x1 is the second digit of the guessed summand of length n. The parameters
x2 and x3 represent the previous 2 lower guesses of the length-n summand; these must be
the next 2 higher guesses of this summand. The parameter y1 represents the previous lower
guess of the length-(n− 2) summand. We set z1 as the last digit of the guessed summand of
length n − 6, while z2 is the previous higher guess of this summand. Finally, c1 tracks the
lower carry, while c2 tracks the higher carry. For any p, we must have xp ≤ tn, yp ≤ tn−2,
zp ≤ tn−6, and cp < tn + tn−2 + tn−4 + tn−6. The initial state, q0, is q(0, 0, 0, 0, 0, 0, 0, 0).

We now discuss the transition function, δ of our NFA. Note that in our representation of
even-length integers, the first letter of the input must have the subscript a, and it is the only
letter to do so. We only allow the initial state to have outgoing transitions on such letters.

We allow a transition from q0 to q(x1, 0, x3, y1, z1, z2, c1, c2) on the letter [j, k]a iff there
exists 0 ≤ r ≤ tn−4 such that x1 + tn−2 + r+ z2 +m produces an output of j with a carry of
c2 and x3 + y1 + r + z1 produces an output of k with a carry of c1.

The second letter of the input must have the subscript b, and it is the only letter to do
so. We allow a transition from q(x1, 0, x3, y1, z1, z2, c1, c2) to q(x1, x3, x

′
3, y

′
1, z1, z

′
2, c

′
1, c

′
2) on

the letter [j, k]b iff there exists 0 ≤ r ≤ tn−4 such that tn+y1+r+z′2+c2 produces an output
of j with a carry of c′2 and x′

3 + y′1 + r + z2 + c1 produces an output of k with a carry of c′1.
We allow a transition from q(x1, x2, x3, y1, z1, z2, c1, c2) to q(x1, x3, x

′
3, y

′
1, z1, z

′
2, c

′
1, c

′
2) on

the letter [j, k]c iff there exists 0 ≤ r ≤ tn−4 such that x2 + y1 + r + z′2 + c2 produces an
output of j with a carry of c′2 and x′

3 + y′1 + r+ z2 + c1 produces an output of k with a carry
of c′1.

The letter of the input with the subscript d corresponds to the last guess of the lower
half of the summand of length n− 6, and it is the only letter to do so. We allow a transition
from q(x1, x2, x3, y1, z1, tn−6, c1, c2) to q(x1, x3, x

′
3, y

′
1, z1, 0, c

′
1, c

′
2) on the letter [j, k]d iff there

exists 0 ≤ r ≤ tn−4 such that x2 + y1 + r+ c2 produces an output of j with a carry of c′2 and
x′
3 + y′1 + r + tn−6 + c1 produces an output of k with a carry of c′1.
The letter of the input with the subscript e corresponds to the last guess of both halves

of the summand of length n−4, and it is the only letter to do so. We allow a transition from
q(x1, x2, x3, y1, z1, 0, c1, c2) to q(x1, x3, x

′
3, y

′
1, 0, 0, 0, c

′
2) on the letter [j, k]e iff x2+y1+tn−4+c2

produces an output of j with a carry of c′2 and x′
3 + y′1 + tn−4 + z1 + c1 produces an output

of k with a carry of m.
We allow a transition from q(x1, x2, x3, y1, 0, 0, 0, c2) to q(x1, x3, 0, 0, 0, 0, 0, c

′
2) on the let-

ter jf iff x2 + y1 + c2 produces an output of j with a carry of c′2.
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We allow a transition from q(x1, x2, 0, 0, 0, 0, c2) to q(x1, 0, 0, 0, 0, 0, 0, c
′
2) on the letter jg

iff x2 + tn−2 + c2 produces an output of j with a carry of c′2.
We allow a transition from q(x1, 0, 0, 0, 0, 0, c2) to q(0, 0, 0, 0, 0, 0, 0, c′2) on the letter jh iff

x1 + c2 produces an output of j with a carry of c′2.
We allow a transition from q(0, 0, 0, 0, 0, 0, 0, c2) to qacc on the letter 1i iff tn+c2 produces

an output of 1 with a carry of 0.
The final machine, Aeven is constructed as the union of 15 automata:

• A(0, 2, 2, 0, m), varying m from 0 to 3

• A(0, 3, 1, 0, m), varying m from 0 to 3

• A(1, 0, 1, 1, m), varying m from 0 to 2

• A(0, 2, 1, 1, m), varying m from 0 to 3

We now turn to verification of the inclusion assertion. The ULTIMATE code proving our re-
sult can be found in the file EvenSquareConjecture.ats at https://cs.uwaterloo.ca/~shallit/papers.html.
Since the constructed machines get very large, we wrote a C++ program generating these ma-
chines, which can be found in the file EvenSquares.cpp at https://cs.uwaterloo.ca/~shallit/papers.html.

The final machine, Aeven, has 1343 states. The syntax checker, B, has 12 states. We then
asserted that the language recognized by B is a subset of that recognized by A. ULTIMATE
verified this assertion in under a minute. Since this test succeeded, the proof of Lemma 2
(b) is complete.

4 Other results

Our technique can be used to obtain other results in additive number theory. For example,
recently Crocker [1] and Platt & Trudgian [10] studied the integers representable as the sum
of two ordinary squares and two powers of 2.

Lemma 3.

(a) Every length-n integer, n odd, n ≥ 7, is the sum of at most two powers of 2 and either:

– at most two squares of length n− 1, or

– at most one square of length n− 1 and one of length n− 3.

(b) Every length-n integer, n even, n ≥ 10, is the sum of at most two powers of 2 and
either:

– at most one square of length n and one of length n− 4, or

– at most one square of length n− 2 and one of length n− 4.

9
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Proof. We use a similar proof strategy as before. The ULTIMATE code proving our result can
be found in the files OddSquarePowerConjecture.ats and EvenSquarePowerConjecture.ats
at https://cs.uwaterloo.ca/~shallit/papers.html. The generators can be found as
OddSquarePower.cpp and EvenSquarePower.cpp at https://cs.uwaterloo.ca/~shallit/papers.html.

The final machines for the odd-length and even-length cases have 806 and 2175 states
respectively. The language inclusion assertions all hold. This concludes the proof.

We thus have the following theorem:

Theorem 4. Every natural number N is the sum of at most two binary squares and at most
two powers of 2.

Proof. For N < 512, the result can be easily verified. Otherwise, we use Lemma 3 (a) if N
is an odd-length binary number and Lemma 3 (b) if it is even.

We also consider the notion of generalized binary squares. A number N is called a
generalized binary square if one can concatenate 0 or more leading zeroes to its binary
representation to produce a binary square. As an example, 9 is a generalized square, since
9 in base 2 is 1001, which can be written as 001001 = (001)(001). The first few generalized
binary squares are

0, 3, 5, 9, 10, 15, 17, 18, 27, 33, 34, 36, 45, 51, 54, 63, . . . ;

they form sequence A175468 in the On-Line Encyclopedia of Integer Sequences [9].
In what follows, when we refer to the length of a generalized square, we mean the length

including the leading zeroes. Thus, 9 is a generalized square of length 6 (and not 4).

Lemma 5.

(a) Every length-n integer, n ≥ 7, n odd, is the sum of 3 generalized squares, of lengths n+1,
n− 1, and n− 3.

(b) Every length-n integer, n ≥ 8, n even, is the sum of 3 generalized squares, of lengths n,
n− 2, and n− 4.

Proof. We use a very similar proof strategy as in the proof of Lemma 2. We drop the
requirement that the most significant digit of our guessed squares be 1, thus allowing for
generalized squares. Note that the square of length n + 1 must in part (a) must start with
a 0.

The ULTIMATE code proving our result can be found in the files OddGenSquareConjecture.ats
and EvenGenSquareConjecture.ats at https://cs.uwaterloo.ca/~shallit/papers.html.
The generators can be found as OddGeneralizedSquares.cpp and EvenGeneralizedSquares.cpp
at https://cs.uwaterloo.ca/~shallit/papers.html. The final machines for the odd-
length and even-length cases have 132 and 263 states respectively.
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We thus have the following theorem:

Theorem 6. Every natural number N > 7 is the sum of 3 generalized squares.

Proof. For 7 < N < 64 the result can be easily verified. Otherwise, we use Lemma 5 (a) is
an odd-length binary number and Lemma 5 (b) if it is even.

5 Further work

We do not currently know whether the number 4 in Theorem 1 is optimal, although numerical
evidence strongly suggests that it is.

Numerical evidence suggests the following two conjectures:

Conjecture 7. Let α3 denote the asymptotic density of the set S3 of natural numbers that
are the sum of three binary squares. Then α3 < 0.9.

We could also focus on sums of positive binary squares. (For the analogous problem
dealing with ordinary squares, see, e.g., [3, Chapter 6].) It seems likely that our method
could be used to prove the following result.

Conjecture 8. Every natural number > 1772 is the sum of exactly four positive binary
squares. There are 112 exceptions, given below:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 34, 35, 37,

39, 41, 42, 44, 46, 47, 49, 51, 53, 56, 58, 62, 65, 67, 74, 83, 88, 95, 100, 104, 107, 109, 113, 116, 122, 125,

131, 134, 140, 143, 148, 149, 155, 158, 160, 161, 167, 170, 173, 175, 182, 184, 368, 385, 402, 407, 419,

424, 436, 441, 458, 475, 492, 509, 526, 543, 552, 560, 569, 587, 599, 608, 613, 620, 625, 638, 647, 653, 671,

686, 698, 713, 1508, 1541, 1574, 1607, 1640, 1673, 1706, 1739, 1772.
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