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Abstract. We will describe an algorithm to construct an elliptic curve Efq
over some prime field Fp such that such that |Efq (Fp)| = fq , where fq is a

probable Fibonacci prime for some prime index q. The algorithm is a variant of
the efficient CM-construction by Bröker and Stevenhagen, which is well suited

for Fibonacci primes due to their arithmetic properties. The time complexity

of our algorithm is expected to be lower than Õ(log3(fq)). The construction
process is a series of algorithms, where each is a test for primality.

1. Introduction

Let p > 3 be a rational prime. Henceforth, for each elliptic curve E over Fp, we
say that the order of E is |E(Fp)|, that is, the number of Fp-rational points on E.
There exists an elliptic curve E of order N for each integer N in the Hasse interval
Hp = [p+ 1− 2

√
p, p+ 1 + 2

√
p] [Cox13, Theorem 14.18]. Note that N ∈ Hp if and

only if p ∈ HN , which is a motivation behind the algorithm in [BS08]. Hence, the
construction of E is possible exactly when HN contains a prime p. Under General
Riemann Hypothesis (GRH), we can safely assume the existence of a prime p in
HN (see [BS07]).

This paper is on the study of constructing elliptic curves of Fibonacci prime or-
der over finite fields. A Fibonacci prime is a Fibonacci number that is also prime.
It is not known whether there is an infinite number of Fibonacci primes, though
heuristics regarding elliptic divisibility sequence (EDS) from [EEW01] suggests it
may be finite. Constructing elliptic curves of Fibonacci order is of interest due to
the fact that Fibonacci numbers grow exponentially, and the large width of the
Hasse interval Hfq is expected to contain many primes, and Conjecture 4 of [BL07]
suggests that the time complexity of the construction may be smaller than it is for
other primes. We will also see that the arithmetic properties of Fibonacci primes
make some of the computations relatively easier. Furthermore, the construction
process allows us to test its primality along the way, with the Elliptic Curve Pri-
mality Proving (ECPP) being the main test.
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2. Main algorithm

Henceforth, we will use the following notations. We will denote the natural
logarithm by log and for convenience we will write logr(x) = (log(x))r for real
numbers r > 0. The notation O(x) denotes the standard big O notation, and the

notation Õ(x) means logarithmic terms in x are disregarded.
Given a finite field Fp, we will assume that all computations in Fp are done

using the best known methods. For example, for fast multiplication we will assume
the Fast Fourier Transform (FFT) method of [SS71], which has time complexity

Õ(log(p)). The fast multiplication technique is applicable here since the probable
Fibonacci primes are at least 250,000. For fast exponentiation, we will assume
the method of exponentiation by squaring (see [Coh93, ch. 1]), which has time

complexity Õ(log2(p)) if combined with the fast multiplication method. Similarly,
using FFT, the time complexities of multiplication and exponentiation in Fp[X] are
the same as in Fp for polynomials of small degrees.

Let fq be a probable Fibonacci prime. Here, we say that fq is a probable prime if
at minimum q is a prime (See Lemma 11.7). Our work is based on the list of probable
Fibonacci primes given at [onl17]. We assume that these Fibonacci numbers have
been tested under various algorithms, so we do not expect the algorithm to fail
before Step 8.. Here in this work we try to construct an elliptic curve of order fq and
test the primality of fq along the way. The guiding principle behind Algorithm 2.1
is to interpret all computations as primality tests, though some may be primitive,
and we try to reuse all computations whenever possible.

Algorithm 2.1. Let fq be a probable Fibonacci prime. This algorithm attempts to
construct an elliptic curve E/(Z/pZ) of order fq over some ring Z/pZ and performs
multiple primality verifications along the way.

1. Apply the Density Test 13.1.

2. From Step 1. we obtain the set Pq of primes ` < 2 log(fq) such that
(
fq
`

)
=

1, and we also obtain the first prime n such that n is a quadratic non-residue
modulo fq. This n may be greater than 2 log(fq).

3. Use Algorithm 5.2 to obtain a list Sq of good discriminants, and let N =
|Sq|.

4. Use n to perform square root precomputations using Algorithm 9.1.
5. Verify that f(q+1)/2/f(q−1)/2 (mod fq) is a square root of −1 (mod fq).
6. Apply the Exceptional Cases Test 12.1.
7. Let k = 0.
8. If k = N , then go to Step 18., else take D = Sq[k] ∈ Sq and find a square

root
√
D (mod fq) of D using Algorithm 9.2. Here if D consists of two

primes `1 and `2, then use the previously computed
√
`1 (mod fq) and

√
`2

(mod fq).
9. Apply Algorithm 9.3 to determine if fq split completely in HK , the Hilbert

class field of K = Q(
√
D). If fq does split completely, we obtain 4fq =

x2 + y2|D| for some positive integers x, y. If this step is not successful,
increase k by 1 and return to Step 8..
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10. Precompute the classical modular polynomials Φ`(X,Y ) for primes ` <
6 log2(4 log2(fq)).

11. Let p = fq + 1 ± x. If it is easy to recognize that p = kη for some prime

η > (f
1/4
q +1)2, then construct E/(Z/fqZ) of order fq+1±x following Step

13. and Step 14. and apply ECPP (Theorem 13.4) to test the primality of
fq, else go to the next step.

12. Apply the Rabin-Miller Primality Test (Algorithm 13.3) to p. If p passes
the test, then go the next step, else increase k by 1 and return to Step 8..

13. Compute HD(X) (mod p) using Algorithm 6.1.
14. Find a root r 6= 0, 1728 of HD(X) (mod p). If no root is found, increase k

by 1 and return to Step 8., otherwise construct the curve

E : Y 2 = X3 + aX − a, (2.1)

where

a =
27r

4(1728− r)
(mod p). (2.2)

15. Let Eq be an empty list.
16. Append one of (E, p,D) or (Etwist, p,D) to the list Eq for which fq ·(1, 1) = 0

is satisfied. If neither of the twists satisfy fq · (1, 1) = 0, then increase k by
1 and return to Step 8., else go to the next step.

17. If fq is a confirmed prime, then p is prime as well by ECPP. Output (E, p,D)
and stop the algorithm. If the primality of fq is not confirmed, then increase
k by 1 and return to Step 8..

18. Apply Algorithm 10.1 (Elkies Primes Verification) to the list Eq. If Eq is
empty, then fq is likely composite, else go to the next step.

19. Apply Algorithm 10.2 (Eigenvalue Verification) to the list Eq. If Eq is empty,
then fq is likely composite, else go to the next step.

20. Output a random element (E, p,D) from Eq.

A small issue with Algorithm 2.1 is the primality of p. By ECPP (Theorem
13.4), the verification fq · (1, 1) = 0 in Step 14. does confirm that p = fq + 1 ± x
is a prime if fq is known to be prime. However, fq is a probable Fibonacci prime
that we wish to test the primality of.

If p is confirmed to be prime, then fq is automatically prime by ECPP in Step
11. and we have an elliptic curve E/Fp of order fq. Even when p fails to be prime,
we can still apply ECPP to determine the primality of fq. Explicitly, if p = kη

for some recognizable prime (f
1/4
q + 1)2 < η < p , then we have that fq is a prime

assuming that k · (1, 1) is defined and not equal to 0. If it is not easy to confirm
the primality of η, then we move on to another discriminant. This is a common
technique in applying ECPP (see [ACD+06, pp. 597]).

The philosophy behind Step 18. and Step 19. is to prolong computations in
Z/pZ to detect the compositeness of p, and we want to verify the order of each
curve E/(Z/pZ) as well. We will use Schoof’s algorithm to verify t (mod `) for
some small Elkies primes ` relative to fq. In fact, the largest probable Fibonacci
prime from the list [onl17] has index 2904353, so we need to compute Φ`(X,Y )
for Elkies primes ` < 5287. Of course if storage capacity is not limited, then
it is practical to precompute the modular polynomials Φ`(X,Y ) for large Elkies
primes ` if multiple probable Fibonacci primes are to be tested. Note here that we
can not use modular polynomials for Weber’s function since D ≡ 5 (mod 8). A
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combination of isogeny volcanoes with other class invariant such as Ramanujan’s
class invariant(see [Kon14]) can allow one to work with larger Elkies primes, but
such implementation is beyond our capacity. See [BLS12] for computation of the
the class modular polynomials Φ`(X,Y ) for large primes ` via isogeny volcanoes,
which suggests it is best to compute Φ`(X,Y ) (mod p) as needed.

Theorem 2.2. Assuming GRH, the time complexity of the Algorithm 2.1 is Õ(log3(fq)).

Furthermore, the space required is of size Õ(log2(fq)).

Proof. Algorithm 2.1 is similar to the algorithm from [BS08], which has time com-

plexity Õ(log3(fq)). The only difference here is that our algorithm is a bit more
convoluted and we have the extra final verifications using Schoof’s algorithm in

Step 18. and Step 19., which have time complexity Õ(log2(fq)) and Õ(log3(fq)),
respectively.

Each step has time complexity of at most Õ(log2(fq)). Even though our algo-

rithm has O(log2(fq)) loops, we will show that the steps that have time complexity

Õ(log2(fq)) get called only O(log(fq)) times.
The square root algorithm (Algorithm 9.2) get called only in the case D = −`,

which happens O(log(fq)) times. Since each square root computation takes time

Õ(log2(fq)), the total time on computing square roots is Õ(log3(fq)).
By the Chebotarev Density Theorem, it is expected to find O(log(fq)) discrimi-

nants D for which 4fq = x2 + y2|D| for some positive integer x, y; we will see this
fact in Section 5. Since the time complexity of each step from Step 9. to Step 16.

is at most Õ(log2(fq)), we have a total time complexity of Õ(log3(fq)) if we loop
through all such discriminants. Therefore, the entire algorithm has time complexity

Õ(log3(fq)).
The main step in Algorithm 2.1 requiring the most storage is in computing

HD(X) (mod p). By [Sut11], the storage needed to computed HD(X) (mod p) is
O(|D|1/2+ε log(p)). As D = O(log(fq)

2) and p = O(fq), it follows that the storage

required for Algorithm 2.1 is Õ(log2(fq)).
�

It is of small concern (or of great fortune) if Conjecture 4 of [BL07] is true. Let
d be an integer, and let Nd be the set of positive integers defined by

Nd = {n > 0 : fn = |x2 + dy2| for some integers x and y}. (2.3)

The lower asymptotic density δ(Nd) of Nd is defined by

δ(Nd) = lim inf
n→∞

1

n

n∑
k=1

χNd(k) = lim inf
n→∞

Nd ∩ [1, n]

n
, (2.4)

where χNd is the characteristic function of the set Nd. The conjecture states that
the lower asymptotic density δNd is 0 for all but finitely many integers d not a
square or negative of a square.

For a Fibonacci prime fq and a positive square-free integer d, we have fq =
x2 + dy2 for some integers x, y exactly when f splits completely in the ring class
field of the imaginary quadratic field K = Q(

√
−d). Here the ring class field is

the extension RK/K corresponding to the ideal class group C(Z[
√
−d]) given by

Class Field Theory. The extension RK/HK is of degree 2 exactly when −d ≡ 1
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(mod 4) and degree 1 when −d ≡ 3 (mod 4), where HK is the Hilbert class field
corresponding to the maximal order OK .

Let hd be the class number of OK . By the Chebotarev Density Theorem, the
density of the rational primes that split completely in HK is 1/2hd, and half of
those split completely in RK , that is, 1 out 4hd rational primes split completely in
RK . The conjecture implies that if d is large enough, only a few Fibonacci primes
split completely in RK , at best it is an infinite set of density 0, which implies that
the Fibonacci primes splitting completely in HK has lower asymptotic density 0
as well. This may pose difficulty to Algorithm 2.1 due to its reliance on finding
a Hilbert class field HK for which fq splits completely. On the other hand, the
conjecture also suggests that the Fibonacci primes only split completely in Hilbert
class fields (induced by small discriminant). This is fortunate as we wish to find a
small fundamental discriminant D for which 4fq = x2 +y2|D| for some integers x, y
such that fq + 1± x is a prime, so Step 9. has a higher chance of success. Hence,

the time complexity may be lower than Õ(log3(fq)).

3. Overview

In Section 4, we will see that one could in theory construct an elliptic curve of
order fq by picking a prime p in the Hasse interval Hfq and finding a root of HD(X)

(mod p), where D = (p+ 1− fq)2 − 4p. Of course, this is highly impractical as the
discriminant D may be too large, and there does not exists an efficient method to
find the fundamental discriminant induced by D. In [BS08], it is observed that

D = (p+ 1− fq)2 − 4p = (fq + 1− p)2 − 4fq. (3.1)

This observation allows us to construct a suitable fundamental discriminant from
a basis of primes (Section 5). This is a small discriminant that induces a class field
in which both of the primes p and fq split completely.

We will be mainly implementing the complex multiplication method for the
construction, and we will use the algorithm from [BS08] to find a small discriminant.
One major hurdle of [BS08] in constructing an elliptic curve of prime order N is to

compute a square root of (−1)
`−1
2 ` modulo N for various primes `, but we will see

that for each probable Fibonacci prime fq it is a straightforward application of the
Tonelli-Shanks algorithm because the 2-Sylow subgroup of Z/(fq − 1)Z is small.

We will provide in Section 4 a brief overview of complex multiplication and its
application toward constructing elliptic curves of prescribed torsion. In Section 5
we will described the algorithm from [BS08] to efficiently find small discriminant.
We will provide a quick overview of the CRT method in Sections 6 to 8 following
[Sut11]. We will go over computing square roots in finite field and Cornacchia’s
algorithm in Section 9. In Section 10 we will discuss Schoof’s algorithm and provide
a way to verify that we have the correct curve. We will go over some elementary
properties of Fibonacci numbers in Section 11. We will look into equations of the
form 4fq = x2 + dy2 for special d’s in Sections 12. Finally, in Section 13 we will
discuss the primality tests that are used in our algorithm.

4. Complex multiplication and application

In this section, we will provide an overview of complex multiplication and its
application in constructing elliptic curves of prescribed order. For further discussion
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on complex multiplication see [Sch95], [AM93], [Cox13, pp. 190–196], [Sil94, pp.95-
100], [ACD+06, pp. 455-460], and [Che12]

Henceforth, let D be a negative discriminant. The polynomial F (x, y) = aX2 +
bXY + cY 2 is called a binary quadratic form, where a, b, c ∈ Z. We say that the
form F is reduced if gcd(a, b, c) = 1, and a, b, and c satisfy the condition

|b| ≤ |a| ≤ c and b ≥ 0 whenever |b| = a or a = c. (4.1)

The discriminant of F is defined by D = b2 − 4ac.
To each form F , we associate the matrix

MF =

[
a b

2
b
2 c

]
. (4.2)

Two forms F1, F2 are said to be equivalent if there exists a matrix N ∈ SL2(Z) such
that

MF2 = N−1MF1N. (4.3)

The relation defines an equivalence relation on quadratic forms. The set of
equivalence classes C(D) of quadratic forms with discriminant D forms an abelian
group, and each class contains exactly one reduced form by Theorem 2.8 of [Cox13].
We will call C(D) the class group induced by discriminant D.

Let K = Q(
√
d) for some rational integer d < 0, and let OK be its ring of

integers. Let O ⊂ OK be an order of index f , which is called the conductor of O.
The discriminant of O is D = Disc(O) = f2dK , where DK is the field discriminant
(or fundamental discriminant) of K. From [Cox13, Theorem 5.30], we have

C(D) ∼= C(O), (4.4)

where C(O) is the ideal class group of O. Explicitly, the isomorphism C(D)
∼−→

C(O) above is given by

aX2 + bXY + cY 2 7→ [a, (−b+
√
D)/2], (4.5)

where aX2 + bXY + cY 2 is a reduced form of discriminant D. This provides an
easy way to study the group C(O), and in particular, to compute the class order.

As C(O) is a quotient of the ray class group of conductor f = fOK of K, Class
Field Theory (see [Cox13, Theorem 8.6]) tells us that there exists a unique abelian
extension L/K such that

C(O) ∼= Gal(L/K), (4.6)

where the isomorphism is given by the Artin map.
Let H be the upper half of the complex plane, and let h be the order of C(D).

Then the minimal polynomial HD(x) of L/K is given by

HD(x) =

h∏
i=1

(x− j(τi)), (4.7)

where τi ∈ H is a root of F (x, 1), the reduced form representing the class [F (x, y)]
in C(D), and j is the well-known j-invariant function (C-isomorphism)

j : X(1)→ P1(C), (4.8)

where X(1) is the modular curve

X(1) =
H
⋃

P1(Q)

SL2(Z)
(4.9)
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and P1(C) is the Riemann sphere. Moreover, the Fourier series expansions of j
begins with

j(τ) = q−1 + 744 + 196884q + 2149376q2 + . . . , (4.10)

where q = e2πiτ . One of the miracles in Explicit Class Field Theory is that L =
K(j(τ)), where j(τ) is any root of HD(X) - fulfilling Kronecker’s jugendtraum.

The polynomial HD(X) in Equation 4.7 is called the Hilbert class polynomial
associated with the order O. It seems that it is standard to call HD(X) a Hilbert
class polynomial regardless of whether O is maximal. We will continue such naming
standard.

Computing the Hilbert class polynomial can be quite difficult. Besides the al-
ready daunting time complexity in computing HD(X), the storage required to store
its coefficients may be beyond practical purpose. For example, it requires 47.2
petabytes of storage in constructing HD(X) for D = −(1016 + 135) (see [Sut12a]).
The complex-analytic method of computing HD(X) is to approximate each root
using the expansion 4.10, and to verify for accuracy, we use the fact that HD(x)

has integer coefficients, and 3
√
HD(0) ∈ Z, a consequence of the work of Gross

and Zagier [AM93, Proposition 7.1]. There are two other known methods to com-
pute HD(X): the p-adic lifting method (see [Bro08]), and application of isogeny
volcanoes and Chinese Remainder Theorem (see [Sut11] and its accelerated version
[Sut12a]). We will see a quick overview of isogeny volcanoes in Section 6. It is inter-
esting to note that the complex-analytic method has to deal with rounding errors,
while the p-adic lifting method circumvent that by working in a non-archimedean
setting.

There is a correspondence between representatives of C(O) and C-isomorphism
class of elliptic curves with endomorphism ring isomorphic to O (see [Cox13, Corol-
lary 10.20]). Viewing each ideal a of O as a lattice of C, the correspondence is given
by

a 7→ C/a, (4.11)

and in view of the correspondence from 4.5, we have

j((a+ b
√
D)/2) = j(C/a). (4.12)

It is now straightforward to obtain an algebraic model for each curve C/a. For each
root r 6= 0, 1728 of HD(X), let Er/L be the elliptic curve given

Y 2 = X3 + aX − a, (4.13)

where a = 27r
4(1728−r) . While if r = 0, let Er/L be given by

Y 2 = X3 + 1, (4.14)

and if r = 1728, let Er/L be given by

Y 2 = X3 +X. (4.15)

The elliptic curve Er/L has coefficients in L, and its j-invariant is j = r. Fur-
thermore, the endomorphism ring End(Er) is isomorphic to O. Henceforth, we will
identify End(Er) with O.

Let p be a rational prime that splits in K, and let p be a prime ideal of OL that
divides the ideal (p). Assume that p - ∆(Er), where ∆(Er) = −16(4a3 + 27a2)
is the discriminant of Er, then E has good reduction at p. The reduction E of
E mod p has coefficients in some finite extension Fq of Fp, so in the case that

p splits completely in L or the class group C(D) has order 1, the reduction E
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has coefficients in Fp. The endomorphism ring of E is isomorphic to O and its j-
invariant is a root of HD(X) (mod q). Deuring’s Reduction Theorem tells us that
every elliptic curve over Fq with endomorphism ring isomorphic to O arises this
way (see [Cox13, Theorem 14.16]). Moreover, we have

|E(Fq)| = q + 1− t, (4.16)

where t = π + π for some π ∈ O such that q = ππ. If we have an element β ∈ O
such q = ββ, then β/π ∈ O×. As we will be working with O with discriminant
D < −4, the group of units O× = {±1}, so β + β may differ from t by a negative
sign.

We observe that the roots of HD(X) are the j-invariants of all elliptic curves E/L
with endomorphism ring O. Let EllO(L) be the set of all roots of HD(X). The
ideal class group C(O) provides a free transitive group action on the set EllO(L).

To see the group action, let
(

·
L/K

)
: C(O)→ Gal(L/K) be the Artin map. For an

invertible ideal a ∈ O, we have(
a

L/K

)
(j(E)) = j(E/E[a]), (4.17)

where E[a] is the a-torsion of E (see [Cox13, ch. 11]). The fact that this action is
free and transitive follows from the fact that C/a determines an isomorphism class
of elliptic curves over L with endomorphism ring O (see [Sut11], [Cox13, Corollary
10.20] and [Bro08] for further details).

As C(O) ∼= C(D) and there is a bijection between EllO(Fp) and EllO(L) by
Deuring lifting theorem, there is a free transitive group action of C(D) on EllO(Fp).
Hence, if we have one root j0 of HD(X) (mod p), we can obtain the rest by com-
puting the orbit of the group action of C(D) on j0. This fact is used in [Sut11],
which we will see an overview of in Section 6.

As mentioned earlier, the reduction E at p has coefficients in Fp exactly when
p splits completely in L and p splits in K, which happens exactly when HD(X)
(mod p) splits completely over Fp (see [Cox13, Theorem 5.1, Theorem 9.2]). Since
L/K is Galois, HD(X) (mod p) splits completely exactly when HD(X) (mod p)
has a root in Fp for p - D. On the other hand, from Class Field Theory the prime
ideal p splits completely in L exactly when p is principal, which happens exactly
when the rational prime p is a norm in O, that is, there exists integers x, y such
that

4p = x2 + y2|D|. (4.18)

Hence, HD(X) (mod p) has a root if and only if the 4p = x2 + y2|D| for some
positive integers x, y.

The previous paragraphs provide a method to construct elliptic curves over a
prime field of prescribed order. Indeed, let N be a positive integer and let t =
p + 1 − N , where p is a prime so that |t| ≤ 2

√
p, that is, p is in the Hasse’s

interval HN . Let D = (p + 1 −N)2 − 4p, and compute HD(X) (mod p). We find
a root r 6= 0, 1728 in Fp of HD(X) (mod p), which exists because the equation
4p = X2 + Y 2|D| has the solution (t, 1). Compute a = 27r

4(1728−r) (mod p), and

consider the elliptic curve E/Fp defined by E : Y 2 = X3 + aX − a. The order of E
is p+ 1± t, so we may have to compute its quadratic twist (see Proposition 5.4 of
[Sil09])

Etwist : Y 2 = X3 + g2aX − g3a (4.19)
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if necessary to find the one with order N = p + 1 − t, where g is any quadratic
non-residue modulo p. The fact that the point (1, 1) lies on E allows us to quickly
determine which curve has the correct order. For the cases r = 1728 or r = 0, the
set of twists of the curves Y 2 = X3 +X and Y 2 = X3 + 1 correspond to F∗p/(F∗p)4
and F∗p/(F∗p)6, respectively (see Proposition 5.4 of [Sil09]).

Algorithm 4.1. Complex Multiplication algorithm to construct an elliptic curve
of order N over some prime field.

1. Find a prime p ∈ HN .
2. Compute D = (p+ 1−N)2 − 4p.
3. Compute the Hilbert class polynomial HD(X).
4. Find a root r of HD(X) (mod p).
5. If r 6= 0, 1728, construct the curve E : Y 2 = X3 + aX − a, where a =

(27r)/(4(1728− r)) (mod p).
6. If r = 0, take E : Y 2 = X3 + 1, and if r = 1728, take E : Y 2 = X3 +X.
7. Test the point (1, 1) of E, that, is verify

(p+ 1)(1, 1) = t(1, 1). (4.20)

8. Compute a twist of E if necessary.

A careful analysis shows that instead of using D = (p + 1 − N)2 − 4p, we
could use the fundamental discriminant DK = D/k2, for some integer k. Here,

fundamental discriminant is equivalent to the field discriminant of K = Q(
√
D).

As the fundamental discriminant of D is essentially its square-free part, computing
the fundamental discriminant of D is not practical as computing the square-free
part of an integer is exceedingly difficult.

Constructing elliptic curves of prescribed torsion has its applications in cryptog-
raphy (ECC), mainly in creating keys for encryption systems such as AES. In the
coming age (or current age) of quantum computers, a system such as ECC will be
(is) breakable. There has been active research into post-quantum cryptography in
the last decade to find a system that could withstand a quantum computer. For
example, the Supersingular Isogeny Diffie-Hellman Key Exchange has been shown
to be a great candidate (see [DFJP14]).

Remark 4.2. Instead of using the Hilbert class polynomial, one could also use
smaller class polynomials such as Weber class polynomials (see [KKSZ09]) and Ra-
manujan’s class polynomial (see [KK10]). Among the well-known class polynomials,
the data from [KK10] shows that the Ramanujan’s class polynomials are best for
generating elliptic curves of prime order. One could also in theory find other class
invariants with smaller class polynomials using a variant of Shimura Reciprocity
(see [Gee99] and [Kon14]). Here we say that f(τ)) is a class invariant of a Hilbert
class field HK if HK = K(f(τ)), where f is a modular function of some level and
τ ∈ OK . However, as worded best by Kontogeorgis in [Kon14]: So far it seems that
all known class invariants were found out of luck or by extremely ingenious people
like Ramanujan.

5. An efficient CM-construction

The following is a discussion of an algorithm described in [BS07] and [BS08].
The algorithm reduces the time in calculating the Hilbert class polynomial by min-
imizing |D|, which can be done by constructing D from a set of basis of primes.
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Let N be a rational prime. Recall that in constructing an elliptic curve of
order N , a bottleneck is to construct the Hilbert class polynomial HD(X), where
D = (p + 1 −N)2 − 4p and p belongs in the Hasse’s interval HN . Even though it

is best to use the field discriminant of Q(
√
D), which is essentially the square-free

part of D, the time complexity is too large for practical purpose as there does not
exist a known polynomial time algorithm in computing the square-free part of an
integer.

Instead of using a top-down approach as above in finding D, we can construct
D from a set of basis of primes. Note that given a prime p ∈ HN , we have the
discriminant

(p+ 1−N)2 − 4p = (N + 1− p)2 − 4N = k2D, (5.1)

for some fundamental discriminant D. It follows that for a fundamental discrimi-
nant D, if we can find a solution to the equation

x2 + y2|D| = 4N, (5.2)

for some positive integers x, y with p = N + 1 ± x prime, then we can construct
an elliptic curve E/Fp of order N . Here we are using the symmetry N ∈ Hp if
and only if p ∈ HN . Hence, we are trying to find a discriminant D for which both
HD(X) (mod p) and HD(X) (mod N) split completely.

From equation 5.1, we note that for any odd prime ` | D, we have

1 =

(
N

`

)
=

(
(−1)

`−1
2 `

N

)
, (5.3)

where the second equality comes from the Law of Quadratic Reciprocity. Letting
`∗ = (−1)(p−1)/2l, we find that D consists of primes ` for which `∗ is a quadratic
residue modulo N . Moreover, since N is assumed to be a rational prime, we must
have D ≡ 5 (mod 8). Hence, we see that D is a product of the primes ` satisfying
Equation 5.3.

Remark 5.1. The fact above regarding the primes ` dividing D can be easily
seen using Class Field Theory. Recall that for a rational prime N , the equation
4N = x2 + y2|D| has a solution in Z2 exactly when N splits completely in the

Hilbert class field KD of the quadratic field K = Q(
√
D). In particular, N splits

completely in any subfield of KD of K. Hence, N must splits completely in the
genus field GD (see [Cox13, Theorem 6.1]) and all of its quadratic subfields Q(

√
`∗)

for primes ` | D, which happens exactly when `∗ is a square modulo N .

The Prime Number Theorem states that

lim
x→∞

π(x)

x/ log(x)
= 1, (5.4)

where π(x) is the number of rational primes less than or equals to x. It follows
that for integer N sufficiently large, we expect 1 out log(N) to be prime. Hence,
instead of searching for all suitable primes ` in the interval [1, N ] at once, we
search for ` in one sub-interval at a time starting with [1, log(N)] and ends with
[(m− 1) log(N) + 1, N ], where m = bN/ log(N)c. However, such a partition of the
interval [1, N ] is only for ease of computing time complexity; in practice, we work
with one prime ` at a time, which is better for Fibonacci primes due to Conjecture
4 of [BL07]. Furthermore, It is noted in [BS07] that it is enough to consider D
comprising of at most two odd primes, where each prime ` < 2 log(N).
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In the case of a Fibonacci prime fq, note that
(
`∗

fq

)
=
(
`
fq

)
due to the fact that

fq ≡ 1 (mod 4), by Lemma 11.9. Let Pq be the list of all primes ` < 2 log(fq)

such that
(
`
fq

)
= 1. We will describe an algorithm to construct a list Sq of good

discriminants from PD. Here, we say that D is a good discriminant if D is of the
form D = −`0 or D = −`1`2, and D ≡ 5 (mod 8), where `0, `1, `2 ∈ Pq.

Algorithm 5.2. Suppose that we are given a list Pq of odd primes ` < 2 log(fq)

such that
(
`
fq

)
= 1. Let N be the cardinality of Pq and assume that the primes ` are

listed in increasing order. This algorithm create the list Sq of good discriminants.
1. Let Sq be an empty list.
2. Let k = 0.
3. If k = N , end the algorithm, else let D = −Pq[k].
4. If D = −Pq[k] ≡ 5 (mod 8), append D to Sq.
5. For m = 0, . . . , k − 1, if D = −Pq[m] · Pq[k] ≡ 5 (mod 8), append D to Sq.
6. Increase k by 1 and return to Step 3.

This efficient construction of D provides a degree of control of the class number.
For security reason, we do not want D to be too small as ECC can be attacked
via using an isogenous curve. To ensure that D is not too small, we could use the
well known fact that the class number of C(D) is approximately

√
−D by Brauer-

Siegel Theorem. Furthermore, the work of Goldfeld, Gross, Zagier and Osterle in
the 1980s provide an easily computable lower bound (see [Zag84] and [Cox13, pp.
135]):

h(D) >
1

K
log(−D)

∗∏
p|D

(
1−

2
√
p

p+ 1

)
, (5.5)

where K = 55 if gcd(D, 5077) = 1 and K = 7000 otherwise, and the product is
taken over all prime divisors p of D except the largest prime.

Now we will approximate a lower bound for the expected number of such D
following [BS08], but we will provide a bit more details. Recall that in the Algorithm
2.1, we loop through the good discriminants D ∈ Sq until we can find one such
that 4fq = x2 + y2|D| and fq + 1 ± x is a prime for some positive integers x, y.
As mentioned in Theorem 2.2, we should expect to find O(log(fq)) many D by
the Chebotarev Density Theorem, which follows from Lemma 5.6 with the bound
B = O(log2(fq))

Theorem 5.3. Let K1, . . . ,Kn be distinct imaginary quadratic fields of odd class
number. Let H1, . . . ,Hn be ring class fields of K1, . . . ,Kn respectively, such that
[Hi : Ki] = ni are all odd. Let H =

∏n
i=2Hi. Then H1 ∩H = Q.

Proof. See [DLR15, Theorem 4.4]. �

Lemma 5.4. The order of the class group C(D) is odd exactly for discriminants
D of the form D = −q, where q ≡ 3 (mod 4).

Proof. Recall that Genus Theory states that the number of elements of order 2 in
C(D) is 2t−1 − 1, where t is the number of odd prime divisors of D. The result
follows. See also the argument preceding Proposition 11.11. �

Corollary 5.5. Let q1, q2, . . . , qn be a set of primes such that qi ≡ 3 (mod 4)
for i = 1, . . . , n. Let Hq1 , . . . ,Hqn be the Hilbert class fields of the imaginary
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quadratic fields Q(
√
−q1), . . . ,Q(

√
−qn), respectively. Let H =

∏n
k=2Hqk . Then

Hq1 ∩H = Q.

Corollary 5.5 can be proven quickly by looking at the ramified primes, as noticed
in [BS07]. Indeed, note that qk is the only rational prime that ramified in Hqk , and
qk does not ramify in

∏
m6=kHqm . Hence the intersection must be Q. It follows

that the class fields Hqk are linearly independent over Q.

Lemma 5.6. Let N be a rational prime and let P (B) = {` : ` is prime and ` ≤ B}.
The number S(B) of primes ` ∈ S(B) such that 4N = x2 + `y2 for some integers

x, y is approximately
√
B/ log(B).

Proof. Chebotarev Density tells us that P (B) is of size O(B/(2 log(B)). Recall
that 4N = x2 + `y2 for some integers x, y if and only if N splits completely in the
Hilbert class field H` of K` = Q(

√
−`) if and only if N is the norm of some principal

element of O`, the ring of integers of K`. By the Chebotarev Density Theorem, the
density of rational primes that split in H` is 1/2h`, where h` is the class number
of O`, the ring of integers of K`. If N splits completely in H`, then there exist
two elements in α, β ∈ O` such that their norm is equal to N . It follows that the
expected number of elements in O` for which N is the norm of is 1/h` ≈ 1/

√
`.

Hence, since the class fields H` are linearly disjoint over Q, the expected number
of primes ` for which N split completely in H` is approximately∑

`∈P (B)

1√
`
≈
(

B

log(B)

)
1√
B

=

√
B

log(B)
. (5.6)

�

6. Isogeny volcanoes

To compute the Hilbert class polynomial HD(X) (mod p), it is best avoid the
complex-analytic method when |D| > 1010, as this is the practical upper limit
due to storage size (see [Sut12a]). In general, all methods in computing HD(X)

(mod p) has time complexity Õ(|D|), with the difference being the storage required
for each method. Here the discriminants in Algorithm 2.1 is of size O(log2(fq)), so

the time complexity is at most Õ(log2(fq)) each time the CRT method is called.
Now in the case that C(D) is composite such as the case when D = −`1`2, a
root of HD(X) (mod q) can be obtained directly without even knowing their co-
efficients (see [Sut12a]). As each discriminant D in Algorithm 2.1 is either of the
form D = −`0 or D = −`1`2, the class group C(D) is highly cyclic, so we may only
have walk around the surface of one `-volcano. Furthermore, each such discrimi-
nant D is fundamental so we do not have to worry about explicitly computing the
endormorphism ring of elliptic curves as outlined in Algorithm 1.2 of [Sut11]. It is
expected that the CRT method to be faster in our scenario.

We will now provide a quick overview of the method of computing HD(X)
(mod q) using Chinese Remainder Theorem (CRT) following [Sut11]. By the Cheb-
otarev Density Theorem, given a negative discriminant D the set of primes

PD = {η > 3 prime : 4η = t2η + v2η|D| for some tη, vη ∈ Z+} (6.1)

is infinite and of density 1/2hD, where hD is the order of the class group C(D).
Suppose that we wish to compute HD(X) (mod p) for some (very large) prime p.
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The CRT method is to compute HD(X) (mod η) for an optimized finite set S(D)
of primes η ∈ P so that ∏

η∈S(D)

η > 2B, (6.2)

where B is an upper bound for the coefficients of HD(X). By the CRT, we can
explicitly determine HD(X) (mod p). Now we will describe how to find HD(X)
(mod η) for η ∈ S(D).

Let K be the imaginary quadratic field K = Q(
√
D), and suppose 4η = t2+v2|D|

for some positive integers t, v. By Complex Multiplication, each root r of HD(X)
(mod η) corresponds to an isomorphism class of elliptic curves with endomorphism
ring isomorphic to OK . Furthermore, each curve has trace ±t.

Let Ellt(Fη) be the set of the j-invariants of all elliptic curves over Fη with trace
equals to t. Hence, each element j0 of Ellt(Fη) represents the class of E/Fη and its
twists, where E is a curve with j-invariant j0. Let EllO(Fη) be the set of all roots
of HD(X) (mod p), which correspond to the j-invariant of all elliptic curves over
Fη with endomorphism ring equals to O. We have the following set inclusions

EllO(Fη) ⊂ Ellt(Fη) ⊂ Fη. (6.3)

A key observation is that the set Ellt(Fη) consists of isogenous curves as they
have trace t over the same finite field. Hence, given j(E) ∈ Ellt(Fη), it is discovered
that there exists an efficient method in obtaining an isogenous curve E′ such that
j(E′) ∈ EllO(Fη), the foundation of which is based on Kohel’s thesis [Koh96].

Kohel’s work describes a method to explicitly compute the endomorphism ring
of an ordinary elliptic curve E over finite field, which is isomorphic to an order O
of some imaginary quadratic field K. We have the following containment:

Z[πE ] ⊂ O ⊂ OK . (6.4)

Let u = [OK : O] and let v = [O : Z[πE ]]. The index w = [OK : Z[πE ]] is equal
to uv. Let ν` be the standard `-adic valuation. Kohel’s work [Koh96] shows that
computing the endomorphism ring of E is equivalent to known the ν`(w) for various
primes ` (See [Sut11, Proposition 2]).

Let ` 6= η be a prime, and let Γ`,t(Fη) be the undirected graph with V =
Ellt(Fη) as vertices. There is an edge between j(E), j(E′) ∈ V exactly when
ϕ`(j(E), j(E′)) = 0, where ϕ`(x, y) is the well-known classical modular polyno-
mial (see [Cox13, ch. 11]). The equation ϕ`(j(E), j(E′)) = 0 is satisfied exactly
when there is an isogeny of degree ` between E and E′. These modular polynomi-
als Φ`(X,Y ) are precomputed in Step 10. since Algorithm 6.1 are to be called for
O(log(fq)) many discriminants, and they will be reused later in Step 18. and Step
19. of Algorithm 2.1.

With at most two exceptions, the components of Γ`,t(Fη) are `-volcanoes (see
[Sut11] for definitions), but since we have excluded j = 0, 1728 in Algorithm 2.1
those exceptions do not occur. The graph resembles a volcano as can be seen in
Figure 1. Each `-volcano can be partitioned into levels V0, . . . , Vd, where each level
of the volcano represents elliptic curves with the same endomorphism ring, and the
depth each `-volcano is d = ν`(w). The bottom (floor) of the volcano contain curves
with endomorphism ring generated by the Frobenius automorphism, while the top
(surface) contains curves with the full ring of integers OK as their endomorphism

ring, where K = Q(
√
D).
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Figure 1. A 3-volcano of depth 2, with a 3-cycle on the surface.

The idea is to start with a random curve with trace t, which is actually very
difficult to find. As suggested by Sutherland, it is best to use the idea of picking
points from modular curves X1(m) (see Section 7). Once we have a j0 ∈ Ellt(Fη),
we go to the `-volcano that contains j0 and we replace j0 with the j-invariant at
the level ν`(w). If we perform this for each ` | w, then by Proposition 2 of [Sut11]
the final j0 ∈ EllO(Fη), as desired. We then choose variety of primes ` 6= p so that
` - u, in which case j0 is on the top of each `-volcano. Finally, we use the action of
C(D) on j0 to obtain all the other elements of EllO(Fη) by walking on the surface
of these `-volcanoes.

The action of C(D) on EllO(Fη) is a very interesting aspect of the algorithm.

Let ` 6= p be a prime such that
(
D
`

)
6= −1, which we will classify as an Elkies prime

in Section 10. There exists a prime ideal a of O such that (`) = aa, that is, ` is
the norm of a. There is a prime form (`, b`, c`) of discriminant D (see Section 8.2)
corresponding to the ideal a such that ` is the norm of the class [(`, b`, c`)] of C(D)
represented by (`, b`, c`). The order ordD(`) of [(`, b`, c`)] in C(D) is equals to the
number of elements of EllO(Fη) that lie on the surface of the `-volcano (see [Sut11,
Proposition 3]).

Suppose j0 ∈ EllO(Fη) lies on the surface V0 of an `-volcano. One walks a path
of length d to obtain a list of elements [j0, j1, . . . , jd] of Ellt(Fη). If the level of
jd 6∈ Vd, then j2 ∈ EllO(Fη), else we try another path of length d. We perform this
walking on each subsequent found j ∈ EllO(Fη) until the number of elements found
is equal to ordD(`). In general, to obtain elements on the surface, we use primes `
so that the depth d is 0, that is, ` - v. We use primes ` | v only when it is easier to
find roots of Φ`(X, j(E)). Hence, we observe that most of the orbit computations
are done on `-volcanoes of depth 0.

Note that when the depth d = 0, walking around the surface V0 is relatively
straightforward from Proposition 6.2 of [Sch95] regarding Elkies prime. If

(
D
`

)
= 0,

then ordD(`) = 2. The polynomial Φ`(X, j0) has exactly one other root j1 that lies
on the surface V0. Hence, the surface V0 in this case is just a line segment. Now
when

(
D
`

)
= 1, the polynomial Φ`(X, ji−1)/(X − ji) has exactly one root ji+1. Of

course, here the surface V0 is a cycle of length ordD(`).
There are many considerations must be taken for this method to be efficient.

The primes η in S(D) must be chosen carefully so that the density of curves with
t is high, that is, we choose primes η that enlarge EllO(Fη) while keeping the size
of EllO(Fη) the same. We also want primes η so that the index v = [O : Z[πE ]]
has small prime divisors as the depth d of each `-volcano depends entirely on v
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when D is fundamental. The primes ` must be chosen so that movements on the
`-volcanoes are easiest. The action of C(D) on EllO(Fη) is easier to compute if
we use the prime forms of C(D) (see Section 8.2). Finally, the computations for
the CRT must be updated continuously once HD(X) (mod η) is obtained for each
η ∈ S(D).

Algorithm 6.1. Let D be a fundamental discriminant of size O(log2(fq)) from
Step 8. from Algorithm 2.1. This algorithm finds HD(X) (mod p) using Chinese
Remainder Theorem.

1. Let PD = {η > 3 prime : 4η = t2η + v2η|D| for some tη, vη ∈ Z}.
2. Choose an optimized list S(D) of primes from PD.
3. Let k = 0.
4. Let η = S[k].
5. Find a curve E with j(E) ∈ Ellt(Fη) following Section 7.
6. Use the precomputed modular polynomials Φ`(X,Y ) to find an isogenous
E′ such that j0 = j(E′) ∈ EllO(Fη).

7. Compute the prime forms for discriminant D using Algorithm 8.2.
8. Use the precomputed modular polynomials Φ`(X,Y ) and prime forms to

compute the orbit of the group action of C(D) on j0 to obtain all the
elements of EllO(Fη).

9. Compute HD(X) (mod η) by expanding

HD(X) (mod p) =
∏

j∈EllO(Fη)

(X − j) (mod η). (6.5)

10. Increase k by 1 and return to Step 4 if k < |C(D)|, else go to the next step.
11. Use CRT to compute HD(X) (mod p).

Note that precomputing Φ`(X,Y ) is negligible as each prime ` < 6 log2(4 log2(fq)),

and the time complexity for computing each Φ`(X,Y ) is Õ(log3(`)).

7. Sampling from modular curve

Recall that if we wish to construct an elliptic curve E/Fp of order N , then we
need to find one with trace t = p+ 1−N . The naive method in finding a curve E
of trace t is to look for E : Y 2 = X3 + aX − a, where 1 ≤ a ≤ p− 1, such that

(p+ 1)(1, 1) = ±t(1, 1), (7.1)

as the point (1, 1) on E (though E may not have trace t). Then we compute the
order of E and find its twist if necessary. However, this naive method requires the
computation of the order of around 2

√
p curves. To accelerate the search we need

to reduce our sample size, and in [Sut12b] Sutherland does this by searching for
points on on the modular curve X1(d) for various d | N .

Recall that by Mazur’s theorem (see [Sil09, Theorem 7.5]), if E is an elliptic
curve over Q, then the order of a non-trivial torsion point P of E is a number in
the set T = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. Let p be an odd prime that does not divides
the discriminant of E, that is, p is a prime of good reduction, then the reduction
map

Etorsion → E(Fp) (7.2)

is injective (see page 123 of [ST92]). This provides a way to obtain a curve over Fp
with order divisible by d ∈ T . However, the possible orders of E is very limited if E
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is defined over Q. We could try to find a curve E over some finite extension K/Q;
however, its reduction may not have coefficients in Fp. For example, the reduction
of E/Q(d) has coefficients in Fp exactly when d (mod p) is a square. As Sutherland
suggests in [Sut12b], we should look for points on the curve Y1(d)/Fp, where Y1(d)
is the affine subcurve of X1(d).

The modular curve X1(m) classifies pairs (E,P ) of elliptic curves E with a fixed
point P ∈ E(C) of order m up to isomorphism over C (see [LR11]). To find an
elliptic curve of order m, we narrow our search to within Y1(d) for some d | m. We
want d to be reasonably small due to the cost in finding such points. Furthermore,
if d1 < d2 are small divisors of m, we generate several curves from X1(d1) and test
them for d2-torsion.

To find a curve E/Fp of trace t, we search for points on Y1(d)/Fp, where d | p+1−t
or d | p+ 1 + t, preferably both. From the given point, we can find its Weierstrass
equation, and if the curve is singular, we find another point. In [Sut12b], Sutherland
has optimized the search for points on Y1(d)/Fp by computing the raw form Fd(r, s)
of X1(d). Sutherland and Hoeij has computed Fd(r, s) for d up to 100. It is
recommended in [Sut12b] to use such forms for only d up to 40 due to the cost of
finding points of Fd(r, s) = 0.

In theory, one could directly apply this searching method to construct elliptic
curves of prime order N over some prime field Fp, provided that |t| = |p+ 1−N | ≤
2
√
p. We will describe this algorithm below; however, it is impractical for large

prime p.
To find an elliptic curve over Z/pZ of trace t = p+1−N , we find a small divisor

d of N0 = p+ 1 + t and search within Y1(d)/(Z/pZ). Once we find a curve of trace
t, we compute its twist. Of course, this method fails when N0 is not smooth.

For each of the probable prime p found from Step 9. and verified in Step 12., we
can apply the following algorithm to construct an elliptic curve E/(Z/pZ) of order
fq. Note by construction |t| = |p+ 1− fq| ≤ 2

√
p is automatically satisfied.

Algorithm 7.1. Algorithm to find an elliptic curve E/(Z/pZ) of trace t = p+1−fq.
1. Compute N0 = 2(p+ 1)− fq.
2. Find a small divisor d of N0.
3. Search for points on Y1(d)/(Z/pZ) using the optimized planar equation
Fd(r, s) = 0 (mod p).

4. Find a Weierstrass equation for E/(Z/pZ).
5. If E is singular, return to Step 3. and find another point, else go to the

next step.
6. Find a twist of E with order fq if necessary.

8. Prime forms of class group

Recall that for a negative discriminant D, the elements of C(D) consists of
equivalence classes of binary quadratic forms q(X,Y ) = aX2 + bXY + cY 2 such
that D = b2−4ac. Moreover, each class is represented by exactly one reduced form.
We wish to find generators for C(D) where a is a rational prime.

Let ` be a rational prime. Note that if D = b2 − 4`c, then D is a quadratic
residue modulo 4`. From this observation, we can easily obtain quadratic forms of
C(D) with a prime (see [BV07] and page 251 of [Coh93]). Indeed, assume D is a
quadratic residue modulo `, and write b` for its square root modulo `. By taking
`− b` if necessary, we may assume that b` is a square root of D modulo 4`. Then
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the form (`, b`, (b
2
` −D)/4`) has discriminant D. We call such a form to be a prime

form of C(D). In fact, every form F of C(D) is a product of such forms:

Lemma 8.1. (Lemma 5.5.1 of [Coh93]) Let (a, b, c) be a primitive positive definite
quadratic form of discriminant D < 0, and a =

∏
` `
ν` be the prime factorization

of a. Then we have up to equivalence:

(a, b, c) =
∏
`

F ε`ν`` , (8.1)

where F` is a prime form corresponding to `, and ε` = ±1 is defined by the congru-
ence

b ≡ ε`b` (mod 2`). (8.2)

Assuming the Extended Riemann Hypothesis (ERH), restricting ` to be primes
` ≤ 6 log2(|D|) yields a sequence of generators for C(D) (see [Bac90]). It is sug-
gested in [Coh93] that in practice it is better to search for primes ` ≤ B(D), where

B(D) = max
(

6(log(|D|))2, L(|D|)1/
√
8
)

(8.3)

and

L(x) = e
√

log(x) log(log(x)). (8.4)

Algorithm 8.2. Algorithm to find prime forms of C(D)
1. Let R and F be empty sets.
2. For each prime odd prime ` ≤ B(D) such that

(
D
`

)
= 1, find a square root

b` of D modulo `. Take b` = `−b` if necessary, we may assume that b2` ≡ D
(mod 4`), and we store the pair (b`, `) into the set R.

3. For each pair (b`, `) ∈ R, store the form (a`, b`, c`) into F , where c` =
(b2` −D)/(4`).

4. Return F .

As mentioned in Section 6, the prime forms for C(D) are used in [Sut11] to
create a polycyclic presentation of C(D). These forms provide efficient walks on
isogeny volcanoes, and the points on the surface of the volcanoes provide roots of
HD(X) (mod q) for some prime q. As suggested by Sutherland in [Sut11], to make
sure these prime forms generate C(D) unconditionally, one computes the order of
C(D) and add more forms if necessary; however, this is not practical for large
discriminants such as the ones in our scenario.

9. Computing square root and Cornacchia’s algorithm

There are various algorithms to find a square root of an integer a modulo prime
p, assuming that there exists one. In the easiest case p ≡ 3 (mod 4), the square
root of a modulo p is given by x = a(p+1)/4) (mod p). The remaining cases are
p ≡ 5 (mod 8) and p ≡ 1 (mod 8). For the case p ≡ 1 (mod 8), we will use
Tonelli-Shanks algorithm, which is useful when computing multiple square roots.
Finally, the case p ≡ 5 (mod 8) is relatively straightforward. If p ≡ 5 (mod 8) and
a is a square modulo p, then

√
a (mod p) =

{
a(p+3)/8 (mod p), if a(p−1)/4 ≡ 1 (mod p)

2a(4a)(p−5)/8 (mod p), if a(p−1)/4 ≡ −1 (mod 8).
(9.1)
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We will now described Tonelli-Shanks algorithm, following [Coh93]. Suppose
we wish to compute the square root of a modulo p. Here, we are assuming that(
a
p

)
= 1. Write

p− 1 = 2em, (9.2)

where m is odd. The multiplicative group (Z/pZ)
∗

is cyclic of order p−1, and so its

2-Sylow subgroup G is cyclic of order 2e. Find an integer n such that
(
n
p

)
= −1,

and compute g = nm, which clearly belong to G. If g2
e−1

= 1 (mod p), then p is
composite, else g generates the 2-Sylow subgroup G. Similarly, the element am ∈ G,
so amgk = 1 (mod p) for some integer k. It follows that a square root of a (mod p)
is given by √

a (mod p) = a(m+1)/2gk/2 (mod p). (9.3)

It would be useful to compute the square roots of all the elements in the 2-Sylow
if e is small and multiple square roots are to be computed. This is especially useful
for Algorithm 2.1. Furthermore, one amazing fact is that for each of the probable
Fibonacci prime fq from [onl17], the 2-Sylow subgroup of (Z/fqZ)

×
is very small

(see Observation 11.10). Hence, computing square roots modulo fq is relatively
simple in all cases.

Below is a variant of the Tonelli-Shanks algorithm that is tailored for our purpose.
We will break the Tonelli-Shanks algorithm into two parts to suit our purpose. If
either part fails, then fq is not a prime.

Algorithm 9.1. (Precomputations) This algorithm compute a square root of each

element of the 2-Sylow subgroup G of (Z/fqZ)
×

. Suppose we are given a quadratic
non-residue n modulo fq.

1. Let R(2, fq) be an empty list.
2. Factor fq − 1 as fq − 1 = 2em, where m is odd.
3. Compute g = nd (mod fq).
4. Let G be the subgroup generated by g.
5. Compute a square root ri of each element gi of G and append the ordered

pair (gi, ri) to the list R(2, fq).

Here we are applying the standard Tonelli-Shanks algorithm repeatedly in the
final step of Algorithm 9.1. Of course, for some of the elements we do not have to.
Now we will describe Tonelli-Shanks algorithm if we are given R(2, fq).

Algorithm 9.2. (Variant of Tonelli-Shanks algorithm) Given R(2, fq) and
(
a
fq

)
=

1, this algorithm computes a root of a (mod fq).

1. Compute x = a(m+1)/2 (mod fq) and y = am (mod fq).
2. Look up R(2, fq) for a square root of z of y.
3. Then

√
a = ±x/z (mod fq).

It is noted in [AM93] that if we fail to find a square root modulo p using the
above algorithms, then p is composite. It is unlikely for a composite number to
pass Algorithm 9.2. See [Wil87] for a combination of square roots with primality
tests.

An efficient algorithm to obtain a square root is useful in solving a variety of
Diophantine equations, namely the equation X2 + dY 2 = m. Cornacchia’s algo-
rithm (see Section 1.5.2 of [Coh93] and [Sch95]) can provide the unique solution of
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positive integers to the equation X2+dY 2 = m if there exists one. The algorithm is
essentially an application of the Euclidean algorithm. We will provide an overview
of the algorithm following [Sch95], where its proof by Lenstra can also be seen.
In [Sch95], the Cornacchia’s algorithm is used to compute the order of an elliptic
curve E/Fp if its endomorphism ring is known, and he also reversed this process to
compute square roots modulo p (see [Sch85]).

If
(−d
m

)
= −1, then clearly the equation X2 +dY 2 = m does not have a solution.

Assume
(−d
m

)
= 1, and let r0 be a root of −d (mod m). Replacing r0 with m− r0

if necessary, we may assume that r0 ≤ m/2. Let r−1 = m. Use the Euclidean
algorithm to find a sequence of non-negative integers r1, r2, . . . , rk such that rk <√
m and

rj ≡ rj−2 (mod rj−1), for 1 ≤ j ≤ k. (9.4)

Then a unique solution of positive integers exists exactly when the real number√
m− r2k
d

(9.5)

is an integer, and the solution is given explicitly by

(x, y) =

(
rk,

√
m− r2k
d

)
. (9.6)

Algorithm 9.3. (Cornacchia’s Algorithm) Algorithm to find a solution to x2 +
dy2 = m if there exists one.

1. Find a square root r0 of −d (mod m).
2. Replace r0 with m− r0 if necessary, we may assume r0 ≤ m/2.
3. Let r−1 = m.
4. Use the Euclidean algorithm to find a sequence of non-negative integers
r1, r2, . . . , rk satisfying rk <

√
m and rj ≡ rj−2 (mod rj−1), for 1 ≤ j ≤ k.

5. Compute s = (m− r2k)/d.
6. A solution exists exactly when s is an integer squared, and the unique

solution of positive integers is given by (x, y) = (rk,
√
s).

Note that each square root computation
√
a (mod fq) is just applications of

a small number of exponentiations, which has time complexity Õ(log2(fq)). The
Cornacchia’s Algorithm is just an application of Euclidean Algorithm, which has

time complexity Õ(log(fq)). Hence, the time complexity for all algorithms in this

section has time complexity of at most Õ(log2(fq)).

10. Schoof’s algorithm

Let E/Fp be an ordinary elliptic curve over Fp of the form Y 2 − f(X) = 0 for
some cubic polynomial f(X), whose j-invariant is neither 0 or 1728. Recall that
the order N and trace t of E are related by N = p + 1 − t. Hence, computing
the order E is equivalent to computing the trace of E. Schoof’s algorithm [Sch85]
can compute t in time complexity O(log8(p). Improvements by Atkin and Elkies

[Sch95] have lead to the SEA algorithm, which has time complexity Õ(log4(p)).
Schoof’s idea is to compute t (mod `) for finitely manly primes ` 6= p and com-

pute t using the Chinese Remainder Theorem. Since |t| ≤ 2
√
p, we want to choose
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the set S(E) of primes ` < p so that∏
`∈S(E)

` > 4
√
p, (10.1)

in order to be able to determine t uniquely.
To compute t (mod `), we use the characteristic polynomial

X2 − tX + p = 0 (10.2)

of the Frobenius automorphism πE of E. Let P = (x, y) be a point of the `-torsion
subgroup E[`] of E. From Equation 10.2, we have

(π2
E − tπE + p)P = 0, (10.3)

and explicitly in terms of x and y, we have

(xp
2

, yp
2

)− t(xp, yp) + p(x, y) = 0, (10.4)

which implies

(xp
2

, yp
2

) + p`(x, y) = t`(x
p, yp), (10.5)

where t` ≡ t (mod `) and p` ≡ p (mod p). Here, the 0 acts as both the point at
infinity and the morphism induced by 0. Its meaning can be understood by context.

Schoof’s idea to find t (mod `) is to plug t` = 1, . . . , ` − 1 into Equation 10.5
until the equation is satisfied. In practice, we actually only have to look at 1 ≤
t` ≤ (` − 1)/2 by looking at the second coordinate. However, instead of working
with one `-torsion point at a time, we work with the entire `-torsion group E[`] at
once, that is, we perform computations in the ring

R` = Fp[X,Y ]/(ϕ`(X), Y 2 − f(X)), (10.6)

where ϕ`(X) is the `-division polynomial of E (see [Sil09, pp. 105]). The degree of
ϕ`(X) is of size O(`2), and each root of ϕ`(X) corresponds to the X-coordinate of
some point in E[`].

If we choose a prime ` of size O(log(fq)) such that
(
t2−4fq

`

)
6= −1, then we

can compute t` (mod `) much quicker. The prime ` is called an Elkies prime. The
reason for this drastic reduction in time complexity is due to the fact that one
can use a polynomial F`(X) of degree of size O(`) in Equation 10.6, instead of
the polynomial ϕ`(X) with degree of size O(`2), though the trace t` (mod `) is
computed differently than as above.

Note that since the trace t is unknown, we can not immediately determine
whether an integer is an Elkies prime. To determine whether ` is an Elkies prime,
we such that fact that Φ`(X, j(E)) has a root exactly when ` is an Elkies prime
(see [Sch95, Proposition 6.2]). Here Φ`(X,Y ) is the classical modular polynomial
that parametrizes pairs of `-isogenous elliptic curves over C (see [Cox13, ch. 11]).
This interpretation carries over to finite fields of characteristic prime to `. The
work [SS14] on the distribution of Atkin and Elkies primes shows that one should
be able to find an Elkies prime quickly.

Since the polynomialXp−X splits completely over Fp, the polynomial Φ`(X, j(E))
(mod p) has a root j0 in Fp exactly when

gcd(Φ`(X, j(E)), Xp −X) > 1. (10.7)

As mentioned above, there exists an isogenous elliptic curve E′ such that j(E′) = j0.
By Proposition 6.1 of [Sch95], there exists a 1-dimensional subspace C of E[`] such
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that E′ and E/C are Falgp -isomorphic. Furthermore, the subspace C is an eigenspace

of πE for some eigenvalue λ, which corresponds to a root of X2−tX+p = 0. Hence,
if the eigenvalue λ is known, the value t` = t (mod `) is easily computed.

Corresponding to the eigenspace C of πE , there exists a polynomial F`(X) of
degree (`−1)/2, whose roots correspond to the distinct X-coordinates of the points
in C. See [Sch95] for explicit calculation of the polynomial F`(X). Hence, to
compute λ, we check which of the relations

πE(X,Y ) = (Xp, Y p) = λ′ · (X,Y ) λ′ = 1, . . . , `− 1 (mod F`(X)). (10.8)

is satisfied. The polynomials here that we are working with have degrees of size
O(`) instead of O(`2) as in Schoof’s algorithm. The time complexity in computing
t` (mod `) is drastically reduced.

Schoof’s algorithm and the observations above provide us a way to remove un-
wanted curves from the list Eq that we obtain at the end of Step 16. of Algorithm
2.1. Each element of (E, p,D) is an ordinary curve with possible order fq over the
ring Z/pZ. The j-invariant of E is not equal to 0 or 1728 and is a root of HD(X)
(mod p) by construction. We remove (E, p,D) from the list Eq if Φ`(X, j(E)) does

not have a root for prime ` such that
(
D
`

)
6= −1. If (E, p,D) does pass this test,

we verify that a root λ of X2 − tX + p = 0 is an eigenvalue of the Frobenius map
πE .

Algorithm 10.1. (Elkies Primes Verification) Let Eq be the list of curves obtained
from Step 16. of Algorithm 2.1. Let N be the cardinality of Eq.

1. Let k = 0 and let E(D) be an empty list.
2. If k = N , then go to the final step, else let (E, p,D) = Eq[k].
3. Let ` = 2.
4. Compute r =

(
D
`

)
.

5. If r 6= −1, append ` to E(D).
6. Compute d = gcd(Φ`(X, j(E)), Xp −X).
7. If r 6= −1 and d = 1 or r = −1 and d > 1, then remove (E, p,D) from Eq

and return to Step 2, else go to the next step.
8. Let ` be the next prime of `. If ` < 2 log2(4 log2(fq)), then return to Step

4, else increase k by 1 and return to Step 2.
9. Output Eq.

Algorithm 10.2. (Eigenvalue Verification) Let Eq be the list output by Algorithm
10.1. Let N be the cardinality of Eq.

1. Let k = 0.
2. If k = N , then go to the final step, else let (E, p,D) = Eq[k].
3. Let ` = E(D)[k].
4. Let λ, µ be the roots of X2 − tX + p = 0.
5. Find polynomial f` given by

F`(X) =
∏
±P∈C

(X − Px), (10.9)

as defined above.
6. Let R` be the ring defined by

R` = Fp[X,Y ]/(F`(X), Y 2 − f(X)). (10.10)
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7. Verify if either (Xp, Y p) = λ(X,Y ) or (Xp, Y p) = µ(X,Y ) in the ring R`.
If either is satisfied, then increase k by 1 and return to Step 2. If neither is
satisfied, then remove (E, p,D) from Eq and return to Step 2.

8. Output Eq.

Note the step in Algorithm 10.1 that has the highest time complexity is in Step 6,

which has time complexity Õ(log(fq)). Since Eq is of size O(log(fq)), the total time

complexity of Algorithm 10.1 is Õ(log2(fq)). For Algorithm 10.2, Step 6 requires

the heaviest computations, and it has time complexity Õ(log2(fq)). As the list Eq
is of size O(log(fq)), the total time complexity for Algorithm 10.2 is Õ(log3(fq)).

11. Some properties of Fibonacci numbers

Let (fn)n≥0 be the Fibonacci sequence given by f0 = 0, f1 = 1 and fn+2 = fn+1+
fn for all n ≥ 0. If a Fibonacci number f is a rational prime, then we say that f is a
Fibonacci prime. As mentioned in the introduction, it is not known whether there is
an infinite number of Fibonacci primes (see [Cal17] for current commentary). One
of the largest known Fibonacci prime is f81839, which has 17103 digits. However,
heuristics regarding elliptic divisibility sequence (EDS) from [EEW01] suggests it
may be finite. Even though the sequence of Fibonacci numbers is not an EDS,
with appropriate sign they are an EDS (see [SS06]). Unfortunately, we could not
go too afar in this path as the machinery is far beyond our capacity. We do find
it to be interesting that Fibonacci primes can be written as a combination of an
elliptic divisibility sequence (see Lemma 11.4). In the following we will discuss some
well-known results regarding Fibonacci numbers.

Lemma 11.1. Let K be a field with characteristic not equal to 5. Let α, β be the
roots of the polynomial G(X) = X2 −X − 1. Then the nth Fibonacci number is
given by

fn =
αn − βn√

5
. (11.1)

Proof. This is an easy application of generating function. Here we will prove it
directly. Let gn = (αn− βn)/

√
5. It’s clear that g0 = 0, g1 = 1. Furthermore, since

α2 = α+1, it follows that αn = αn−1+αn−2. Similarly, we have βn = βn−1+βn−2.
It is now straightforward to verify that gn = gn−1 +gn−2 for n ≥ 2. Hence, gn = fn
for n ≥ 0. �

Lemma 11.2. (Cassini’s Identity) For each integer k ≥ 0, we have

f2k+1 = f2k + f2k+1. (11.2)

For Fibonacci prime fq, the identity from Lemma 11.2 readily provides us a
square root of −1 (mod fq). Indeed, if we have fq = f2(q+1)/2 + f2(q−1)/2, then a

square root of −1 (mod fq) is given by
√
−1 (mod fq) = f(q+1)/2/f(q−1)/2 (mod fq). (11.3)

This observation allows us to quickly to test the primality of fq as seen in Step 4.
of Algorithm 2.1.

Theorem 11.3. (See [BGL15]) Let q be a rational prime. There exists integers
u, v such that

fq = u2 + qv2. (11.4)
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Lemma 11.4. (See Chapter 1 of [VM02]) For each integer n ≥ 1, we have

n∑
k=1

f2k = f2n+1 − 1. (11.5)

Lemma 11.5. The sequence {fn (mod m)} is periodic for any positive integer m.

Proof. This is clear by the Pigeonhole Principle. �

In fact by [Wal60], for each prime `, the period of the sequence {fn (mod m)} is
the order of λ in the field F`[X]/(X2−X − 1), where λ is a root of the polynomial
B(X) = X2 −X − 1 (mod `). Using Quadratic Reciprocity, we have the following
lemma:

Lemma 11.6. ([Wal60]) Let ` 6= 2, 5 be a prime. Then π(`) is a divisor of ` − 1
if ` ≡ ±1 (mod 10) and π(`) is a quotient of 2(` + 1) by an odd divisor if ` ≡ ±3
(mod 10).

Lemma 11.7. If fn 6= 3 is a Fibonacci prime, then n is a prime.

Proof. This is due to the well-known fact that

gcd(fn, fm) = fgcd(n,m). (11.6)

�

Lemma 11.8. For each prime q, we have the divisibility properties:

q | fq−( 5
q ), (11.7)

fq ≡
(

5

q

)
(mod q). (11.8)

Lemma 11.8 can be seen in [Wil82], but we can prove easily using basic Galois
Theory. We will only prove 11.7 as 11.8 follows similarly. The result is clear if q = 5
by Lemma 11.5, so assume q 6= 5. Let K = Fq[X]/(X2 − X − 1). Note that the

discriminant of X2 −X − 1 is 5. We will look at the cases
(

5
q

)
= 1 and

(
5
q

)
= −1

separately, that is, whether or not 5 splits in Fq.
If 5 splits in Fq, then K/Fq is a degree 1 extension. Hence, the Frobenius

automorphism Frobp : K → K defined by Frobq(x) = xq is trivial, which implies
that Frobq(α) = αq = α and Frobq(β) = βq = β. It follows that Frobq(fq−1) =

fq−1 = (αq/α− βq/β)/
√

5 = (1− 1)/
√

5 = 0.
If 5 does not splits in Fq, then K/Fq is a degree 2 extension, so the Frobenius

automorphism is a conjugation map. It follows that Frobq(α) = αq = β. Hence,

we have fq+1 = (αqα− βqβ)/
√

5 = (βα− αβ)/
√

5 = 0. The proof is complete.
Let q > 3 be a rational prime. Henceforth, let Cq = C(−4fq) and Bq = B(−4fq),

as defined in Equation 8.3. Recall that in Algorithm 8.2, to find generators of the
group Cq, we need to find the square roots −fq (mod `), for each prime ` ≤ Bq

such that
(
−fq
`

)
= 1. If ` ≡ 3 (mod 4), we find in Section 9 that this is an easy

computation. Now for the case ` ≡ 1 (mod 4), note that −fq ≡ −fr (mod `),
where r is the smallest non-negative integer such that q ≡ r (mod π(`)). Hence,
we do not need to compute fq to find a square root of −fq (mod `). Furthermore,
as the primes ` ≤ Bq are relatively small, computations of the square roots of −fq
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(mod `) are manageable. Noticeably, computing
(
fq
`

)
is easy for primes ` < q by

the periodicity and Lemma 11.8.

Lemma 11.9. If q > 3 is prime, then fq ≡ 1 (mod 4).

Proof. If fq ≡ 3 (mod 4), then q ≡ 4 (mod 6) by Lemma 11.5, which can not
happen as q is a prime. �

Observation 11.10. We note that given a probable prime fq, the 2-valuation of
fq − 1 is very small. If we write fq − 1 = 2em, where m is odd, then e ≤ 6. Here
we have checked all the probable Fibonacci primes given at [onl17].

Let K = Q(
√
−fq). By Lemma 11.9, −fq ≡ 3 (mod 4), so DK = −4fq. By

Genus Theory (see [Cox13, Theorem 6.1]), the number of elements of C(OK) of
order 2 is 2t−1 − 1, where t is the number of prime divisors of DK . Since in our
case DK = −4fq, we have t− 1 ≥ 1. Hence, C(Ok) ∼= Cq always has even order. It
would be of interest to study the 2-sylow subgroup of Cq.

Proposition 11.11. (See also [CH88, Corollary 18.6]) Suppose fq is a prime for
q > 3. The 2-sylow subgroup of Cq is cyclic.

Proof. Suppose fq is a Fibonacci prime. Then the number of prime divisors of −4fq
is 2. Hence, Cq has 22−1−1 = 1 element of order 2. As Cq has exactly one element
of order 2, it must be the case that the 2-sylow subgroup of Cq is cyclic. �

Proposition 11.12. The probability that Cq is cyclic is at least 97%.

Proof. Heuristics from [CL84] by Cohen and Lenstra states (conjecturally) that
the odd part of a class group C(D) is cyclic for at least 97% of the time (see also
Conjecture 5.10.1 of [Coh93]). Since the 2-sylow subgroup of Cq is always cyclic,
we have the desired result. �

Proposition 11.13. (See [CH88, Corollary 19.6]) Let q be a prime and E =
Q(
√
−q). Then the 2-Sylow subgroup of C(DE) has order 2 if and only if q ≡ 5

(mod 8).

Corollary 11.14. The 2-sylow subgroup of Cq has order 2 exactly when q ≡ 5, 7
(mod 12).

Proof. By Lemma 11.13, the 2-sylow of Cq has order 2 exactly when fq ≡ 5
(mod 8). By Lemma 11.6, fq ≡ 5 (mod 8) exactly when p ≡ 5, 7, 8 (mod 12),
but q ≡ 8 (mod 12) can not happen as q is a prime. �

Having a nontrivial 2-Sylow allows us to factor fq if it is not prime using the
Shank’s Class Group Method. All of the elements of order 2 are of the form
(a, a, c), (a, 0, c), and (a, b, a). For example, if we have the form (a, a, c), then we
have −4fq = a2 − 4ac = a(a− 4c), which implies fq = (a/2)(a/2− 2c), though the
factorization may be trivial. Obtaining an element of order 2 is relatively straight-
forward if we can easily compute the class number h of Cq. Indeed, factor h as
h = 2ek, where k is odd. Compute an arbitrary prime form F` of Cq using Algo-
rithm 8.2, then the element F k` is in the 2-Sylow subgroup of Cq. Of course, the
difficulty lies in computing h, which is extremely difficult for large fq. Since Cq is
highly cyclic, we could in theory probabilistically compute its order using Atkin’s
Variant (see [Coh93, pp. 252–261]); however, its time complexity is sub-exponential.
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Assume by some miracle that we are able to compute the class number of Cq,
then we can easily obtain an element of order 2. As mentioned above, the class
group has a high probability of being cyclic, which implies Cq has exactly one
element of order 2 most of the times. Hence, each element of order 2 allows us a
way to factor fq, and even if multiple elements of order 2 yield trivial factorization,
the fact that we have more than one element of order 2 hints of the fact that fq
may be composite.

We will now describe a variant of Shanks’s Class Group Method, but we will not
use it test probable Fibonacci primes as it is not practical with known machinery.
We will avoid this factoring in the dark ages (see [Coh93, ch. 8]) and provide much
better primality tests in Section 13.

Algorithm 11.15. Variant of Shanks’s Class Group Method
1. Find the set of prime generators F for Cq using Algorithm 8.2.
2. Use Algorithm 8.2 to find prime forms of Cq and obtain elements of order

2. Also let n be the number of trials until the first non-quadratic residue z
is found.

3. If n ≥ 50, then fq is likely composite.
4. If an element of order 2 is found, use it to factor fq. If the factorization is

nontrivial, then fq is composite.
5. If two or more distinct elements of order 2 are found, then fq is definitely

not a prime for q ≡ 5, 7 (mod 12), otherwise fq is likely composite.
6. Verify that |F| ≈ B(D)/2, else fq is likely not prime.
7. If fq passes the previous steps, then fq is a probable prime.

12. Exceptional Cases

We have from Lemma 11.2 that

4fq = (2f(q+1)/2)2 + 4f2(q−1)/2, (12.1)

so fq splits completely in the Hilbert class field of Q(
√
−1), which is itself since

the class number is 1. This is not all surprising since
(
−1
fq

)
= 1. Generalizing this,

we have that fq splits completely in the Hilbert class field HD of any imaginary

quadratic field Q(
√
D) with class number 1 for which

(
D
fq

)
= 1. It is well-known

that the set of all d < 0 such that the field Q(
√
d) has class order 1 is the set of

Heegner numbers

H = {−1,−2,−3,−7,−11,−19,−43,−67,−143}. (12.2)

For example, if fq ≡ 1 (mod 8), then

4fq = (2x)2 + 8y2 (12.3)

for some integers x, y. Step 8. skips over d = −1,−2,−3 and −7. We will use these
cases to quickly test the primality of fq.

As mentioned in Section 11, computing
(
`
fq

)
=
(
`
fq

)
can be computed quickly

with primes ` < q due to the fact the sequence (fn (mod m))n≥0 is periodic. For

example,
(

3
fq

)
= 1 exactly when fq ≡ 1 (mod 3), which can be quickly determined.

Indeed, when m = 3, the period is 8 and fn ≡ 1 exactly when n ≡ 1, 2, 7 (mod 8).
However, the index q is prime, so it follows that fq ≡ 1 (mod 3) exactly when
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q ≡ ±1 (mod 8). Hence, 4fq = x2 + 3y2 for some positive integers x, y if and only

if q ≡ ±1 (mod 8). Hence, for each d ∈ H,
(
d
fq

)
is sufficient for fq to be a norm

in Q(
√
−d), and as observed above,

(
d
fq

)
is easily computed.

Again from Lemma 11.3, we have

fq = x2 + y2q (12.4)

for some positive integers x, y. Moreover, from Lemma 11.8, it follows that

x2 ≡
(

5

q

)
(mod q). (12.5)

Hence, we can take x = 1 or x =
√
−1 (mod q), and apply the Cornacchia’s

Algorithm 9.3 to find find positive integers x, y so that 4fq = (2x)2 + y2(4q), which
implies fq always split in the Hilbert class field of Q(

√
−q).

From these simple observations, we have the following algorithm to test the
primailty of fq.

Algorithm 12.1. (Exceptional Cases Test) This algorithm uses ECPP to test the
primality of fq.

1. Let d = [−1,−2,−3,−7,−q].
2. Let m = 0.
3. If m < 5, then let ` = d[m], else go to the final step.

4. Compute s =
(
`
fq

)
and go to the next step.

5. If s = −1, 0, then increase m by 1 and return to Step 3, else go to the next
step.

6. Let K` = Q(
√
`) and Let D` be the discriminant of K`.

7. Find positive integers x, y for which 4fq = x2 + y2|D`| if such exist. If no
such x, y exist, then increase m by 1 and return to Step 3.

8. Determine if p = fq + 1± x has a prime divisor q > (f
1/4
q + 1)2. If it is too

difficult to determine, increase m by 1 and return to Step 3, else go to the
next step.

9. Let r be a root of HD(X) (mod fq) and go to the next step. If no such r
exists, then fq is composite and we end the algorithm.

10. If r = 0 or r = 1728, take E/(Z/fqZ) to be the curve Y 2 = X3 + 1 or
Y 2 = X3+X, respectively. If r 6= 0, 1728, take the curve Y 2 = X3+ax−a,
where a = 27r/(4(1728 − r)) (mod fq). Take P = (−1, 0) or P = (0, 0) if
r = 0 or r = 1728, respectively. Take P = (1, 1) if r 6= 0, 1728.

11. Apply ECPP (Theorem 13.4) to the curve E with the point P .
12. If fq is confirmed to be prime by ECPP, then we stop the algorithm, else

increase m by 1 and return to Step 3.
13. The integer fq is a probable prime.

13. Well-known primality tests

In this section we will discuss a number of primality tests. The computations
done in these tests are some of the same computations needed in the construction of
an elliptic curve of order fq over some finite field, so there is no loss of computations
in performing these tests. This observation is noted in [BS08] as well.
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Assuming GRH, Bach [Bac90] has shown that if p > 1000, then there exists a
quadratic non-residue z modulo p less than 2 log2(p). Furthermore, by the Cheb-
otarev Density Theorem, half of the primes in the interval [1, 2 log2 p] are quadratic
residues modulo p. Hence, we have the following crude test for primality:

Theorem 13.1. (Density Test) Let p be a probable prime. Compute
(
`
p

)
for all

primes ` ≤ 2 log2(p). If it takes about 50 trials to find a quadratic non-residue n
or if the number of quadratic residues is not approximately log2(p), then p is likely
composite.

Theorem 13.2. Let p be a probable prime, and write p− 1 = 2ed, where d is odd.
If we can find an integer a such that

ad ≡ 1 (mod p) (13.1)

and

a2
rd 6≡ −1 (mod p) (13.2)

for all 0 ≤ r < e, then p is not prime.

Notice that Theorem 13.2 is just the contrapositive of Fermat Little Theorem.
We will now describe the Rabin-Miller Primality Test following [Coh93].

Algorithm 13.3. (Rabin-Miller Primality Test) Let p be a probable prime, and
write p− 1 = 2ed, where d is odd.

1. Choose 20 random integers in the interval [2, p−1], and store them in a set
W (p).

2. If W (p) is empty, go to the final step, else pick a ∈ W (p) and remove a
from W (p).

3. Let k = 0.
4. Compute b = ad (mod p).
5. If b = ±1, then return to Step 2., else increase k by 1 and go to the next

step.
6. If k = e and b 6= −1 (mod p), then p is composite, else go to the next step.
7. Compute b2 (mod p), and return to Step 5..
8. The prime p is a probable prime.

It is clear the the Rabin-Miller Primality Test has time complexity Õ(log2(p))
since we are computing only a few exponentiations.

Theorem 13.4. (Elliptic Curve Primality Proving) Let p > 6 be a probable prime.
Let E/(Z/pZ) be an elliptic curve of order kq, where q is a prime such that q >
(p1/4 + 1)2. If there exists a point P on E such that kqP = 0 and kP is defined
and not equal to 0, then p is a prime.

We repeatedly use ECPP in Step 11. of Algorithm 2.1. In Step 11., even when
p = fq + 1± x fails the Rabin-Miller Primality Test, we can still use it to test the
primality of fq using ECPP. If fq is confirmed to be prime, then Step 16. does
indeed confirm the primality of p.

For a discussion of Elliptic Curve Primality Proving see [AM93] and [Cox13, ch.
14].
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tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.
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