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Abstract

A sequence (an)n≥0 is Stieltjes moment sequence if it has the form an =
∫∞

0
xndµ(x)

for µ is a nonnegative measure on [0,∞). It is known that (an)n≥0 is a Stieltjes moment
sequence if and only if the matrix H = [ai+j ]i,j≥0 is totally positive, i.e., all its minors are
nonnegative. We define a sequence of polynomials in x1, x2, . . . , xn (an(x1, x2, . . . , xn))n≥0 to
be a Stieltjes moment sequence of polynomials if the matrix H = [ai+j(x1, x2, . . . , xn)]i,j≥0

is x1, x2, . . . , xn-totally positive, i.e., all its minors are polynomials in x1, x2, . . . , xn with
nonnegative coefficients. The main goal of this paper is to produce a large class of Stieltjes
moment sequences of polynomials by finding multivariable analogues of Catalan-like numbers
as defined by Aigner.

1 Introduction

A sequence (an)n≥0 is a Stieltjes moment sequence if it has the form

an =

∫ ∞

0
xndµ(x)

where µ is a nonnegative measure on [0,∞). There are several other characterizations of Stieltjes
moment sequences. For example, in [16, Theorem 1.3], it is proved that a sequence (an)n≥0 is a
Stieltjes moment sequence if and only if both the matrices [ai+j]0≤i,j≤n and [ai+j+1]0≤i,j≤n are
positive semidefinite for all n ≥ 0 (see [13, 14]).

Another characterization Stieltjes moment sequences comes from the theory of total positiv-
ity. Let A = [an,k]n,k≥0 be a finite or infinite matrix. We say that A is totally positive of order
r if all its minors of order 1, 2, . . . , r are nonnegative and we say that A is totally positive if it
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is totally positive of order r for all r ≥ 1 (see [2, 3, 4, 5, 6, 7] for instance). Given a sequence
α = (an)n≥0, we define the Hankel matrix of α, H(α), by

H(α) = [ai+j ]i,j≥0 =















a0 a1 a2 a3 · · ·
a1 a2 a3 a4 · · ·
a2 a3 a4 a5 · · ·
a3 a4 a5 a6 · · ·
...

...
...

...
. . .















.

Then it is proved in [14] that α is a Stieltjes moment sequence if and only if H(α) is TP.
Let R denote the real numbers and x = x1, . . . , xn. In this paper, we may define when a

sequence of polynomials (an(x))n≥0 in the polynomial ring R[x] is a Stieltjes moment sequence of
polynomials. For any polynomial f(x) =

∑

ci1,...,inx
i1
1 x

i2
2 · · · xinn in R[x], we let f(x)|

x
i1
1 x

i2
2 ···x

in
n

=

ci1,...,in denote the coefficient of xi11 x
i2
2 · · · xinn in f(x). We say that f(x) is x-nonnegative, written

f(x) ≥x 0, if
f(x)|

x
i1
1 x

i2
2 ···x

in
n

≥ 0 for all i1, . . . , in.

Given a pair of polynomials in f(x) and g(x), we shall write

f(x) ≥x g(x)

if f(x)−g(x) ≥x 0. Let M = [mn,k(x)]n,k≥0 be a finite or infinite matrix of polynomials in R[x].
We say that M is x-totally positive of order r (x-TPr) if all its minors of order 1, 2, . . . , r are
polynomials in x with nonnegative coefficients and we say that M is x-totally positive (x-TP )
if it is x-totally positive of order r for all r ≥ 1.

Given a sequence α = (ak(x))k≥0 of polynomials in R[x], we define the Hankel matrix of α,
H(α,x), by the following

H(α,x) = [ai+j(x)]i,j≥0 =















a0(x) a1(x) a2(x) a3(x) · · ·
a1(x) a2(x) a3(x) a4(x) · · ·
a2(x) a3(x) a4(x) a5(x) · · ·
a3(x) a4(x) a5(x) a6(x) · · ·

...
...

...
...

. . .















.

Then if α is a Stieltjes moment sequence of polynomials if and only if H(α,x) is x-TP . In the
case where n = 1 so that we are considering polynomials in a single variable, our definition
coincides with the definition of Stieltjes moment sequences of polynomials as defined by Wang
and Zhu [20].

The main goal of this paper is to produce a number of combinatorially defined Stieltjes mo-
ment sequences of polynomials. We shall do this by finding appropriate multivariable analogues
of Catalan-like numbers as defined by Aigner [1]. Aigner’s idea is the following. Let σ = (sk)k≥0

and τ = (tk+1)k≥0 be two sequences of nonnegative numbers. Then define an infinite lower
triangular matrix A := Aσ,τ = [an,k]n,k≥0 where the an,ks are defined by the recursions

an+1,k = an,k−1 + skan,k + tk+1an,k+1 (1)

subject to the initial conditions that a0,0 = 1 and an,k = 0 unless n ≥ k ≥ 0. Aigner called Aσ,τ

the recursive matrix corresponding to (σ, τ) and he called the sequence (an,0)n≥0, the Catalan-
like numbers corresponding to (σ, τ). Recently, Liang et al. [11] showed that many Catalan-like
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numbers are Stieltjes moment sequences by proving that the Hankel matrix of the sequence
(an,0)n≥0 is totally positive. Such examples include the Catalan numbers, the Bell numbers, the
central Delannoy numbers, the restricted hexagonal numbers, the central binomial coefficients,
and the large Schröder numbers.

Liu and Wang [12] defined a sequence of polynomials (fn(q))n≥0 over R to be q-log convex
(q-LCX) if for all n ≥ 1,

(fn(q))
2 ≥q fn−1(q)fn+1(q) (2)

and defined a sequence of polynomials (fn(q))n≥0 to be strongly q-log convex (q-SLCX) if for
all n ≥ m ≥ 1,

fn(q)fm(q) ≥q fn−1(q)fm+1(q). (3)

Zhu [21] produced many examples of q-SLCX sequences of polynomials by modifying Aigner’s
Catalan-like numbers. In such a situation, Zhu [21] showed that the sequence of polyno-
mials (mn,0(q))n≥0 is a q-SLCX sequence of polynomials if for all k ≥ 0, sk(q)sk+1(q) −
tk+1(q)rk+1(q) ≥q 0. However, it is not the case that such a sequence of polynomials (mn,0(q))n≥0

is always a Stieltjes moment sequence of polynomials. For example, suppose that a and b are
nonnegative real numbers and rk(q) = 1 for k ≥ 1, s0(q) = q2 and sk(q) = 1 + q2 + a ∗ qb for
k ≥ 1, and t1(q) = q4 and tk(q) = q2 + q4 for k ≥ 2. It is easy to check that for all k ≥ 0,
sk(q)sk+1(q)− tk+1(q)rk+1(q) ≥q 0. First one can compute that

m0,0(q) = 1,

m1,0(q) = q2,

m2,0(q) = q4 + 4q6 + aq4+b,

m3,0(q) = q4 + 5q6 + 9q8 + 2aq4+b + 4aq6+b + a2q4+2b, and

m4,0(q) = q4 + 8q6 + 20q8 + 21q10 + 3aq4+b + 13aq6+b +

15aq8+b + 3a2q4+2b + 5a2q6+2b + a3q4+3b.

Then one can compute that

det









m0,0(q) m1,0(q) m2,0(q)
m1,0(q) m2,0(q) m3,0(q)
m2,0(q) m3,0(q) m4,0(q)







 =

− q8 − 4q10 + 6q12 + 36q14 + 27q16 − 64q18 − 3aq8+b − 2aq10+b + 27aq12+b + 35aq14+b−

48aq16+b − 3a2q8+2b + 5a2q10+2b + 14a2q12+2b − 12a2q14+2b − a3q8+3b + 3a3q10+3b − a3q12+3b

which is not a polynomial in q with nonnegative coefficients for all integers a, b ≥ 0.
Wang and Zhu [20] showed that many of the special sequences considered by Zhu [21] are in

fact Stieltjes moment sequences of polynomials over q. These include the following well-known
polynomials which are q-analogues of Catalan-like numbers.

1. The Bell polynomials Bn(q) =
∑n

k=0 S(n, k)q
k when rk(q) = 1, sk(q) = k+ q, and tk(q) =

kq. Here S(n, k) is the Stirling number of the second kind which counts the number of set
partitions of {1, . . . , n} into k parts.

2. The Eulerian polynomials An(q) =
∑n

k=0A(n, k)q
k when rk(q) = 1, sk(q) = (k + 1)q + k,

and tk(q) = k2q. Here A(n, k) is the number of permutations of n with k descents.
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3. The q-Schröder numbers, rn(q) =
∑n

k=0
1

k+1

(2k
k

)(

n+k
n−k

)

qk when rk(q) = 1, s0(q) = 1 + q,
sk(q) = 1 + 2q for k ≥ 1, and tk(q) = q(1 + q).

4. The q-central Delannoy numbers Dn(q) =
∑n

k=0

(

n+k
n−k

)(

2k
k

)

qk when rk(q) = 1, sk(q) =
1 + 2q, t1(q) = 2q(q + 1), and tk(q) = q(1 + q) for k > 1.

5. The Narayana polynomials Nn(q) =
∑n

k=1
1
n

(

n
k

)(

n
k−1

)

qk when rk(q) = 1, s0(q) = q, sk(q) =
1 + q for n ≥ 1, and tk(q) = q.

6. The Narayana polynomials Wn(q) =
∑n

k=0

(

n
k

)2
qk of type B when rk(q) = 1, sk(q) = 1+q,

t1(q) = 2q, and tk(q) = q for k > 1.

In this paper, we consider multivariable analogues Aigner’s Catalan-like numbers. That is,
suppose that we are given three sequences of polynomials over R with nonnegative coefficients

π = (rk(x))k≥1, σ = (sk(x))k≥0, and τ = (tk+1(x))k≥0.

Then we define a lower triangular matrix of polynomials

M(x) := Mπ,σ,τ (x) = [mn,k(x)]0≤k≤n

where the mn,k(x) are defined by the recursions

mn+1,k(x) = rk(x)mn,k−1(x) + sk(x)mn,k(x) + tk+1(x)mn,k+1(x) (4)

subject to the initial conditions that m0,0(x) = 1 and mn,k(x) = 0 unless 0 ≤ k ≤ n.
We note that one can give simple combinatorial interpretations of the polynomial mn,k(x)

defined by the recursions (4) in terms of Motzkin paths. A Motzkin path is path that starts
at (0, 0) and consist of three types of steps, up-steps (1, 1), down-steps (1,−1), and level-steps
(1, 0). We let Mn,k denote the set all paths that start at (0, 0), end at (n, k), and stays on or
above the x-axis. We weight an up-step at that ends at level k with rk(x), a level-step that ends
at level k with sk(x), and a down-step that ends at level k with tk+1(x). See Figure 1. Given a
path P in Mn,k, we let the weight of P , w(P ), equal the product of all the weights of the steps
in P . Then if we let

mn,k(x) =
∑

P∈Mn,k

w(P ),

it is easy to see that the mn,k(x) satisfy the recursions (4).

1 2
r   (x  , x  ,  ... , x  )nk

1 2 nk
s   (x  , x  ,  ... , x  )

1 2 nk
t   (x  , x  ,  ... , x  )

level k

Figure 1: The weight of steps in Motzkin paths

Suppose that we are given three sequence of polynomials over R with nonnegative coefficients
π = (rk(x))k≥1, σ = (sk(x))k≥0, and τ = (tk+1(x))k≥0. The main goal of this paper is to give
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some necessary conditions that will ensure that the sequence of polynomials (ms,0(x))s≥0 is a
Stieltjes sequence of polynomials where the polynomials mn,k(x) are defined by (4). First we
will prove that (ms,0(x))s≥0 a Stieltjes sequence of polynomials if the matrix

J(x) := J (π,σ,τ)(x) =











s0(x) r1(x)
t1(x) s1(x) r2(x)

t2(x) s2(x) r3(x)
. . .

. . .
. . .











is x-TP and rk(x) = 1 for all k ≥ 0. Following Wang and Zhu [20], we shall show that if there
are sequences of polynomials with nonnegative coefficients in R[x],

(b1(x), b2(x), . . .) and (c1(x), c2(x), . . .)

such that

sn(x) = bn+1(x) + cn+1(x) for n ≥ 0,

tn(x) = cn(x)bn+1(x) for n ≥ 0, and

rn(x) = 1 for n ≥ 0,

then J (π,σ,τ)(x) is x-TP.
We shall also show that J (π,σ,τ)(x) is x-TP if the following conditions hold:

(i) s0(x)− 1 ≥x 0,

(ii) si(x)si+1(x)− ti+1(x)ri+1(x) ≥x 0 for all i ≥ 0,

(iii) si+1(x)− ti+1(x)ri+1(x)− 1 ≥x 0 for all i ≥ 0.

We will then use these facts to produce many examples of Stieltjes sequences of polynomials.
We should note that one of the advantages of producing Stieltjes moment sequences of

polynomials (ak(x))k≥0 is that we automatically obtain infinitely many other examples of the
Stieltjes moment sequences of polynomials by replacing xi by φi(x) where φi(x) is a polynomial
with nonnegative coefficients. That is,

(ak(φ1(x), . . . , φn(x)))k≥0

will be another Stieltjes moment sequence of polynomials. In addition, we can produce infinitely
many example of Stieltjes moment sequences by replacing xi by any nonnegative real number
ri. That is, if ri ≥ 0 for i = 1, . . . , n, then (ak(r1, . . . , rn))k≥0 is a Stieltjes moment sequence.

The outline of this paper is as follows. In Section 2, we shall give several sufficient conditions
which ensure that the H(α,x) is x-totally positive for a sequence of polynomials α = (ak(x))k≥0.
Then in Section 3, we shall uses these results to produce many combinatorial sequences defined
Stieltjes moment sequences of polynomials (ak(x))k≥0.

2 Premliminaries

We start with two lemmas about n× n tridiagonal matrices of polynomials in x. Suppose that
J := J(x) = [ai,j(x)]i,j=1,...,n is tridiagonal matrix of nonnegative polynomials in x over R. That
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is, ai,j(x) ≥x 0 for all i, j and ai,j(x) = 0 if |i−j| > 1. Let J [{i1, . . . , ik}, {j1, . . . , jk}] denote the
k × k matrix which arises from J by taking the elements that lie in the intersection of the rows
i1, . . . , ik in J and the columns j1, . . . , jk in J where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · <
jk ≤ n. We say that a minor detJ [{i1, . . . , ik}, {j1, . . . , jk}] is a consecutive principal minor if
there exists an s such that (i1, i2, . . . , ik) = (j1, j2, . . . , jk) = (s, s+ 1, . . . , s+ k − 1).

Lemma 1. Suppose that J = [ai,j(x)]i,j=1,...,n is tridiagonal matrix of nonnegative polynomials
in R[x]. Then J is x-TP if and only if all of its consecutive principle minors are polynomials
in x with nonnegative coefficients.

Proof. Consider a minor detJ [{i1, . . . , ik}, {j1, . . . , jk}]. First we observe that
detJ [{i1, . . . , ik}, {j1, . . . , jk}] = 0 if there is an s such that |is − js| > 1. That is, suppose that
is < js. Clearly ais,jt(x) = 0 for t = s, s+ 1, . . . , k. But then

detJ [{i1, . . . , ik}, {j1, . . . , jk}] =
∑

σ∈Sk

sgn(σ)ai1,jσ1 (x) · · · aik,jσk (x)

where Sk is the symmetric group. It follows that if ais,jσs (x) 6= 0, then σs ≤ s−1. But in such a
situation, there must be an r < s such that σr ≥ s which would imply that air ,jσr (x) = 0. Thus
detJ [{i1, . . . , ik}, {j1, . . . , jk}] = 0. A similar argument can be used to show that if js < is, then
detJ [{i1, . . . , ik}, {j1, . . . , jk}] = 0.

Thus we only have to consider minors of the form detJ [{i1, . . . , ik}, {j1, . . . , jk}] where |is −
js| ≤ 1. In such a situation, let 1 ≤ t1 < · · · < tr ≤ k be the indices t such that such that
|it − jt| = 1. Then it is easy to see that detJ [{i1, . . . , ik}, {j1, . . . , jk}] equals

∏r
s=1 aits ,jts (x)

times a product of consecutive principle minors involving consecutive indices. For example,

detJ [{1, 2, 3, 5, 6, 9, 11, 12}, {2, 3, 4, 5, 6, 8, 11, 12}] =

a1,2(x)a2,3(x)a3,4(x)detJ [{5, 6}, {5, 6}]a9,8(x)detJ [{11, 12}, {11, 12}].

Thus it follows that if all the consecutive principal minors are polynomials in x with nonnegative
coefficients, then J is x-TP.

Lemma 2. Suppose that

J(x) =











s0(x) r1(x)
t1(x) s1(x) r2(x)

t2(x) s2(x) r3(x)
. . .

. . .
. . .











is tridiagonal matrix of nonnegative polynomials in R[x], where σ = (si(x))i≥1, π = (ri(x))i≥0,
and τ = (ti+1(x))i≥0 are sequences of non-zero polynomials over R with nonnegative coefficients
such that

(i) s0(x)− 1 ≥x 0,

(ii) si(x)si+1(x)− ti+1(x)ri+1(x) ≥x 0 for all i ≥ 0,

(iii) si+1(x)− ti+1(x)ri+1(x)− 1 ≥x 0 for all i ≥ 0.

Then J(x) is x-TP.
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Proof. By Lemma 1, we need only show that all the consecutive principal minors of J(x) are
nonnegative polynomials in x.

Let Mk(x) = detJ [{1, . . . , k}, {1, . . . , k}]. First we shall prove by induction that Mk(x) ≥x 0
for all 1 ≤ k ≤ n and Mk(x)−Mk−1(x) ≥x 0 for all 2 ≤ k ≤ n. Note that M1(x) = s0(x) ≥x 0
and M2(x) = s0(x)s1(x) − t1(x)r1(x) ≥x 0 by assumption. Then note that

M2(x)−M1(x) = s0(x)s1(x)− t1(x)r1(x)− s0(x)

= s0(x)(s1(x)− t1(x)r1(x)− 1) + t1(x)r1(x)(s0(x)− 1) ≥x 0

since we are assuming that that s0(x)− 1 ≥x 0 and s1(x)− t1(x)r1(x)− 1 ≥x 0.
Next assume k ≥ 3 and by induction that Mk−1(x) ≥x 0 and Mk−1(x) − Mk−2(x) ≥x 0.

Then expanding Mk about the last row, we see that

Mk(x) = sk(x)Mk−1(x)− rk(x)tk(x)Mk−2(x)

= (sk(x)− rk(x)tk(x))Mk−1(x) + rk(x)tk(x)(Mk−1(x)−Mk−2(x)) ≥x 0.

Similarly,

Mk(x)−Mk−1(x) = (sk(x)− rk(x)tk(x)− 1)Mk−1(x) + rk(x)tk(x)(Mk−1(x)−Mk−2(x)) ≥x 0.

Thus it follows that Mk(x) ≥x 0 for all k.
For consecutive principle minors of the form detJ [{m,m+1, . . . ,m+r}, {m,m+1, . . . ,m+r}]

where m > 1, we note sm(x)− 1 ≥x 0 since sm(x) − tm(x)rm(x)− 1 ≥x 0. It then follows that
the matrix J [{s, s+1, . . . , s+ r}, {s, s+ 1, . . . , s+ r}] satisfies the hypothesis of the theorem so
that the proof that Mn(x) ≥x 0 for all n ≥ 1 can be applied to show that

detJ [{s, s + 1, . . . , s+ r}, {s, s + 1, . . . , s+ r}] ≥x 0.

Wang and Zhu [20, Lemma 3.3], showed that if bn(q) and cn(q) be all q-nonnegative, then
the corresponding tridiagonal matrix is q-TP. The method of the proof used in [20, Lemma 3.3]
can be carried over verbatim to its x-analogue. Here we omit the details for brevity.

Lemma 3. Let (b1(x), b2(x), . . .) and (c1(x), c2(x), . . .) be sequences of polynomials in R[x] with
nonnegative coefficients. Then the tridiagonal matrix

Jb,c =













b1(x) + c1(x) 1
b2(x)c1(x) b2(x) + c2(x) 1

b3(x)c2(x) b3(x) + c3(x)
. . .

. . .
. . .













is x-TP.

Theorem 4. Let J = J (π,σ,τ)(x) be the tridiagonal matrix

J =





















s0(x) r1(x)
t1(x) s1(x) r2(x)

t2(x) s2(x) r3(x)
. . .

. . .
. . .

tn−1(x) sn−1(x) rn(x)
. . .

. . .
. . .




















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where σ = (si(x))i≥1, and τ = (ti+1(x))i≥0 are sequences of non-zero polynomials over R with
non-negative coefficients and rk(x) = 1 for all k ≥ 0. Let M(x) be the a lower triangular matrix
of polynomials

M(x) := Mπ,σ,τ (x) = [mn,k(x)]0≤k≤n

where the mn,k(x) are defined by (4). Then if the coefficient matrix J is x-totally positive, the
sequence (mn,0(x))n≥0 is a Stieltjes moment sequence of polynomials.

Proof. Let M(x) = [mi,j(x)]i,j≥0 and H(x) = [mi+j,0(x)]i,j≥0 be the Hankel matrix of the x-
Catalan-like numbers mn,0(x). We need to show that H(x) is x-totally positive. Let T0(x) =
1, Tk(x) = t1(x) · · · tk(x) and T = diag(T0(x), T1(x), T2(x), . . .). Then it is not difficult to verify
that

H(x) = M(x)T (x)M(x)t,

see [2, (2.5)]. By the Cauchy-Binet Theorem, any minor of H(x) can be expressed of sums of
products of minors of M(x), T (x), and M(x)t. It follows that if M(x), T (x), and M(x)t are
x-TP matrices, then H(x) is x-TP. It is clear that T (x) is x-TP and M(x) is x-TP if and only
if M(x)t is x-TP. Thus to show that H(x) is x-TP, we need only show that M(x) is x-TP. Thus
we need only show that J(x) being x-TP implies M(x) is x-TP. Let Mn(x) = [mi,j(x)]0≤i,j≤n

be the n-th leading principal submatrix of M(x). Clearly, to show that M(x) is x-TP, it suffices
to show that Mn(x) are x-TP for n ≥ 0. We do this by induction on n. Obviously, M0(x) is
x-TP. Assume that Mn(x) is x-TP. Then one can easily show that (4) implies that

Mn+1(x) =

[

en+1(x)
0n Mn(x)

] [

en+1(x)
Jn(x)

]

,

where en+1(x) = [1, 0, . . . , 0], 0n is column of n 0s, and Jn(x) is the n×(n+1) principal submatrix

of J(x). By the induction hypothesis, Mn(x) is x-TP so that

[

1 0
0 Mn(x)

]

is x-TP. On the

other hand, Jn(x) is x-TP since it is a submatrix of the x-TP matrix J(x), so that

[

en+1(x)
Jn(x)

]

is x-TP. Applying the Cauchy-Binet Theorem again, we see that Mn+1(x) is x-TP.

Given a polynomial a(x) =
∑

(i1,...,in)∈I
ci1,...,inx

i1
1 · · · xinn where I is finite index set and

ci1,...,in 6= 0 for all (i1, . . . , in) ∈ I, we let the degree of a(x), deg(a(x)), equal max({i1+ · · ·+ in :
(i1, . . . , in) ∈ I}). We say that a(x) is homogeneous of degree n if i1 + · · · + in = n for all
(i1, . . . , in) ∈ I and is inhomogeneous otherwise. If a(x) had degree n, then we let

Hx0(a(x)) = xn0a

(

x1
x0

,
x2
x0

, . . . ,
xn
x0

)

.

For example, if a(x1, x2) = 1 + x1 + x1x2 + x31, then

Hx0(a(x1, x2)) = x30

(

1 +
x1
x0

+
x1
x0

x2
x0

+
x1
x0

x1
x0

x1
x0

)

= x30 + x20x1 + x0x1x2 + x31.

Clearly if deg(a(x)) = n, then Hx0(a(x)) is a homogeneous polynomial of degree n.

Theorem 5. Suppose that α = (a0(x), a1(x), a2(x), . . .) is a Stieltjes moment sequence of poly-
nomials such that for all n ≥ 0, deg(an(x)) = n. Then Hx0(α) = (Hx0(a0(x)),Hx0(a1(x)), . . .)
is a Stieltjes moment sequence of polynomials.
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Proof. Let

H = [Hx0(ai+j(x))]i,j≥0 =















Hx0(a0(x)) Hx0(a1(x)) Hx0(a2(x)) Hx0(a3(x)) . . .
Hx0(a1(x)) Hx0(a2(x)) Hx0(a3(x)) Hx0(a4(x)) . . .
Hx0(a2(x)) Hx0(a3(x)) Hx0(a4(x)) Hx0(a5(x)) . . .
Hx0(a3(x)) Hx0(a4(x)) Hx0(a5(x)) Hx0(a6(x)) . . .

...
...

...
...

. . .















and

H = H(α,x) = [ai+j(x)]i,j≥0 =















a0(x) a1(x) a2(x) a3(x) . . .
a1(x) a2(x) a3(x) a4(x) . . .
a2(x) a3(x) a4(x) a5(x) . . .
a3(x) a4(x) a5(x) a6(x) . . .

...
...

...
...

. . .















.

Since α is a Stieltjes moment sequence of polynomials, we know that if 1 ≤ i1 < · · · < ik
and 1 ≤ j1 < · · · < jk, then the minor det(H[{i1, . . . , ik}, {j1, . . . , jk}]) equals

∑

σ∈Sk

sgn(σ)

k
∏

s=1

ais−1+jσ(s)−1(x) =
∑

(r1,...,rn)∈I(i1,...,in;j1,...,jn)

cr1,...,rnx
r1
1 · · · xrnn

for some finite index set I(i1, . . . , in; j1, . . . , jn) where cr1,...,rn ≥ 0 for all
(r1, . . . , rn) ∈ I(i1, . . . , in; j1, . . . , jn). Since an(x) ≥x 0 and deg(an(x)) = n, the degree of any
term of the form

∏k
s=1 ais−1+jσ(s)−1(x) is

k
∑

s=0

is − 1 + jσ(s) − 1 =
k

∑

s=0

is − 1 + js − 1.

Thus the degree of det(H[{i1, . . . , ik}, {j1, . . . , jk}]) less than or equal to
∑k

s=0 is − 1 + js − 1.

In particular, r1 + · · · + rn ≤
∑k

s=0 is − 1 + js − 1 for all (r1, . . . , rn) ∈ I(i1, . . . , in; j1, . . . , jn).
But then det(H[{i1, . . . , ik}, {j1, . . . , jk}]) equals

∑

σ∈Sk

sgn(σ)
k
∏

s=1

x
is−1+jσ(s)−1

0 ais−1+jσ(s)−1

(

x1
x0

, . . . ,
xn
x0

)

= x
∑k

s=0 is−1+js−1
0

∑

σ∈Sk

sgn(σ)

k
∏

s=1

ais−1+jσ(s)−1

(

x1
x0

, . . . ,
xn
x0

)

= x
∑k

s=0 is−1+js−1
0

∑

(r1,...,rn)∈I(i1,...,in;j1,...,jn)

cr1,...,rn

(

x1
x0

)r1

· · ·

(

xn
x0

)rn

.

By our remarks above, x
∑k

s=0 is−1+js−1
0

∑

(r1,...,rn)∈I(i1,...,in;j1,...,jn)
cr1,...,rn

(

x1
x0

)r1
· · ·

(

xn

x0

)rn
is poly-

nomial in x0,x with nonnegative coefficients. Thus H(α) is (x0,x)-TP so that Hx0(α) is a
Stieltjes moment sequence of polynomials.
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3 Applications

In this section, we shall use the results of the previous section to produce many combinatorially
interesting examples of Stieltjes moment sequences of polynomials.

Example 3.1. Let π = (r1(q), r2(q), r3(q), . . .) = (1, 1, 1, . . .), σ = (s0(q), s1(q), s2(q), . . .) =
(1, 1 + q, 1 + q, . . .) and τ = (t1(q), t2(q), t3(q), . . .) = (q, q, q, . . .). It is easy to check that these
sequences satisfy the hypothesis of Lemma 2. In this case, we are considering the polynomials
defined by

a0,0(q) = 1,

an+1,0(q) = an,0(q) + qan,1(q) for n ≥ 1, and

an+1,k(q) = an,k−1(q) + (1 + q)an,k(q) + qan,k+1(q) for 1 ≤ k ≤ n.

where an,k(q) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial objects are
Motzkin paths where the weights of the up-steps are 1, the weights of the down-steps are q and
the weights of the level-steps are 1 at level 0 and 1 + q at levels k > 0. Thus we can interpret
an,k(q) as the sum of the weights of Motzkin paths that start at (0, 0) and end at (n, k). For
example, if A(q) = [an,k(q)], then

A(q) =















1
1 1

1 + q 2 + q 1
1 + 3q + q2 3 + 5q + q2 3 + 2q 1

...
...

...
...

. . .















.

Proposition 6. The sequence (an,0(q))n≥0 is a Stieltjes moment sequence of polynomials.

A Riordan array, denoted by (d(x), h(x)), is an infinite lower triangular matrix whose gener-
ating function of the kth column is xkhk(x)d(x) for k = 0, 1, 2, . . ., where d(0) = 1 and h(0) 6= 0
[15]. A Riordan array R = [rn,k]n,k≥0 can be characterized by two sequences (an)n≥0 and (zn)n≥0

such that
r0,0 = 1, rn+1,0 =

∑

j≥0

zjrn,j, rn+1,k+1 =
∑

j≥0

ajrn,k+j (5)

for n, k ≥ 0 (see [10] for instance). Call (an)n≥0 and (zn)n≥0 the A- and Z-sequences of R
respectively. Let Z(x) =

∑

n≥0 znx
n and A(x) =

∑

n≥0 anx
n be the generating functions of

(zn)n≥0 and (an)n≥0 respectively. Then it follows from (5) that

d(x) =
1

1− xZ(xh(x))
and h(x) = A(xh(x)). (6)

The matrix R(a, b; c, e) = [rn,k]n,k≥0, where

{

r0,0 = 1, rn+1,0 = arn,0 + brn,1,
rn+1,k+1 = rn,k + crn,k+1 + ern,k+2,

(7)
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is called the recursive matrix. The coefficient matrix of the recursive matrix (7) is defined to be

J(p, q; s, t) =

















a 1
b c 1

e c 1

e c
. . .

. . .
. . .

















. (8)

Now R(a, b; c, e) is a Riordan array with Z(x) = a + bx and A(x) = 1 + cx + ex2. Let
R(a, b; c, e) = (d(x), h(x)). Then by (6), we have

d(x) =
1

1− x(a+ bxh(x))
and h(x) = 1 + cxh(x) + ex2h2(x).

It follows that

h(x) =
1− cx−

√

1− 2cx+ (c2 − 4e)x2

2ex2

and

d(x) =
2e

2e− b+ (bc− 2ae)x + b
√

1− 2cx+ (c2 − 4e)x2

(see [19] for details). From this formula we can now derive a number of interesting examples.
For example, taking a = 1, b = q, c = 1 + q and e = q in (8), we obtain the generating function
of the (an,0(q)) is

dA(x, q) =
∑

n≥0

an,0(q)x
n =

2

1 + (q − 1)x+
√

1− 2(1 + q)x+ (1− q)2x2
.

Remark 7. 1. When we set q = 1 in A(q), we obtain the Catalan triangle of Aigner [1]. See
also sequence [17, A039599] in the On-line Encyclopedia of Integer Sequences. It follows
that an,0(1) = Cn where Cn = 1

n+1

(2n
n

)

is the n-th Catalan number [17, A000108]. Hence
an,0(q) is a q-analogue of the Catalan number Cn.

2. When we set q = 2 in A(q), we obtain the triangle [17, A172094] and an,0(2) are the little
Schröder numbers Sn [17, A001003]. It follows that an,0(2q) is a q-analogue of n-th little
Schröder number Sn.

3. When we set q = 3, the sequence (an,0(3))n≥0 is sequence [17, A007564]. It follows that
an,0(3q) is a q-analogue of the sequence [17, A007564].

4. When we set q = 4, the sequence (an,0(4))n≥0 is sequence [17, A059231]. It follows that
an,0(4q) is a q-analogue of the sequence [17, A059231].

We know that for any m ≥ 1, the sequence (an,0(m))n≥0 is a Stieltjes moment sequence. In
particular, the Catalan numbers Cn and the little Schröder numbers Sn are a Stieltjes moment
sequences.

Example 3.2. Let

π = (r1(q), r2(q), r3(q), . . .) = (1, 1, 1, . . .),

σ = (s0(q), s1(q), s2(q), . . .) = (1 + q + q2, 1 + q + q2, 1 + q + q2, . . .), and

τ = (t1(q), t2(q), t3(q), . . .) = (q, q, q, . . .).
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It is easy to check that these sequences satisfy the hypothesis of Lemma 2. In this case, we are
considering the polynomials defined by

b0,0(q) = 1,

bn+1,0(q) = (1 + q + q2)bn,0(q) + qbn,1(q) for n ≥ 1, and

bn+1,k(q) = bn,k−1(q) + (1 + q + q2)bn,k(q) + qbn,k+1(q) for 1 ≤ k ≤ n

where bn,k(q) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial objects are
Motzkin paths where the weights of the up-steps are 1, the weights of the down-steps are q, and
the weights of the level-steps 1+ q+ q2. Thus we can interpret bn,k(q) as the sum of the weights
of Motzkin paths that start at (0, 0) and end at (n, k). For example, if B(q) = [bn,k(q)], then

B(q) =



















1
1 + q + q2 1

1 + 3q + 3q2 + 2q3 + q4 2 + 2q + 2q2 1
(

1 + 6q + 9q2 + 10q3+ 3 + 8q + 9q2 + 6q3 + 3q4 3 + 3q + 3q2 1
6q4 + 3q5 + q6

)

...
...

...
...

. . .



















.

Proposition 8. The sequence (bn,0(q))n≥0 is a Stieltjes moment sequence of polynomials.

Taking a = 1 + q + q2, b = q, c = 1 + q + q2 and e = q in (8), we obtain the generating
function of the (bn,0(q)) is

dB(x, q) =
∑

n≥0

bn,0(q)x
n =

2

1− (1 + q + q2)x+
√

1− 2(1 + q + q2)x+ ((1 + q + q2)2 − 4q)x2
.

Remark 9. In this case, the triangle B(1) is [17, A091965] and the first column (bn,0(1))n≥0 is
sequence [17, A002212]. Clearly bn,0(1) counts the number of 3-colored Motzkin paths of length
n and the number of restricted hexagonal polyominoes with n cells.

It follows that for any m ≥ 1, the sequence (dn,0(m))n≥0 is a Stieltjes moment sequence. In
particular, the sequence which counts the number of restricted hexagaonal polynominoes is a
Stieltjes momoment sequence.

Example 3.3. Let

π = (r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q), s1(p, q), s2(p, q), . . .) = (1 + p+ q, 1 + p+ q, 1 + p+ q, . . .), and

τ = (t1(p, q), t2(p, q), t3(p, q), . . .) = (q, q, q, . . .).

It is easy to check that these sequences satisfy the hypothesis of Lemma 2. In this case, we are
considering the polynomials defined by

c0,0(p, q) = 1,

cn+1,0(p, q) = (1 + p+ q)cn,0(p, q) + qcn,1(p, q) for n ≥ 1, and

cn+1,k(p, q) = cn,k−1(p, q) + (1 + p+ q)cn,k(p, q) + qcn,k+1(p, q) for 1 ≤ k ≤ n

12



where cn,k(p, q) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial objects are
Motzkin paths where the weights of the up-steps are 1, the weights of the down-steps are q,
and the weights of the level-steps 1 + p + q. Thus we can interpret cn,k(p, q) as the sum of the
weights of Motzkin paths that start at (0, 0) and end at (n, k). In particular, we can interpret
cn,(p, q) as weighted sum over three colored Motzkin paths. That is, the levels of the Motzkin
path can be colored with one of three colors, namely, color 0 which has weight 1, color 1 which
has weight q, and color 2 which has weight p, and the down-steps have weight q. For example,
if C(p, q) = [cn,k(p, q)], then

C(p, q) =



















1
1 + p+ q 1

1 + 3p + 2q + 2pq + p2 + q2 2 + 2p+ 2q 1
(

1 + 6p + 3q + 6p2 + 9pq + 3q2+ (3 + 8p + 6q+ 3 + 3p+ 3q 1
p3 + 3p2q + 3pq2 + q3

)

3p2 + 6pq + 3q2
)

...
...

...
...

. . .



















.

Proposition 10. The sequence (cn,0(p, q))n≥0 is a Stieltjes moment sequence of polynomials.

Taking a = 1+ p+ q, b = q, c = 1+ p+ q and e = q in (8), we obtain the generating function
of the cn,0(p, q)s is

dC(x, p, q) =
∑

n≥0

cn,0(p, q)x
n =

2

1− (1 + p+ q)x+
√

1− 2(1 + p+ q)x+ ((1 + p+ q)2 − 4q)x2
.

Remark 11. 1. When we set p = q = 1 in (cn,0(1, 1))n≥0, we obtain the 1, 3, 10, 36, 137, . . .
which is sequence [17, A002212]. Besides counting 3-colored Motzkin path, it also the
number of restricted hexagonal polyominoes with n-cells.

2. When we set p = 1 and q = 2 in (cn,0(p, q))n≥0, we obtain the 1, 4, 18, 88, 456, 2464, . . .
which is sequence [17, A024175].

3. When we set p = 2 and q = 2 in (cn,0(p, q))n≥0, we obtain the 1, 4, 20, 112, 672, 4224, . . .
which is sequence [17, A003645] whose n-th term is 2nCn+1.

There are many variations of the tk(p, q)-sequence that will also produce Steiltjes moment

sequence of polynomials. For example, suppose we define t
(s)
k (p, q) to be q if k ≤ s and p if

k > s and let τ (s) = (t
(s)
1 (p, q), t

(s)
2 (p, q), t

(s)
3 (p, q), . . .). It is easy to see the sequences π =

(r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .), σ = (s0(p, q), s1(p, q), s2(p, q), . . .) = (1 + p+ q, 1 +
p+ q, 1+ p+ q, . . .) and τ (s) satisfy the hypothesis of Lemma 2 for all s. Then we can define the

polynomials c
(s)
n,k(p, q) by

c
(s)
0,0(p, q) = 1,

c
(s)
n+1,0(p, q) = (1 + p+ q)c

(s)
n,0(p, q) + t

(s)
1 (p, q)c

(s)
n,1(p, q) for n ≥ 1, and

c
(s)
n+1,k(p, q) = c

(s)
n,k−1(p, q) + (1 + p+ q)c

(s)
n,k(p, q) + t

(s)
k+1(p, q)c

(s)
n,k+1(p, q) for 1 ≤ k ≤ n

where c
(s)
n,k(p, q) = 0 unless n ≥ k ≥ 0.
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Proposition 12. For all s ≥ 0, (c
(s)
n,0(p, q))n≥0 is a Stieltjes moment sequence of polynomials.

One of the advantages of this set up is that we can set p = 0 in such sequences. In particular,

(c
(s)
n,0(0, q))n≥0 is a Stieltjes moment sequence of polynomials. In such a situation, c

(s)
n,0(0, q) is

the sum over the weights of 2-colored Motzkin paths of height ≤ s. That is, the level steps can
be colored with color 0 which has weight 1 or colored with color 1 which has weight q. The
down-steps all have weight q and the up-steps all have weight 1.

We can also generalize this example by adding more variables. That is, let x = (x) where
n ≥ 3 and let 1 ≤ s1 < · · · < sn−1. Then let ri(x) = 1 for all i ≥ 1, si(x) = 1 + x1 + · · · + xn

for all i ≥ 1, and t
(s1,...,sn−1)
i (x) equal x1 if i ≤ s1, xj if sj−1 < i ≤ sj, and xn if i >

sn−1. Then let π = (r1(x), r2(x), r3(x), . . .) = (1, 1, 1, . . .), σ = (s0(x), s1(x), s2(x), . . .) and

τ (s1,...,sn−1) = (t
(s1,...,sn−1)
1 (x), t

(s1,...,sn−1)
2 (x), t

(s1,...,sn−1)
3 (x), . . .). It is easy to check that for any

1 ≤ s1 < · · · < sn−1, these sequences satisfy the hypothesis of Lemma 2. In this case, we are
considering the polynomials defined by

c
(s1,...,sn−1)
0,0 (x) = 1,

c
(s1,...,sn−1)
n+1,0 (x) = (1 + x1 + · · ·+ xn)c

(s1,...,sn−1)
n,0 (x) + t

(s1,...,sn−1)
1 (x)c

(s1,...,sn−1)
n,1 (x) for n ≥ 1, and

c
(s1,...,sn−1)
n+1,k (x) = c

(s1,...,sn−1)
n,k−1 (x) + (1 + x1 + · · ·+ xn)c

(s1,...,sn−1)
n,k (x) + t

(s1,...,sn−1)
k+1 c

(s1,...,sn−1)
n,k+1 (x)

for 1 ≤ k ≤ n,

where c
(s1,...,sn−1)
n,k (x) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial ob-

jects are Motzkin paths where the weights of up-steps are 1, the weights of down-steps ending at

level k are t
(s1,...,sn−1)
k+1 (x), and the weights of level-steps 1+x1+ · · ·+xn. Thus we can interpret

cn,k(x) as the sum of the weights of Motzkin paths that start at (0, 0) and end at (n, k). In
particular, we can interpret cn,0(x) as weighted sum over (n + 1)-colored Motzkin paths. That
is, the levels of the Motzkin path can be colored with one of (n+1)-colors, namely, color 0 which
has weight 1, color i which has weight xi for i = 1, . . . , n, and the down-steps that end at level

k have weight t
(s1,...,sn−1)
k+1 (x).

Proposition 13. For all 1 ≤ s1 < · · · < sn−1, (c
(s1,...,sn−1)
n,0 (x))n≥0 is a Stieltjes moment sequence

of polynomials.

Once again for any 2 ≤ j ≤ xn, the polynomials (c
(s1,...,sn−1)
n,0 (x1, . . . , xj−1, 0, . . . , 0))n≥0 Stielt-

jes moment sequence of polynomials and c
(s1,...,sn−1)
n,0 (x1, . . . , xj−1, 0, . . . , 0) equals to the sum of

j-colored Motzkin paths of length n and height less that sj.

Example 3.4. Let [n]p,q =
pn−qn

p−q
= pn−1 + qpn−2 + · · · + qn−2p+ qn−1. Let

π(u) = (r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .),

σ(u) = (s0(p, q), s1(p, q), s2(p, q), . . .) = ([u]p,q, p+ q, p+ q, . . .), and

τ (u) = (t1(p, q), t2(p, q), t3(p, q), . . .) = (pq[u− 1]p,q, pq, pq, . . .),
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where u ≥ 3. In this case, we are considering the polynomials defined by

d
(u)
0,0(p, q) = 1,

d
(u)
n+1,0(p, q) = [u]p,qd

(u)
n,0(p, q) + pq[u− 1]p,qd

(u)
n,1(p, q) for n ≥ 1, and

d
(u)
n+1,k(p, q) = d

(u)
n,k−1(p, q) + (p+ q)d

(u)
n,k(p, q) + pqd

(u)
n,k+1(p, q) for 1 ≤ k ≤ n

where d
(u)
n,k(p, q) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial objects are

Motzkin paths where the weights of the up-steps are 1, the weights of the down-steps that ends
a level 0 are pq[u − 1]p,q and the weights of the down-steps that end at level k > 0 are pq, and
the weights of the level-steps is [u]p,q if the step is at level 0 and p + q if the step is at level

k ≥ 1. Thus we can interpret d
(u)
n,k(p, q) as the sum of the weights of Motzkin paths that start

at (0, 0) and end at (n, k). For example, if D(3)(p, q) = [en,k(p, q)], then

D(3)(p, q) =











1
p2 + pq + q2 1

(p2 + pq + q2)2 + pq(p+ q) p2 + pq + q2 + p+ q 1
...

...
...

. . .











.

In this case, the sequences do not satisfy the hypothesis of both Lemma 2 and Lemma 3.
Nevertheless, we can prove directly that the tridiagonal matrix J (u) := J (π,σ,τ)(p, q) where

J (u) =















[u]p,q 1
pq[u− 1]p,q p+ q 1

pq p+ q 1
pq p+ q 1

. . .
. . .

. . .















is p, q-TP. By Lemma 1, we need only show that principal minors of the form
detJ (u)[{n, n + 1, . . . , n + k − 1}, {n, n + 1, . . . , n + k − 1}] are polynomials with nonnegative
coefficients.

For minors of the form detJ (u)[{n, n+1, . . . , n+k−1}, {n, n+1, . . . , n+k−1}] where n > 1,
we are dealing with the tridiagonal matrix

L =















p+ q 1
pq p+ q 1

pq p+ q 1
pq p+ q 1

. . .
. . .

. . .















which does satisfy the hypothesis of Lemma 3 where bi(p, q) = p and ci(p, q) = q for all i ≥ 1.

Thus we need only consider minors of the form N
(u)
k (p, q) = detJ (u)[{1, 2, . . . , k}, {1, 2, . . . , k}].

We shall prove by induction that N
(u)
k (p, q) = [k+u− 1]p,q. Note that p[n]p,q = pn+ pq[n− 1]p,q

and q[n]p,q = pq[n− 1]p,q + qn. Hence N
(u)
1 = [u]p,q and

N
(u)
2 = (p+ q)[u]p,q − pq[u− 1]p,q = pu+ pq[u− 1]p,q + pq[u− 1]p,q + qu− pq[u− 1]p,q = [u+1]p,q.
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Now assume that k ≥ 3. Then by expanding the determinant about the last row of
J (u)[{1, 2, . . . , k}, {1, 2, . . . , k}], we see that

N
(u)
k = (p+ q)Nk−1 − pqN

(u)
k−2 = (p+ q)[k − 1 + u− 1]p,q − pq[k − 2 + u− 1]p,q

= pk+u−2 + pq[k + u− 3]p,q + pq[k + u− 3]p,q + qk+u−2 − pq[k + u− 3]p,q = [k + u− 1]p,q.

Thus J (u) is q-TP for all u ≥ 3.
Thus we can apply Theorem 4 to obtain the following result.

Proposition 14. For all u ≥ 3, (d
(u)
n,0(p, q))n≥0 is a Stieltjes moment sequence of polynomials.

Taking a = [u]p,q, b = pq[u − 1]p,q, c = p + q and e = pq in (8), we obtain the generating

function of the (d
(u)
n,0) is

dD,u(x, p, q) =
∑

n≥0

d
(u)
n,0x

n =

2

2− [u− 1]p,q + ([u− 1]p,q(p+ q)− 2[u]p,q)x+ [u− 1]p,q
√

1− 2(p+ q)x+ (p− q)2x2
.

Remark 15. Setting p = q = 1 in (d
(3)
n,0(p, q))n≥0 gives the sequence 1, 3, 11, 43, 173, 707, 2917, . . .

which is sequence [17, A026671]. The combinatorial interpretation for the sequence is the number
of lattice paths from (0, 0) to (n, n) using steps (1, 0), (0, 1), and (1, 1) when the step is on the
diagonal.

Example 3.5. Let

π = (r1(p, q, r), r2(p, q, r), r3(p, q, r), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q, r), s1(p, q, r), s2(p, q, r), . . .) = (q + r, p + q + r, p + q + r, . . .), and

τ = (t1(p, q, r), t2(p, q, r), t3(p, q, r), . . .) = (q(p+ r), q(p+ r), q(p + r), . . .).

In this case, we are considering the polynomials defined by

i0,0(p, q, r) = 1,

in+1,0(p, q, r) = (q + r)in,0(p, q, r) + q(p+ r)in,1(p, q, r) for n ≥ 1, and

in+1,k(p, q, r) = in,k−1(p, q, r) + (p+ q + r)in,k(p, q, r) + q(p+ r)in,k+1(p, q, r) for 1 ≤ k ≤ n

where in,k(p, q, r) = 0 unless n ≥ k ≥ 0. In this case, the underlying combinatorial objects
are Motzkin paths where the weights of the up-steps are 1, the weights of the down-steps are
q(p+ r), and the weights of the level steps at level 0 is q+ r and the weights of the level steps at
level k ≥ 1 are p+ q+ r. Thus we can interpret in,k(p, q, r) as the sum of the weights of Motzkin
paths that start at (0, 0) and end at (n, k). For example, if I(p, q, r) = [in,k(q)], then

I(p, q, r) =


















1
q + r 1

(pq + q2) + 3qr + r2 (p+ 2q) + 2r 1
(

p2q + 3pq2 + q3)+ (p2 + 5pq + 3q2) + (3p + 8q)r + 3r2 (2p + 3q) + 3r 1
(4pq + 6q2)r + 6qr2 + r3

...
...

...
...

. . .



















.
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In this case, the sequences do not satisfy the hypothesis of both Lemma 2 and Lemma 3.
However, we can prove directly that the tridiagonal matrix J := J (π,σ,τ) where

J =















q + r 1
q(p+ r) p+ q + r 1

q(p+ r) p+ q + r 1
q(p+ r) p+ q + r 1

. . .
. . .

. . .















is (p, q, r)-TP. By Lemma 1, we need only show that principal minors of the form detJ [{n, n +
1, . . . , n+ k − 1}, {n, n + 1, . . . , n+ k − 1}] are polynomials with nonnegative coefficients.

For consecutive minors of the form detJ [{n, n+ 1, . . . , n + k − 1}, {n, n + 1, . . . , n+ k − 1}]
where n ≥ 2, are considering the matrix

J =















p+ r + q 1
q(p+ r) p+ r + q 1

q(p+ r) p+ r + q 1
q(p+ r) p+ r + q 1

. . .
. . .

. . .















.

This matrix satisfies the hypothesis of Lemma 3 where (b1(p, q, r), b2(p, q, r), b3(p, q, r), . . .) =
(p+ r, p + r, p + r, . . .) and (c1(p, q, r), c2(p, q, r), c3(p, q, r), . . .) = (q, q, q . . .).

Thus we need only consider minors of the form Pk = detJ [{1, 2, . . . , k}, {1, 2, . . . , k}]. We

shall prove by induction that Pk = qn +
∑n

k=1 r
k
(

∑k
j=0

(

n−k−j+k−1
k−1

)

qjpn−k−j
)

. Clearly P1 =

q+ r and P2 = (q + r)(p+ q+ r)− q(p+ r) = q2 + (p+ q)r+ r2. Now assume that k ≥ 3. Then
by expanding the determinant about the last row of J [{1, 2, . . . , k}, {1, 2, . . . , k}], we see that

Pk = (p + q + r)Pk−1 − q(p+ r)Pk−2.

In particular,

Pk|r0 = (p+ q)Pk−1|r0 − qpPk−2|r0 = (p + q)qk−1 − qpqk−2 = qk.

Similarly,
Pk|rn = r ∗ Pk−1|rn − q(p + r)Pk−2|rn = r ∗ rn−1 − 0 = rk.

Now suppose that 1 ≤ r ≤ n− 1. Then we must show that

Pk|rkqj = (p+ q)Pk−1|rkqj + Pk−1|rk−1qj − pqPk−2|rkqj − qPk−2|rk−1qj . (9)

One can show that this yields a identity among binomial coefficients which can be directly
checked with Mathematica. Thus J is p, q, r-TP.

Thus we can apply Theorem 4 to obtain the following result.

Proposition 16. The sequence (in,0(p, q, r))n≥0 is a Stieltjes moment sequence of polynomials.

On the other hand, taking a = q + r, b = q(p+ r), c = p+ q + r and e = q(p+ r) in (8), we
obtain the generating function of the first column I(p, q, r) is

d(x, p, q, r) =
2

1 + (p − q − r)x+
√

1− 2(p + q + r)x+ ((p + q + r)2 − 4q(p + r))x2
.
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Here is a list of the first few values of the sequence (in,0(p, q, r))n≥0.
1

q + r
(pq + q2) + 3qr + r2

(p2q + 3pq2 + q3) +
(

4pq + 6q2
)

r + 6qr2 + r3

(p3q + 6p2q2 + 6pq3 + q4) +
(

5p2q + 20pq2 + 10q3
)

r +
(

10pq + 20q2
)

r2 + 10qr3 + r4

Remark 17. 1. It follows from earlier results that in,0(p, q, 0) =
∑n

k=1
1
k

(

n−1
k−1

)(

n
k−1

)

qkpn−k

from which it follows that in,0(1, 1, 0) = Cn where Cn = 1
n+1

(2n
n

)

is the n-th Catalan
number.

2. We can show that in,0(p, q, 1) =
∑n

k=1
1

k+1

(

n+k
k

)(

n
k

)

qkpn−k from which it follows that
(in,0(1, 1, 1))n≥0 is sequence [17, A006318] which is the sequence of large Schöoder numbers.

3. We can show that (in,0(1, 1, r))n≥0 is the triangle [17, A060693].

4. The sequence (in,0(1, 1, 2))n≥0 starts out 1, 3, 12, 57, 300, 1686, 9912, . . .. This is sequence
[17, A047891].

5. The sequence (in,0(1, 2, 1))n≥0 starts out 1, 3, 13, 67, 381, 2307, 14598, . . .. This is sequence
[17, A064062] which is the sequence of generalized Catalan numbers.

Next, in Examples 3.6-3.9, we will consider several sequences of polynomials in q that were
studied by Zhu in [21]. In each case, Zhu showed that the sequence of polynomials is strongly
q-log convex sequence. Chen et al. [8] proved that Narayana polynomials form a strongly q-log
convex sequence. Chen et al. [9] also proved that Bell polynomials form a strongly q-log convex
sequence. Wang and Zhu [20] further studied the polynomials of Zhu and showed that each
sequence has the stronger property of being Stieltjes moment sequences of polynomials. Our
results will show that there are natural (p, q)-analogues of these polynomials which are Stieltjes
moment sequences of polynomials.

Example 3.6. Wang and Zhu [20] proved that the sequence of Narayana polynomials (Wn(q))n≥0

of type B is a Stieltjes moment sequence of where Wn(q) =
∑n

k=0

(

n
k

)2
qk. It follows from Theo-

rem 5 that the sequence (Wn(p, q))n≥0 where Wn(p, q) =
∑n

k=0

(

n
k

)2
qkpn−k is a Stieltjes moment

sequence of polynomials.

Proposition 18. The sequence
(

∑n
k=0

(

n
k

)2
pkqn−k

)

n≥0
is a Stieltjes moment sequence of poly-

nomials.

Taking a = p+ q, b = 2pq, c = p+ q and e = pq in (8), we obtain the generating function of
the en,0(p, q)s is

d(x, p, q) =
1

√

1− 2(p + q)x+ (p− q)2x2
.

Remark 19. 1. When we set p = q = 1 in (en,0(p, q))n≥0, we obtain the 1, 2, 6, 20, 70, 252, . . .
which is sequence [17, A001850] which are central binomial coefficients

(2n
n

)

. Thus we can
view (en,0(p, q))n≥0 as a (p, q)-analogue of the central binomial coefficients.
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2. When we set p = 2 and q = 1 in (en,0(p, q))n≥0, we obtain the 1, 3, 13, 63, 321, 1683, . . .
which is sequence [17, A000984] which are central Delannoy numbers. Thus we can view
(en,0(2p, q))n≥0 as a (p, q)-analogue of the central Delannoy numbers.

3. When we set p = 2 and q = 2 in (en,0(p, q))n≥0, we obtain the 1, 4, 24, 160, 1120, 8064, . . .
which is sequence [17, A059304]. This n-th term of this sequence also counts the number
of paths from (0,0) to (n, n) using steps (0,1) and two kinds of steps (1,0).

4. When we set p = 2 and q = 4 in (en,0(p, q))n≥0, we obtain the 1, 6, 52, 504, 5136, . . . which
is sequence [17, A084773]. This sequence has a interpretation in terms of weighted Motzkin
paths with a different set of weights than the ones that come out of our interpretation.
Thus we can view (en,0(2p, 4q))n≥0 as a (p, q)-analogue of this sequence.

Example 3.7. Wang and Zhu [20] observed that the sequence (Nn(q))n≥0 is a Stieltjes moment
sequence of polynomials where

Nn(q) =

n
∑

k=1

1

n

(

n

k − 1

)(

n

k

)

qk.

It follows from Theorem 5 that the sequence (Nn(p, q))n≥0 is a Stieltjes moment sequence of
polynomials where

Nn(p, q) =
n
∑

k=1

1

n

(

n

k − 1

)(

n

k

)

qkpn−k.

Proposition 20. The sequence
(

∑n
k=1

1
n

(

n
k−1

)(

n
k

)

pn−kqk
)

n≥0
is a Stieltjes moment sequence of

polynomials.

Taking a = q, b = pq, c = p+ q and e = pq in (8), we obtain the generating function of the
(fn,0(q)) is

dF (x, p, q) =
∑

n≥0

fn,0(p, q)x
n =

2

1 + (p − q)x+
√

1− 2(p + q)x+ (p − q)2x2
.

Remark 21. 1. If we set p = q = 1 in the sequence of (fn,0(p, q))n≥0, we obtain the sequence
of Catalan numbers C0, C1, C2, . . .. Thus we can view (fn,0(p, q))n≥0 as a (p, q)-analogue
of the Catalan numbers.

2. If we set p = 2 and q = 1 in the sequence of (fn,0(p, q))n≥0, we obtain the sequence
1, 1, 3, 11, 45, 19, 903, 4279, . . . which is the sequence of little Schröder numbers [17, A001003].
Thus we can view (fn,0(2p, q))n≥0 as a (p, q)-analogue of the little Schröder numbers.

3. If we set p = 1 and q = 2 in the sequence of (fn,0(p, q))n≥0, we obtain the sequence
1, 2, 6, 22, 90, 394, 1806, . . . which is the sequence of large Schröder numbers [17, A0006318].
Thus we can view (fn,0(p, 2q))n≥0 as a (p, q)-analogue of the large Schröder numbers.

4. If we set p = 2 and q = 2 in the sequence of (fn,0(p, q))n≥0, we obtain the sequence
1, 2, 8, 40, 224, 1344, 8448, 54912, . . . which is the sequence [17, A151374]. This sequence
counts the number of paths that start at (0,0) and stay in the first quadrant consisting of
2n steps (1, 1), (−1,−1), and (−1, 0).
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It follows that for any a, b ≥ 0, the sequence (fn,0(a, b))n≥0 is a Stieltjes moment sequence.
In particular, the Catalan numbers Cn, the little Schröder numbers Sn, and the large Schröder
numbers rn are all Stieltjes moment sequences.

Example 3.8. Wang and Zhu [20] proved that (Sn(q))n≥0 is a Stieltjes moment sequence
of polynomials where Sn(q) =

∑n
k=1 Sn,kq

k and Sn,k is Stirling number of the second kind which
counts the number of set partitions of {1, 2, . . . , n} into k parts. It follows form Theorem 5 that
(Sn(p, q))n≥0 is a Stieltjes moment sequence of polynomials where Sn(p, q) =

∑n
k=1 Sn,kq

kpn−k.

Proposition 22. The sequence
(
∑n

k=1 Sn,kp
n−kqk

)

n≥0
is a Stieltjes moment sequence of poly-

nomials.

It is straightforward to obtain the generating functions of the gn,0(p, q)s. That is, Let Sk(x) =
∑

n≥k S(n, k)x
n. Then it is well-known that S0(x) = 1 and for k ≥ 1,

Sk(x) =
xk

(1− x)(1− 2x) · · · (1− kx)
.

It follows that

∑

n≥0

xn
n
∑

k=0

S(n, k)qk =
∑

k≥0

qkSk(x) = 1 +
∑

k≥1

qkxk

(1− x)(1− 2x) · · · (1− kx)
.

Replacing x by xp and q by q/p in the generating function above gives

∑

n≥0

Sn(p, q)x
n = 1 +

∑

k≥1

qkxk

(1− px)(1− 2px) · · · (1− kpx)
.

Remark 23. 1. If we set p = q = 1 in the sequence of (gn,0(p, q))n≥0, we obtain the sequence
of Bell numbers B0, B1, B2, . . .. If we set p = q = k in the sequence of (gn,0(p, q))n≥0, we
obtain the sequence (knBn)n≥0. In particular for all k ≥ 1, the sequence (knBn)n≥0 is a
Steiltjes moment sequence. Thus we can view (gn,0(p, q))n≥0 as a p, q-analogue of the Bell
numbers.

2. If we set p = 2 and q = 1 in the sequence of (gn,0(p, q))n≥0, we obtain the sequence
1, 1, 3, 11, 49, 257, 1539, . . . which is the sequence [17, A004211].

3. If we set p = 1 and q = 2 in the sequence of (gn,0(p, q))n≥0, we obtain the sequence
1, 2, 6, 22, 94, 454, 2430, . . . which is the sequence [17, A001861].

4. If we set p = 2 and q = 2 in the sequence of (gn,0(p, q))n≥0, we obtain the sequence
1, 2, 8, 40, 224, 1344, 8448, 54912, . . . which is the sequence [17, A055882].

Example 3.9. For any σ = σ1 · · · σn ∈ Sn, let des(σ) = |{i : σi > σi+1}| and ris(σ) = |{i :
σi < σi+1}|. Wang and Zhu [20] proved that (En+1(q))n≥0 is a Stieltjes moment sequence of
polynomials where for n ≥ 1,

En(q) =

n−1
∑

k=0

En,kq
k =

∑

σ∈Sn

qdes(σ).
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It follows from Theorem 5 that (En+1(p, q))n≥0 is a Stieltjes moment sequence of polynomials
where

En(p, q) =

n−1
∑

k=0

En,kq
kpn−k =

∑

σ∈Sn

qdes(σ)pris(σ).

Proposition 24. The sequence
(
∑

σ∈Sn
pris(σ)qdes(σ)

)

n≥1
is a Stieltjes moment sequence of poly-

nomials.

It is easy to obtain a generating function for the En(p, q)s. That is, it is well-known that

1 +
∑

n≥1

xn

n!

∑

σ∈Sn

qdes(σ) =
q − 1

q − ex(q−1)
.

See [18]. Replacing x by px and q by q/p in this generating function we obtain that

1 +
∑

n≥1

xn

n!

∑

σ∈Sn

qdes(σ)pris(σ)+1 =
q − p

q − pex(q−p)
.

Thus
∑

n≥1

xn

n!

∑

σ∈Sn

qdes(σ)pris(σ) =
ex(q−p) − 1

q − pex(q−p)
.
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