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CONTINUANTS, RUN LENGTHS, AND BARRY’S MODIFIED PASCAL

TRIANGLE

JEFFREY SHALLIT AND LUKAS SPIEGELHOFER

Abstract. We show that the n’th diagonal sum of Barry’s modified Pascal triangle can be
described as the continuant of the run lengths of the binary representation of n. We also

obtain an explicit description for the row sums.

1. Introduction

In 2006 in the On-Line Encyclopedia of Integer Sequences (OEIS) [8], sequence A119326, Paul
Barry introduced a modified Pascal triangle, defined for integers 0 ≤ k ≤ n, as follows:

T (n, k) =
∑

0≤j≤n−k
2|j

(

k

j

)(

n− k

j

)

.

The first few rows of this triangle are as follows:

1

1 1

1 1 1

1 1 1 1

1 1 2 1 1

1 1 4 4 1 1

1 1 7 10 7 1 1

1 1 11 19 19 11 1 1

1 1 16 31 38 31 16 1 1
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Similarly, one can consider T (n, k) mod 2, whose terms are given by sequence A114213:

1

1 1

1 1 1

1 1 1 1

1 1 0 1 1

1 1 0 0 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 1 1

Sequences A114212 and A114214, respectively, are the row sums and diagonal sums of this
latter triangle. We denote them by r(n) and d(n), respectively:

r(n) =

n
∑

k=0

(T (n, k) mod 2)

d(n) =

⌊n/2⌋
∑

k=0

(T (n− k, k) mod 2) .

In May 2016, the first author observed, empirically, a connection between d(n) and the
binary representation of n. In this note we prove this connection, and also prove a formula for
r(n). The connection involves Stern’s “diatomic sequence” s(n), defined by s(0) = 0, s(1) = 1,
s(2n) = s(n), and s(2n+ 1) = s(n) + s(n+ 1); see [9].

2. The diagonal sums

Let the binary representation of n be denoted by
∑j

i=0 εi(n)2
i. We show that the diagonal

sum d(n) can be expressed in terms of this representation. Given a string s of 0’s and 1’s, we
consider its run lengths: the lengths of maximal blocks of consecutive identical elements. For
example, if s = 111000011111, then the run lengths of s are (3, 4, 5).

If m is a sequence of positive integers, we may associate an integer with it via the continued
fraction expansion: if m = (m0, . . . ,mk), we say that the continuant of m is the numerator of
the continued fraction [m0;m1, . . . ,mk] (see [3, Ch. 34, §4]).

Theorem 2.1. Let n ≥ 0 be an integer and let m be the sequence of run lengths of the binary

representation of n. Then d(n) equals the continuant of m.

We will use Lucas’ famous congruence for binomial coefficients [7, p. 230]: if p is a prime
number and n = (nν · · ·n0)p and k = (kν · · · k0)p, then

(

n

k

)

≡

(

nν

kν

)

· · ·

(

n0

k0

)

(mod p).

This implies that
(

n
k

)

is not divisible by p if and only if ki ≤ ni for all i. Moreover, it follows that

the number of odd binomial coefficients
(

n
k

)

equals 2s2(n), where s2 is the binary sum-of-digits
function [4].

We prove the following statement, which reduces the problem to divisibility by 2 of binomial
coefficients. We will derive Theorem 2.1 from it in a moment.

Proposition 2.2. Let n and k be nonnegative integers such that k ≤ n. If 2 | n + k, then

T (n, k) ≡
(

n
k

)

(mod 2). Otherwise, T (n, k) ≡
(

n−1
k

)

(mod 2).
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Proof. We prove the first statement. By replacing n with n+ k we get the equivalent assertion
that if 2 | n or 2 | k, then

(1)
∑

0≤j≤n
2|j

(

n

j

)(

k

j

)

≡

(

n+ k

k

)

(mod 2).

By Lucas’ congruence the left-hand side is congruent to

n
∑

j=0

(

n

j

)(

k

j

)

≡

n
∑

j=0

(

n ∧ k

j

)

≡ 2s2(n∧k) (mod 2),

where n∧k is the integer whose binary digits satisfy εi(n∧k) = min(εi(n), εi(k)). This expression
is odd if and only if s2(n ∧ k) = 0, which is the case if and only if the binary representations

of n and k are disjoint. To handle the right-hand side of Eq. (1), we note that
(

n+k
k

)

is odd if
n ∧ k = 1. On the other hand, if the binary representations of n and k are not disjoint, then
the condition εi(k) ≤ εi(n+ k) is violated for i = min{j : εj(n) = 1, εj(k) = 1}; therefore

(

n+k
k

)

is even. This proves the first assertion.
For the second assertion, we use Lucas’ congruence again: for 2 | j and 2 | m we have

(

m
j

)

≡
(

m+1
j

)

(mod 2). Since 2 ∤ n − k, we obtain
(

n−k
j

)

≡
(

n−1−k
j

)

(mod 2). Moreover, by

2 ∤ n− k the ranges of summation in T (n, k) and T (n− 1, k) are the same. �

From this proposition we obtain in particular the identity

(2) d(2n) = d(2n+ 1).

Carlitz [2] proved that Stern’s diatomic sequence s(n) satisfies s(n+1) =
∑⌊n/2⌋

k=0

(

(

n−k
k

)

mod 2
)

.

By Proposition 2.2 and Eq. (2) we therefore have

(3) d(2n) = d(2n+ 1) = s(2n+ 1).

It is well-known [5, 6] that if m = (m0, . . . ,mk) is the sequence of run-lengths of the binary
representation of n and n is odd, then s(n) is the continuant of m. Therefore d(n) is the
continuant of m. In order to complete the proof of the conjecture, we have to show that the
same is true for even n. By Eq. (3) it is sufficient to prove the following lemma.

Lemma 2.3. If n is even, then the continuant of the sequence of run-lengths of the binary

representation of n is equal to the continuant corresponding to n+ 1.

Proof. Let n = 1
m00

m1 · · · 1mk−10
mk . We distinguish between two cases. Ifmk = 1, then n+1 =

(1m00
m1 · · · 0mk−21

mk−1+1) and the statement follows from the identity [m0;m1, . . . ,mk−1, 1] =
[m0;m1, . . . ,mk−1 + 1]. If mk ≥ 2, then n + 1 = (1m00

m1 · · · 0mk−21
mk−10

mk−11) and the
statement follows from [m0;m1, . . . ,mk] = [m0;m1, . . . ,mk−1,mk − 1, 1]. �

Remark. The sequence (d(n))n≥0 is a 2-regular sequence [1], as it satisfies the equalities

d(2n+ 1) = d(2n)

d(4n+ 2) = 3d(2n)− d(4n)

d(8n) = −d(2n) + 2d(4n)

d(8n+ 4) = 4d(2n)− d(4n).
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3. The row sums

We will prove

Theorem 3.1.

r(n) =

{

2s2(n), if n odd;

2s2(n) + 2s2(n−2), if n even.

A similar characterization was stated, without proof or attribution, in the notes to A114212

of the OEIS.

Proof. From Proposition 2.2 we get, for integers n ≥ k ≥ 0, that

T (2n, 2k) ≡ T (2n+ 1, 2k) ≡ T (2n+ 1, 2k + 1) ≡

(

n

k

)

(mod 2);

T (2n, 2k+ 1) ≡

(

n− 1

k

)

(mod 2).

Then

r(2m) =

2m
∑

k=0

(T (2m, k) mod 2)

=

m
∑

k=0

(T (2m, 2k) mod 2) +

m−1
∑

k=0

(T (2m, 2k + 1) mod 2)

=
m
∑

k=0

((

m

k

)

mod 2

)

+
m−1
∑

k=0

((

m− 1

k

)

mod 2

)

= 2s2(m) + 2s2(m−1)

= 2s2(2m) + 2s2(2m−2).

Similarly,

r(2m+ 1) =
2m+1
∑

k=0

(T (2m+ 1, k) mod 2)

=

m
∑

k=0

(T (2m+ 1, 2k) mod 2) +

m
∑

k=0

(T (2m+ 1, 2k + 1) mod 2)

=
m
∑

k=0

((

m

k

)

mod 2

)

+
m
∑

k=0

((

m

k

)

mod 2

)

= 2s2(m) + 2s2(m)

= 2s2(2m+1).

�
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