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probability depends on the parity of the fermion number — it decays as a power
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1. Introduction

The advent of techniques to manipulate cold atoms has led to the experimental
realization of low-dimensional quantum gases [I] that, for many decades, were
mainly thought of as being toy models for theoreticians [2, [B]. The continuous
tuning of the pair interaction between atoms thanks to Feshbach resonances allows
one to create many-body systems ranging from free to strongly interacting. This
revolution triggered a profusion of studies of the non-equilibrium dynamics of quantum
systems [4 B, [6], including quenches, entanglement and thermalization, that resulted
in many new ways of exploring the quantum world [7].

Non-interacting tight-binding fermions on a lattice form the simplest of all
quantum gases. They can be viewed as continuous-time quantum walkers. Quantum
walks were initially introduced in the context of quantum information theory, as a
general framework to state quantum algorithms [§], 9, [10]. Many fundamental problems
that have been studied for classical random walks have natural counterparts in the
realm of quantum walks, often leading to results that look unexpected and surprising
from a classical point of view. First of all, quantum walkers behave ballistically rather
than diffusively [I1},[12]. The survival in the presence of traps [I3] [14] and the ballistic
spreading of bound states [I5] [16] provide yet other examples of qualitatively different
behavior in the classical and quantum cases.

A foremost question that has been investigated since the earlier days of quantum
mechanics concerns the decay of individual quantum states [17, [18] 19} (20 2T, [22], 23].
In many circumstances the return probability of a quantum system to its very initial
state, also referred to as the Loschmidt echo [24] 25] 26, [27], falls off exponentially in
time. Quantum revival therefore corresponds to a rare event, somehow analogously to
those described by the laws of large deviations in classical statistical mechanics [28] [29].
The return probability has been recently studied for various systems of bosons or
fermions confined to one dimension. There, a wide variety of temporal decays can
be found, ranging from a power law to a superexponential decay. These recent
works include two-particle systems [30] [3T] [32], many-particle systems [33], 34} 35}, 3],
and systems with infinitely many particles [37 [38 [39]. For instance, for free lattice
fermions with domain-wall initial condition, the return probability was found to obey
a pure Gaussian decay in time [37], [38]. More recently, the XXZ quantum spin chain
with generic anisotropy A with domain-wall initial condition has been investigated
in the massless phase (A = cos«) [39]. There, the decay of the return probability is
found to be either Gaussian or exponential, depending on whether the parameter
is commensurate to m or not. This highly discontinuous asymptotic behaviour is
attributed to integrability.

The aim of the present work is to study the return probability for a system
of N non-interacting fermions hopping on a one-dimensional lattice. The fermions
are launched from the most compact state where they occupy N successive lattice
sites. We consider two different settings: an infinite chain (section [2) and a semi-
infinite chain bounded by an impenetrable wall (section B]). In the latter situation,
the compact initial state lies near the wall. We first derive general expressions for
the return probability at arbitrary finite times (sections 2] and [B1). The Andréief
identity provides an explicit way of checking the equivalence of the first-quantized and
second-quantized approaches. We then perform an asymptotic analysis of the regime
of late times (sections 23] and B2). In both settings the return probability manifests
a dependence on the parity of the fermion number, oscillating forever for odd N and



Quantum return probability of N non-interacting lattice fermions 3

decaying monotonically for even N. In all cases it falls off as a power of time, whose
exponent also slightly depends on the parity of IV, and is roughly twice smaller than
what it would be in the continuum limit. We also derive closed-form expressions for
the amplitudes of the power-law decay of the return probability in all these situations.
This derivation relies on the usage of Mehta integrals [40, Ch. 17]. Our results suggest
a non-trivial crossover behavior in the scaling regime where time ¢ and the fermion
number N are both large and proportional to each other (sections 24 and 33). The
determination of the corresponding scaling functions F and F*) remains a challenging
open problem. Section Ml contains a brief summary and a discussion of our findings.

Two appendices are respectively devoted to the Andréief identity and
to Barnes’ G-function (Appendix B).

2. Free fermions on the infinite chain

We consider N non-interacting tight-binding fermions hopping on an infinite chain.
At the initial time (¢ = 0), the fermions are launched from N consecutive sites, labeled
n=1,...,N (see figure[).

1 N
-+ 00000000

Figure 1. The initial configuration of the N fermions on the chain.

We are interested in the return probability Ry (t), i.e., the probability that the
fermions occupy the same sites at a later time ¢, and especially in the asymptotic
decay of this quantity in the regime of long times.

2.1. General expressions at finite times

General expressions for the return probability Ry (t) at arbitrary finite times can be
derived as follows. Within the formalism of the second quantization, the Hamiltonian
of the system reads

H= Z (a;‘lanﬂ + alﬂan) , (2.1)
in dimensionless units, with the standard fermionic anti-commutation rules

{am,an} = {al ,al} =0, {@m,al} = 6mon. (2.2)
The many-body wavefunction |¥(t)) obeys the time-dependent Schrodinger equation

. d|T)

— =H|V 2.3

and so

[U(2)) = e™ 7| W(0)). (2.4)

The return probability therefore reads

Ry(t) = |[An(t)]?, (2.5)

with

A (t) = (R(0)[T (1)) = (T(0)]e™"[W(0)). (2.6)
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The above expression can be made explicit by bringing the Hamiltonian H to the
diagonal form

2m
dg -
H= /0 5, Ca a:gaq, (2.7)
with
€q = 2cosq (0 < g <2m). (2.8)

The operators
ST SRtton 29
n n
obey the anti-commutation relation

{@g,al,} =2md(qa—q). (2.10)

We find after some elementary algebra

27 27
/ / H dQn e~ 2itcosqn |<\I/(O)|q>|2, (211)

where q = (¢1,...,9n), and the g, are the momenta of the N fermions. The many-
body amplitude (¥(0)|q) is given by a normalized Slater determinant. In the present
situation, where the fermions are launched from the sites m = 1,..., N, we have

1 im
and therefore

2m 2m
dqn 721t COS qn,
An( N / / H
x [det (eim%)lgm’nSN‘ . (2.13)

The formula (ZTI2]) can be recast as

(W (0)|a) = o I (@ e, (2.14)

H e
1<m<n<N

where the last product is a Vandermonde determinant. We are thus left with the
following integral expression for the amplitude:

27 27 d n
N N'/ / H q 721tcosqn
I e e (2.15)

1<m<n<N
Applying the Andréief identity (AJ]) to (Z.I3), we get the alternative expression
An(t) = det (Ym,n(8) 1 neny = et (Tm-n(26))1_, non (2.16)

where

2m

d

wm,n(t) :/ 2(] 721tcosq+1(n m)q im— an m(2t) (217)
0 m
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is the one-body wavefunction at site n at time ¢ for a particle launched from site m
at time 0, and the J,, are Bessel functions.

The expressions [2I5) and (2I6) are complementary. The first one is more
amenable to some analytical investigations, including the asymptotic analysis of the
long-time regime performed in section 2.3l The second one could have been obtained
by more elementary means within the formalism of the first quantization, along
the lines of [I4, [I5] 16]. It demonstrates explicitly that the amplitude is properly
normalized, i.e., it obeys An(0) = 1. It is also more suited for numerical evaluations
and power-series expansions in t.

2.2. The first few values of N

It is interesting to first look at the first few values of the fermion number N.
e N = 1. For a single particle, we have A (t) = Jy(2t), and so

22t — /4
Ri(t) = J2(2t) ~ Lt”/) (2.18)
T
The return probability therefore oscillates forever, becoming exactly zero at infinitely
many times ¢ ~ (k — 1/4)w/2. These oscillations can be averaged out by replacing

the squared cosine by a factor 1/2. We thus obtain the power-law decay

— 1
Rl (t) ~ %

for the mean return probability.

(2.19)

e N = 2. The situation of two fermions is the simplest one where quantum statistics
plays a role. We have As(t) = JZ(2t) + JZ(2t), and so

1
Ro(t) = (J3(2t) + JE(2t))* ~ g (2.20)
In this case the return probability falls off monotonically to zero.
e N = 3. We have
A3(t) = (Jo(2t) + J2(2t))(J5 (2t) + 27 (2t) — Jo(2t) J2(2t))
2J1(2t Jo(2t)JE (2t
- 1t( )(J§(2t) +J3(2t) - So(20)Ji(2) 121( ), (2.21)

where the first line gives the raw determinantal expression (2I6). The second one,
obtained by means of the recursion

Jns1(2) + Jo_1(2t) = %Jn(%), (2.22)

is more suitable to study the late-time behavior of the return probability. Keeping
only the first group of terms in the second line of (Z21]), we obtain
4cos®(2t — 3m/4)
R3 (t) ~ 375 .
The return probability again oscillates forever, becoming exactly zero at infinitely

many times ty & (k+ 1/4)7/2. The situation is therefore qualitatively similar to that
of a single particle. Averaging again over the oscillations, we obtain

— 2
Ry(t) ~ —=. (2.24)

(2.23)
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2.8. Asymptotic analysis in the long-time regime

In this section we determine the asymptotic decay of the return probability Ry (¢)
in the long-time regime, for arbitrary values of the fermion number N. To do
so, we evaluate the multiple integral entering (ZI8)) by means of the saddle-point
approximation. Saddle points are defined by the condition that every momentum g,, is
either 0 or 7. The vicinity of the most general saddle point can thus be parametrized
by choosing M momenta near 0, of the form ¢, = z,, and the remaining N — M
momenta around 7, of the form ¢, = 7w + y,. For a fixed M, there are (Aj\g) ways of
choosing which momenta are near 0 and near . Expanding in (ZTI5]) the arguments
of the exponentials and the products to quadratic order in the variables x,, and y,,
we obtain the estimate

N
In ()

AND~ D s —ann
M=0

(2.25)

with
INM( ) _ 22M (N—M) 21(N 2M)t

/ / dx” i I (e —zm)?  (226)

1<m<n<M

The above integrals can be performed exactly. They are indeed given be the analytical
continuation to imaginary values of a of the Mehta integral [40, Eq. (17.6.7), v = 1]

In(a / / den SO ] A

1<m<n<N

oo N— Mdy
n 7ityfb _ 2
o e H (Yn — ym)"-

1<m<n<N-M

= (2m)N/?(2a) -N? /2Hj!
j=1

= 2m)N/2(20) "N 2G(N + 2), (2.27)
where G is Barnes’ G-function (see [Appendix B]). We thus obtain
Iy M(t) _ 22M(N7M) (27T)7N/2 ei(N72M)(2th7r/4)

x G(M +2)G(N — M + 2)(2t)M(N-M)=N?/2, (2.28)

All the quantities In ar(t) which enter the estimate (Z.25) thus fall off as power
laws in time, albeit with an M-dependent exponent. The behavior of the return
probability at long times is governed by the term Iy as(t) with the slowest decay.
Even and odd values of the fermion number N yield different behaviors, and have to
be dealt with separately. The emerging picture fully corroborates the observations
made in section for the first few values of V.

o If N = 2m is even, the slowest decay is reached for M = m, i.e., for equal numbers

of momenta near 0 and 7. We thus obtain the estimate

2m(m71)G m-+1 2
Agm(t) -~ ( )

: (2.29)

am gm?
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showing that the amplitude is positive and decays monotonically, at least for large
times. The echo therefore falls off monotonically as a power law

22m(m=1G(m +1)*
Rzm(t) ~~ ( )

(2.30)

2m ¢2m? ’
with exponent 2m? = %N2.

o If N =2m+1 is odd, the slowest decay is reached both for M =m and M = m+ 1.
We thus obtain the estimate

A 2™ G(m+ D)G(m +2)
amt1(t) = amt1/2 gm2tm+1/2

cos(2t — (2m + 1)w/4), (2.31)

showing that the amplitude behaves for large times as an oscillatory function

modulated by a decaying power law. Averaging over the oscillations, we obtain the

following power-law decay for the mean echo:

22m*=1G(m, + 1)2G(m + 2)?
w2m+l t2m2+2m+1 ’

Romy1(t) =~ (2.32)

with exponent 2m? + 2m +1 = 1(N? +1).

Figure [2 illustrates the above results, showing log-log plots of the return
probability Ry (t) against time ¢ for N = 1, 2, 3 and 4. Data have been obtained
using the expression (ZI6). For odd N (left), the echo oscillates forever. For even N
(right), it falls off monotonically and exhibits mild damped oscillations. The blue
straight lines — slightly translated for a better readability — have the predicted slopes
1,2, 5 and 8.

0

N=2 |
@

Int Int

Figure 2. Log-log plots of the return probability Ry (t) on the infinite
chain against time ¢, for N = 1, 2, 3 and 4. Left: odd N. Right: even V.
The blue straight lines have the predicted slopes 1, 2, 5 and 8.

It is worth comparing the above results for lattice fermions to the corresponding
predictions in the continuum limit. Within the present framework, taking the
continuum limit just amounts to approximating the dispersion relation (Z38) by a
quadratic law of the form

g4~ 2— ¢, (2.33)
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and therefore to restricting the saddle-point approximation to the sector where all
momenta are near zero (i.e., M = N). This yields
cont G(N + 1 2
Rgv )(t) ~ 2N(JE/+1)7-‘—N)tN2' (2.34)
We still obtain a power-law decay of the return probability, albeit with no parity effect
and with a different — roughly twice larger — decay exponent.

The above decay of the return probability in the continuum can be alternatively
derived by the following heuristic reasoning. Suppose the fermions have mass m and
are launched from the interval 0 < x < ¢. In reduced units (A = 1), the typical
momentum of each particle is p ~ 1/¢, and so its wavefunction spreads ballistically
over a region of size

t
L(t) ~ oy (2.35)
The return probability of one single particle therefore scales as Ry(t) ~ £/L(t) ~
ml?/t. The exponent of this decay is in agreement with (2:32) and (2.34). In the
same setting, the modulus of the wavefunction of N non-interacting fermions at late
times can be estimated as

Wn(@r,. o) ~Cn() [ |om — zal, (2.36)

1<m<n<N

as long as all the coordinates z,, are less than L(t), whereas it falls off very fast at larger

distances. Dimensional analysis implies that the normalization of the wavefunction
2

scales as Oy (t) ~ L(t)~N"/2, and that the return probability scales as

o~ (1)~ (25)" a7

The exponent of this decay is in agreement with (Z34). Furthermore, comparing
the prefactors of the estimates ([234) and ([Z37)) at large N yields the identification
ml? ~ N/(2¢%/?). The scaling £ ~ v/N of the length of the confining interval is an
artifact of the continuum framework.

2.4. Large-N asymptotics

In the N — oo limit, the amplitude Apn(t) admits the following remarkably simple
expression for all finite times:
Ase(t) = lim_det (Ju-n(26));<, ey =e " (2.38)
—00 Sm,nx
This expression has been derived independently in two recent works, devoted to
quantum quenches of fermionic chains [38], and to volumes of balls in unitary
groups [41]. The return probability therefore reads

Roo(t) = e 2", (2.39)

It can be verified, by expanding the result ([ZI6) as a power series in ¢ for the first
values of N, that the expressions for Ry (t) and R (t) start differing at order #2V+2,
This phenomenon has already been noticed in [41].
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On the other hand, for large but finite IV, the results of section can be given
more explicit forms. Using the asymptotic expansion (B.A), the expressions (2.30)
for N even and ([232)) for N odd respectively yield

N2 t 3
N co 1 )= —— |In—+ -
even: InRy(t) 5 (nN—I—2)
1 1 ,
—glnN+§1n2+4C(—1)—|—---, (2.40)
— NZ+1 t 3
N odd: IHRN(t) = — 5 (th + 5)
N Zme g d a1, 2an)
3 3 4 T
where the remainders go to zero for large N. To leading order, both expressions read
N? t 3
The results (Z39) and (242) suggest a scaling law of the form
N2 ¢
all over the regime where ¢t and N are large and comparable, with
422 (r < 1),
Fla) ~ Inz + g (x> 1). (244)

The form of the scaling variable x reflects the ballistic nature of the dynamics of a
free tight-binding particle.

3. Free fermions near a wall

In this section we consider the same problem on a semi-infinite chain ending with an
impenetrable wall. At time ¢ = 0, the fermions are launched from the N sites which
are closest to the wall (see figure[3).

1 N

W

Figure 3. The initial configuration of the N fermions near a wall ending a
semi-infinite chain.

We are interested in the temporal decay of the return probability RE\‘,N) (t), where
the superscript (w) reminds of the presence of a wall.

3.1. General expressions at finite times

General expressions for the return probability RE\‘,N) (t) at arbitrary finite times can be

derived along the very lines of section 211
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The presence of an impenetrable wall imposes Dirichlet boundary conditions at
site n = 0. With these boundary conditions, the Hamiltonian  is brought to the
diagonal form

H= / — &4 aqaq, (3.1)
with

£q = 2cosq (0 <q<m). (3.2)
The operators

G, =2 Zsinnqan, 6]; =2 Zsinnqajl (3.3)

obey the anti-commutation relation

{ag,al,} =7d(a—q). (3.4)
The many-body amplitude (¥(0)|q) is again given by a normalized Slater
determinant. Since the fermions are launched from the sites m = 1,..., N, the latter

reads

2N .
(U(0)|q) =4/ N det (Sinmqn) ) <,y e - (3.5)
The analogue of (ZI1]) therefore reads

dqn —21t COS qn,
N N[

2
X (det (sin mqﬂ>1§m,n§N) . (3.6)
The formula (@3]) can be brought to a form similar to (ZI4]). We recall that
sinmgq = sinq U,;,—1(cos q), (3.7)

where the U, are the Tchebyshev polynomials of the second kind [42, Vol. II, Ch. X].
The mth polynomial has degree m and the leading term U, (z) = (22)™ +--- We have
therefore

N

det (sinmqn)lgmynSN = H sing, det (Um—l(Qn))1§m,n§N

n=1

N
= oN(N=-1)/2 H sin qy,

X H (COS @, — COS Grm), (3.8)

1<m<n<N

where the last product is again a Vandermonde determinant. We are thus left with
the following integral expression for the amplitude:

N _ N' / / H Sn sm n 6721tcosqn
H (coS gn — €OS qm ). (3.9)

1<m<n<N
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Applying the Andréief identity (AJ]) to (3.8]), we get the alternative expression

AP (1) = det (@S (01,1 e n (3.10)

where
%ﬁ% (t) = wm n(t) - w—m n(t)
=i~(mm) g (2t) — i) g (2t) (3.11)
is the one-body wavefunction at site n at time ¢ for a particle located on the semi-
infinite chain and launched from site m at time 0. The expression (BII]) can be
recovered by applying the reflection principle (i.e., the method of images) to (Z.17).

The complementary expressions (39) and ([BI0) are the exact analogues on the
semi-infinite chain of their counterparts (2Z2I5]) and (ZI6]) on the infinite chain.

8.2. Asymptotic analysis in the long-time regime

In this section we determine the asymptotic decay of the return probability R(W) (t).
We again apply the saddle-point approximation to the multiple integral in (IB:QI)
Saddle points are still defined by the condition that every momentum g, is either 0
or m. The vicinity of the most general saddle point will be parametrized by choosing M
momenta near 0, of the form ¢, = z,, and the remaining N — M momenta around ,
of the form ¢, = m — y,,. At variance with the previous situation (section 2.3), the
variables z,, and y, are now positive We thus obtain the estimate

(W)
AW (1) ~ 2N Z T s (t) (3.12)

with
I](ngw(t) _ 2N7(N72M)2 e2i(N72M)t

/ / dxn eimi H (2 —22)%  (3.13)

1<m<n<M

o N L .
/ / —ype [ v

1<m<n<N-M
The above integrals can still be performed exactly. They are indeed proportional to the
analytical continuation to imaginary values of a of the Mehta integral [40, Eq. (17.6.6),
a=3/2,v=1]

IJ(\;V) (a) = / / H dz, 2% e —aa, H (22 — 22)?
1<m<n<N
= g N@N+D/2 H;! L(j+1/2)
j=1
= 7V/2(2q)~NEN+D/2 /NI G(2N +2), (3.14)
where G is again Barnes’ G-function (see [Appendix B)). We thus obtain
I](ngw(t) _ 27(N72M)27T7N/2 el(N—=2M)(2t—(N+1/2)7/4)

x /M(N — M)!G(2M + 2)G(2N —2M +2)
X (2t)2M(N—M)—N(2N+1)/2- (315)
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The behavior of the return probability at long times is still governed by the term
with the slowest decay. Even and odd values of the fermion number N again yield
different behaviors.

o If N = 2m is even, the slowest decay is reached for M = m, i.e., for equal numbers
of momenta near 0 and 7. We thus obtain the estimate

m(2m—1)

2m

, (3.16)

M ! gm(2m+1)
showing that the amplitude is positive and decays monotonically, at least for large
times. The echo therefore falls off monotonically as a power law

2m(2m71)G 2 2)2
(W) () o 2 (2m +2)
Ry (t) = 2m )2 $22m(2m+1) (3.17)

with exponent 2m(2m + 1) = N(N + 1).

o If N =2m+1 is odd, the slowest decay is reached both for M =m and M = m+ 1.
We thus obtain the estimate

2m(2m+) G(2m + 3)
7-‘-er1/2 m! t2m2+3m+3/2

AS) (1) ~ cos(2t — (2m + 3/2)7/4), (3.18)

showing that the amplitude behaves for large times as an oscillatory function
modulated by a decaying power law. Averaging over the oscillations, we obtain the
following power-law decay for the mean echo:
—(w) _22m@mAD-1G(2m + 3)2
R2m+1(t) T p2mel 12 p4Am2+6m+3

(3.19)

with exponent 4m? + 6m +3 = N2 + N + 1.

Figure Ml illustrates the above results, showing log-log plots of the return
probability RS\‘;V) (t) against time ¢ for N = 1, 2, 3 and 4. Data have been obtained
using the expression ([3I0). For odd N (left), the echo oscillates forever. For even N
(right), it falls off monotonically and exhibits mild damped oscillations. The blue
straight lines — slightly translated for a better readability — have the predicted slopes
3, 6, 13 and 20.

N=1 | -20 t

(3) A -30 | N=2

(6)

N=3 -80 N=4
13) | 90 (20)

Figure 4. Log-log plots of the return probability Rg\‘;v) (t) near a wall ending

a semi-infinite chain against time ¢, for N up to 4. Left: odd N. Right:
even N. The blue straight lines have the predicted slopes 3, 6, 13 and 20.



Quantum return probability of N non-interacting lattice fermions 13

It is again worth comparing the above results for lattice fermions to the
corresponding prediction in the continuum limit. Restricting the saddle-point
approximation to the sector where all momenta are near zero (i.e., M = N) yields

R(w,cont) (t) - G(2N + 2)
N T 9QNQ@N+1) LN NI¢NEN+1)

(3.20)

We again obtain a power-law decay of the return probability, albeit with no parity
effect and with a different, larger decay exponent.

The above power-law decay can still be recovered by means of heuristic reasoning.
Suppose the fermions are launched from the interval 0 < z < ¢ near the wall. The
modulus of the many-body wavefunction at time ¢ now reads approximately

N
‘wgy)(xl,...,xj\[;t)‘ NCJ(\;V)(t)H:vn H a2, — 22| (3.21)
n=1 1<m<n<N
Dimensional analysis determines the scaling of the normalization of the wavefunction,
C\(t) ~ L(t)~N@N+1) | and of the return probability,

" ¢ \NEN+D 2 N(2N+1)

A very similar result can be found in [33]. The decay exponent of the above estimate
agrees with ([20). Furthermore, comparing the prefactors of the estimates (3.20)
and B22)) at large N yields m¢? ~ N/e*/2. The latter estimate is twice larger than

its counterpart on the infinite line, given below ([237)). An intuitive interpretation of
this factor two will be given below (B2T).

3.3. Large-N asymptotics

In the N — oo limit, the return probability is expected to be equal to the square root
of its counterpart (Z39) on the infinite chain, namely

RW(t) =e " (3.23)

A heuristic way of showing this goes as follows. On the infinite chain, the compact
fermionic state has two ends, and can therefore decay through either end, whereas
it has only one right end if confined near a wall. Hence we can expect R (t) =
(Ré‘g ) (t))?. The latter result can be checked by expanding the expression ([B.I0) as
a power series in ¢ for the first values of N. Doing so confirms our expectation and
shows that Rg\‘;’) (t) and R (t) again start differing at order $2V+2,

On the other hand, using the asymptotic formula (B.5]), we can still derive more
explicit forms of the above results for large N. The expressions B.I7) for N even
and (BI9) for N odd respectively yield

w t 3
N even: lnREV)(t) = —N(N+1) <lnm + 5)
1
—glnN+1n2—g+2§’(—1)+--., (3.24)

R _t .3
Nodd: InRy'(t)= — (N +N+1)(ln2N+1+2)

1
- 61nN—21n2+ % +2¢(-1)+--- (3.25)
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The argument t/(2N + 1) of the logarithms has been chosen in order to minimize
the order of magnitude of the correction terms given in the second lines of the above
expressions. To leading order, both results read

t 3
mRY ()~ ~N?(ln— + 2 . 2
n Ry (t) nonts (3.26)
The results (323) and (3:28) again suggest a scaling law of the form
In R (1) ~ —N? F™) (), = (3.27)

The effective fermion number 2N entering the scaling variable x can be interpreted as
the total distance to be traveled by an excitation entering the compact fermionic state
from the right, bouncing at the wall, and exiting from the right. Finally, the scaling
function F(")(x) obeys the very same asymptotics (Z44) as F(x) both for = < 1
and for x > 1. It is therefore tempting to conjecture that both scaling functions are
identical.

4. Discussion

We studied the quantum return probability for a system of N non-interacting lattice
fermions launched from N consecutive sites, either on the infinite chain or near an
impenetrable wall ending a semi-infinite chain.

In each case we derived exact expressions for the return probability valid for
all fermion numbers N and time ¢. We thus obtained two complementary kinds of
expressions, namely integral formulas (see [2I5) and ([B.39])), which are the natural
outcome of the second-quantized formalism, and determinantal formulas (see (2.10)
and ([B.I0)), which could have been obtained by a first-quantized approach as well.
The Andréief identity provides an explicit way of checking the equivalence of the
first-quantized and second-quantized approaches. We deduced the asymptotic long-
time behavior of the return probability by evaluating the integral formulas by means
of the saddle-point method. Even and odd values of the fermion number N yield
different qualitative behaviors, as well as slightly different expressions for the decay
exponents. For even N, the echo falls off monotonically as a power law. For odd N,
it exhibits periodic oscillations modulated by a decaying power law. This qualitative
dependence on the parity of the fermion number is a pure lattice effect, which is
absent in the continuum limit. The return probability of N particles thus provides
yet another example of a situation where quantum dynamics exhibits qualitatively
different features on the lattice and in the continuum. The exponents characterizing
the temporal decay of the return probability are gathered in table [l

infinite chain infinite chain near a wall near a wall
(lattice) (continuum) (lattice) (continuum)

N even: N(N+1)
Nodd: N?+N+1

N2

. 1N2

Nodd: L(N2+1)

Table 1. Exponents of the temporal decay of the return probability on the infinite
chain and near a wall. Comparison between the values of the exponents for lattice
fermions and the predictions of the continuum limit.
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Our results also yield explicit expressions for the prefactors of the asymptotic
power-law decay of the return probability, in both geometries and for all values of the
fermion number N. The key point in the derivation of these results has been the use
of Mehta integrals, which have been extensively used in random matrix theory [40,
Ch. 17] and can be viewed as limiting cases of the Selberg integral. Reference [43]
provides a historical overview of the Selberg and related integrals, whereas the recent
work [44] and the references therein mention yet other connections between random
matrix theory and systems of free fermions. Our expressions for the prefactors of the
power-law decays involve as an essential ingredient Barnes’ G-function, which is also
ubiquitous in random matrix theory. Table 2l gives our predictions in factorized form
up to N = 10.

infinite chain | near a wall infinite chain | near a wall
Nodd | Rn(t) RV || Neven |  Rn() R (#)
232 E19) 2.30) E17)
1 1 1 24
1 o9 4 3 2 2,2 2,6
2nt 2rt Tt Tt
9 9932 94 92034
3 3.5 3,13 4 1,8 1,20
Tt Tt Tt Tt
29 2333652 216 2523854
5 5413 PN 6 7618 6142
22332 2713125672 23234 2963165874
7 7425 57 8 832 872
94536 912532451076 96038 9160332512-8
9 94T 29491 10 710450 7104110

Table 2. Asymptotic temporal decay of the return probability on the infinite
chain and near a wall, for fermion numbers up to N = 10. The exact prefactors
are given in factorized form.

The behavior of our results at large fermion numbers led us to hypothesize the
scaling laws (243) and BZT7), with arguments z = t/N and z = t/(2N), in the
regime where ¢ and N are both large and comparable. The form of these scaling
variables reflects the ballistic nature of a free tight-binding particle. It would be
worth investigating the above scaling regime in a more thorough fashion, possibly by
means of more advanced techniques, in order, among other things, to prove or disprove
the identity of the scaling functions F and F).

Finally, the framework of this study could be extended to investigate the return
probability of a system of N particles launched from other localized initial states, such
as compactly supported but not most compact states, or more general initial states
whose many-body wavefunction is localized in the center-of-mass coordinate.
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Appendix A. The Andréief identity

The Andréief identity

/ / Hp xn dxn det(fm(xn))1<m n<N det(gm(xn))1<m n<N

_N!det< / plz) dz fm(a:)gn(x))lgm)ngjv (A1)

relates the integral of the product of the determinants built upon two families
of functions to the determinant of their scalar products. This identity comes in
many guises in various branches of the mathematical literature, concerning especially
orthogonal polynomials and random matrix theory. Although it seems to appear for
the first time in print in an article by Andréief in 1883 [45], it is also associated
with other names, including Cauchy-Binet, Gram and Heine. Here it provides an
explicit way of checking the equivalence of the first-quantized and second-quantized

approaches, as it allows us to respectively derive (ZI6) and @BI0) from (ZI3)
and (B.4]).

Let us give an elementary proof of the above identity for the sake of completeness.
Starting from the left-hand side, let us introduce the Leibniz expansions of the
determinants:

det(fm(xn))1<m n<N — ngno’ H fUn I"

n=1
N

det(gm(2n))1<mn<n = ngm IT o-. (zn), (A2)

n=1
where o and 7 are permutations acting on N symbols, and sgno = £1 and sgn7 = +1
are their signatures. We thus obtain

b b N
Iy = ngnasgn7/~ : / H p(xn) dzy fo, (T0)gr, (Tn)- (A.3)
o,T a a p=1

The integrand is now a product, and so

In = ngnosgnT H / z)dz fr, (2)gr, (). (A4)

For fixed permutations ¢ and 7, let us change the index from n to m = 7,,. We have
then o,, = jiym, where p = o - 77!, and so sgnu = sgnosgn7. For fixed 7, the sum
over ¢ can be replaced by a sum over . The sum over 7 simply yields a factor N!.
We thus obtain

In —N'ngnun/ ) dz fo,, (2)gm (2). (A.5)

The sum over y is nothing but the Leibniz expansion of the determinant given in the
right-hand side of (A.T]).
On the infinite chain, the expression (ZI3)) of the amplitude Ay (¢) is proportional
to the left-hand side of (AJ]), with
—2it cosgqn

In:qnv p(:cn):e )
fm(xn) = elman Im(Tn) = e~ iman, (A.6)
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Applying the identity (AJ) yields (Z.IG]).
On the semi-infinite chain, the expression (B) of the amplitude Ag\‘;v) (t) is
proportional to the left-hand side of (AJ]), with the same p(x,) and

fm(Tn) = gm(vn) = V2 sinmqp. (A7)
Applying the identity (AJ) yields (I0).

Appendix B. Barnes’ G-function

Barnes’” G-function shares many common features with Euler’s I'-function. This
appendix summarizes the main properties of both functions, which can be found in
the Wikipedia article [46] or in the Digital Library of Mathematical Functions [47,
Ch. 5.17].

Euler’s I'-function and Barnes’ G-function are meromorphic functions in the
complex plane obeying the recursion relations

I(z+1)=2T(z2), G(z+1) =T(2)G(»), (B.1)

with appropriate regularity conditions.
When z is a positive integer, Euler’s I'-function becomes the usual factorial:

T(n+1)=nl, (B.2)

whereas Barnes’ G-function becomes the ‘superfactorial’:

Gm+2)=[[r=]]c""= [ G-9. (B.3)
k=1 =1 1<i<j<n+1
We have in particular I'(1) = I'(2) = 1 and G(1) = G(2) = G(3) = 1. The ‘super-
factorial’ numbers G(n + 2) appear in the OEIS [48] as sequence number A000178,
together with many further properties and references.
Euler’s I'-function and Barnes’ G-function have the following asymptotic expan-
sions as z — +00:

Inl(z+1) = (z—l—%)lnz—z—i—ln\/%r—i—---, (B.4)
22 1 322 ,
InG(z+1)= CED) lnz—T+zlnx/27r—|—§(—1)+---,(B.5)

where ('(—1) = —0.165421 143 .. .. (¢ being Riemann’s (-function), and the remainders
go to zero for large z.
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