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We present an efficient Monte-Carlo framework for perturbative calculations of infinite nuclear
matter based on chiral two-, three-, and four-nucleon interactions. The method enables the incor-
poration of all many-body contributions in a straightforward and transparent way, and makes it
possible to extract systematic uncertainty estimates by performing order-by-order calculations in
the chiral expansion as well as the many-body expansion. The versatility of this new framework is
demonstrated by applying it to chiral low-momentum interactions, exhibiting a very good many-
body convergence up to fourth order. Following these benchmarks, we explore new chiral interactions
up to next-to-next-to-next-to-leading order (N3LO). Remarkably, simultaneous fits to the triton
and to saturation properties can be achieved, while all three-nucleon low-energy couplings remain
natural. The theoretical uncertainties of nuclear matter are significantly reduced when going from
next-to-next-to-leading order to N3LO.

Introduction.– Recent calculations of medium-mass and
heavy nuclei have demonstrated the importance of real-
istic saturation properties of infinite matter for nuclear
forces derived within chiral effective field theory (EFT) [1–
5]. While most nucleon-nucleon (NN) and three-nucleon
(3N) interactions fitted to only two- and few-body observ-
ables are able to predict light nuclei in agreement with
experimental data, the theoretical uncertainties tend to
increase with increasing mass number A & 16 (see, e.g.,
Ref. [6]) and significant discrepancies to experiment can
be found for properties of heavy nuclei [7]. There have
been efforts to include properties of heavier nuclei in the
optimization of chiral nuclear forces [1]. Such interactions
tend to exhibit more realistic saturation properties of
nuclear matter and also show improved agreement with
experiment for energies and radii of medium-mass and
heavy nuclei [2, 8–10]. However, the explicit incorporation
of nuclear matter properties in the optimization process
of nuclear forces has not been feasible so far due to the
lack of computational efficiency of such calculations.

Nuclear matter has been studied based on chiral NN
and 3N interactions within coupled-cluster theory [11],
quantum Monte Carlo methods [12–14], the self-consistent
Green’s function method [15], and many-body perturba-
tion theory (MBPT) [16–24]. The advantages of MBPT
are its computational efficiency as well as the possibility
to estimate many-body uncertainties by comparing re-
sults at different orders. These factors are important for
future optimizations of next-generation chiral interactions
using nuclear-matter properties. So far, MBPT for infinite
matter has only been applied up to third order including
also the particle-hole channels [20, 24], where N2LO 3N
contributions beyond Hartree-Fock have been included in
terms of normal-ordered two-body interactions [22, 25, 26].
There remain however significant challenges, especially re-
garding the role of higher-order particle-hole vs. particle-
particle or hole-hole contributions as well as the inclusion
of 3N interactions at N3LO beyond Hartree-Fock [18, 23].

Novel framework.– In this Letter, we present a new
Monte-Carlo framework for MBPT which is tailored to
address these challenges. We perform our calculations di-
rectly in a single-particle product basis |kiσiτi〉, without
needing involved partial-wave decompositions. Tracing
over spin |σi〉 and isospin states |τi〉 of each particle with
label i is fully automated, whereas the multidimensional
integrals over the momenta ki are computed efficiently us-
ing adaptive Monte-Carlo algorithms [27–29]. This makes
implementing arbitrary energy diagrams straightforward
(including particle-hole contributions), even up to high or-
ders in MBPT, while approximations in normal ordering
are not needed anymore. However, it is well known that
the number of diagrams at each order increases rapidly,
with 3, 39, and 840 at third, fourth, and fifth order for
NN-only interactions [30, 31]. Within our Monte-Carlo
framework, a manual implementation of these would be
feasible but still tedious and at least inefficient. We there-
fore developed an automatic code generator based on the
analytic expression of a given diagram. The output in C++

is transparent, very compact and well readable, including
dynamically generated comments.

In addition, we developed a general method to repre-
sent chiral interactions exactly as matrices in spin-isospin
space, where the matrix elements are analytic functions
of the single-particle momenta ki in the programming
language C++. The automated generation of these interac-
tion matrices is close to the operatorial definition of chiral
forces [32–39], which we implemented with nonlocal regu-
lators up to N3LO. Higher orders [40–42] can be included
accordingly without the need of an involved partial-wave
decomposition [43]. For the incorporation of NN interac-
tions whose operatorial structure is not directly accessible
(e.g., renormalization-group evolved potentials), we sum
the contributions from all partial-wave channels for each
Monte-Carlo sampling point. This step can also be per-
formed very efficiently.
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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for λ/Λ3N for the
interactions of Ref. [16] and ΛNN = Λ3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm−3 and E/A = −15.86± 0.57 MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm−3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23−4, and 24 = 39−15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].

We assess the numerical convergence of the integra-
tion by varying the number of sampling points as well as
employing two different Monte-Carlo algorithms [28], in
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FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of λ/Λ3N and ΛNN = Λ3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably efficient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.

Results for nuclear matter.– In Fig. 1 we present re-
sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm−3 and E/A = −15.86± 0.37± 0.2 MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2 MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N − E/A
as well as its slope parameter L = 3n0∂nEsym at n0 =
0.16 fm−3. Both are predicted with narrow ranges.

The Hebeler+ interactions were obtained by a simi-
larity renormalization group evolution [46] of the N3LO
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TABLE I. Contributions to the energy per particle at n0 = 0.16 fm−3 in symmetric nuclear matter at consecutive orders in
MBPT based on the Hebeler+ [16] interaction with λ/Λ = 1.8/2.0 fm−1 and the N2LO and N3LO interactions of this work
with Λ/cD [for the central cD fit value (black diamonds) in Fig. 4]. All energies are in MeV.

chiral order Λ/cD second order third order fourth order
NN-only NN+3N 3N res. NN+3N NN-only NN+3Na

N3LO/N2LO λ/Λ = 1.8/2.0 fm−1 −2.30 −2.24 −0.40 −0.10 −0.20 −0.07

N2LO
450/+ 2.50 −6.23 −13.38 −0.42 −2.08 0.07 0.24
500/− 1.50 −8.61 −14.49 −0.66 −0.77 0.32 0.75

N3LO
450/+ 0.50 −8.93 −15.54 −0.38 −2.85 0.61 0.92
500/− 3.00 −10.63 −14.65 −0.87 −1.00 0.65 1.10

a Contributions from 3N forces at fourth order in MBPT are not included in our fits. These values here are an uncertainty estimate using
normal-ordered 3N contributions in the P = 0 approximation (see Refs. [22, 25]).

NN potential of Ref. [47] to different resolution scales λ,
whereas the 3N couplings cD and cE were fixed at these
resolution scales by fits to the 3H binding energy and the
4He charge radius. Despite being fitted to only few-body
data, these interactions are able to reproduce empirical
saturation in Fig. 1 within uncertainties given by the
band of the Hebeler+ interactions [16]. In addition, re-
cent calculations of medium-mass and heavy nuclei based
on some of these interactions show remarkable agreement
with experimental data [2, 4, 8–10, 48] and thus offer new
ab initio possibilities to investigate the nuclear chart.

The second column of Fig. 1 shows results for the
NNLOsim potentials [6] (using Trel = 290 MeV) for dif-
ferent cutoff values (see legend). These interactions were
obtained by a simultaneous fit of all low-energy couplings
to two-body and few-body data. We observe a weak cut-
off dependence for these potentials in neutron matter
over the entire density range and in symmetric matter
up to n . 0.08 fm−3. At higher densities, the variation
of the energy per particle increases up to ∼ 3 MeV at
n0 = 0.16 fm−1 with a very similar density dependence.
Overall, all the NNLOsim interactions turn out to be too
repulsive compared to the empirical saturation region.

We study the many-body convergence of the Hebeler+
and NNLOsim interactions by plotting in Fig. 2 the cal-
culated saturation energy as a function of the calculated
saturation density at second, third, and fourth order in
MBPT. The annotated values denote the cutoff scales
of the different potentials (see legend of Fig. 1). For all
shown interactions, we observe a very good convergence
in the many-body expansion, indicating that these chi-
ral interactions are perturbative over this density regime.
Moreover, we find a pronounced linear correlation band
(similar to the Coester line [49] for NN potentials), which
however overlaps with the empirical saturation region as
3N forces are included. Note that the Hebeler+ inter-
action that breaks most from the linear correlation is

“2.0/2.0 (PWA)”, for which the ci values in the 3N forces
are significantly larger.

Finally, in Table I we show the hierarchy of contri-
butions from second, third, and fourth order at n0 =
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FIG. 3. (Color online) Three-nucleon couplings cD and cE
that reproduce the 3H binding energy using the EMN NN
potentials of Ref. [39] with Λ = 450 MeV (dashed) and Λ =
500 MeV (solid line) at N2LO (red) and N3LO (blue) combined
with consistent 3N interactions at these orders using Λ3N =
ΛNN. The points (diamonds) on each line correspond to the
fits to the empirical saturation region (see Fig. 4), while the
annotated numbers give the corresponding values of cD/cE .

0.16 fm−3 for the Hebeler+ “1.8/2.0” interaction, which
is most commonly used in the recent ab initio calculations
of medium-mass and heavy nuclei. At second order, we
give the contributions from NN interactions (NN-only),
from NN plus 3N contributions that can be represented in
form of a density-dependent NN interactions (NN+3N),
and the residual 3N contribution (3N res.). We find that
the residual 3N term is significantly smaller compared
to the other contributions. This justifies that this con-
tribution was usually neglected in previous calculations
because it requires an explicit treatment of 3N forces in
MBPT. However, note that this in general depends on de-
tails of the NN and 3N interactions [50, 51]. Furthermore,
we find that the third-order contributions are significantly
smaller than the second-order terms for all studied inter-
actions. The fourth order contributions are particularly
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FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at different orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for different values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with Λ = 450 MeV and Λ = 500 MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.

Fit to saturation region.– The observed convergence
pattern indicates that the studied nonlocal interactions
are sufficiently perturbative and allow calculations with
controlled many-body uncertainties. This offers the possi-
bility to use the new Monte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with Λ = 450 MeV and Λ = 500 MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use Λ3N = ΛNN = Λ and a nonlocal
regulator of the form fΛ(p, q) = exp[−((p2 +3/4q2)/Λ2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cutoffs and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.

As a second step, we calculate nuclear matter for the
range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at different orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to different cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cutoff cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.

In each panel of Fig. 4, we mark the three couplings
that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ≈ 150 keV for both cutoffs, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cutoff dependence at N3LO, whereas the results
for Λ = 450 MeV are clearly separated from Λ = 500 MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/Λb with breakdown scale Λb = 500 MeV
and average momentum p =

√
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.

Summary.– We have presented a new Monte-Carlo
framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an
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FIG. 5. (Color online) Energy per particle in neutron matter
(top row) and symmetric nuclear matter (bottom row) based
on chiral interactions at N2LO (first column) and N3LO (sec-
ond column) fit to the empirical saturation region (see Fig. 4).
The fits are labeled by Λ/cD in the legend. As in Fig. 5, we also
give the symmetry energy Esym and its slope parameter L at
each order. The blue (Λ = 500 MeV) and gray (Λ = 450 MeV)
bands estimate the theoretical uncertainty following Ref. [38].
Note that the annotated results for Esym and L do not include
the latter uncertainty.

expansion around Hartree-Fock, but it can be easily gen-
eralized to expansions around other reference states. This
enabled first benchmarks of chiral low-momentum inter-
actions to fourth order in MBPT showing a systematic
order-by-order convergence. We then used this to develop
new chiral interactions at N2LO and N3LO, including NN,
3N, and 4N interactions at N3LO, where the 3N couplings
are fit to the triton and to saturation properties. Our work
shows that a good description of nuclear matter at these
orders is possible, with a systematic behavior from N2LO
to N3LO and natural low-energy couplings. Thanks to
the computational efficiency, the new framework is also
ideal for the incorporation of nuclear matter properties in
the fitting of novel nuclear interactions. It will be exciting
to see what these interactions predict for nuclei and for
the equation of state for astrophysics.
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T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A.
Wendt, and D. T. Yordanov, Nat. Phys. 12, 594 (2016).

[9] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev.
Lett. 117, 172501 (2016).

[10] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Ha-
gen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth,
and A. Schwenk, (2017), arXiv:1709.02786.

[11] G. Hagen, T. Papenbrock, A. Ekström, K. Wendt,
G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, and C. J.
Horowitz, Phys. Rev. C 89, 014319 (2014).

[12] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler,
A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501
(2013).

[13] A. Roggero, A. Mukherjee, and F. Pederiva, Phys. Rev.
Lett. 112, 221103 (2014).

[14] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116,
062501 (2016).

[15] A. Carbone, A. Polls, and A. Rios, Phys. Rev. C 88,
044302 (2013).

[16] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and
A. Schwenk, Phys. Rev. C 83, 031301(R) (2011).
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Meißner, and H. Wita la, Phys. Rev. C 66, 064001 (2002).
[34] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meißner,

Phys. Rev. C 77, 064004 (2008).
[35] V. Bernard, E. Epelbaum, H. Krebs, and U.-G. Meißner,

Phys. Rev. C 84, 054001 (2011).
[36] E. Epelbaum, Phys. Lett. B 639, 456 (2006).
[37] E. Epelbaum, H. Krebs, and U.-G. Meißner, Phys. Rev.

Lett. 115, 122301 (2015).

[38] E. Epelbaum, H. Krebs, and U.-G. Meißner, Eur. Phys.
J. A 51, 53 (2015).

[39] D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C
96, 024004 (2017).

[40] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev.
C 85, 054006 (2012).

[41] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev.
C 87, 054007 (2013).

[42] D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk,
Phys. Rev. C 92, 064001 (2015).

[43] K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, and R. Skib-
inski, Phys. Rev. C 91, 044001 (2015).

[44] N. Kaiser, Eur. Phys. J. A 48, 58 (2012).
[45] G. F. Bertsch and D. Bingham, (2017), arXiv:1703.08844.
[46] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog.

Part. Nucl. Phys. 65, 94 (2010).
[47] D. R. Entem and R. Machleidt, Phys. Rev. C 68,

041001(R) (2003).
[48] J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A. Bertu-

lani, G. Hagen, H. Matsubara, P. von Neumann-Cosel,
T. Papenbrock, N. Pietralla, V. Y. Ponomarev, A. Richter,
A. Schwenk, and A. Tamii, Phys. Rev. Lett. 118, 252501
(2017).

[49] F. Coester, Nucl. Phys. 7, 421 (1958).
[50] A. Dyhdalo, R. J. Furnstahl, K. Hebeler, and I. Tews,

Phys. Rev. C 94, 034001 (2016).
[51] A. Dyhdalo, S. K. Bogner, and R. J. Furnstahl, (2017),

arXiv:1707.07199.
[52] J. Hoppe, C. Drischler, R. J. Furnstahl, K. Hebeler, and

A. Schwenk, (PRC in press), arXiv:1707.06438.

http://arxiv.org/abs/1703.08844
http://arxiv.org/abs/1707.07199
http://arxiv.org/abs/1707.06438

	Chiral interactions up to N3LO and nuclear saturation
	Abstract
	 Acknowledgments
	 References


