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Abstract. We observed and described the generalized Sierpiński Arrowhead
Curve in our previous paper [K17a]. Now we focus on its background structure. In
Section 1 we summarize our previous results on the triangular grid and supplement
them with Hamiltonian-cycles, tiling-cycles and a new kind of path on the possible
largest trapezoid grid which are needed for the following sections. We describe the
basic rule of the transformability of the paths and the cycles into each other and
extend our grids to larger graphs. In Sections 2 and 3 we define two kinds of
graphs related to a checked fractal pattern on the generalized Sierpiński Gasket.
We continue our observations with the basic properties of these triangular fractal
approximating graphs independently of the recursive curves. We will describe the
numbers of their vertices and edges, and their covering paths and cycles in general
case with recursive and explicit formulas. Some of their cardinality specify new
integer sequences. We also find the bijective relations between these formations.

1 Paths and cycles on the triangular grid

In this section we summarize and supplement our previous definitions [K17a] and
show a table with our results, the cardinality of these formations on simple trian-
gular grids. We describe the basic rules of the transformability of the paths and
cycles into each other and extend our grids to larger graphs.

1.1 Checked generator pattern

First we make a checked pattern on a triangular grid of order n by colouring
the tiles that face upwards dark and colouring the rest of the subtriangles white.
Then we substitute all the dark tiles with the contracted copy of this generator
pattern. Our pattern is related to the two-dimensional generalized Sierpiński Gas-
ket SG2,n(k). We will be referring to them as Fn generator pattern and as Fn(k)
fractal approximating pattern, if k > 1.
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1.2 Triangular grids and their paths and cycles

Our generator pattern Fn contains n2 subtriangles, and Tn−1 white tiles, Tn dark
tiles and Tn+1 grid points as three consecutive triangular numbers. The centroids
of the dark tiles form the inscribed grid, and their corners form the overall grid.
All of our paths originate from the leftmost node and terminate in the rightmost
node of these grids.

Let us consider a self-avoiding tiling-path called S-path (referring to Sierpiński),
denoted by Sn, and a self-avoiding tiling-cycle called D-cycle, denoted by Dn, on
the overall grid. Both consist of Tn edges. All of the edges must be lying on
different dark subtriangles. For practical reasons we will be using the notation of
McKenna: marking the tiles with little ticks in the middle of the edges [McK94].
See the left side of Figure 1.

We denote the Hamiltonian-paths (H-paths) by Hn, and the Hamiltonian-
cycles (C-cycles) by Cn on the inscribed grid. They have a subset in which all
edges have well-formed turns. We will describe this well-formed property later.
These paths and cycles are bijective pairs and they have the same cardinality. They
are unambiguously transformable into each other [K17a]. We call the well-formed
Hamiltonian-paths W-path, and denote them by Wn. You can see a well-formed
Hamiltonian-cycle on the middle of Figure 1.

The so-called Z-paths (Zn) on the possible largest trapezoid grid without the
uppermost node of the inscribed grid are also needed for Section 3. See the right
side of Figure 1.

We enumerated these cardinality with our computer program, which is a smart
backtrack algorithm. H-paths and Z-paths appear in [SEH05], W-paths first ap-
pear in [K17a], C-cycles appear in [P14] and [OEIS1], and D-cycles, which specify
a new integer sequence, first appear here. See Table 1.

n Tn Hn Wn = Sn Zn Cn Dn

2 3 1 1 1 1 1
3 6 2 2 3 1 1
4 10 10 4 11 3 3
5 15 92 16 112 26 8
6 21 1852 68 2286 474 42
7 28 78032 464 94696 17214 240
8 36 6846876 3828 8320626 1371454 2120
9 45 1255156712 44488 1527633172 231924780 22724

Table 1. Cardinality of H-, W-, S-, Z-paths and C- and D-cycles
on the generator pattern Fn consisting of Tn dark tiles.
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Figure 1. A tiling-cycle (D4) (left side), the corresponding
well-formed Hamiltonian-cycle (C4) (middle),

and a Z-path (Z3) with a wrong turn of the edges (right side).

1.3 Untransformable wrong turns of the edges

Let us consider all edges of the paths and cycles on the inscribed grid described by a
string of their absolute direction code consisting of 0 to 5 values in counterclockwise
from the right. The direction right ±120◦ means an even value and the direction
left ±120◦ means an odd value of the string.

If a path or a cycle on the inscribed grid consists of only well-formed turns,
then it is unambiguously transformable into a tiling-path or a tiling-cycle.

The forbidden turns as (di, di+1) number pairs are the following:

di+1 6≡

{
(di + 4) mod 6 if di is even

(di + 2) mod 6 if di is odd

which means that the next edge cannot turn 120◦ to the right after an even
direction and it cannot turn 120◦ to the left after an odd direction. Naturally,
turning back by 180◦ is also forbidden.

For example on the right side of Figure 1, Z-path contains a wrong turn of the
edges (the middle edge-pair), therefore it is an untransformable path. These three
dark tiles have only one contact point instead of two, therefore we cannot connect
them with three consecutive edges of a tiling-path.

1.4 Extending our grids to larger graphs

The generalized Sierpiński Gasket fractal family contains two kinds of triangular
fractal approximating graphs as the background structure of our recursive curves.
They are the extended version of the inscribed grid and the overall grid in larger
approximations, where k > 1.

We observe triangular graphs based on the k-th power of the n-th Triangular
number, denoted by T k

n . By connecting the centroids of the neighbouring dark
tiles of Fn(k) we get a graph that we call the Inscribed Graph denoted by Ikn. By
connecting the corners of the neighbouring dark tiles of Fn(k) we get a graph that
we call the Overall Graph denoted by On(k). We will observe and describe their
properties in the rest of this paper.
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2 The Overall Graph On(k)

Let us define the Overall Graph (On(k)), related to the Fn(k) fractal approximating
pattern where we replace all the dark tiles with their corners as the nodes of the
graph and with their sides as the edges of the graph.

It consists of T k−1
n simple Tn+1 sized triangular grids which share their corners

with their neighbour grids. See Figure 2. We will describe the numbers of their
nodes and edges, and the numbers of their paths and cycles in this section.

O2(k) with all its possible connecting edges is also known as the Sierpiński
Sieve Graph.

Figure 2. The Overall Graph O4(2)
has |O4(2)| = 135 nodes, E(O4(2)) = 300 edges

and S4,2 = 411 = 4194304 possible S-paths.

2.1 The numbers of the nodes and the edges in On(k)

The overall grid consists of Tn+1 grid points, therefore |On(1)| = Tn+1.
In further approximations we substitute the dark tiles with Tn smaller overall

grids which share their corners. By summerizing the nodes of the Tn smaller
grids we counted the common nodes twice on each side of the overall graph and
we counted the common nodes 3 times inside the overall graph, so we have to
subtract these values from the result:

|On(k)| = |On(k − 1)| · Tn− 3(n− 1)− 2Tn−2 = |On(k − 1)| · Tn−n2 + 1

We can transform this recursive formula to explicit formula and we get integer
sequences for each n.
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|On(k)| =
(n + 4)

(
n(n + 1)

2

)k

+ 2(n + 1)

n + 2

We always get our result in this form: |On(k)| =
aT k

n + b

c
where a, b and c

values can be simplified by 2 for each even values of n.

For example: |O3(k)| = 7 · 6k + 8

5
, |O4(k)| = 4 · 10k + 5

3
,

|O5(k)| = 9 · 15k + 12

7
, |O6(k)| = 5 · 21k + 7

4
, etc.

See the first 6 values of these integer sequences in Table 2.

|On(k)| k = 1 2 3 4 5 6

n = 2 6 15 42 123 366 1095
3 10 52 304 1816 10888 65320
4 15 135 1335 13335 133335 1333335
5 21 291 4341 65091 976341 14645091
6 28 553 11578 243103 5105128 107207653

Table 2. |On(k)| = the number of the nodes in the overall graph.

Remark. First row of Table 2 is known as sequence A067771 [OEIS2]. Second
and third rows are also known [CC06]. Our explicit formula gives new integer
sequences for |On(k)|, where n > 4.

The number of the edges in the overall graph is: E(On(k)) = 3T k
n .

2.2 S-paths on On(k)

We denote S-paths on the overall graph by Sn,k. In Section 1 we enumerated Sn

values on the overall grid therefore Sn,1 = Sn. See Table 1.
In the second approximation we can use all the Sn paths at Tn places and we

have Sn ways to connect them, therefore Sn,2 = STn+1
n .

In general case for k > 1: Sn,k = S
(Tn+1)k−1

n

On O2(k) we get a unique path (S2,k = 1) for all k values. This trivial case is
the k-th approximation of the edge-rewriting Sierpiński Arrowhead Curve.

For n > 2 and k > 1 we get:

S3,k = 27
k−1

S4,k = 411
k−1

S5,k = 1616
k−1

S6,k = 6822
k−1
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2.3 Tiling-cycles on On(k)

To find the number of the tiling-cycles on the overall graph we have to substitute
the connection of the smaller grids with tiling-cycles (Dn) instead of S-paths. By
modifying our previous formula we get the following.

The number of the tiling-cycles on On(k) in general case with recursion is:

Dn,k = Dn · S
Tk−1
n

n,k−1

The explicit formula is: Dn,k = Dn ·
(
S
(Tn+1)k−2

n

)Tk−1
n

We get very large numbers:

Dn,k k = 1 2 3

n = 2 1 1 1

3 1 26 2252

4 3 3 · 410 3 · 41100

5 8 8 · 1615 214403

Table 3. The number of the tiling-cycles =
Dn,k values on the overall graph.

Figure 3. A tiling-path (S3,2) and a tiling-cycle (D3,2)
on the overall graph O3(2).
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3 The Inscribed Graph Ikn

Let us define the Inscribed Graph (Ikn), related to the Fn(k) fractal approximating
pattern, where we replace all the dark tiles with their centroids as the nodes
of the graph and by connecting all the centroids between node-neighbour dark
subtriangles we get the edges of the graph.

It consists of T k−1
n simple Tn sized independent triangular grids which do not

share grid points with each other. Connecting edges from the previous approxi-
mations remain among the simple triangular grids, otherwise grid points become
simple new triangular grids among the connecting edges. See Figure 4.

In this section we will describe the numbers of their nodes and edges, and we
will use Z-paths and D-cycles to calculate the numbers of their Hamiltonian-paths
and Hamiltonian-cycles.

Figure 4. The Inscribed Graph I24

3.1 The numbers of the nodes and the edges in Ikn

This structure consists of T k
n nodes in the k-th approximation, the k-th power of

a triangular number:
∣∣Ikn∣∣ = T k

n .
The number of the edges:

E(Ikn) =

k∑
i=1

3Tn−1 · T i−1
n

because connecting edges from the previous approximations remain among the
simple triangular grids.
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3.2 Hamiltonian-paths on Ikn

We denote the Hamiltonian-paths on the Inscribed Grid by Hn,k. First we observe
special cases, then we find the general formula to calculate their cardinality.

On the inscribed grid the number of the Hamiltonian-paths is Hn,1 = Hn.

3.2.1 Hanoi Graph H2, k = 1

Ik2 with all its possible connecting edges is known as the Hanoi Graph [H86]. It
has a unique Hamiltonian-path (from the leftmost to the rightmost grid point)
and a unique Hamiltonian-cycle in any k-th approximation which shows how to
solve Hanoi Tower puzzle if we have n + 1 pegs in one row and k discs, and only
one disc can be moved at one time to a neighbour peg. Discs can be located only
in descending order of the disc-sizes.

H2 = W2 = 1, therefore this is the unique recursive curve on the inscribed
graph, the node-rewriting Sierpiński Arrowhead Curve, which is also the unique
symmetric one.

Hanoi Graphs in general case with more than 3 pegs are also known, but they
have other structures than our Ikn graphs for n > 2. Our Ikn graphs can also be
represented as all the numbers in k places in the base Tn numeral system.

3.2.2 Paths on I2n and the v-shaped connecting edges

As we observe the structure of Ikn for k > 1 we can see that we have to use W-
paths to connect the smaller neighbouring grids to each other. On the sides of
the inscribed graph we always have only one possible connecting edge among the
smaller grids.

Inside the graph we always have three possible connecting edges between three
neighbour grids which form a little triangle, facing downwards. The whole struc-
ture looks like a combination of paths and tiles. We have only one entering and
one exiting point on the smaller grids, therefore we have to follow their order as
the connecting W-path leads the edges among them.

There are no more passages between the smaller grids, but inside the graph,
connecting edges of the W-path can take over a corner point from a neighbouring
smaller grid. These corner points change the connecting edge to an edge-pair,
forming a little v-shaped connection. It modifies the H-path of the smaller grid
to a Z-path. The permutation of the smaller grids stands, and the connecting
edges follow the W-path with this little modification. By forgetting v-shapes we
calculate the number of the possible covering paths on a smaller grid to get Hn,2

values, denoted by Yn, where Yn = Hn + Zn.

3.2.3 Calculating the Hamiltonian-paths on H3,k

We don’t have connecting v-shapes and Z-paths on Ik2 . They appear first when
n = 3, and in this case it is easy to calculate them in any order of k, because on I23
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graph our two possible connecting W-paths can always modify exactly one edge
to a v-shape, unlike other W-paths in larger orders of n.

H3,k = W a
3 · Hb

3 · Y c
3 = 2a · 2b · 5c (by Table 1 ) where k > 1, a =

∑k−2
i=0 T i

3,

b = T k−1
3 − a, c = a, therefore we can simplify our formula to

H3,k = 10a · 26k−1−a where a =
∑k−2

i=0 6i

(H3,2 = 10 · 25, H3,3 = 107 · 229, H3,4 = 1043 · 2173, ...)

3.2.4 Calculating the Hamiltonian-paths on Hn,2

We find another problem related to v-shaped connecting edges when n > 3. W-
paths have different properties in the same order of n. For example, on I23 graph
our two possible W-paths can always modify exactly one edge to a v-shape.

On I25 we have 16 possible W-paths, of which 2 can modify 4 inner edges, 8
can modify 5 inner edges and 6 can modify 6 inner edges to a v-shape, therefore it
is difficult to calculate the number of the Hamiltonian paths (Hn,k) when n > 3.

See Table 4, where W-paths (Wn) for each n can be separated by the possible

number of the connecting v-shapes (cm) to m groups (gm), where Wn =
∑n−2

m=1 gm.

n Tn gm bm cm Wn

3 6 2 5 1 2

4 10 2 8 2 4

2 7 3

5 15 2 11 4 16

8 10 5

6 9 6

6 21 4 14 7 68

22 13 8

32 12 9

10 11 10

7 28 8 27 11 464

76 26 12

180 25 13

160 24 14

40 23 15

Table 4. The number of the v-shapes (cm) for Wn values

The number of the Hamiltonian-paths on I2n (for n > 2) is:

Hn,2 =

n−2∑
m=1

gm ·Hbm
n · Y cm

n
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Tn little triangular grid can be covered by bm H-paths and cm triangular or
trapezoid covering paths (Yn = Hn + Zn). Tn = bm + cm for all m.

Remark. We have left the order number n from gm, bm and cm for the sake of
simplicity. Self-evidently they always belong to the actual Wn values.

See Figure 5 for a possible Hamiltonian-path on the inscribed graph I24 and
for the explicit formula of H4,2.

Figure 5. A Hamiltonian-path with v-shaped
connecting edge-pairs and Z-paths on I24 graph.

H4,2 = g1 ·Hb1
4 · Y

c1
4 + g2 ·Hb2

4 · Y
c2
4 =

2 · 108 · 212 + 2 · 107 · 213 = 273420000000

3.2.5 General formula for any Hn,k

In the previous subsections we have given the explicit formulas to calculate Hn,1,
Hn,2, H2,k and H3,k values. Now we give a recursive formula to calculate the
Hamiltonian-paths (Hn,k) on larger Inscribed Graphs Ikn, where n > 3, k > 2.

Consider a second order approximation as we can see in Figure 5. In the third
approximation we can use this second order path like a larger triangular tile, or as
in Z-paths by erasing the uppermost grid point as a trapezoid tile, which means
we can cover its uppermost first order triangular grid with an H-path or also a
Z-path. It modifies our last result (one more first order grid covered by a Yn path
instead of a first order grid covered by an H-path).

We give a recursive formula to calculate the Hamiltonian-paths in general case
on Ikn:
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Hn,k =

n−2∑
m=1

gm ·Hbm
n,k−1 ·

(
Hn,k−1 · Yn

Hn

)cm

3.3 Hamiltonian-cycles on Ikn

Here we observe the most complicated structure in this paper, and we give a
formula to calculate the number of the Hamiltonian-cycles (Cn,k) on the Inscribed
Graph.

The number of the Hamiltonian-cycles, if k = 1 is Cn,1 = Cn. For Cn values
see Table 1, [P14] or [OEIS1].

For the second approximation (k = 2) we have to use well-formed connections
between Tn smaller triangular grids, therefore we have to use D-cycles. Like in
the previous case, inner connecting edges can be substituted by little v-shaped
edge-pairs, but their numbers are different for a constant n, also for D-cycles.

Consider n = 5. For k = 1, C5,1 = C5 = 26. For k = 2, D5 = 8, but 6 of the
cycles use 4 inner connecting edges, 2 of the cycles use 6 inner connecting edges.
Generally on an I2n inscribed graph we have Tn smaller grids. The number of their
possible connections is Dn, which can be separated into m groups (fm), where

Dn =
∑n−3

m=1 fm and Tn = rm + tm.
See Table 5 for Dn values grouped by the number of the v-shapes (tm).

n Tn fm rm tm Dn

4 10 3 8 2 3

5 15 6 11 4 8

2 9 6

6 21 6 14 7 42

30 13 8

6 11 10

7 28 24 17 11 240

108 16 12

24 15 13

84 14 14

8 36 72 20 16 2120

432 19 17

932 18 18

240 17 19

444 16 20

Table 5. The number of the v-shapes (tm) for Dn values

The Hanoi Graph (Ik2 ) has only one Hamiltonian-cycle in any approximations,
therefore C2, k = 1.
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C3,k = H6
3,k−1 because D3 = 1, otherwise there is only one way to connect

all the small grids to a cycle, and these cycles do not contain v-shaped edges.
The center of the graph is never connected. It is the same as connecting six
Hamiltonian-paths (H3,k−1) from the previous approximation with each other.

Hamiltonian-cycles on the second order approximations (Cn,2) can be calcu-
lated on the following way, where n > 3:

Cn,2 =
n−3∑
m=1

fm ·Hrm
n · Y tm

n

Remark. We have left the order number n from fm, rm and tm for the sake of
simplicity. Self-evidently they always belong to the actual Dn values.

See Figure 6 for a Hamiltonian-cycle on I24 .

Figure 6. Example of a Hamiltonian-cycle C4,2

with v-shaped connecting edge-pairs and Z-paths on I24 graph.

The recursive formula to calculate the Hamiltonian-cycles in general case on
Ikn is the following:

Cn,k =

n−3∑
m=1

fm ·Hrm
n,k−1 ·

(
Hn,k−1 · Yn

Hn

)tm

3.4 Well-formed Hamiltonian-paths and -cycles

Hamiltonian-paths and Hamiltonian-cycles on Ikn have subsets consisting of only
well-formed turns (no v-shapes, no Z-paths and H-paths). These paths and cycles
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on the Inscribed Graph (Ikn) have the same cardinality as tiling-paths (Sn,k) and
tiling-cycles (Dn,k) on the Overall Graph (On(k)).

Summary

In Section 1 we have summarized and supplemented our previous results, which
related to the triangular grids, the generalized Sierpiński Gasket and the gener-
alized Sierpiński Arrowhead Curve. In Sections 2 and 3 we have observed the
background structures of the same fractal family as two kinds of fractal approx-
imating graphs. We have given explicit and recursive formulas to calculate the
cardinality of their nodes and edges in both cases, their tiling-paths and -cycles,
which cover all the dark tiles of the Overall Graph, and their edge covering paths
and cycles on the Inscribed Graph. We have found their interesting properties,
and we have also found new integer sequences.

Our earlier papers also complete this field with some details [HK15,HK16,K17a].
For all of my papers please check my Google Scholar site [KA].
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