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ABSTRACT

These lecture notes provide a comprehensive, self-contained
introduction to the analysis of Wishart matrix moments.
This study may act as an introduction to some particular
aspects of random matrix theory, or as a self-contained
exposition of Wishart matrix moments.

Random matrix theory plays a central role in statistical
physics, computational mathematics and engineering sci-
ences, including data assimilation, signal processing, combi-
natorial optimization, compressed sensing, econometrics and
mathematical finance, among numerous others. The mathe-
matical foundations of the theory of random matrices lies at
the intersection of combinatorics, non-commutative algebra,
geometry, multivariate functional and spectral analysis, and
of course statistics and probability theory. As a result, most
of the classical topics in random matrix theory are technical,
and mathematically difficult to penetrate for non-experts
and regular users and practitioners.

The technical aim of these notes is to review and extend some
important results in random matrix theory in the specific
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context of real random Wishart matrices. This special class
of Gaussian-type sample covariance matrix plays an impor-
tant role in multivariate analysis and in statistical theory. We
derive non-asymptotic formulae for the full matrix moments
of real valued Wishart random matrices. As a corollary, we
derive and extend a number of spectral and trace-type re-
sults for the case of non-isotropic Wishart random matrices.
We also derive the full matrix moment analogues of some
classic spectral and trace-type moment results. For example,
we derive semi-circle and Marchencko–Pastur-type laws in
the non-isotropic and full matrix cases. Laplace matrix trans-
forms and matrix moment estimates are also studied, along
with new spectral and trace concentration-type inequalities.



1
Introduction

Let X be a centered Gaussian random column vector with covariance
matrix P on Rr, for some dimension parameter r ≥ 1. The rescaled
sample covariance matrix associated with (N + 1) independent copies
Xi of X is given by the random matrix

PN = 1
N

∑
1≤i≤N+1

(
Xi −mN

) (
Xi −mN

)′
with the sample mean

mN := 1
N + 1

∑
1≤i≤N+1

Xi

Here, (.)′ denotes the transpose operator. The random matrix PN has a
Wishart distribution with N degrees of freedom and covariance matrix
N−1P (a.k.a. the scale matrix). When N ≥ r,the distribution of the
Wishart matrix PN on the cone of symmetric positive definite matrices
is defined by

Probability(PN ∈ dQ)

= det(Q)(N−r−1)/2

2Nr/2Γr(N/2)det(P/N)N/2 exp
[
−1

2Tr
(
(P/N)−1Q

)]
γ(dQ)
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where det(Q) denotes the determinant of Q and γ(dQ) is the Lebesgue
measure on the cone of symmetric positive definite matrices, and Γr is
the multivariate gamma function

Γr(z) = πr(r−1)/4 ∏
1≤k≤r

Γ
(
z − k − 1

2

)

We also have the equivalent formulations

PN
law= N−1 ∑

1≤i≤N
Xi = XX ′

with the (r ×N)-random matrix X defined by

X = 1√
N

[X1, . . . , XN ]

In the above display, Xi stand for N independent copies of the rank one
random matrix X = XX ′. The superscript (.)′ denotes the transposition
operation.

Random matrices, sample covariance matrices, and more specifically
Wishart random matrices, play a role in finance and statistics, physics,
and engineering sciences. Their interpretation depends on the application
model motivating their study.

For example, in Bayesian inference, Wishart matrices often represent
the prior precision matrix of multivariate Gaussian data sets. In this
context, the posterior distribution of the random covariance given the
multivariate-normal vector is again a Wishart distribution with a scale
matrix that depends on the measurements. In other words, Wishart
distributions are conjugate priors of the inverse covariance-matrix of a
multivariate normal random vector [8, 64].

In multivariate analysis and machine learning, the vectors Xi may
represent some statistical data such as image, curves and text data. In
this case, P may be defined in terms of some covariance function as in
Gaussian processes [72]. As its name indicates, the sample covariance
matrix PN attempts to capture the shape of the data; such as the spread
around their sample mean as well as the sample correlation between
the features dimensions. Principal component analysis and related
techniques amount to finding the eigenvalues and the corresponding
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eigenvectors of sample covariance matrices. The largest eigenvalues
represents the dimensions with the strongest correlation in the data
set. Expressing the data on the eigenvectors associated with the largest
eigenvalues is often used to compress high dimensional data. For a more
thorough discussion on this subject we refer to the articles [2, 7, 46, 69],
as well as the monographs [8, 72, 63] and the references therein.

In the context of multiple-input multiple-output systems, more
general random matrices may be related to the channel gain matrix [77,
99]. Similarly, the covariance matrix in Gaussian process-based inference
may be considered a random matrix defined by the particular covariance
structure [72]. In data assimilation problems and filtering theory, non-
independent sample covariance matrices arise as the control gain in
ensemble (Kalman-type) filters; see e.g. [11, 23, 9] and the references
therein. Similar (non-independent) sample covariance matrices may be
computed with the particles in classical Markov Chain Monte Carlo and
sequential Monte Carlo methods [21]; and in this case often represent
the uncertainty in an estimation theoretic sense. In finance, sample
covariance matrices arise in risk management and asset allocation; e.g.
random matrices may represent the correlated fluctuations of assets [57,
13, 27].

Because of their practical importance, we may illustrate the above
specific model via the so-called Wishart process. Consider a time-varying
linear-Gaussian diffusion of the following form,

dX(t) = A(t)X(t) dt+R(t)1/2 dB(t) (1.1)

where B(t) is an r-dimensional Brownian motion, X0 is a r-dimensional
Gaussian random variable with mean and variance (E(X0), P0), inde-
pendent of B(t), and A(t) ∈ Rr×r, and R(t) > 0 is a positive definite
symmetric matrix. The covariance matrices

P (t) = E
(
[X(t)− E(X(t))] [X(t)− E(X(t))]′

)
satisfy the (linear) matrix-valued differential equation,

∂tP (t) = A(t)P (t) + P (t)A(t)′ +R(t)

The solution of the preceding equation is given easily via the transi-
tion/fundamental matrix defined by A(t). More precisely, the solution
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of the above equation is given by the formula

P (t) = e
∮ t

0 A(s)ds P (0)
[
e
∮ t

0 A(s)ds
]′

+
∫ t

0
e
∮ t
s
A(u)du R(s)

[
e
∮ t
s
A(u)du

]′
ds

In the above display, Es,t := e
∮ t
s
A(u)du denotes the matrix exponential

semigroup, or the transition matrix, defined by

∂t Es,t = At Es,t and ∂s Es,t = −Es,tAs with Es,s = I

For time homogeneous models (A(t), R(t)) = (A,R) the above formula
reduces to

P (t) = etAP (0) +
∫ t

0
e(t−s)A R e(t−s)A′ ds

The rescaled sample covariance matrices associated with (N + 1) inde-
pendent copies (Xi(t))1≤i≤N+1 of the process X(t) are defined by

PN (t) := 1
N

∑
1≤i≤N+1

[
Xi(t)−mN (t)

] [
Xi(t)−mN (t)

]′
with the sample mean

mN (t) := 1
N + 1

∑
1≤i≤N+1

Xi(t)

Up to a change of probability space, the process PN (t) satisfies the
matrix diffusion equation

dPN (t) = A(t)PN (t) + PN (t)A(t)′ +R(t) + 1√
N

MN (t)

with the matrix-valued martingale

dMN (t) = PN (t)1/2 dW(t) R(t)1/2 +R(t)1/2 dW(t) PN (t)1/2

where Wt denotes an (r× r)-matrix with independent Brownian entries.
The above diffusion coincides with the Wishart process considered in [15].
When r = 1 this Wishart model coincides with the Cox–Ingersoll–Ross
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process (a.k.a. squared Bessel process) introduced in [19]. For a more
detailed discussion on Wishart processes and related affine diffusions,
we refer to the articles [20, 40, 58], and the references therein.

The preceding exposition is by no means exhaustive of applications
of random, and more specifically Wishart, matrices and we point to
[26, 30, 59, 89, 97, 98] for further applications and motivators. The
typical technical questions arising in practice revolve around the calcu-
lation of the spectrum distribution, and the corresponding eigenvector
distribution of these random matrices.

The analysis of Wishart matrices started in 1928 with the pioneering
work of J. Wishart [100]. Since this, the theory of random matrices has
been a fruitful contact point between statistics, pure and applied prob-
ability, combinatorics, non-commutative algebra, as well as differential
geometry and functional analysis.

The joint distribution of the eigenvalues of real valued Wishart
matrices is only known for full rank and isotropic models; that is when
the sample size is greater than the dimension, and the covariance matrix
P ∝ I is proportional to the identity matrix I; see for instance [34,
62]. In this situation, the matrix of random eigenvectors is uniformly
distributed on the manifold of unitary matrices equipped with the Haar
measure. In this context, marginal distributions for these uncorrelated
models can also be computed in a tractable form only for the smallest and
the largest eigenvalues. Sophisticated integral formulae for the marginal
distribution of intermediate eigenvalues are provided by Zanella–Chiani–
Win [104]. Upper bounds on the marginal distribution of the ordered
eigenvalues are given in [67].

The cumulative distribution of the largest eigenvalue of real Wishart
random matrices can be expressed explicitly in terms of the hyper-
geometric function of a matrix argument. These functionals can also
be described in terms of zonal polynomials. The smallest and largest
eigenvalue distributions can also be expressed in terms of Tricomi func-
tions [26]. For a detailed discussion on these objects we refer the reader
to the book of Muirhead [62]. As shown in [45], these hypergeometric
functions depends on alternating series involving zonal polynomials
which converge very slowly even in low dimensions. Some explicit calcu-
lations for r = 1, 2, 3 can be found in [88].
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Non-necessarily isotropic Wishart models can be considered if we
restrict our attention to linear transforms and other trace-type mathe-
matical objects. We refer to the articles of Letac and his co-authors [29,
47, 48, 91] and the tutorial [49]. See also [35, 50] for a description of
the joint distribution of traces of Wishart matrices.

To bypass the complexity of finding computable and tractable closed
form solutions, one natural and common method for obtaining useful
information is to derive limiting distributions as the dimension tends to
∞. In this context, one can analyze the convergence of the histogram of
the eigenvalues when the dimension tends to∞. This approach is central
in random matrix theory. We refer the reader to the pioneering article by
E. Wigner [98] published in 1955, the lectures notes of A. Guionnet [30],
the research monographs by M.L. Mehta [59] and T. Tao [89], and
the references therein. This commonly used limiting theory has some
drawbacks. Firstly, as the name suggests, these limiting techniques
cannot capture nor control the non-asymptotic fluctuations arising in
practical problems. Moreover, the limiting techniques developed in the
literature often yield information only on the limiting behaviour of trace
or spectral-type properties of random matrix powers. In addition, in
the context of Wishart matrices, these limiting spectral-type techniques
only apply to asymptotically isotropic-type models. To be more precise,
the convergence analysis relies on strong hypotheses on the bias and
the variance of the random matrix entries which are satisfied only for
Wishart matrices with a covariance matrix close to the identity (up
to some ad-hoc scaling factor). When P 6= I, the distribution of the
eigenvalues and the corresponding eigenvectors is much more involved.
The distribution of the sample eigenvalues depends on sophisticated
Harish-Chandra integrals [31].

Importantly, all the spectral and trace-type approaches discussed
above (whether in the limit or not) give no information on the random
matrix moments themselves, but rather on their eigenvalues or trace, etc.
Conversely, in many practical situations, such as in data assimilation
theory and signal processing (e.g. ensemble Kalman filter theory [11, 23,
9] and particle filtering [21]), we are typically interested in the direct
analysis of full matrix moments of interacting-type (non-independent)
sample covariance matrices. This study concerns a step in this latter



1.1. Organisation 9

direction. Specifically, we derive formulae for the full matrix moments
of real valued Wishart random matrices. As a corollary, we derive and
extend a number of spectral and trace-type results for the case of non-
isotropic Wishart random matrices. Laplace matrix transforms and
matrix moment estimates are also studied, along with new spectral and
trace concentration-type inequalities.

1.1 Organisation

Section 1.2 is concerned with the description of real random Wishart
matrices and their fluctuation analysis. We also review some central
result in random matrix theory, such as the semi-circle law and the
Marchenko–Pastur law for isotropic Wishart matrices.

Section 1.3 provides a brief description of the main results of these
notes. We provide a closed form Taylor-type formula to compute the
matrix moments of PN , and its fluctuations defined in (1.2), w.r.t. the
precision parameter 1/N . We also present the full matrix version of
the semi-circle law and the Marchenko–Pastur law for non-necessarily
isotropic Wishart matrices. Non-asymptotic matrix moments and expo-
nential Laplace transforms are also provided. The last part of the section
is concerned with exponential concentration inequalities for operator
norms of fluctuation matrices and the eigenvalues of sample covariance
matrices.

The rest of these lecture notes is concerned with the precise statement
and proof of the theorems in Section 1.3. Some auxiliary outcomes and
discussion surrounding these results are also given.

Section 2 reviews some useful mathematical background on Laplace
and exponential inequalities, matrix norms, spectral analysis, tensor
products, Fréchet derivatives, and fluctuation-type results. This sec-
tion also contains a brief review of non-crossing partitions, Catalan,
Narayana, and Riordan numbers, Bell polynomials, and Murasaki and
circular-type representations of non-crossing partitions. The last part of
this section discusses Fréchet differentiable functionals on matrix spaces
and Taylor-type approximations.

Section 3 concerns closed form polynomial formulae for computing
the matrix moments of PN , and its fluctuations in (1.2), in terms of
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the precision parameter 1/N and some partition-type matrix moments.
The isotropic semi-circle law (1.8) and the Marchenko–Pastur law (1.10)
are simple consequences of these matrix moments expansions. New
matrix versions of the semi-circle and the Marchenko–Pastur law for
non-necessarily isotropic Wishart matrices are discussed in Section 3.2
and in Section 3.3.

Section 4 is concerned with some matrix moment estimates and
Laplace matrix transforms of the fluctuation matrix. Spectral and trace-
type concentration-type inequalities are discussed in Section 5. Section 6
is dedicated to the proof of the main theorems.

An appendix is also given containing the proof of a number of
technical results required throughout these notes.

1.2 Description of the models

We recall the multivariate central limit theorem

PN = P + 1√
N
HN

with
HN

law:= 1√
N

∑
1≤i≤N

(Xi − P ) ↪−→N→∞ H (1.2)

where H is a symmetric (r × r)-matrix with centered Gaussian entries
equipped with a symmetric Kronecker covariance structure

(H⊗H)] = 2 (P _⊗ P ) = E
[
(HN ⊗HN )]

]
(1.3)

where (A ⊗ B)] and (A _⊗ B) are the entry-wise and the symmetric
tensor product of matrices A and B. These products are defined at the
beginning of Section 2.3.

A detailed discussion on the fluctuation result (1.2) can be found
in [41]; see also [14] for non-necessarily Gaussian variables. The fluctua-
tion result (1.2) can also be deduced from the Laplace matrix transform
estimates stated in theorem 1.5 and corollary 4.5.

Combining a perturbation analysis with the continuous mapping
theorem, the central limit result (1.2) can be used to analyze the
fluctuation of smooth matrix functionals of the sample covariance matrix.
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Roughly speaking, given some smooth Fréchet differentiable mapping
Υ : Sr 7→ B from symmetric matrices Sr to some Banach space B, we
have the Taylor expansion

HΥ
N :=

√
N [Υ(PN )−Υ(P )]

= ∇Υ(P ) · HN + 1
2
√
N
∇2Υ(P ) · (HN ,HN ) + . . .

Using the unbiasedness properties of the sample covariance matrix, the
second order term gives the bias of the estimate Υ(PN ); that is we have
that

E
[
HΥ
N

]
= 1

2
√
N

E
[
∇2Υ(P ) · (H,H)

]
+ O

( 1
N

)
Equivalently, we have

E [Υ(PN )] = Υ(P ) + 1
2N E

[
∇2Υ(P ) · (H,H)

]
+ O

( 1
N3/2

)
For a more precise statement and several illustrations we refer the
reader to Section 2.6, theorem 2.2. For instance, for power functions
Υn(Q) := Qn, for any 1 ≤ m ≤ n we have

E
[
∇mΥn(P ) · H⊗mN

]

= m!
∑

0≤i1<...<im≤n
E

 ∏
1≤k≤m

[
P ik−ik−1−1 HN

]
= (n)m E(HmN ) when P = I

(1.4)

with the Pochhammer symbol (n)m := n!/(n−m)!, and the convention
(i0, im+1) = (0, n). In this context, the m-moments of the fluctuation
matrices HN represents the mean-error of order m. This property also
holds for rational powers. For instance, we have the non-asymptotic
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estimate on the Frobenius norm,∥∥∥E (√PN)−√P
+ 1

2N
√
P

[1
4 I +

∫ ∞
0

t Tr
(
P e−t

√
P
)
e−t
√
P dt

]∥∥∥∥
F

≤ r

4
1

N
√
N

λmin(P )−5/2
[
Tr(P 2) + Tr(P )2

]
(1.5)

The proof of this assertion is provided in Section 2.6.
To summarise the consequences of the preceding discussion, to

analyze these approximations at any order it is therefore necessary to
be able to compute the m-moments of the fluctuation matrices HN .

Gaussian approximation techniques also require one to estimate the
fluctuations of the moment E(HmN ) around those of E(Hm) given in
terms of the limiting Gaussian matrix H, and with respect to the sample
size parameter. Moreover, one often wants to control the behavior of
these objects when the dimension parameter tends to ∞.

The limiting random matrix model H discussed above is closely
related to Gaussian orthogonal ensembles arising in random matrix
theory. To be more precise, we can check that

H law= P 1/2
(W +W ′√

2

)
P 1/2 (1.6)

where W = (Wi,j)1≤i,j≤r is a matrix of independent, centred Gaussian
elements of unit variance.

When P = I, the random matrix H introduced in (1.6) reduces to
a Gaussian orthogonal ensemble. In this situation, we have

r−2 E
(
Tr
[
H2
])

= 1+r−1 and r−3 E
(
Tr
[
H4
])

= 2+5 r−2 +5 r−1

(1.7)
The trace of the higher moments E (Hn) can be estimated using the
semi-circle law (1.8) in large dimensions. This celebrated limiting result
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is proved using the convergence of moment property

r−1 E
(
Tr
([ H√

r

]n))
= 12N(n) Cn/2 +O (1/r) (1.8)

= 1
2π

∫ 2

−2
xn
√

4− x2 dx+O (1/r)

for any n ≥ 1, with the Catalan numbers

Cn := 1
n+ 1

(
2n
n

)
(1.9)

A proof of the above assertion via Wick’s theorem, including detailed
reference pointers is given in [30, Section 1.4], see also [60, Chapter 1].

When P = I and N = r/ρ for some parameter ρ > 0, another
important result is the Marchenko–Pastur law

lim
r→∞

r−1 E [Tr (PnN )]

=
∑

0≤m<n

ρm

m+ 1

(
n

m

) (
n− 1
m

)

=
∫ a+(ρ)

a−(ρ)
xn
[(

1− 1
ρ

)
+
δ0(dx) + 1

2πρx

√
[a+(ρ)− x] [x− a−(ρ)] dx

]

with the parameters

a−(ρ) := (1−√ρ)2 and a+(ρ) := (1 +√ρ)2

The proof of the above integral formula can be found in [101, lemma
5.2], see also [28, 65] and the pioneering article by Vladimir Marchenko
and Leonid Pastur [56]. A new proof of this result follows from the full
matrix version of the Marchenko–Pastur law given in corollary 3.3 of
these notes.

When P 6= I, formula (1.6) can be combined with Isserlis’ theo-
rem [33] (or Wick’s theorem [97]) to compute the matrix moments of
the random matrix H. For instance, we have E(H2n+1) = 0, for any
n ≥ 0. After some lengthy combinatorial computations we also find the
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matrix polynomials

E
(
H2
)

= P 2 + Tr(P )P

E
(
H4
)

= 5P 4 + 3Tr(P )P 3 +
[
Tr(P 2) + Tr(P )2

]
P 2

+
[
Tr(P 3) + Tr(P )Tr(P 2)

]
P

Although these matrix moments are given by a closed form formula, their
complex combinatorial structure cannot be used in simple calculations.
For example, the calculation of E

(
H2n) requires the matrix moments

associated with 2−n (2n)!/n! partitions over [2n] := {1, . . . , 2n} with
n-blocks. For n = 4, more than one hundred moments need to be
computed. The computational complexity to numerically compute the
central moments of the multivariate normal distribution is discussed
in [68]; see also [3, p. 49], [38, proposition 1], [62, p. 46], and the matrix
derivative formula in [92].

The above formulae also show that we cannot expect to have a
semi-circle-type law as in (1.7) for any covariance matrix. Different
types of behaviour can be expected depending on the behavior of the
eigenvalues of P w.r.t. the dimension parameter r. For instance, if the
largest eigenvalue is λ1(P ) = r, we have 1 ≤ r−1 Tr(P ) ≤ 2 but

E
(
Tr
[
H4
])
≥ 5 r4 =⇒ r−1 E

(
Tr
([ H√

r

]4
))
−→r→∞ ∞

1.3 Statement of some main results

One of the main objectives of these lecture notes is to analyze the
properties of real Wishart matrix moments. Let Pn be the set of all par-
titions π of [n] := {1, . . . , n}, Pn,m ⊂ Pn be the subset of all partitions
with m blocks π1 ≤ . . . ≤ πm ordered in a canonical way w.r.t. their
smallest element.

Let Qn ⊂ Pn and Qn,m ⊂ Pn,m be the subset of partitions without
the singleton. Also let απ :=

∑
1≤i≤m i 1πi . In other words, απ(i) is the

index of the block of π containing index i.
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The π-matrix moments M [Q]
π (P ) and M

◦,[Q]
π (P ) associated with

some collection of (r × r) matrices (Qi)i≥1 are defined by

M [Q]
π (P ) := E

(
[X− P ]Qπ

)
and M◦,[Q]

π (P ) := E
(
XQπ
)

(1.10)

with the random matrices

XQπ :=
∏

1≤i≤n

[
QiXαπ(i)

]
and

[X− P ]Qπ :=
∏

1≤i≤n

[
Qi(Xαπ(i) − P )

]
We also consider the matrix moments

M [Q]
n,m(P ) :=

∑
π∈Qn,m

M [Q]
π (P ) and M◦,[Q]

n,m (P ) :=
∑

π∈Pn,m
M◦,[Q]
π (P )

Our first main result provides polynomial formulae w.r.t. the preci-
sion parameter 1/N .

Theorem 1.1. For any collection of matrices Qn, and any 2N ≥ n ≥ 1,
we have the polynomial formulae

E [(Q1HN ) . . . (QnHN )] =
∑

1≤m≤bn/2c

1
Nn/2−m ∂[Q]

n,m(P ) (1.11)

with
∂[Q]
n,m(P ) :=

∑
m≤l≤bn/2c

s(l,m) M [Q]
n,l (P )

In addition, we have

E [(Q1PN ) . . . (QnPN )] =
∑

1≤m≤n

1
Nn−m ∂◦,[Q]

n,m (P ) (1.12)

with
∂◦,[Q]
n,m (P ) =

∑
m≤l≤n

s(l,m) M◦,[Q]
n,l (P )

In the above displayed formulae, s(l,m) are the Stirling numbers of the
first kind.
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For the detailed discussion of these matrix moments, including
several corollaries and examples, we refer to Section 3.1; see for example
theorem 3.1 when Qi = I.

To simplify notation, for homogeneous models Qi = I and sequences
of matrices P : r 7→ P (r) we suppress the indices (.)[I] and r, and write

(∂n,m(P ), ∂◦n,m(P ),Mπ(P ),M◦π(P ),Mn,l(P ),M◦n,l(P ))

instead of

(∂[I]
n,m(P (r)), ∂◦,[I]n,m (P (r)),M [I]

π (P ),M◦,[I]π (P ),M [I]
n,l(P (r)),M◦,[I]n,l (P (r)))

The polynomial formula (1.11) differs from the invariant moments
which can be derived using the algorithm presented in [47]. In the latter,
the authors provide an elegant spectral technique to interpret these
moments in terms of spherical polynomials and matrix-eigenfunctions
of Wishart integral operators; see [47, e.g. proposition 4.3]. A drawback
of this spectral method is that it requires one to diagonalize and invert
complex combinatorial matrices. It is difficult to use this technique
to derive estimates w.r.t. the sample size parameter. Matrix moment
formulae can also be derived from [73]. Nevertheless the resulting Isserlis-
type decompositions will involve complex series of summations over pair
partitions.

Beside the fact that the matrix moments M [Q]
n,l (P ) can be computed

using Isserlis’ theorem, to be the best of our knowledge no explicit and
closed form polynomial formulae in terms of P are known. In the further
development of these notes, we provide estimates of the fluctuation
matrix moments w.r.t. the sample size in terms of the dominating term
of the sum (1.11). A brief description of these estimates are provided in
theorem 1.5 below.

To move one step further in our discussion we assume that Qi = I

and n = 2m. In this situation the single dominating term in (1.11) is
given by the central matrix moments

∂2m,m(P ) = M2m,m(P ) (1.13)

This implies that

E
[
H2m
N

]
= M2m,m(P ) + O

( 1
N

)
I
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We say a partition is a crossing partition whenever we can find
i < j < k < l with i, k in a block and j, l in the other block. Let
Nn ⊂ Pn and Nn,m ⊂ Pn,m be the subsets of non-crossing partitions.

We denote by Σn(P ) the matrix polynomial given by

Σn(P ) := Tr(P )
∑
π∈Nn

∏
i≥0

Tr
(
P 1+i

)ri(π)
 P |π1|

Tr(P |π1|+1)
(1.14)

In the above display, r0(π) := n−
∑
i≥1 ri(π) where ri(π) is the number

of blocks of size i ≥ 1 in the partition π.
Also let Σ◦n,m(P ) be the matrix polynomial given by

Σ◦n,m(P ) :=
∑

π∈Nn,m

∏
i≥1

Tr(P i)ri(Ξ(π))

 P ι(π)

Tr
(
P ι(π)) (1.15)

In the above display, ι(π) denotes the number of blocks visible from
above in the Murasaki diagram associated with π; see Section 2.5 for
examples. The partition Ξ(π) ∈ Nn+1−m is defined in terms of a circular
representation of π. That is, firstly, we subdivide the n arcs of π ∈ Nn,m
by a new series of n nodes placed clockwise. Then Ξ(π) is the coarsest
non-crossing partition of these nodes whose chords don’t cross those of
π. For a detailed description of the mapping Ξ, and examples, we refer
Section 2.5; see e.g. (2.20).

Lets further assume that P : r 7→ P (r) is a collection of possibly
random matrices satisfying for any n ≥ 1 the almost sure convergence
of the moments

r−1 τn (P (r)) := r−1 Tr(P (r)n) −→r→∞ τn(P ) (1.16)

Also, let HN (r) and H(r) be the random matrix model defined as in
(1.2) and (1.6) by replacing P by P (r).

To simplify notation, we write

(H,HN ,M2n,n(P ),M◦n,m(P ),Σn(P ),Σ◦n,m(P ))

instead of

(H(r),HN (r),M2n,n(P (r)),M◦n,m(P (r)),Σn(P (r)),Σ◦n,m(P (r)))
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In this notation, the next theorem relates the matrix moments (Σn(P ),
Σ◦n,m(P )) with the matrix moments (Mn,m(P ),M◦n,m(P )) and the ones
of the Gaussian matrix H.

Theorem 1.2. Let P : r 7→ P (r) be a collection of possibly random
matrices satisfying the condition (1.16). In this situation, the central
matrix moments M2n,n(P ) coincide with the ones of the limiting Gaus-
sian matrix. In addition, for any n ≥ m ≥ 1 we have the matrix moment
estimates

M2n,n(P ) = E
(
H2n

)
= Σn(P ) + O

(
rn−1

)
I

M◦n,m(P ) = Σ◦n,m(P ) + O
(
rn−m−1

)
I

(1.17)

For a proof and a more detailed discussion on these matrix moment
relations we refer to Section 3.2 and Section 3.3; see e.g. theorem 3.4,
theorem 3.5 and theorem 3.7.

The first line estimate in (1.17) is a consequence of the decomposition
(3.1) and theorem 3.4. The second line estimate in (1.17) is a consequence
of the estimates (3.18) and theorem 3.7.

Theorem 1.2 together with (1.13) yields the estimates

r−(n+1) E
(
H2n

)
= Σn(P ) + O

(
r−1

)
Ir

as well as

E
[
H2n
N

]
= E

(
H2n

)
+ O

(
N−1

)
I

We also have

r−(n−m+1)M◦n,m(P ) = Σ◦n,m(P ) + O
(
r−1

)
Ir with Ir := r−1 I

with the matrix polynomials (Σn(P ),Σ◦n,m(P )) defined similarly to(
Σn(P ),Σ◦n,m(P )

)
but with the trace operator replaced by the normal-

ized traces
T r(Q) := r−1 Tr(Q)

A more refined estimate between E
[
H2n
N

]
and E

(
H2n) can be found

later in theorem 1.5.
The first line assertion in (1.17) in theorem 1.2 provides a semi-

circle-type asymptotic theorem when the dimension parameter tends
to ∞.
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Corollary 1.3. Under the assumptions of theorem 1.2, we have the
extended semi-circle law

r−1 E
(
Tr
([ H√

r

]2n
))

= σn(P ) +O
(
r−1

)
with

σn(P ) := 2
∑
µ

(
n

µ1 µ2 . . . µn

)
τµ(P ) and τµ(P ) :=

∏
1≤i≤n

τi(P )µi

(1.18)
In the above display, the summation is taken over all collection of
non-negative indices µ = (µ1, . . . , µn) such that∑

1≤i≤n
µi = n+ 1 and

∑
1≤i≤n

iµi = 2n (1.19)

For instance, we have

σ1(P ) = τ1(P )2

σ2(P ) = 2 τ1(P )2 τ2(P )
σ3(P ) = 2 τ1(P )3 τ3(P ) + 3 τ1(P )2 τ2(P )2

σ4(P ) = 2 τ1(P )4 τ4(P ) + 8 τ1(P )3 τ2(P ) τ3(P ) + 4 τ1(P )2 τ2(P )3

σ5(P ) = 2 τ1(P )5 τ5(P ) + 10 τ1(P )4 τ2(P ) τ4(P ) + 5 τ1(P )4 τ3(P )2

+ 20 τ1(P )3 τ2(P )2 τ3(P ) + 5 τ1(P )2 τ2(P )4

Observe that σn(α I) = Cn α
2n, for any α ≥ 0. These formulae can be

checked combining (3.16) and (3.17) with corollary 3.6. Matrix-valued
free probability techniques can also be used to recover the above matrix
moment formula [66, 86, 87, 90, 95].

To the best of our knowledge the extended and matrix version of the
semi-circle law stated in the above theorem have not been considered
in the literature. See also Section 3.2.

Also recall that Carleman’s condition∑
n≥1

σn(P )−1/(2n) =∞

ensures the existence and uniqueness of a random variable with null
odd moments and the (2n)-moments σn(P ) defined in corollary 1.3



20 Introduction

(cf. [1, 16] and p. 296 in [78]). For instance, when P = I we have

σn(I) = Cn '
22n

n3/2√π
≤ 22n

This implies that

σn(I)−1/(2n) ≥ 1
2 =⇒

∑
n≥1

σn(I)−1/(2n) =∞

In this case, the random variable with null odd moments and the
(2n)-moments σn(I) is given by the semi-circle law (1.8).

Another direct consequence of theorem 1.2 is the Marchenko–Pastur
law for non-isotropic Wishart matrices due to Y.Q. Yin [102, 103]; see
also [18] and [80].

Corollary 1.4 ([102, 103]). Consider a collection P : r 7→ P (r) of
possibly random matrices satisfying the condition stated in (1.16). Let
N = r/ρ be a scaling of the sample size in terms of the dimension
associated with some parameter ρ > 0. For any n ≥ 1 we have the
Kreweras-type formula

lim
r→∞

r−1 Tr (E [PnN ]) =
∑

1≤m≤n
ρn−m

∑
µ`[n] : m+|µ|=n+1

K (µ) τµ(P )

with the trace parameters τµ(P ) and the Kreweras numbers K (µ)
defined in (1.18) and later in (2.13).

When P = I the above limit result reduces to

lim
r→∞

r−1 E [Tr (PnN )] =
∑

1≤m≤n
ρn−m Nn,m

In this situation, we also have the centered version limiting result

lim
r→∞

r−1E (Tr ([PN − I]n)) =
∑

1≤m≤bn/2c
ρn−m Rn,m

In the above display, Nn,m and Rn,m denote the Narayana and the
Riordan numbers defined later in (2.13) and (2.15). The matrix version
of these isotropic results can be found in corollary 3.3 with the trace-
type Marchenko–Pastur law (1.10) a simple corollary. See Section 3.3
for a new matrix version of a non-isotropic Marchenko–Pastur law.
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Our third main result concerns moment estimates. We let ‖.‖op
and ‖.‖F denote the operator norm and the Frobenius norm. In this
notation, we have the following theorem.

Theorem 1.5. For some sufficiently small time horizon and for any
sufficiently large sample size and any n ≥ 1 we have the estimates

N ‖E
[
H2n
N

]
− E

[
H2n

]
‖F ≤ cn1 (2n)n Tr(P )2n

√
N ‖E (exp (tHN ))− E (exp (tH)) ‖F ≤ c2 (tTr(P ))3

E [‖H‖op] ∧ E [‖HN‖op] ≤ c3
√
r λ1(P )

for some finite universal constants c1, c2, c3 <∞ whose values do not
depend on the dimension parameter, nor on the parameter n.

In the above display, λ1(P ) = ‖P‖op denotes the maximal eigenvalue
of P (cf. 2.2).

A more precise statement with a more detailed description of the
constants is provided in Section 4 and Section 5; see for instance the-
orem 4.1, theorem 4.4, corollary 4.5, and theorem 5.4. The operator
norm estimate stated in the above theorem extends the norm esti-
mate for isotropic random vectors presented in [75] in the context of
Gaussian random matrices. These norm-type bounds are based on non-
commutative versions of Khintchine-type inequalities for Rademacher
series presented in [54, 55]. More sophisticated approaches based on
Burkholder/Rosenthal martingale-type inequalities are also developed
in [36, 37]. Nevertheless these inequalities cannot be used to estimate
random operator norms and the constants are often not explicit.

The last part of these lecture notes is concerned with non-asymptotic
exponential concentration inequalities for traces and the operator norm
of the fluctuation matrix. In this context, our main results can be stated
as follows.

Theorem 1.6. For any symmetric matrix A, any δ ≥ 0, and any suffi-
ciently large sample size the probabilities of the following events

|Tr(AHN )| ≤ c1

√
(δ + 1)

[
Tr((AP )2) + ‖AP‖2F

]
‖HN‖op ≤ c2 λ1(P )

√
δ + r

sup
1≤k≤r

|λk(PN )− λk(P )| ≤ c2 λ1(P )
√

(δ + r)/N
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are greater than 1− e−δ, where c1, c2 denote some universal constants.

In the above display, λi(PN ) and λi(P ) denote the ordered (decreas-
ing in magnitude) eigenvalues of PN , resp. P (cf. 2.2). For a precise
statement of this result and a detailed description of the constants c1, c2
we refer to Section 5; see in particular Section 5.2 and theorem 5.2,
theorem 5.4 and corollary 5.5.

The proof of the trace-type concentration inequality is based on sub-
Gaussian Laplace estimates of well known Wishart trace-type Laplace
transforms (5.5). See Section 5.2 for a description of these sub-Gaussian
estimates; e.g. see (5.7) and the first assertion in theorem 5.2. The
operator norm concentration inequality comes from the variational
formulation

‖HN‖op = sup
x,y∈B

〈HNx, y〉 = sup
A∈A

Tr(AHN ) (1.20)

where B is the unit ball in Rr equipped with the Euclidian distance and
A is the set of matrices

A := {A =
(
xy′ + y′x

)
/2 : x, y ∈ B} (1.21)

The last spectral concentration estimate is a direct consequence of
Weyl’s inequality (2.5).

We end this section with some comparisons of the above concentra-
tion inequalities with existing results in random matrix theory. When
P = I the joint density of the random eigenvalues of PN is explicitly
known; see e.g. [4]. Elegant Sanov-type large deviation principles for
the spectral empirical measures have been developed by G. Ben Arous
and A. Guionnet [5]. The literature also consists of non-asymptotic
concentration inequalities for sums of independent random matrices.
We refer to the seminal book of J. Tropp [93] for the state of the art on
these topics. See also the review [94].

We also emphasize that the Laplace transform-type techniques devel-
oped in the present study differ from the ones based on Lieb’s inequality
(4.13). The latter are often used to control the largest eigenvalue of
a random matrix using trace-type estimates; see proposition 4.4 and
Section 4.5 in [93].
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Other types of models have been considered in the literature leading
to different results. For example, Gaussian concentration inequalities
have been derived for Rademacher and Gaussian series associated with
deterministic self-adjoint matrices; see e.g. theorem 2.1 in [93]. Matrix
Hoeffding, Bernstein and Azuma-type inequalities have been derived for
almost surely bounded random matrices; see theorem 2.8 and theorem 8.1
in [93]. The concentration results developed in the present notes provide
more refined estimates, but of course they are restricted to random
Wishart matrix models.



2
Some preliminary results

2.1 Laplace transforms and exponential inequalities

We recall that for any non-negative random variable Z such that

E (Zn)1/n ≤ z n
(
with z =

√
e
2 y
)

⇐⇒ E (Zn) ≤ yn n! (with y = e z)

for some parameters y, z 6= 0 and any n ≥ 1, the probability of the
event

Z/z ≤ e2
√

2

[1
2 +

(
δ +
√
δ
)]
. (2.1)

is greater than 1− e−δ, for any δ ≥ 0.
To check this claim, notice that for any n ≥ 1 we have

E ((Z/z)n) ≤ nn ≤ e√
2

(
e

2

)n
E(V 2n)

24
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for some Gaussian and centered random variable V with unit variance.
We check this claim using Stirling approximation

E(V 2n) = 2−n (2n)!
n!

≥ e−1 2−n
√

4πn (2n)2n e−2n
√

2πn nn e−n
=
√

2e−1
(2
e

)n
nn

The estimate (2.1) is now a direct consequence of [22, Proposition
11.6.6].

Tail probability estimates can be used to obtain moments and
Laplace transform estimate. The transfer of exponential tail estimates
to these statistical models relies on the integral formulae

E (Zn) = n

∫ ∞
0

zn−1 P(Z ≥ z) dz

and
E (exp [tZ]) = 1 + t

∫ ∞
0

exp [tz] P(Z ≥ z) dz

which are valid for any n ≥ 1 and t ∈ R.
Laplace transform estimates can also be used to estimate moments

using the formula

E (Zn) ≤
(
n

et

)n
E (exp [tZ])

which are valid for any n ≥ 1 and t ≥ 0. To check this claim we use the
decomposition

E (Zn) = E
(
Zn e−tZ etZ

)
≤ sup

z≥0

[
zn e−tz

]
E (exp [tZ])

= exp
[
− inf
z≥0

(tz − n log z)
]
E (exp [tZ])

and we note that the infimum is attained at z = n/t.
We end this section with some basic Cramér–Chernov tools to

derive quantitative concentration inequalities. We associate with any
non-negative convex function L defined on some domain Dom(L) ⊂ R+,
L(0) = 0, the Legendre–Fenchel transform

L?(λ) := sup
t∈Dom(L)

(λt− L(t))
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defined for any λ ≥ 0. Note that L? is a convex increasing function with
L?(0) = 0 and its inverse (L?)−1 is a concave increasing function. We
let LZ(t) := logE(exp (tZ)) be the log-Laplace transform of a random
variable Z defined on some domain Dom(LZ) ⊂ R+.

Using the Cramér–Chernov–Chebychev inequality, for any λ ≥ 0
and any δ ≥ 0 we find that

logP (Z ≥ λ) ≤ −L?Z(λ)

Equivalently, we have

P
(
Z ≥ (L?Z)−1 (δ)

)
≤ e−δ

2.2 Matrix norms and spectral analysis

Firstly, we note some general matrix notation. We letMr be the space of
(r × r)-matrices with real entries. We denote by Sr ⊂Mr the subspace
of symmetric (r × r)-matrices, S0

r ⊂ Sr the subset of semi-definite
matrices, and S+

r ⊂ S0
r the subset of positive semi-definite matrices.

We let λi(A) ∈ C, with 1 ≤ i ≤ r, denote the eigenvalues of A ∈ Mr.
When A ∈ Sr we assume that

λ1(A) ≥ λ2(A) ≥ . . . ≥ λr(A) (2.2)

For any collection A = (Ar)r≥1 of (r × r)-matrices we set

λ?(A) = max
1≤i≤r

|λi(A(r))| and λ?(A) = sup
r≥1

λ?(A(r)) ∈ [0,∞]

We have already defined ‖.‖op and ‖.‖F as the operator norm and
the Frobenius norm. The n-Schatten norm of a matrix Q ∈ Sr, with
n ≥ 1, is defined by

‖Q‖n :=

 ∑
1≤k≤r

|λk(Q)|n
1/n

This implies that

‖Q‖2n2n = Tr(Q2n) = ‖Qn‖2F
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The 2-Schatten norm reduces to the Frobenius norm.
For any P,Q ∈ S0

r and any m,n ≥ 0 we have the estimate

0 ≤ Tr((PQ)n+m) ≤ Tr((PQ)m) Tr((PQ)n) (2.3)

We check this claim using the fact that

0 ≤ Tr((Q1/2PQ1/2)n+m) = Tr((PQ)n+m)
≤ Tr((Q1/2PQ1/2)m) Tr((Q1/2PQ1/2)n)
= Tr((PQ)m) Tr((PQ)n)

For any (r×r)-symmetric matrices P andH we have the n-Wielandt–
Hoffman inequality∑

1≤k≤r
|λk(P +H)− λk(P )|n ≤ ‖H‖nn (2.4)

The case n = 2 is sometimes called Mirsky’s inequality. In the above
display, λk(Q) stands for the eigenvalues of a given symmetric matrix
Q ∈ Sr ranked in decreasing order. We also have Weyl’s inequality

sup
1≤k≤r

|λk(P +H)− λk(P )| ≤ ‖H‖op (2.5)

For a further discussion on the perturbation theory of eigenvalues we
refer to [96] and [61].

2.3 Tensor products and Fréchet derivatives

The tensor products (A ⊗ B) and (A⊗B) and the entry-wise tensor
product (A⊗B)] of matrices A and B with appropriate dimensions are
defined by the formulae

(A⊗B)(i,j),(k,l) = (A⊗B)(i,j),(l,k) = (A⊗B)](i,k),(j,l) = Ai,k Bj,l (2.6)

We also consider the symmetric tensor product

4(A_⊗B) = (A⊗B) + (B ⊗A) + (A⊗B) + (B⊗A) (2.7)

Let B1,B2 be a couple of Banach spaces equipped with some norm
‖.‖Bi , with i = 1, 2; also let O1 ⊂ B1 be an open subset of B1. We let
L(B1,B2) be the set of bounded linear functional from B1 into B2.
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We recall that a mapping Υ : B1 7→ B2 is Fréchet differentiable at
some A ∈ O1 if there exists a continuous linear functional

∇Υ(A) ∈ L(B1,B2)

such that

lim
‖H‖B1→0

‖H‖−1
B1
‖Υ(A+H)−Υ(A)−∇Υ(A) ·H‖B2 = 0 (2.8)

The mapping is said to be twice Fréchet differentiable at A ∈ O1
when Υ and the mapping

∇Υ : A ∈ O1 7→ ∇Υ(A) ∈ L(B1,B2)

is also Fréchet differentiable, and so on. Given some Fréchet differentiable
mapping Υ of the third order, at some A ∈ O1 for any H ∈ B1 we have

Υ(A+H) = Υ(A) + ∇Υ(A) ·H + 1
2 ∇

2Υ(A) · (H,H) +∇3Υ [A,H]

with the remainder functional in the Taylor expansion given

∇3Υ [A,H] := 1
3!

∫ 1

0
(1− ε)2 ∇3Υ (A+ ε H) · (H,H,H) dε

We also consider the multi-linear operator norm

|||∇nΥ(P )||| = sup
‖H‖B1=1

‖∇nΥ(P ) ·H⊗n‖B2

We says Υ satisfies the third-order polynomial growth condition when
we have

|||∇nΥ(P )||| ≤ κn(A)
for any n = 1, 2, and

‖∇3Υ [A,H] ‖ ≤ κ3(A)
(
1 + ‖H‖αB1

)
‖H‖3B1 (2.9)

for some parameter α > 0 and some constants κn(A) whose values only
depends on A. For instance, the principal square root functional

ψ : Q ∈ S+
r 7→ ψ(Q) = Q1/2 ∈ S+

r

is Fréchet differentiable at any order and satisfies the third-order poly-
nomial growth condition stated above. More precisely, as shown in [11]
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the first and second order derivative given for any (A,H) ∈ (S+
r × Sr)

s.t. A+ ε H ∈ S0
r for any ε ∈ [0, 1] by

∇ψ(A) ·H =
∫ ∞

0
e−tψ(A) H e−tψ(A) dt

2−1∇2ψ(A) · (H,H) := −∇ψ(A) · (∇ψ(A) ·H)2 (2.10)

In addition, we have the second order approximation

‖ψ(A+H)− ψ(A)−∇ψ(A) ·H − 2−1∇2ψ(A) · (H,H)‖

≤ c2

4 λmin(A)−5/2 ‖H‖3
(2.11)

where c =
√
r for the Frobenius norm ‖.‖ = ‖.‖F , and c = 1 for the

L2-norm ‖.‖ = ‖.‖L2 . The first and second derivatives can be estimated
by the operator norm inequalities:

|||∇ψ(A)||| ≤ 2−1 λmin(A)−1/2 and
∣∣∣∣∣∣∣∣∣∇2ψ(A)

∣∣∣∣∣∣∣∣∣ ≤ K

4 λmin(A)−3/2

Let ek be the r-column vectors with null entries but the k-th unit
one, and let ei,j = eie

′
j the (r × r)-matrix with null entries but the

(i, j)-th unit one.
In this notation, we can identify ∇Υ(Q) with the tensor

∇Υ(Q)(i,j),(k,l) := (∇Υ(Q) · ei,j)k,l = ek (∇Υ(Q) · ei,j) e′l

In this notation, we have

H =
∑
i,j

Hi,j ei,j

=⇒ (∇Υ(Q) ·H)(k,l) =
∑
i,j

H(i,j) ∇Υ(Q)(i,j),(k,l) = (H ∇Υ(Q))(k,l)

In the same vein, we can identify ∇2Υ(Q) with the tensor

∇2Υ(Q)((i,j),(k,l)),(m,n) :=
(
∇2Υ(Q) · (ei,j , ek,l)

)
m,n

(2.12)

This implies that(
∇2Υ(Q) · (H1, H2)

)
= (H1 ⊗H2)] ∇2Υ(Q)
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2.4 Partitions and Bell polynomials

Let Pn,m(µ) ⊂ Pn,m be the subset of partitions of type µ ` n, with
|µ| = µ1 + . . .+ µn = m blocks. The cardinality of these set partitions
are given by the Bell numbers B(n) and the Stirling numbers S(n,m)
of the second kind; that is, we have that

B(n) := |Pn| =
∑

1≤m≤n
S(n,m) with S(n,m) := |Pn,m|

Let Nn,m ⊂ Pn,m the subset of non-crossing partitions, and Nn,m(µ) ⊂
Pn,m(µ) the subset of non-crossing partitions of type µ. The number of
non-crossing partitions of n are computed using the Narayana and the
Kreweras numbers

Nn,m := |Nn,m| =
1
n

(
n

m− 1

) (
n

m

)

= 1
m

(
n− 1
m− 1

) (
n

m− 1

)
= |Nn,n+1−m| (2.13)

and

K (µ) = |Nn,m(µ)| = 1
(n+ 1−m)!

(
n

µ1 µ2 . . . µn

)

for any µ ` n, with |µ| = m ≤ n. A proof of the above formula can
be found in [65, e.g. corollary 9.12], see also [24, 51], the pioneering
article by G. Kreweras [44] and the survey of R. Simion on non-crossing
partitions [81].

Let Q+
n,m ⊂ Qn,m be the subset of non-crossing partitions, and

Q−n,m ⊂ Qn,m the subset of crossing partitions without singleton.
Notice that Q+

n,m = 0 as soon as m > bn/2c. In addition we have

π ∈ Qn,m and m > bn/2c =⇒ ∃i ∈ [m] : |πi| = 1 (2.14)

The number of non-crossing partitions of [n] without singletons is
given by the Riordan numbers

Rn =
∑

1≤m≤bn/2b
Rn,m (2.15)
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with
Rn,m = |Q+

n,m| =
1

n+ 1

(
n+ 1
m

) (
n− 1−m
m− 1

)
A proof of the above assertion can be found in [42].

For a centered Gaussian random variable V with unit variance we
have the estimates

R2n,n = N2n,n(0, n, 0, . . . , 0) = Cn

≤ |Q2n,n| = 2−n (2n)n = E(V 2n) := υ2n

with the Catalan numbers Cn defined in (1.9).
We also recall that Stirling numbers of the first kind are denoted by

s(n,m) and the Pochhammer symbol is defined by (n)m := n!/(n−m)!.
We also denote by ri(π) the number of blocks of size i ≥ 1 in the
partition π.

For a detailed discussion, and the combinatorial interpretation of
non-crossing partitions, Catalan, Riordan and Narayana numbers, we
refer to the series of articles [6, 12, 74, 82, 83, 84, 85, 101]. For instance,
Narayana numbers Nn,m count the number of expressions with n pairs
of matched parenthesis and m different nestings. These numbers also
count the number of ordered trees with n edges and m leaves; as well as
the number of Dicks paths of length n and m distinct picks. Recall that
Dicks paths are staircase walks with 2n steps in the plane starting at the
origin (0, 0) and ending in (n, n), and staying above the diagonal (they
may touch the diagonal). The Riordan number Rn coincides with the
number of plane trees with n edges, in which no vertex has outdegree
one. The n-th Riordan number also counts Motzkin paths of length n
with no horizontal steps of null height. Recall that Motzkin paths are
lattice paths in the plane starting from the origin up to (n, 0), using
up steps (1, 1), down steps (1,−1), and horizontal steps (1, 0), and
never going below the x-axis. Identifying k ∈ [n] with e−2ikπ/n, then
non-crossing partitions can also be seen as compact subsets of the unit
disk [43].

We also consider the complete Bell polynomials on a commutative
algebra A given by B0 = I the unit neutral state, and for any n ≥ 1
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and any x = (x1, . . . , xn) ∈ An by the formula

Bn(x) =
∑

1≤k≤n
Bk,n(x)

= n!
∑∑

1≤i≤n ili=n

∏
1≤i≤n

[
1
li!

(
xi
i!

)li]
(2.16)

with the partial Bell polynomials

Bk,n(x) = n!
k!

∑
m1+...+mk=n,mi≥1

xm1 . . . xmk
m1! . . .mk!

(2.17)

We recall that

exp

∑
n≥1

tn

n! xn

 =
∑
n≥0

tn

n! yn with yn = Bn(x1, . . . , xn)

When y0 = I we also have the inverse relations

xn =
∑

1≤k≤n
(−1)k−1 (k − 1)! Bn,k(y1, . . . , yn) (2.18)

We have the following technical lemma whose proof is given in the
Appendix.

Lemma 2.1. Assume that ∀ 1 ≤ k < p we have xk = 0 and ∀n ≥ p

we have |xn| ≤ n! ρ βn for some p ≥ 1 and non-negative parameters
ρ, β ≥ 0. Then, for any 1 ≤ q < p we have∣∣∣∣Bpn(x)− (np)!

n!

(
xp
p!

)n∣∣∣∣ ≤ (np)!
2 (2β)pn

∑
1≤k<n

1
k!

(
ρ

2p−1

)k
as well as

|Bpn+q(x)| ≤ (np+ q)!
2 (2β)pn+q ∑

1≤k≤n

1
k!

(
ρ

2p−1

)k
In addition, when xn ≥ 0 for any n ≥ 1 we have

Bn(x) ≥ 0 and Bpn(x) ≥ (np)!
n!

(
xp
p!

)n
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2.5 Some combinatorial constructions

Given some partitions π ∈ Pn,m and π′ ∈ Pn′,m′ we let π ⊕ π′ ∈
Pn+n′,m+m′ the partition of [n+ n′] with m+m′ blocks given by

∀i ∈ [m+m′]
(
π ⊕ π′

)
i =

{
πi if i ∈ [n]

n+ π′i if i ∈ n+ [n′]

We also consider the closure operator

cl : π ∈ Nn,m 7→ cl (π) ∈ Nn+1,m

defined by the blocks

cl (π)i+1 =
{

1 + πi if n 6∈ πi and 1 ≤ i ≤ m
{1} ∪ (1 + πj) if n ∈ πj and i = 0

For example, the partition π = (π1, π2, π3, π4) ∈ N7,4 with blocks,

π1 := {1, 4} ≤ π2 := {2, 3} ≤ π3 := {5} ≤ π4 := {6, 7} (2.19)

is defined by the Murasaki diagram presented in Figure 2.1. We recall
that ι(π) is the number of blocks visible from above in the Murasaki
diagram associated with π

1 2 3 4 5 6 7

Figure 2.1: Murasaki diagram representation of π

Observe that the partition π in (2.19) has ι(π) = 3 blocks visible
from above. Its closure

7 ∈ π4 =⇒ cl (π) = ({1, 7, 8}, {2, 5}, {3, 4}, {6}) ∈ N8,4

is defined by the Murasaki diagram presented in Figure 2.2.
Writing clockwise the nodes the partition π defined in (2.19) also

has the circle representation given in Figure 2.3.
Given a circular representation of a partition π ∈ Nn,m, we subdivide

each of the n arcs by a new blue node. The blue node which subdivides
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1 2 3 4 5 6 7 8
=⇒ ι (cl (π)) = 1.

Figure 2.2: Murasaki diagram representation of π and cl (π)

3

2

1

4

7

6

5

Figure 2.3: Circular representation of π

the arc (̂1, 2) is labelled with 1. The remaining subdivision of nodes
2, . . . , n are placed clockwise. We also consider the mapping

Ξ : π ∈ Nn,m 7→ Ξ (π) ∈ Nn,n+1−m (2.20)

defined by taking the coarsest non-crossing partition Ξ (π) of the blue
nodes whose chords don’t cross the chord representation of π. For in-
stance the blue nodes and the circular representations of Ξ (π) associated
with the partition π defined in Figure 2.3 are given in Figure 2.4. Up to
a change of numbering Ξ coincides with the order-reversing involution
introduced in [83].

Observe that for any partition π of [n] the block of Ξ (π) containing
the node with label n is a block of size ι(π). In other words, the size of
the block of Ξ (π) containing the node with label n characterizes the
number of visible blocks of π from above.

Next we analyze the difference between Ξ (π ⊕ π′) and Ξ (π)⊕Ξ (π′).
We start with a simple example. Consider the partitions with Murasaki
diagrams in Figure 2.5 and Figure 2.6.

The Murasaki diagram of π ⊕ π′ ∈ N23,12 is given as in Figure 2.7.
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3

2

1

4

7

6

5

7

5

7

4

1

3

26

Figure 2.4: Circular representations of π and Ξ (π)

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.5: Murasaki diagram of π ∈ N12,6, with ι(π) = 3

1 2 3 4 5 6 7 8 9 10 11

Figure 2.6: Murasaki diagram of π′ ∈ N11,6, with ι(π′) = 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2.7: Murasaki diagram of π ⊕ π′ ∈ N23,12

The Murasaki diagram of Ξ(π) ∈ N12,6 and Ξ(π′) ∈ N11,6 are defined
in Figure 2.8 and Figure 2.9. Observe that the size of the blue block
of Ξ(π) containing the node “12” and the one of Ξ(π′) containing the
node “11” coincides with ι(π) and respectively ι(π′).

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.8: Murasaki diagram of Ξ(π) ∈ N12,6
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1 2 3 4 5 6 7 8 9 10 11

Figure 2.9: Murasaki diagram of Ξ (π′) ∈ N11,6

The Murasaki diagram of Ξ(π) ⊕ Ξ(π′) ∈ N23,12 is given in Fig-
ure 2.10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2.10: Murasaki diagram of Ξ(π)⊕ Ξ(π′) ∈ N23,12

In terms of Murasaki diagrams, Ξ (π ⊕ π′) is deduced from Ξ (π)⊕
Ξ (π′) by merging the blue blocks of sizes ι(π) and ι(π′). This shows that
Ξ (π ⊕ π′) and Ξ (π)⊕ Ξ (π′) have the same combinatorial structure,
but Ξ (π ⊕ π′) looses a block of size ι(π) and a block of size ι(π′), and
gains a new block of size ι(π) + ι(π′) (so that the total number of blocks
is kept unchanged). See Figure 2.11 (and compare with Figure 2.7 and
Figure 2.10).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2.11: Murasaki diagram of Ξ(π)⊕Ξ(π′) ∈ N23,12 and the one of Ξ(π⊕π′) ∈
N23,12

Non-crossing partitions can be generated sequentially using for any
0 ≤ m ≤ n the formula

Nn+1,m+1 = [Nn,m ⊕ cl (N0,0)] ∪
⋃

[Nn1,m1 ⊕ cl (Nn2,m2)] (2.21)

In the above display, the second set-union is taken over all non-negative
parameters

0 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2
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such that
n1 + n2 = n and m1 +m2 = m+ 1 (2.22)

We also use the conventions N0,0 = {π0}, where π0 = {0} stands
for the null partition on [0], as well as {0} ⊕ π = π. In addition for any
n ≥ 1 we set Nn,0 = ∅ so that ∅ ⊕ π = ∅.

For instance, the sets of non-crossing partitions with one or two
elements are given by the formulae

N1,1 = N0,0 ⊕ cl (N0,0) = cl (N0,0) = {{1}} = 1

N2,1 = N0,0 ⊕ cl (N1,1) = cl (N1,1) = {{1, 2}} = 1 2

N2,2 = N1,1 ⊕ cl (N0,0) = N1,1 ⊕N1,1 = {({1}, {2})} = 1 2

In the same vein, the sets of non-crossing partitions on [3] are given by
the decompositions

N3,1 = N0,0 ⊕ cl (N2,1) = cl (N2,1) = {{1, 2, 3}} = 1 2 3

N3,2 = [N2,1 ⊕ cl (N0,0)] ∪ [N1,1 ⊕ cl (N1,1)] ∪ [N0,0 ⊕ cl (N2,2)]

= 1 2 3 ∪ 1 2 3 ∪ 1 2 3

N3,3 = N2,2 ⊕ cl(N0,0) = 1 2 3

We also have the decompositions

N4,1 = N0,0 ⊕ cl(N3,1)
N4,2 = [N3,1 ⊕ cl(N0,0)] ∪ [N2,1 ⊕ cl(N1,1)]

∪ [N1,1 ⊕ cl(N2,1)] ∪ [N0,0 ⊕ cl(N3,2)]
N4,3 = [N3,2 ⊕ cl(N0,0)] ∪ [N2,2 ⊕ cl(N1,1)]

∪ [N1,1 ⊕ cl(N2,2)] ∪ [N0,0 ⊕ cl(N3,3)]
N4,4 = N3,3 ⊕ cl(N0,0)
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as well as the partitioning of non-crossing partitions on the set [3] =
{1, 2, 3} given by

N5,1 = N0,0 ⊕ cl(N4,1)
N5,2 = [N4,1 ⊕ cl(N0,0)] ∪ [N3,1 ⊕ cl(N1,1)] ∪ [N2,1 ⊕ cl(N2,1)]

∪ [N1,1 ⊕ cl(N3,1)] ∪ [N0,0 ⊕ cl(N4,2)]
N5,3 = [N2,2 ⊕ cl(N2,1)] ∪ [N2,1 ⊕ cl(N2,2)]

∪ [N1,1 ⊕ cl(N3,2)] ∪ [N0,0 ⊕ cl(N4,3)]
N5,4 = [N3,3 ⊕ cl(N1,1)] ∪ [N2,2 ⊕ cl(N2,2)]

∪ [N1,1 ⊕ cl(N3,3)] ∪ [N0,0 ⊕ cl(N4,4)]
N5,5 = N4,4 ⊕ cl(N0,0)

2.6 Fluctuation and bias approximations

Let B be some Banach space equipped with some norm ‖.‖B.
Theorem 2.2. For any Fréchet differentiable mapping Υ : Sr 7→ B
at the third order, and satisfying the third-order polynomial growth
condition (2.9), we have

√
N [Υ(PN )−Υ(P )] ↪−→N→∞ ∇Υ(P ) · H

In addition, we have the bias estimate

‖E (Υ(PN ))−Υ(P )−N−1 (P _⊗ P
)
∇2Υ(P )‖B ≤ c κ3(P ) N−3/2

with the tensor composition (2.12), and the parameter κ3(A) introduced
in (2.9).

Proof. The first assertion is a direct consequence of the continuous
mapping theorem. In terms of the tensor composition (2.12), we also
have the bias estimate

N3/2 ‖E (Υ(PN ))−Υ(P )−N−1 (P _⊗ P
)
∇2Υ(P )‖B

≤ c1 κ3(A)
(
1 +N−α E [‖HN‖pαF ]1/p

)
E
[
‖HN‖3qF

]1/q
≤ c2 κ3(A)

This ends the proof of the theorem.
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For instance, when (B, ‖.‖B) =
(
S+
r , ‖.‖F

)
and Υ = ψ is the square-

root functional, we find that
√
N
[√

PN −
√
P
]
↪−→N→∞

∫ ∞
0

e−tψ(P ) H e−tψ(P ) dt

and the negative bias estimate

N3/2 ‖E
(√

PN
)
−
√
P +N−1 ∇ψ(P ) · E

[
(∇ψ(P ) · (X− P ))2

]
‖F

≤ r

4 λmin(P )−5/2 E
(
‖HN‖3F

)
≤ r

4 λmin(P )−5/2
(
1 + E

(
Tr(H2

N )
))

We conclude that∥∥∥∥E (√PN)−√P + 1
N
∇ψ(P ) · E

[
(∇ψ(P ) · (X− P ))2

]∥∥∥∥
F

≤ r

4
1

N
√
N

λmin(P )−5/2
[
Tr(P 2) + Tr(P )2

]
We check (1.5) using the matrix moment formula (6.6). Choosing

(B, ‖.‖B) = (R, |.|) and Υ(A) = Tr(AB) =⇒ ∇Υ(A) ·H = Tr(HB)

for some given (r × r)-matrix B, we find that
√
N [Tr(PNB)− Tr(PB)]

law= 1√
N

∑
1≤i≤N

Tr [(Xi − P )B]

= 1√
N

∑
1≤i≤N

[
X ′iBXi − E

[
Tr[X ′BX]

)]

↪−→N→∞ Tr(HB) ∼ N
[
0, 2 Tr((PB)2)

]



3
Matrix moment polynomial formulae

3.1 Fluctuation and partition-type matrix moments

Note the collection of matrix moments Mn,m(P ) and M±n,m(P ) defined
for any 1 ≤ m ≤ n by

Mn,m(P ) := M−n,m(P ) +M+
n,m(P ) (3.1)

with
M±n,m(P ) :=

∑
π∈Q±n,m

Mπ(P )

Notice that Mn,m(P ) is symmetric but Mπ(P ) is not necessary sym-
metric.

We also consider the “un-centered” matrix moments M◦n,m(P ) and
M◦±n,m(P ) defined as Mn,m(P ) and M±n,m(P ) by replacing Mπ(P ) by
the π-matrix “un-centered” moment M◦π(P ) defined in (1.10). Observe
that in this case, the summation indices (Q+

n,m,Q−n,m) are replaced by
(Nn,m,Pn,m −Nn,m).

For any 1 ≤ m ≤ bn/2c we also have the rather crude estimates

‖M2n,n(P )‖F ≤ υ2n
[
Tr(P 2) + Tr(P )2

]n
(3.2)

40



3.1. Fluctuation and partition-type matrix moments 41

and
‖Mn,m(P )‖F ≤

n!
m! 23n−(2m+1) Tr(P )n

A derivation of this estimate is technical, thus it is provided in the
Appendix.

When P = I, integrating sequentially adjacent non-crossing blocks
we find that

M+
2n,n(I) := Cn (1 + r)n I =⇒ (1.8) (3.3)

This formula can also be proved using the Catalan-type recursive for-
mulae (3.15) provided in theorem 3.4. For any π ∈ Nn,m(µ) we also
have

M◦π(I) =
∏

1≤k≤n
E(Xk)µk

= rn−m
∏

1≤k≤n

 ∏
0≤l<k

(
1 + 2l

r

)µk I (3.4)

This shows that

M◦π(I) = rn−m (1 + O(1/r)) I

The proof of the above assertion follows standard calculations for
isotropic matrix moments. For instance we can use the χ-square decom-
position (A.5) discussed in the Appendix.

For crossing partitions π ∈ Pn,m −Nn,m we also have

M◦π(I) = cπ r
n−m (1 + O(1/r)) r−1I (3.5)

for some finite constant cπ whose values doesn’t depend on r. This
implies that

r−(n−m+1) ∑
π∈Nn,m(µ)

Tr(M◦π(I)) = Nn,m(µ) + O(1/r) (3.6)

This implies that

r−(n−m+1) ∑
π∈Nn,m

Tr(M◦π(I)) = Nn,m+O(1/r) = r−(n−m+1) Tr(M◦n,m(I))

The proof of (3.5) is provided in the Appendix.
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In the same vein, for any π ∈ Nn,m(µ) we have

Mπ(I)

= 1µ1=0
∏

2≤k≤n

[1
r
Bk
(
r − 1, r 22−1 (2− 1)!, . . . , r 2k−1 (k − 1)!

)

+(−1)k
(

1− 1
r

)]µk
I = 1µ1=0 r

n−m (1 + O(1/r)) I
(3.7)

with the complete Bell polynomials (cf. (2.16)). In addition, for crossing
partitions we have

π ∈ Q−n,m =⇒Mπ(I) = cπ r
n−m (1 + O(1/r)) r−1 I (3.8)

for some finite constant cπ whose values doesn’t depend on r. The proof
of (3.8) is provided in the Appendix. This implies that

r−(n−m+1) ∑
π∈Nn,m(µ)

Tr(Mπ(I))

= 1µ1=0 Nn,m(µ) + O(1/r)

(3.9)

from which we check that

r−(n−m+1) ∑
π∈Q+

n,m

Tr(Mπ(I)) = Rn,m + O(1/r)

= r−(n−m+1) Tr(Mn,m(I))

with the Narayana and the Riordan numbers introduced in (2.13)
and (2.15). The proof of (3.7) is provided in the Appendix.

The computation of the matrix moments of the fluctuation matrices
HN requires some more sophisticated combinatorial techniques.

Next theorem provides a centered matrix moment interpretation of
E
(
H2n), a polynomial decomposition of centered matrix moments.
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Theorem 3.1. For any n ≥ 1 and N ≥ 1 we have matrix polynomial
formulae

E ([PN − P ]n) =
∑

1≤m≤bn/2c∧N

(N)m
Nn

Mn,m(P )

=
∑

1≤m≤bn/2c∧N

1
Nn−m ∂n,m(P )

with the differential-type matrix moments ∂n,m(P ) defined in (1.11) and
(1.13). In addition, for any 1 ≤ m ≤ bn/2c we also have the inversion
formula

Mn,m(P ) =
∑

1≤k≤m
(−1)m−k kn/2

k!(m− k)! E (Hnk ) (3.10)

and
M2n,n(P ) = E

(
H2n

)
The proof of the above theorem is provided in Section 6.1. Combin-

ing (1.4) with the above theorem we compute the covariance matrix
moments.

Corollary 3.2. For any 2N ≥ n ≥ 1 we have

E [PnN ] =
∑

1≤m≤n

(N)m
Nn

M◦n,m(P ) =
∑

1≤m≤n

1
Nn−m ∂◦n,m(P )

with the differential-type matrix moments given by

∂◦n,m(P ) :=
∑

1≤k≤(n−m)∧m
(n)k+(n−m) ∂k+(n−m),k(P )

=
∑

m≤k≤n
s(k,m) M◦n,k(P )

for any 1 ≤ m ≤ n with the convention ∂◦n,n(P ) = Pn when m = n.

The proof of the corollary is provided in the Appendix.

Corollary 3.3. Let P = I and let N = r/ρ be a scaling of the sample
size in terms of the dimension associated with some parameter ρ > 0.

E [PnN ] =
∑

1≤m≤n
ρn−m Nn,m (1 + O(1/r)) I

E ([PN − I]n) =
∑

1≤m≤bn/2c
ρn−m Rn,m (1 + O(1/r)) I
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The first assertion in corollary 3.3 is a direct consequence of (3.4)
and (3.5). The second assertion is a consequence of (3.7) and (3.8).
Using (2.13) and taking the trace in the first estimate we obtain the
Marchenko–Pastur law (1.10).

The matrix polynomial formulae (1.11) and corollary 3.2 can be
extended without further work to matrix moments associated with some
collection of matrices Qn and given in (1.11).

When N = 1, and P = I the matrix moments

E (Hn
1 ) = E((X− I)n) = Mn,1(I)

resume to the formula

E [(X− I)n] =
[1
r
Bn
(
r − 1, r 22−1 (2− 1)!, . . . , r 2n−1 (n− 1)!

)

+(−1)n
(

1− 1
r

)]
I −→r→∞ 1n≥1

(3.11)
where Bn stands for the complete Bell polynomials. For more general
covariance matrices we have the matrix polynomial formula

0 ≤ E ((X− P )n) =
∑

1≤k≤n
ρk,n(P ) P k

≤ E (Xn)− Pn (3.12)

for some non-negative parameters ρk,n(P ) which can be computed
explicitly in terms of the traces of the covariance matrix powers. For
instance, we find that

E
(
(X− P )2

)
= P 2 + P Tr(P )

E
(
(X− P )3

)
= 4 P 3 + 2 P 2 Tr(P ) + P

[
Tr(P )2 + Tr(P 2)

]
E
(
(X− P )4

)
= 25 P 4 + 15 Tr(P ) P 3 + 2

[
2 Tr(P )2 + 3 Tr(P 2)

]
P 2

+
[
Tr(P )3 + 4 Tr(P ) Tr(P 2) + 5 Tr(P 3)

]
P
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The matrix moments of the rank-one matrices X can also be computed
by the formula

2−(n−1)

(n− 1)! E(Xn) =
∑

0≤k<n

2−k

k!

×Bk(Tr(P ), 22−1(2− 1)! Tr(P 2), . . . , 2k−1(k − 1)! Tr(P k)) Pn−k

The proof of (3.12) and the above formulae, including a more refined
analysis of these rank-one matrix moments can be found in Section 2
in [10].

The first matrix moments of the fluctuation matrix HN are given
by the formulae

E
(
H2
N

)
= E

(
H2
)

= E
(
(X− P )2

)
E
(
H3
N

)
= N−1/2 E

(
(X− P )3

)
and

E
(
H4
N

)
= N−1 E

(
(X− P )4

)
+
(
1−N−1

)
E
(
H4
)

This yields the fourth polynomial matrix moment formula

N
[
E
(
H4
N

)
− E

(
H4
)]

= 20 P 4 + 12 Tr(P ) P 3 +
[
3 Tr(P )2 + 5 Tr(P 2)

]
P 2

+
[
Tr(P )3 + 3 Tr(P ) Tr(P 2) + 4 Tr(P 3)

]
P

(3.13)
The explicit description of all matrix moments Mn,m(P ) in terms of
traces Tr(P k) and matrix powers P l is not known.

3.2 A semi-circle law for non-isotropic Wishart matrices

The semi-circle law (1.8) combined with (3.3) and (3.10) imply that

P = I =⇒ lim
r→∞

Tr
([

M2n,n(I)−M+
2n,n(I)

√
r

]n)
= 0
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This shows that the dominating terms in the semi-circle law fluctuation
are encapsulated in the matrix moments M+

2n,n(I).
Our second main result is a recursive formula for computing the

centered moments associated with non-crossing partitions for a general
covariance matrix. To describe with some precision this result we need
to introduce some notation. For any m ≥ 0 and any v = (v1, . . . , vm)
with vi ≥ 0 we set

Trv (P ) :=
∏

1≤i≤m
Tr
(
P i
)vi with the convention Tr0 (P ) = 1

We let Tp,q, p ≥ q, be the vector space of matrix polynomials in the
variable P with maximal degree p and at most q trace-product; that is
the vector space spanned by the monomials

Trv (P ) P l with
∑

1≤i≤k vi ≤ q

and
∑

1≤i≤k ivi + l = p for some k ≥ 0 and 1 ≤ l ≤ p

We also let T +
p,q ⊂ Tp,q be the subset defined as above and considering

exactly q trace product terms. For instance we have

E(H2) = E(H2
N ) ∈ T2,1 and E(H4) ∈ T4,2 but E(H2

N ) ∈ T4,3

We also have the decomposition

E
(
H4)−

∈T +
4,2︷ ︸︸ ︷[

Tr(P )2 P 2 + Tr(P )Tr(P 2)P
]

= 5P 4 + 3 Tr(P )P 3 + Tr(P 2)P 2 + Tr(P 3)P ∈ T4,1

Consider a collection P : r 7→ P (r) of possibly random matrices satisfy-
ing the condition (1.16). In this situation we have

r−3 E
(
Tr(H4)

)
−→r→∞ σ2(P ) := C2 τ1(P )2 τ2(P )

Our next objective is to extend this result to any trace moment.
The next theorem provides an explicit description of the dominating
terms in the matrix moments M2n,n.
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Theorem 3.4. For any n ≥ 1, the matrix polynomial

M+
2n,n(P ) ∈ T2n,n

are given by the Catalan-type recursive formulae

M+
2n,n(P ) =

∑
k+l=n−1

[
M+

2k,k(P )P + Tr(M+
2k,k(P )P ) I

]
M+

2l,l(P )P

M+
0,0(P ) = I (3.14)

We also have the decompositions

M−2n,n(P ) ∈ T2n,n−2 and M+
2n,n(P ) ∈ Σn(P ) + T2n,n−1

with the matrix polynomial Σn(P ) ∈ T +
2n,n defined by the Catalan-type

recursive formulae

Σn+1(P ) =
∑

k+l=n
Tr(Σk(P )P ) Σl(P )P

Σ0(P ) = I (3.15)

The proof of this theorem is provided in Section 6.2. The above
theorem clearly yields the convergence result

(1.16) =⇒ lim
r→∞

r−1 E
(
Tr
([ H√

r

]2n
))

= lim
r→∞

r−(n+1) Tr(Σn(P ))

with the matrix polynomials Σn(P ) which can be computed sequentially
using formulae (3.15). For instance, we have

Σ1(P ) = Tr(P ) P
Σ2(P ) = Tr(P )2 P 2 + Tr(P 2) Tr(P ) P
Σ3(P ) = Tr(P )3 P 3 + 2 Tr(P 2) Tr(P )2 P 2

+
[
Tr(P 2)2 Tr(P ) + Tr(P 3) Tr(P )2

]
P

and
Σ4(P ) = Tr(P )4 P 4 + 3 Tr(P 2) Tr(P )3 P 3

+
[
2 Tr(P 3) Tr(P )3 + 3 Tr(P 2)2 Tr(P )2] P 2

+
[
Tr(P 4) Tr(P )3 + 3 Tr(P 3) Tr(P 2) Tr(P )2 + Tr(P 2)3 Tr(P )

]
P
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Working a little harder we check that

Σ5(P )

= Tr(P )5 P 5 + 4 Tr(P 2) Tr(P )4 P 4

+
[
6 Tr(P )3 Tr(P 2)2 + 3 Tr(P 3) Tr(P )4] P 3

+
[
2 Tr(P 4) Tr(P )4 + 8 Tr(P 3) Tr(P 2) Tr(P )3

+4 Tr(P 2)3 Tr(P )2] P 2

+
[
Tr(P 5) Tr(P )4 + 4 Tr(P 4) Tr(P 2) Tr(P )3 + 2 Tr(P 3)2 Tr(P )3

+6 Tr(P 3) Tr(P 2)2 Tr(P )2 + Tr(P 2)4 Tr(P )
]
P

(3.16)
Next theorem provides a closed form multinomial formula to compute
the matrix polynomial functions Σn(P ).

Theorem 3.5. The matrix polynomial Σn(P ) ∈ T +
2n,n defined in (3.15)

are given by the formula (1.14). In addition, we have the multinomial-
trace-type formula

Tr (Σn(P )) = 2
∑
µ

(
n

µ1 µ2 . . . µn

)
Trµ(P ) (3.17)

with
Trµ(P ) :=

∏
1≤i≤n

Tr
(
P i
)µi

In the above display, the summation is taken over all µ satisfying (1.19).

The proof of this theorem is given in Section 6.3.

Corollary 3.6. Let P : r 7→ P (r) be possibly random matrices satisfying
condition (1.16). For any n ≥ 1, the functional σn(P ) defined by (1.18)
in corollary 1.3, obeys,

σn(P ) = lim
r→∞

Tr (Σn(P ))
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3.3 A Marchenko–Pastur law for non-isotropic Wishart matrices

The aim of this section is to provide a matrix version of the Marchenko–
Pastur law for non-isotropic Wishart matrices. For any non-crossing
partition π ∈ Nn,m we have the matrix moment formulae

Xπ
law= Q1XQ2 . . .XQ|πm|X =⇒ Xcl(π)

law= XQ1XQ2 . . .XQ|πm|X

This implies that

M◦cl(π)(P ) = E
(
XQ1XQ2 . . .XQ|πm|X

)
= E

 ∏
1≤i≤|πm|

〈X,QiX〉

 X


In the above display, (Qi)1≤i≤|πm| stands for some (non-necessarily

symmetric) random matrices independent of X.
On the other hand, for any symmetric matrices (Si)1≤i≤k we also

have the reduction formula

E (X [S1XS2 . . .XSkX]) = Tr (E [S1XS2 . . .XSkX]) P

+
∑

1≤i≤k
E (XS1 . . .XSi−1XSi+1 . . .XSkXSi)P

A proof of this decomposition can be found in [10]. This implies that

M◦cl(π)(P ) = Tr (M◦π(P ))P +
∑

1≤i≤|πm|
M◦ϕi(π)(P )P

for some non-crossing partitions ϕi(π) ∈ Nn,m. Using (2.21) and arguing
as in the proof of theorem 3.4 we have

M◦n,m(P ) = Σ◦n,m(P ) + O(rn−m−1) I (3.18)

with the matrices Σ◦n,m(P ) defined sequentially by the formula

Σ◦n+1,m+1(P ) = Σ◦n,m(P )P +
∑

n1,n2,m1,m2

Σ◦n1,m1(P ) Tr
(
Σ◦n2,m2(P )

)
P

(3.19)
The summation in the above display is taken over all non-negative
parameters n1, n2,m1,m2 satisfying (2.22).
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Theorem 3.7. The matrices Σ◦n,m(P ) defined in (3.19) are given by
formula (1.15).

The proof of the above theorem is provided in Section 6.4. Combining
(1.12) with (3.18) we obtain the Marchenko–Pastur law for non-isotropic
Wishart matrices stated in corollary 1.4.

3.4 Some combinatorial formulae

The theorems stated above can be used to derive several new combina-
torial formulae. We end this section around this theme. Firstly using
(3.17) we have

Cn =
∑

1≤m≤n
Nn,m

=
∑

1≤m≤n

∑
ν `n |ν|=m

K(ν) = 2
∑
µ

(
n

µ1 µ2 . . . µn

)

with the last sum running over the same set of indices as in (3.17).
We fix the covariance matrix P and we set u(i) = Tr

(
P 1+i) for any

i ≥ 0. In this notation, by (1.14) for any n ≥ 0 we have

Σn(P ) =
∑

0≤m≤n
αn(m) Pm

with
αn(m) := u(0)

u(m)
∑

π∈Nn : |π1|=m

∏
i≥0

u(i)ri(π) (3.20)

Observe that αn(0) = 1n=0. In addition, using (3.15) we check that

αn+1(1) =
∑

1≤m≤n
αn(m) u(m)

and the matrix formula

αn+1(2)
αn+1(3)
αn+1(4)

...
αn+1(n+ 1)
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=



αn(1) αn−1(1) . . . α3(1) α2(1) α1(1)
αn(2) αn−1(2) . . . α3(2) α2(2) 0

αn(3) αn−1(3) . . . α3(3) 0
...

...
... . . .

...
...

αn(n) 0 0





α1(1)
α2(1)
α3(1)

...
αn(1)


This provides a rather simple way to compute the coefficients αn(m) in
terms of αn(1); that is we have that

∀1 ≤ m ≤ n αn(m) =
∑

k1+...+km=n, ki≥1

∏
1≤i≤m

αki(1)

For m = 1 the above formula doesn’t give any information. To compute
the evolution of the terms αn(1) we use the “highly nonlinear” Bell-type
induction

αn+1(1) =
∑

1≤m≤n
u(m)

∑
k1+...+km=n, ki≥1

∏
1≤i≤m

αki(1)

= m!
n! Bn,m (1!α1(1), 2!α2(1), . . . , n!αn(1))

with the partial Bell polynomials defined in (2.17).
By construction, the solution of these equations is given by (3.20),

for any given sequence u = (u(i))i≥0. For instance when u(i) = 1 we
obtain the formulae

Cn =
∑

1≤m≤n
Cn,m

with the Catalan triangle Cn,m defined for any 1 ≤ m ≤ n by

Cn,m :=
∑

m+l1+...+lm=n

∏
1≤i≤m

Cli

= |{π ∈ Nn : |π1| = m}| = m

n

(
2n

n−m

)

In the above display, the summation run over non-negative indices
li ≥ 0. The Catalan triangle has been introduced by Shapiro in [76], see
also [17] for a review of some combinatorial properties.
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Laplace matrix transforms

4.1 Some matrix moment estimates

From the practical viewpoint, the combinatorial complexity of the matrix
moments (1.11) requires to find some useful computable estimates. We
set

εn(N) := 1
Nn/2−bn/2c

∑
1≤m≤bn/2c∧N

( 4
N

)bn/2c−m bn/2c!
m! (4.1)

and
υn := 1

2bn/2c
n!
bn/2c!

When N ≥ n we find that

εn(N) =


1 + 2n N−1 + O

(
N−2

)
if n is even

N−1/2 + O
(
N−3/2

)
if n is odd

In this notation, we have the following estimates.

Theorem 4.1. For any n ≥ 1 and any N ≥ 1 we have the estimates

‖E (HnN ) ‖F ≤
υn

21+bn/2c−3n Tr(P )n εn(N) (4.2)

52
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In addition, for any N ≥ n we have

Tr
(
E
[
H2n
N

])
≤ Tr

(
E
[
H2n])+

√
r 212n−1 υ2n Tr(P )2n [ε2n(N)− 1]

(4.3)

and

N ‖E
[
H2n
N

]
− E

[
H2n

]
‖F

≤ (n− 1)2 υ2n E
[
‖H‖2F

]n
+ 26n−1 υ2n Tr(P )2nε2n(N)

(4.4)

The proof of this theorem is provided in Section 6.5.

4.2 Rank one matrices

Recalling that X has a Wishart distribution with one degree of freedom
and covariance matrix P we check the integral matrix formula

E (exp [tX])

= I +
∫ t

0
exp

1
2
∑
n≥1

(2s)n

n
Tr(Pn)

 [I − 2sP ]−1P ds

(4.5)

for any t ∈ R s.t. I − 2tP is invertible. The proof of (4.5) is provided in
the Appendix. When P = I the above formula reduces to

E (exp [tX]) =
(

1 + 1
r (1− 2t)r/2

)
I

Our next objective is to compute the log-Laplace matrix transforms

LP (t) := logEP (t) with EQ(t) := E (exp [t (X−Q)])

We consider the positive mappings

$1(Q) := Q

[1
5 I + 1

3 Q+ Q2
]
≥ $(Q) := Q

[1
5 I + 5

24 Q+ Q2
]

We also consider the convex function L : t ∈ [0, 1[ 7→ R+ defined by

L(t) := t2

1− t
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Observe that

u ∈ R+ 7→ L?(u) := sup
t∈[0,1[

(ut− L(t)) =
(√

u+ 1− 1
)2

=⇒ u ∈ R+ 7→ (L?)−1 (u) = u+ 2
√
u

(4.6)

Theorem 4.2. For any 0 ≤ t < 2Tr(P ) we have

I ≤ E0(t) exp [−t P ] ≤ exp [L (2tTr(P )) $1 (P/Tr(P ))] (4.7)

In addition we have the centered Laplace estimates

I ≤ Ep(t) ≤ exp [L (2tTr(P )) $ (P/Tr(P ))] (4.8)

The proof of this theorem is provided in Section 6.6. Recalling that

0 < A ≤ B =⇒ log (A) ≤ log (B) and A = log exp (A)

for any symmetric matrix A, we prove the following corollary.

Corollary 4.3. For any 0 ≤ t < 2Tr(P ) we have the Laplace matrix
inequalities

0 ≤ LP (t)− t P ≤ L (2tTr(P )) $1 (P/Tr(P )) (4.9)
0 ≤ LP (t) ≤ L (2tTr(P )) $ (P/Tr(P )) (4.10)

4.3 Laplace matrix estimates

The objective of this section is to estimate the Laplace matrix transforms
defined by

EN (t) := E (exp (tHN )) and E(t) := E (exp (tH))

The existence of E(t) is ensured by the estimate

log ‖E(t)‖F ≤
t2

2
[
Tr(P 2) + Tr(P )2

]
which is valid for any t ∈ R. This assertion is a consequence of the
technical lemma 6.3.
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Theorem 4.4. For any 0 ≤ 4
√

2 tTr(P ) < 1 and N ≥ 8 we have the
estimates

‖E [cosh (tHN )]− E(t)‖F ≤ (8t)4
[
Tr(P 2) + Tr(P )2

]2
/N

‖E [sinh (tHN )] ‖F ≤ 4 (tTr(P ))3 /
√
N (4.11)

The proof of this theorem is provided in Section 6.7. Recalling that

E [exp (tHN )] = E [cosh (tHN )] + E [sinh (tHN )]

the estimates (4.11) readily yields the following corollary.

Corollary 4.5. For any 0 ≤ 4
√

2 tTr(P ) < 1 and N ≥ 8 we have

‖EN (t)−E(t)‖F ≤
46

N
t4
[
Tr(P 2) + Tr(P )2

]2
+ 4√

N
(tTr(P ))3 (4.12)

The Laplace matrix estimate (4.12) differs from trace-type estimates
which can be derived using Lieb’s inequality

E (Tr (exp [A+B]) | A) ≤ Tr
(
exp

[
A+ logE

(
eB | A

)])
(4.13)

which is valid for any possibly random symmetric matrices A,B, see
for instance [32, 52, 93]. Applying sequentially the estimate (4.13) and
using the spectral mapping theorem we obtain the following spectral-
sub-additivity estimate.

Lemma 4.6 (Tropp [93]). For any sequence of independent (r × r)
symmetric matrices Ai indexed by some finite set i ∈ I we have

Tr
[
E
(

exp
∑
i∈I

Ai

)]
≤ Tr

(
exp

[∑
i∈I

logE (exp (Ai))
])

(4.14)

Observe that

$(Q) ≤ $+(Q) I with $+(Q) := λ1($(Q))

Using (4.10) and applying this lemma to the collection of matrices

Ai = t√
N

(Xi − P ) =⇒
∑

1≤i≤N
Ai = t HN
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we check that

Tr (EN (t)) ≤ Tr
(
exp

(
N LP (t/

√
N)
))

≤ r exp
(
NL

[
2tTr(P )/

√
N
]
$+ [P/Tr(P )]

)
These trace estimates are often used to derive exponential concentration
estimates.

For instance, using conventional large deviation techniques we check
that for any N ≥ 1 and δ > 0 the probability of the event

λ1(HN )

≤ 2Tr(P )
[
δ + log (r)√

N
+ 2

√
(δ + log (r)) $+

(
P

Tr(P )

)] (4.15)

is greater than 1 − e−δ. For the convenience of the reader a proof of
this assertion is provided in the Appendix.



5
Concentration and trace-type estimates

5.1 A fluctuation theorem

For any symmetric matrix A and for any t ∈ R we have

logE (exp [tTr(AH)]) = t2 Tr((AP )2) (5.1)

In other words, Tr(AH) is a centered Gaussian random variable with
variance 2Tr((AP )2). We also have the χ-square Laplace formula

logE
(
exp

(
t‖H‖2F

))
= 1

4
∑
n≥1

(4t)n

n

[
Tr(Pn)2 + Tr(P 2n)

]
(5.2)

In addition, there exists some t > 0 and some finite constant c < ∞
such that

sup
N≥1

E [exp (t ‖HN‖F )] <∞ ⇐⇒ ∀n ≥ 1 sup
N≥1

E [‖HN‖nF ] ≤ cn n!

(5.3)
The first two assertions comes from the fact that H is a matrix with
Gaussian entries.

The proofs of (5.3) and the Laplace formulae (5.1) and the Hardy’s
exponential property (5.2) are provided in the Appendix.
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The Laplace estimate (5.1) readily implies that any δ ≥ 0 the
probability of the event

Tr(AH) ≤ 2
√
δ Tr((AP )2) is greater than 1− e−δ. (5.4)

The proof of this assertion is based on conventional Cramér–Chernov
arguments. A brief summary of large deviation techniques is provided
in Section 2.1.

Recalling that PN has a Wishart distribution with N degree of
freedom and covariance matrix N−1P , for any 2|t|‖AP‖F ≤

√
N we

have

logE (exp (t Tr (AHN )))

= t2 Tr((AP )2) + t2
∑
n≥1

tn

n+ 2
2n+1

Nn/2 Tr((AP )2+n)
(5.5)

Explicit formulae for Tr((AP )n) are rarely available. For rank one
matrices A = (xy′ + yx′)/2 we have the formula

2n+1 Tr
[
(AP )n+2

]

=
∑

0≤l≤b(n+1)/2c

(
n+ 1

2l

)
〈x, Py〉n+2−2l (〈x, Px〉 〈y, Py〉)l

+
∑

1≤l≤bn/2c−1

(
n+ 1
2l − 1

)
〈x, Py〉n+2−2l (〈x, Px〉 〈y, Py〉)l

≤ 2n+2λ1(P )n

(5.6)

as soon as x, y ∈ B, where B is the unit ball in Rr. A proof of (5.6)
is provided in the Appendix. In this situation, we obtain the Laplace
estimate

E
(
exp

(
t Tr (AHN )− t2Tr((AP )2

))

≤ exp
(
−(2tλ1(P )))2 log

[
1− 1

N1/2 (2tλ1(P ))
])
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Whenever x = ui and y = uj are two orthonormal eigenvectors asso-
ciated with some different eigenvalues λi(P ) and λj(P ) with i 6= j we
check that

2n−1 Tr [(AP )n] = (λi(P )λj(P ))n/2

To simplify notation, given some collections P : r 7→ P (r) and A : r 7→
A(r) of symmetric matrices, we write

(λ1(AP ),HN ,Tr((AP )n))

instead of the sequence

(λ1(A(r)P (r)),HN (r),Tr((A(r)P (r))n))

In this notation, we have the following theorem.

Theorem 5.1. For any function N = N(r) s.t. rN(r) →r→∞ ∞ and
any collection of symmetric matrices A : r 7→ A(r) we have

sup
r≥1

λ1(AP ) <∞ and σ2
A,r(P ) := r−1Tr((AP )2)→r→∞ σ2

A(P )

=⇒ 1√
2r

Tr
(
AHN(r)

)
↪−→r→∞ N

(
0, σ2

A(P )
)

Assume that

0 ≤ r−1 |Tr((AP )n)| ≤ αA(P ) βA(P )n

for some parameters αA(P ) ≥ 1 and βA(P ) ≥ 0 whose values doesn’t
depend on n. In this situation, we have the estimates

1
(2n)! |E

(( 1√
2r

Tr (AHN )
)2n

)
− E

(( 1√
2r

Tr (AH)
)2n

)
|

≤ 4(e− 1)
rN

αA(P )n−1 βA(P )2n
(

1 ∨ 8
rN

)n−1

as well as
1

(2n+ 1)! |E
(( 1√

2r
Tr (AHN )

)2n+1
)
|

≤ (e− 1)
√

2√
rN

αA(P )n βA(P )2n+1
(

1 ∨ 8
rN

)n
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In addition if A ≥ 0 then the terms in absolute value |.| in the above
display are positive.

Under the assumptions of the above theorem we have
1√
2r

Tr (AHN ) ↪−→N→∞
1√
2r

Tr (AH) ↪−→r→∞ N
(
0, σ2

A(P )
)

The proof of theorem 5.1 is provided in Section 6.8.

5.2 Spectral versus trace-type concentration inequalities

For any symmetric matrix A we have the sub-Gaussian Laplace estimate

4|t| ‖AP‖F ≤
√
N

=⇒ logE (exp (t Tr (AHN )))) ≤ t2
[
Tr((AP )2) + 2‖AP‖2F

]
as well as

4|t|Tr(AP ) <
√
N, A ≥ 0

=⇒ logE (exp (t Tr (AHN ))) ≤ 3t2 Tr((AP )2)
(5.7)

The proof of these estimates are essentially based on the Laplace formula
(5.5). The details of the proof including more refined logarithmic-type
estimates are provided in the Appendix.

Theorem 5.2. For any symmetric matrix A and any 0 ≤ 8δ ≤ N the
probability of the event

|Tr(AHN )| ≤ 2
√

(δ + 1)
[
Tr((AP )2) + 2‖AP‖2F

]
(5.8)

is greater than 1− e−δ. In addition, if A ≥ 0 then for 0 ≤ 8δ ≤ N the
probability of the event

Tr(AHN ) ≤ 2
√

3
√
δ Tr((AP )2) is greater than 1− e−δ

Furthermore for any 0 ≤ 4δ ≤ N Tr((AP )2)/Tr(AP )2 the probability
of the event

Tr(AHN ) ≥ −2
√
δ Tr((AP )2) is greater than 1− e−δ
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The proof of the above theorem is provided in Section 6.9. We also
have the immediate corollary.

Corollary 5.3. For any 0 ≤ 4δ ≤ N
[
1/2 ∧ Tr((AP )2)/Tr(AP )2] and

any matrix A ≥ 0 the probability of the event

|Tr(APN )− Tr(AP )| ≤ 2

√
δ + 1
N

[2Tr(AP )2 + Tr((AP )2)]

is greater than 1− e−δ.

We end this section with some operator norm estimates which can be
deduced almost directly combining the trace concentration inequalities
(5.8) with the variational formulation (1.20) of the operator norm.

Theorem 5.4. For any N ≥ 8r log (31) we have

E [‖H‖op] ∧ E [‖HN‖op] ≤ 6
√
r λ1(P )

This also implies that

E [λ1 (PN ) /λ1(P )] ≤ 1 + 6
√
r/N

For any N and δ such that N/8 ≥ δ + 7r, the probability of the
event

‖HN‖op ≤ 5
√

3
√
δ + 7r λ1(P ) (5.9)

is greater than 1− e−δ.

Corollary 5.5. For any N and δ such that N/8 ≥ δ+7r, the probability
of the event

sup
1≤k≤r

|λk(PN )− λk(P )| ≤ 5
√

3

√
δ + 7r
N

λ1(P )

is greater than 1− e−δ.

The proof of theorem 5.4 and corollary 5.5 is given in Section 6.10.



6
Proof of the main results

6.1 Proof of theorem 3.1

When m > n/2 at least one block of π ∈ Pn,m is of unit size and the
matrix moment Mπ(P ) = 0 resume to the null matrix. This implies
that

∀bn/2c < m ≤ n Mn,m(P ) = 0 (6.1)
Let 〈p,N〉 be the set of all the (N)p := N !/(N − p)! one to one

mappings β from [p] := {1, . . . , p} into [N ]. In this notation we have
the decomposition

[N ][n] = ∪1≤p≤(n∧N) ∪π:|π|=p {απβ : β ∈ 〈p,N〉} (6.2)

with the mapping απβ defined by

απβ =
∑

1≤i≤|π|
β(i) 1πi

where π1, . . . , π|π| stand for the |π| blocks of a partition of [n] ordered
w.r.t. their smallest element. When β(i) = Id(i) := i is the identity
mapping sometimes we write απ instead of απId. A detailed proof of
this decomposition can be found in Section 8.6 in [21]. For a further
discussion on partitioning and counting onto mappings we also refer
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to [25]. This decomposition implies that

Nn/2 E (Hn
N )

=
∑

1≤m≤bn/2c∧N
(N)m Mn,m(P )

=
∑

1≤l≤bn/2c∧N
N l

∑
l≤m≤bn/2c∧N

s(m, l) Mn,m(P )

(6.3)

The second polynomial formulae in (6.3) comes from the formula

(N)m =
∑

1≤l≤m
s(m, l) N l

This ends the proof of the first assertion.
Using (6.3), for any given n ≥ 1 and any 1 ≤ k ≤ n we also have

E
([√

k Hk

]2n)
:= fn(k) =

∑
1≤l≤k

(
k

l

)
gn(l)

with
gn(l) := l! M2n,l(P )

Using the binomial inversion formula we find that

∀1 ≤ k ≤ n gn(k) =
∑

1≤l≤k
(−1)k+l

(
k

l

)
fn(l)

Thus, for any 1 ≤ m ≤ bn/2c we also have the matrix moment inversion
formula

Mn,m(P ) =
∑

1≤k≤m
(−1)m−k 1

k!(m− k)! E

 ∑
1≤i≤k

(Xi − P )

n
This ends the proof of the theorem.

6.2 Proof of theorem 3.4

For n = 2 we have C2 = 2 non-crossing partitions and a single crossing
partition

N2n,n(0, n, 0, . . . , 0) = {π1, π2}
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and
P2n,n(0, n, 0, . . . , 0)−N2n,n(0, n, 0, . . . , 0) = {π3}

given by

π1 = {1, 2} {3, 4} π2 = {1, 4} {2, 3} and π3 = {1, 3} {2, 4}
(6.4)

Non-crossing pair partitions can be interpreted in various ways. Firstly,
we can interpret non-crossing pair partitions in terms of connections of
the ordered set of integers [2n] lying on a horizontal line in the plane
with n nonintersecting arcs/lines. In the above example we have the
Murasaki diagram

1 1 2 2 1 2 2 1

π1 π2

A given crossing pair partition can be interpreted as balanced parenthe-
ses on the ordered set [2n] (with n left and n right). When n = 2 we
have

π1 = {1, 2} {3, 4} = () () and π2 = {1, 4} {2, 3} = (())

They can also be seen as the number of ways of grouping n+ 1 letters
with parenthesis

π1 = {1, 2} {3, 4} = () () = ((a1 · a2) · a3)

and
π2 = {1, 4} {2, 3} = (()) = (a1 · (a2 · a3)) (6.5)

We obtain the balanced parenthesis by removing the letters and the
left parenthesis “(” and then replacing each “·” by a left parenthesis
“(”. This construction provides a simple way to count the number of
non-crossing partitions using Catalan recursion

C2 = C0 C1 + C1 C0
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For n = 3 we have 5 non-crossing pair partitions of 6 elements into
pairs. The first C2 C0 = 2 partitions

π1 = {1, 2}{3, 4}{5, 6} = () () () = (((a1 · a2) · a3) · a4)
π2 = {1, 3}{2, 4}{5, 6} = (()) () = ((a1 · (a2 · a3)) · a4)

Then C1 C1 = 1 partition given by

π3 = {1, 2}{2, 6}{3, 4} = () (()) = ((a1 · a2) · (a3 · a4))

Finally, the last C0 C2 = 2 partitions

π4 = {1, 6}{2, 3}{4, 5} = (() ()) = (a1 · ((a2 · a3) · a4))
π5 = {1, 6}{2, 5}{3, 4} = ((())) = (a1 · (a2 · (a3 · a4)))

The matrix moments Mπ(P ) associated with pair partition can be
sequentially computed using the positive maps defined for any Q ∈ Sr
by the matrix linear functionals

Ω(Q) := E ((X− P )Tr [Q(X− P )]) = 2PQP

Γ(Q) := E ((X− P )Q(X− P )) = 1
2 Ω(Q) + Γ(Q) (6.6)

with the mapping
Γ(Q) := Tr(PQ) P

When P = I we have

Ω(Q) = 2Q and Γ(Q) = Tr(Q) I (6.7)

and therefore
Γ(I) = (1 + r) I

The matrix moments Mπ(P ) associated with non-crossing pair partition
are expressed in terms of powers and compositions of the mapping
Γ. For instance, for n = 2 the matrix moments associated with the
partitions (6.5) are given by adding a Γ in front of each left balanced
parenthesis and replacing the inside by the identity; that is we have

Mπ1(P ) = E
(
(X− P )2

)2

= Γ (I) Γ (I) = Γ(I)2 = P 4 + 2Tr(P )P 3 + Tr(P )2 P 2
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and

Mπ2(P ) = E ((X− P )Γ(I)(X− P ))
= Γ (Γ (I))
= Γ2 (I)P 4 + Tr(P )P 3 +

[
Tr(P 3) + Tr(P )Tr(P 2)

]
P

This shows that

M+
2,1(P ) = M+

0,0(P ) Γ
(
M+

0,0(P )
)

= Γ(I) with M+
0,0(P ) = I

= P 2 + Tr(P ) P

and

M+
4,2(P ) = M+

0,0(P ) Γ
(
M+

2,1(P )
)

+M+
2,1(P ) Γ

(
M+

0,0(P )
)

= I Γ (Γ(I)) + Γ(I)Γ(I)
= 2P 4 + 3Tr(P ) P 3 + Tr(P 2) P 2

+
[
Tr(P 3) + Tr(P 2)Tr(P )

]
P

In the same vein, for n = 3 we have the sum of the C3 = 5 terms
associated with the balanced parenthesis

((())) , (() ()) , () (()) , (()) () , () () ()

These balanced strings give the value of the mapping (απ(1), . . . , απ(6))
for the

C3 = C0 (C2) + C1 (C1) + C2 (C0) = 5

non-crossing partitions of [6] into 3 blocks:

(1, 2, 3, 3, 2, 1) , (1, 2, 2, 3, 3, 1) , (1, 1, 2, 3, 3, 2)

and
(1, 2, 2, 1, 3, 3) , (1, 1, 2, 2, 3, 3)

This implies that

M+
6,3(P ) = Γ

(
Γ2(I) + Γ(I)2

)
+ Γ(I) Γ2(I) +

[
Γ2(I) + Γ(I)2

]
Γ(I)

= M+
0,0(P ) Γ

(
M+

4,2(P )
)

+M+
2,1(P ) Γ

(
M+

2,1(P )
)

+M+
4,2(P ) Γ

(
M+

0,0(P )
)
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from which we check that

M+
6,3(P ) = 5 P 6 + 10 Tr(P ) P 5 + 6 Tr(P )2 P 4

+
[
3 Tr(P 3) + 3 Tr(P 2) Tr(P ) + Tr(P )3

]
P 3

+ 2
[
Tr(P ) Tr(P 3) + Tr(P 2) Tr(P )2

]
P 2

+
[
2 Tr(P 5) + 3 Tr(P 4) Tr(P )

+Tr(P 3) Tr(P 2) + Tr(P 3)Tr(P )2 + Tr(P 2)2 Tr(P )
]
P

For n = 4 we have the sum of the C4 = 14 terms. The first C0 C3 = 5
terms

(((()))) , ((() ())) , (() (())) , ((()) ()) , (() () ())

The C1 C2 = 2 and the C2 C1 = 2 terms

()((())) , ()(() ()) and ((()))() , (() ())()

and finally the C3 C0 = 5 terms

((())) , (() ()) () , () (()) () , (()) () () , () () () ()

This yields the decomposition

M+
8,4(P )

= M+
0,0(P ) Γ(M+

6,3(P )) +M+
2,1(P ) Γ(M+

4,2(P ))

+M+
4,2(P ) Γ(M+

2,1(P )) +M+
6,3(P ) Γ(M+

0,0(P ))

= Γ2
(
Γ2(I) + Γ(I)2

)
+ Γ

(
Γ(I) Γ2(I)

)
+ Γ

([
Γ2(I) + Γ(I)2

]
Γ(I)

)
+Γ(I) Γ

(
Γ2(I) + Γ(I)2

)
+
(
Γ2(I) + Γ(I)2

)
Γ(Γ(I))

+Γ
(
Γ2(I) + Γ(I)2)+ Γ(I) Γ2(I) +

([
Γ2(I) + Γ(I)2] Γ(I)

)
Γ(I)

More generally, we have the Catalan-type matrix polynomial recursion

M+
2n,n(P ) :=

∑
k+l=n−1

M+
2k,k(P ) Γ(M+

2l,l(P )) (6.8)
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The matrix polynomial M+
2n,n(P ) is a linear combination of monomials

of the form

 ∏
1≤i≤m

Tr(P i)vi
 Pw with



1 ≤ w ≤ 2n 0 ≤ m ≤ n

∑
1≤i≤m vi ≤ n (=⇒ m ≤ n)

∑
1≤i≤m i vi + w = 2n

In addition, the coefficients don’t depend on the matrix P . We check
this property by induction w.r.t. the parameter n using the recursion
(6.8). This ends the proof of (3.14).

We let M [Q0,...,Q2n],+
2n,n (P ) the matrix moments associated with a

collection of matrices Qi defined by

M
[Q0,...,Q2n],+
2n,n (P )

:=
∑

π∈Q+
2n,n

E
(
Q0(Xαπ(1) − P )Q1(Xαπ(2) − P )Q2 . . . (Xαπ(2n) − P )Q2n

)
(6.9)

For homogeneous sequences Qi = Q we write MQ,+
2n,n(P ) instead of

M
(Q,...,Q),+
2n,n (P ).
Extending the arguments given above to the matrix polynomials

(6.9), we obtain the following technical lemma.

Lemma 6.1. We have the functional recursion

M
[Q0,...,Q2n],+
2n,n (P )

=
∑

k+l=n−1
M

[Q0,...,Q2k],+
2k,k (P ) Γ

[
M

[Q2k+1,...,Q2n−1],+
2l,l (P )

]
Q2n

(6.10)
with the initial condition MQ,+

0,0 (P ) = Q.
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For instance we have

M
[Q0,Q1,Q2],+
2,1 (P ) = Q0Γ(Q1)Q2

M
[Q0,...,Q4],+
4,2 (P ) = Q0Γ [Q1Γ(Q2)Q3]Q4 +Q0Γ(Q1)Q2Γ(Q3)Q4

M
[Q0,...,Q6],+
6,3 (P ) = Q0Γ(Q1)Q2 Γ(Q3)Q4 Γ(Q5)Q6

+Q0Γ [Q1Γ(Q2)Q3]Q4 Γ(Q5)Q6

+Q0Γ(Q1)Q2 Γ [Q3Γ(Q4)Q5]Q6

+Q0 Γ [Q1Γ(Q2)Q3Γ(Q4)Q5]Q6

+Q0 Γ [Q1Γ [Q2Γ(Q3)Q4]Q5]Q6

For any 0 ≤ m ≤ n we let Ξn,m be the set of partition τ = (τ1, . . . , τm+1)
of [2n− 1] be into (m+ 1) increasing sequences

τj = (ij1, . . . , i
j
k) with 0 < ij1 < . . . < ijk < 2n

We also set
(PQ)τj = (PQ

ij1
)(PQ

ij2
) . . . (PQ

ij
k
)

In this notation, using the induction (6.10) and recalling that Γ only
increases the number of traces by 1, we check that for any n ≥ 1
the matrix polynomial M [Q0,...,Q2n],+

2n,n (P ) is a linear combination of
monomials of the form ∏

1≤i≤m
Tr ((PQ)τi)

 Q0 (PQ)τm+1Q2n (6.11)

with
0 ≤ m ≤ n and τ ∈ Ξn,m

Arguing as above, we check that the matrix polynomial M [P ],+
2n,n (P ) is a

linear combination of monomials of the form

Trv(P ) Pw

with the parameters
3 ≤ w ≤ 4n+ 1 0 ≤ m ≤ n

∑
1≤i≤m vi ≤ n∑

1≤i≤m ivi + w = 4n+ 1
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Rewritten in terms of the matrix functional Γ the Catalan-type
recursive formulae (3.15) reduces to the formula

Σn(P ) :=
∑

k+l=n−1
Σk(P ) Γ(Σl(P )) with Σ0(P ) = I

A simple induction w.r.t. the parameter n shows that the matrix poly-
nomial Σn(P ) is a linear combination of monomial for n trace terms
given by of the form

Trv(P ) Pw

with the parameters
1 ≤ w ≤ n 0 ≤ m ≤ n

∑
1≤i≤m vi = n

∑
1≤i≤m i vi + w = 2n

This assertion is also a direct consequence of the formula (1.14) stated
in theorem 3.5. Let

M̃2n,n(P ) := M+
2n,n(P )− Σ2n,n(P ) =⇒ M̃0,0(P ) = 0

Combining the properties discussed above with the easily checked in-
duction

M̃2n,n(P )

=
∑

k+l=n−1
M̃2k,k(P ) Γ

(
M̃2l,l(P )

)
+ 1

2
∑

k+l=n−1
M2k,k(P ) Ω (M2l,l(P ))

+
∑

k+l=n−1

[
M̃2k,k(P ) Γ (Σ2l,l(P )) + Σ2k,k(P ) Γ

(
M̃2l,l(P )

)]
we check that the matrix polynomial M̃2n,n(P ) is a linear combination
of monomial for n trace terms given by

Trv(P ) Pw

with the parameters
1 ≤ w ≤ 2n 0 ≤ m ≤ n

∑
1≤i≤m vi < n

∑
1≤i≤m i vi + w = 2n
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The matrix moments Mπ(P ) associated with crossing pair parti-
tions require more sophisticated calculations. Nevertheless they can be
computed in terms of powers and compositions of the mappings (Γ,Ω)
using sequentially conditioning formulae. For instance, the π3-matrix
moment associated with the partition π3 discussed in (6.4) is given by

Mπ3(P ) = E (E ([(X1 − P )(X2 − P )] [(X1 − P )(X2 − P )] | X2))
= E ([P (X2 − P )P + P Tr((X2 − P )P )] (X2 − P ))

This yields the formula

Mπ3(P )

= P Γ(P ) + P Ω(P ) = P [Γ(P ) + Ω(P )] = 3 P 4 + Tr(P 2)P 2

(6.12)
We let M [Q0,...,Q2n]

2n,n (P ), and respectively M [Q0,...,Q2n],−
2n,n (P ), the ma-

trix moments defined as in (6.9) by replacing the set Q+
2n,n by the set

of crossing partitions Q2n,n, and respectively Q−2n,n.
Arguing as above, for any matrices Q1, Q2, Q3 we have

E ((X1 − P )Q1(X2 − P )Q2(X1 − P )Q3(X2 − P ))

= E ((X1 − P )Q1E [(X2 − P )Q2(X1 − P )Q3(X2 − P ) | X1])

= E ((X1 − P )Q1 Γ (Q2(X1 − P )Q3))

= E ((X1 − P ) Q1PQ2 (X1 − P )) Q3P

+E (Tr ((X1 − P )(Q3PQ2)) (X1 − P )) Q1P

This yields the formula

E (Q0(X1 − P )Q1(X2 − P )Q2(X1 − P )Q3(X2 − P )Q4)

= E [Q0PQ1PQ2PQ3PQ4] + 2 E [Q0PQ3PQ2PQ1PQ4]

+E [Tr(Q1PQ2P ) Q0PQ3PQ4]
(6.13)
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for any random matrices Qi, with 0 ≤ i ≤ 4, independent of X1 and
X2. Any π-matrix moment Mπ(P ) associated with a crossing partition
π ∈ Q2n,n − Q+

2n,n has the form (6.13) with some random matrix
Q0 associated with a non-crossing partition π[m] ∈ Q+

2m,m for some
0 ≤ m ≤ n− 2. When m = 0 we use the convention Q0 = I.

Observe that

E [Q0PQ1PQ2PQ3PQ4] and E [Q0PQ3PQ2PQ1PQ4]

can be interpreted as a matrix moment

M
[R0,...,R2((n−m)−2)]
π (P )

= E
(
R0(Xαπ(1) − P )R1(Xαπ(2) − P )R2 . . .

. . . (Xαπ(2((n−m)−2)) − P )R2((n−m)−2)
)

associated with some deterministic matrices Ri ∈ {P k : 0 ≤ k ≤ 4}
and some partition π ∈ Q2((n−m)−2),((n−m)−2). By (6.11) when π ∈
Q+

2((n−m)−2),(n−m)−2, the matrix moment M [R0,...,R2((n−m)−2)]
π (P ) is a

linear combination of monomials of the form

Trv(P ) Pw

with the parameters

1 ≤ w ≤ 2(n−m) 0 ≤ m ≤ (n−m)− 2

∑
1≤i≤m vi ≤ (n−m)− 2

∑
1≤i≤m ivi + w = 2(n−m)

Assume that (Q1, Q2) and (Q3, Q4) are independent. In this case
we have

E [Tr(Q1PQ2P ) Q0PQ3PQ4] = Tr(E [Q1PQ2P ]) E [Q0PQ3PQ4]

Arguing as above

E [Q1PQ2P ] and E [Q0PQ3PQ4]
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can be can be interpreted as the matrix moments M [S0,...,Sk]
α (P ) and

M
[T0,...,Tl]
β (P ) associated with a collection of deterministic matrices

Si ∈ {P k : 0 ≤ k ≤ 2} and Tj ∈ {P k : 0 ≤ k ≤ 2} and some
partitions α ∈ Q2k,k and β ∈ Q2l,l with k + l = (n−m)− 2.

By (6.11) when α ∈ Q+
2k,k, the matrix moment M [S0,...,Sk]

α (P ) is a
linear combination of monomials of the form

Trv(P ) Pw

with the parameters
1 ≤ w ≤ 2(k + 1) 0 ≤ m ≤ k

∑
1≤i≤m vi ≤ k∑

1≤i≤m ivi + w ≤ 2(k + 1)

In addition, when β ∈ Q+
2k,k, the matrix moment product

M [S0,...,Sk]
α (P ) M [T0,...,Tl]

β (P )

is a linear combination of monomials of the form

Trv(P ) Pw with



1 ≤ w ≤ 2(n−m) 0 ≤ m ≤ k

∑
1≤i≤m vi ≤ n−m− 2

∑
1≤i≤m ivi + w = 2(n−m)

Whenever (Q1, Q2) and (Q3, Q4) are not independent we have

Tr(Q1PQ2P ) Q0PQ3PQ4
law= Tr(Q1(X− P )Q2) Q0Q3(X− P )Q4

for some matrices Q0 and Qi independent of X. In this situation, taking
the expectation and using (6.6) we check that

E [Tr(Q1PQ2P ) Q0PQ3PQ4] = 2 E
[
Q0Q3PQ2Q1PQ4

]
Here again E

[
Q0Q3PQ2Q1PQ4

]
can be interpreted as the matrix

moments M [U0,...,Uv ]
α (P ) associated with a collection of determinis-

tic matrices Ui and some α ∈ Q2((n−m)−3),((n−m)−3). By (6.11) when
α ∈ Q+

2((n−m)−3),((n−m)−3), the matrix momentM [U0,...,Uv ]
α (P ) is a linear
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combination of monomials of the form

Trv(P ) Pw

with the parameters

1 ≤ w ≤ 2((n−m)− 1) 0 ≤ m ≤ (n−m)− 3

∑
1≤i≤m vi ≤ (n−m)− 3

∑
1≤i≤m ivi + w = 2((n−m)− 1)

In summary, we have proved that the π-matrix moment Mπ(P )
associated with a given crossing partition π ∈ Q−2n,n can be expressed
as a sum of matrix moments products

M [R0,...,R2k]
α (P ) M [S0,...,S2l]

β (P )

associated with some partitions (α, β) ∈ (Q2k,k×Q2l,l) with 0 ≤ k+ l ≤
n − 2, and some matrices Ri, Si ∈ {P k : 0 ≤ k ≤ 4} whose values
depend on π. Iterating this procedure whenever α and/or β are crossing,
we can write Mπ(P ) as a sum of matrix moments products

M
[T (1)

0 ,...,T
(1)
2k1

]
γ1 (P ) . . . M

[T (m)
0 ,...,T

(1)
2kq ]

γq (P )

for some 2 ≤ q ≤ n− 2 and some non-crossing partitions γi ∈ Q+
2ki,ki

with 0 ≤ k1 + . . .+ kq ≤ n− 2. In addition, M
[T (1)

0 ,...,T
(1)
2ki

]
2ki,ki (P ) is a linear

combination of monomials of the form

Trv(P ) Pw

with the parameters
1 ≤ w ≤ li 0 ≤ m ≤ ki

∑
1≤j≤m vj ≤ ki∑

1≤j≤m jvj + w ≤ li

for some li ≥ 2ki. We conclude that M−2n,n(P ) is a linear combination
of monomials of the form

Trv(P ) Pw
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with the parameters
1 ≤ w ≤ 2n 0 ≤ m ≤ n− 2

∑
1≤j≤m vj ≤ n− 2

∑
1≤j≤m jvj + w ≤ 2n

The quantity 2n corresponds to maximal power of P we can obtain
using crossing partitions. It arises when we consider partitions π with
the maximal number of pairwise crossing pairs, non-crossing between
them. For instance for an even number n of pairs, pairwise crossing and
non-overlapping we have

(6.12) =⇒ Mπ(P ) =
(
3 P 4 + Tr(P 2)P 2

)n/2
The proof of theorem 3.4 is now complete.

6.3 Proof of theorem 3.5

We check that the matrices Σn(P ) defined in (1.14) satisfy the recursion
(3.15). Observe that

Σn(P )P = Tr(P )
∑
π∈Nn

∏
i≥0

Tr
(
P 1+i

)ri(π)
 P |π1|+1

Tr(P |π1|+1)

This yields the formula

Tr (Σn(P )P ) = Tr(P )
∑
π∈Nn

∏
i≥0

Tr
(
P 1+i

)ri(π)


Thus, for any k + l = n, we have

Tr [Σk(P )P ] [Σl(P )P ]

= Tr(P )2 ∑
(π,π)∈(Nl×Nk)

∏
i≥0

Tr
(
P 1+i

)ri(π)+ri(π)
 P |π1|+1

Tr(P |π1|+1)

We associate with a pair of partitions (π, π) ∈ (Nl × Nk) a partition
τ ∈ Nn+1 with blocks

τ1 := π1 ∪ {n+ 1} ≤ τi := πi ≤ τ|π|+j := (k + 1) + πj

= {(k + 1) + u : u ∈ τ j}
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for any 2 ≤ i ≤ |π| and 1 ≤ j ≤ |π|. Observe that

r|π1|+1(τ) = r|π1|+1(π) + r|π1|+1(π) + 1

r|π1|(τ) = r|π1|(π) + r|π1|(π)− 1

ri(τ) = ri(π) + r|π1|(i) ∀i ≥ 1 and i 6∈ {|π1|, |π1|+ 1}

=⇒
∑
i≥1

ri(τ) =
∑
i≥1

[ri(π) + ri(π)]

On the other hand, we have

Tr (P )n+1−
∑

i≥1 ri(π)+ri(π)

∏
i≥1

Tr
(
P 1+i

)ri(π)+ri(π)
 P |π1|+1

Tr(P |π1|+1)

= Tr (P )r0(τ)

 ∏
i≥1, i 6∈{|π1|,|π1|+1}

Tr
(
P 1+i

)ri(τ)


× Tr
(
P |τ1|

)r|τ1|−1(τ)+1
Tr
(
P 1+|τ1|

)r|τ1|(τ)−1 P |τ1|

Tr(P |τ1|)

This implies that∑
k+l=n

Tr [Σk(P )P ] [Σl(P )P ]

= Tr(P )
∑

τ∈Nn+1

Tr (P )r0(τ)

∏
i≥1

Tr
(
P 1+i

)ri(τ)
 P |τ1|

Tr(P |τ1|+1)

= Σn+1(P )

This ends the proof of the matrix polynomial formula (1.14).
Now we come to the proof of the Kreweras trace-type formula (3.17).

For any τ ∈ Nn+1 we set

k|τ1|−1(τ) := r|τ1|−1(τ) + 1 k1(τ) = 1 + r0(τ)
k|τ1|+1(τ) := r|τ1|(τ)− 1 and ki+1(τ) := ri(τ)
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for any i ≥ 0 s.t. i 6∈ {0, |τ1| − 1, |τ1|}.
Observe that∑

i≥1
ki(τ) = 1 + r0(τ) +

∑
i≥1

ri(τ) = 1 + n

We also have∑
i≥1

i ki(τ)

= 1 + r0(τ) +
∑

j≥1, j 6∈{|τ1|−1,|τ1|}
(j + 1) rj(τ)

+|τ1|
(
r|τ1|−1 + 1

)
+ (|τ1|+ 1)

(
r|τ1| − 1

)
= r0(τ) +

∑
j≥1 rj(τ) +

∑
j≥1 j rj(τ) = 2n

Taking the trace in the above matrix polynomial formula we find that

Tr(Σn(P )) =
∑
τ∈Nn

Tr (P )k1(τ)

 ∏
i≥1, i 6∈{|τ1|−1,|τ1|}

Tr
(
P 1+i

)ki+1(τ)


× Tr
(
P 1+|τ1|

)r|τ1|(τ)−1
Tr
(
P |τ1|

)r|τ1|−1(τ)+1

=
∑
τ∈Nn

∏
i≥1

Tr
(
P i
)ki(τ)


This ends the proof of (3.17). The proof of the theorem is now completed.

6.4 Proof of theorem 3.7

Observe that cl(Nn,m) coincides with the subset of partitions π ∈
Nn+1,m s.t. ι(π) = 1. Also observe that for any given π ∈ Nn,m the
partition Ξ(cl(π)) has the same combinatorial structure as Ξ(π) but it
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contains one more singleton than Ξ(π). This yields the formula

∑
π∈Nn,m

∏
i≥1

Tr(P i)ri(Ξ(π))

 P

=
∑

π∈Nn,m

∏
i≥1

Tr(P i)ri(Ξ(cl(π)))

 P ι(cl(π))

Tr(P ι(cl(π)))

from which we prove that

∑
π1∈Nn1,m1

∑
π2∈Nn2,m2

∏
i≥1

Tr(P i)ri(Ξ(π1))+ri(Ξ(π2))

 P ι(π1)

Tr
(
P ι(π1)) P

=
∑

π1∈Nn1,m1

∑
π2∈Nn2,m2∏
i≥1

Tr(P i)ri(Ξ(π1)⊕Ξ(cl(π2)))

 P ι(π1)+ι(cl(π2))

Tr
(
P ι(π1))Tr (P ι(cl(π2)))

Following the arguments and construction in Section 2.5 we have

∀i 6∈ {ι(π1), ι(cl(π2))} ri(Ξ(π1)⊕ Ξ(cl(π2))) = ri(Ξ(π1 ⊕ cl(π2)))

as well as

∀i ∈ {ι(π1), ι(cl(π2))} ri(Ξ(π1)⊕Ξ(cl(π2)))−1 = ri(Ξ(π1⊕cl(π2)))

and

rι(π1)+ι(cl(π2))(Ξ(π1 ⊕ cl(π2))) = rι(π1)+ι(cl(π2))(Ξ(π1)⊕ Ξ(cl(π2))) + 1

This implies that

∑
π1∈Nn1,m1

∑
π2∈Nn2,m2

∏
i≥1

Tr(P i)ri(Ξ(π1))+ri(Ξ(π2))

 P ι(π1)

Tr
(
P ι(π1)) P

=
∑

π1∈Nn1,m1

∑
π2∈Nn2,m2

∏
i≥1

Tr(P i)ri(Ξ(π1⊕cl(π2)))

 P ι(π1⊕cl(π2))

Tr
(
P ι(π1⊕cl(π2)))

Using (2.21), this shows that (1.15) satisfies (3.19).
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6.5 Proof of theorem 4.1

Combining (6.3) with the estimates (3.2) we check that

‖E (Hn
N ) ‖F ≤ n! (8Tr(P ))n N−n/2

∑
1≤m≤bn/2c∧N

(N)m
m! 2−(2m+1)

This ends the proof of (4.2). Also observe that for any n ≤ N we have

E
[
H2n
N

]
= (N)n

Nn
M2n,n(P ) +

∑
1≤m<n

(N)m
Nn

M2n,m(P ) (6.14)

We check (4.3) using the estimates (3.2). We also have

1− (n− 1)2

N
≤ (N)n

Nn
≤ 1

Using the estimates (3.2) we readily check (4.4). The proof is now
completed.

6.6 Proof of theorem 4.2

Using the fact that

[I − 2sP ]−1P = ∂s log
(
[I − 2sP ]−1/2

)
= −1

2 ∂s log (I − 2sP )

formula (4.5) can alternatively be rewritten as

E (exp [tX]) = I +
∫ t

0
exp

[
Tr
(
log

[
(I − 2sP )−1/2

])]
× ∂s log

[
(I − 2sP )−1/2

]
ds

≤ I − 1
2 log (I − 2tP ) exp

[
−1

2 Tr (log (I − 2tP ))
]

The proof of theorem 4.2 is based on the following technical lemma.

Lemma 6.2. For any 0 ≤ t ≤ 1/(2Tr(P )) we have

E
(

exp
[
t

2
X

Tr(P )

])

≤ I + t

2
P

Tr(P ) + t2

4

[(
P

Tr(P )

)2
+ 1

2
P

Tr(P )

]
+ t L(t) $0

(
P

Tr(P )

)
(6.15)
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with
$0(Q) := Q

[ 1
6
√

7
I + 1

12 Q+ Q2
]

In addition, we have

E
(

exp
[
t

2
X− P
Tr(P )

])

≤ I + t2

8

[(
P

Tr(P )

)2
+ P

Tr(P )

]
+ t L(t) $0

(
P

Tr(P )

) (6.16)

Proof. Using (3.12), for any t ≥ 0 we check that

exp [tP ] ≤ E (exp [tX]) ≤ I+Pt+ t2

2
[
2P 2 + PTr(P )

]
+
∑
n≥3

tn

n! E (Xn)

as well as

E (exp [t(X− P )]) ≤ I + t2

2
[
P 2 + P Tr(P )

]
+
∑
n≥3

tn

n! E (Xn)

On the other hand, using (A.1) we also check that∑
n≥3

tn

n! E (Xn) ≤
∑
n≥3

(2t)n

2n

×
[ (2(n− 1))!

22(n−1) (n− 1)!2
Tr(P )n−1 P + (2(n− 2))!

22(n−2) (n− 2)!2
Tr(P )n−2 P 2

]

+(2tP )3 ∑
n≥0

(2t)n

2(n+ 3)
∑

0≤k≤n

(2k)!
22k k!2 Tr(P )k Pn−k

By (A.2) and (A.3) this yields the estimate∑
n≥3

tn

n! E (Xn) ≤ (2t)3

2
∑
n≥0

(2tTr(P ))n

n+ 3
1√

3n+ 7
P Tr(P )2

+ (2t)3

2
∑
n≥0

(2tTr(P ))n

n+ 3
1√

3n+ 4
P 2Tr(P )

+ (2tP )3 ∑
n≥0

(2tTr(P ))n

2(n+ 3)
2n+ 1√
3n+ 1

(6.17)
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This implies that

∑
n≥3

tn

n! E (Xn) ≤ (2t)2

2
∑
n≥1

(2tTr(P ))n

n+ 2
1√

3n+ 4
P Tr(P )

+ (2t)2

2
∑
n≥1

(2tTr(P ))n

n+ 2
1√

3n+ 1
P 2 + (2tP )3

1− 2tTr(P )

from which we check that∑
n≥3

tn

n! E (Xn)

≤ − (2tTr(P ))2
(

1
4

P

Tr(P ) + 1
2

(
P

Tr(P )

)2
)

log (1− 2tTr(P ))

+ (2tP )3

1− 2tTr(P )

≤ (2tTr(P ))3

1− 2tTr(P )

[
1
4

P

Tr(P ) + 1
2

(
P

Tr(P )

)2
+
(

P

Tr(P )

)3
]

In the last assertion we have used the estimate − log (1− x) ≤ x/(1−x).
This estimate can be slightly improved. Indeed, using (6.17) we check
that ∑

n≥3

tn

n! E (Xn)

≤ (2tTr(P ))3

1− 2tTr(P )

[
1

6
√

7
P

Tr(P ) + 1
12

(
P

Tr(P )

)2
+
(

P

Tr(P )

)3
]

This ends the proof of the lemma follows elementary manipulations,
thus it is skipped.
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We now return to prove theorem 4.2. The estimate (6.15) can be
rewritten as follows

E
(

exp
[
t

2
X

Tr(P )

])

≤ I + t

2
P

Tr(P ) + t2
[

1
4

(
P

Tr(P )

)2
+ 1

8
P

Tr(P )

]

+
( 1

1− t − 1
)
t2
[

1
6
√

7
P

Tr(P ) + 1
12

(
P

Tr(P )

)2
+
(

P

Tr(P )

)3
]

≤ I + t

2
P

Tr(P ) + t2

1− t

[
1
4

(
P

Tr(P )

)2
+ 1

8
P

Tr(P )

]

+ t2

1− t

[
1

6
√

7
P

Tr(P ) + 1
12

(
P

Tr(P )

)2
+
(

P

Tr(P )

)3
]

≤ I + t

2
P

Tr(P ) + t2

1− t

[
1
3

(
P

Tr(P )

)2
+ 1

5
P

Tr(P ) +
(

P

Tr(P )

)3
]

This yields

E
(

exp
[
t

2
X

Tr(P )

])
≤ I + t

2
P

Tr(P ) + t2

1− t $1

(
P

Tr(P )

)
(6.18)

The exponential matrix estimate (4.7) is now a consequence of (3.12)
and the estimate (6.18). In the same vein, we have

E (exp [t (X− I)])

≤ I + (2tTr(P ))2

1− 2tTr(P )

[
1
5

P

Tr(P ) + 5
24

(
P

Tr(P )

)2
+
(

P

Tr(P )

)3
]

This ends the proof of (4.8). The proof of the theorem is completed.

6.7 Proof of theorem 4.4

The proof of theorem 4.4 is partly based on the following technical
lemma of its own interest.
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Lemma 6.3. For any t ∈ R we have

log ‖E(t)‖F ≤
t2

2 E(‖H‖2F ) (6.19)

In addition, for any m ≥ 1 we have the estimate∥∥∥∥∥∥E(t)−
∑
n≤m

t2n

(2n)! E(H2n)

∥∥∥∥∥∥
F

≤ exp
[
t2

2 E(‖H‖2F )
]

1√
2π(m+ 1)

(
et2

2(m+ 1) E(‖H‖2F )
)m+1

(6.20)

Proof. By (3.2) we have

t2n

(2n)! ‖E(H2n)‖F ≤
t2n

(2n)! υ2n E
[
‖H‖2F

]n
= 1
n!

(
t2

2 E
[
‖H‖2F

])n
This ends the proof of (6.19). On the other hand, for any x ≥ 0 we have∑

n≥m

xn

n! ≤ e
x x

m

m!

(
≤ ex 1√

2πm

(
ex

m

)m)
This implies that∑

n>m

t2n

(2n)! ‖E(H2n)‖F

≤ exp
(
t2

2 E(‖H‖2F )
)

1√
2π(m+ 1)

(
et2

2m E(‖H‖2F )
)m+1

This ends the proof of (6.20). The proof of the lemma is completed.
We have

E [cosh (tHN )]− E (exp (tHn))

=
∑

2≤n≤N

t2n

(2n)!
[
E(H2n

N )− E(H2n)
]

+
∑
n>N

t2n

(2n)!
(
E
[
H2n
N

]
− E

[
H2n

])
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On the other hand, for any n ≤ N we have

ε2n(N) =
∑

0≤m<n

4m

Nm

n!
(n−m)!

Using (4.3) and (4.4) we obtain the estimate

N ‖E [cosh (tHN )]− E (exp (tHn)) ‖F

≤
(
t2

2 E
[
‖H‖2F

])2 ∑
2≤n≤N

1
(n− 2)!

(n− 1)2

n(n− 1)

(
t2

2 E
[
‖H‖2F

])n−2

+1
2

∑
2≤n≤N

(4
√

2 tTr(P ))2n ∑
0≤m<n

(4/N)m

(n−m)!

+N ‖
∑
n>N

t2n

(2n)! E
[
H2n

]
‖F

+ 1
N

(2tTr(P ))2
(√

2tTr(P )
)2N 1

1− (2
√

2tTr(P ))2/N

×
∑

0≤m<N

( 4
N

)m 1
(N −m)!

as soon as
√
N > 2

√
2 tTr(P ). We use the decomposition

∑
2≤n≤N

an
∑

0≤m<n
bn,m =

∑
2≤k≤N

ak bk,0 +
∑

1≤l<N

N∑
k=l+1

ak bk,l
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which is valid for any collection of numbers an and bn,m, to check that

∑
2≤n≤N

(4
√

2 tTr(P ))2n ∑
0≤m<n

(4/N)m

(n−m)!

=
∑

2≤k≤N

(4
√

2 tTr(P ))2k

k!

+
∑

1≤l<N

( 1
N

(8
√

2 tTr(P ))2
)l N−l∑

k=1
(4
√

2 tTr(P ))2k 1
k!

≤
∑

2≤k≤N

(4
√

2 tTr(P ))2k

k!

+4(e− 1)
N

(4
√

2 tTr(P ))4 1
1− 4

N (4
√

2 tTr(P ))2

as soon as 4
√

2 tTr(P ) < 1. In addition, when N ≥ 8 we have

∑
2≤n≤N

(4
√

2 tTr(P ))2n ∑
0≤m<n

(4/N)m

(n−m)!

≤ (4
√

2 tTr(P ))4 ∑
k≥0

1
(k + 2)(k + 1)

(4
√

2 tTr(P ))2k

k!

+8(e− 1)
N

(4
√

2 tTr(P ))4

≤
[
e

2 + 8(e− 1)
N

]
(4
√

2 tTr(P ))4
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Choosing
(
4
√

2 tTr(P ) ≤
)

4
√

2 tE
[
‖H‖2F

]1/2
< 1 and N ≥ 8 we check

that

N ‖E [cosh (tHN )]− E (exp (tHn)) ‖F

≤
(
t2

2 E
[
‖H‖2F

])2

exp
(
t2

2 E
[
‖H‖2F

])

+
[
e

4 + 4(e− 1)
N

]
(4
√

2 tTr(P ))4 +N ‖
∑
n>N

t2n

(2n)! E
[
H2n

]
‖F

+(e− 1)
43N

(
4
√

2tTr(P )
)4 (√

2tTr(P )
)2(N−1)

This yields the estimate

N ‖E [cosh (tHN )]− E (exp (tHn)) ‖F

≤
[
e

4 + 5(e− 1)
N

]
(4
√

2 tTr(P ))4

+
(
t2

2 E(‖H‖2F )
)2

exp
(
t2

2 E(‖H‖2F )
)

×

1 + 1
N3/2

e2
√

2π

(
et2

2(N + 1) E(‖H‖2F )
)N−1



≤ t4 E(‖H‖2F )2
(

44 e+ e

4 + 5(e− 1)
N

45 + 1
N3/2

e3

4
√

2π

)

We also have

E [sinh (tHN )] =
∑
n≥1

t2n+1

(2n+ 1)! E(H2n+1
N )

Using (4.2) we find that
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‖E [sinh (tHN )] ‖F

≤ t

2
Tr(P )
N1/2

∑
n≥1

(2t2Tr(P )2)n
∑

1≤m≤n∧N

( 4
N

)n−m 1
m!

This implies that

‖E [sinh (tHN )] ‖F

≤ t3 (e− 1) Tr(P )3

N1/2
1

1− 2t2Tr(P )2 ≤ 2t3 (e− 1) Tr(P )3

N1/2

as soon as N ≥ 4 and 4t2Tr(P )2 ≤ 1. This ends the proof of (4.11).
This ends the proof of the theorem.

6.8 Proof of theorem 5.1

Observe that

E
(

exp
(

t√
2r

Tr (AHN )
))

= exp
[
t2

2 r−1Tr((AP )2)

+
( 2
rN

)1/2 ∑
n≥3

tn

n

( 2
rN

)(n−3)/2
r−1Tr((AP )n)


Also recall that Tr

[
(AP )2n] ≥ 0 and Tr

[
(AP )2n+1] ∈ R for any n ≥ 0.

We also have the estimates

r−1|Tr [(AP )n] | ≤ r−1|λ?(AP )|n + r−1 ∑
2≤i≤r

[ |λi(AP )|
λ?(AP )

]n
≤ r−1 [λ?(AP )]n + 1

We conclude that

sup
r≥1

λ?(AP ) <∞ =⇒
∑
n≥3

tn

n
sup
r≥1
| r−1 Tr((AP )n)| <∞
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The end of the proof of the first assertion of the theorem is now com-
pleted. Using (2.3), for any n ≥ 2 we check that

| 1
n

( 2
rN

)(n−2)/2
r−1Tr((AP )n)| ≤ 1

2

( 2
rN

)(n−2)/2
αA(P ) βA(P )n

= ρ βn

with the parameters

ρ = rN

4 αA(P ) and β =
√

2
rN

βA(P )

The end of the proof is a direct consequence of lemma 2.1. For instance
we check that

|E
(( 1√

2r
Tr (AHN )

)2n
)
− (2n)!

2nn!
[
r−1Tr((AP )2)

]n
|

≤ (2n)!
2 βA(P )2n

( 8
rN

)n ∑
1≤k<n

1
k!

(
rN

8

)k
αA(P )k

≤ (2n)!
2 βA(P )2n αA(P )n−1

( 8
rN

)n ∑
1≤k<n

1
k!

(
rN

8

)k

≤ (e− 1)
2 (2n)! αA(P )n−1 βA(P )2n

( 8
rN

)n (
1 ∨ rN8

)n−1

This end the proof of (3.7).

6.9 Proof of theorem 5.2

Using the sub-Gaussian estimate (5.7) we check that

P (±Tr(AHN ) ≥ u) ≤ exp
(
−1

4
u2

Tr((AP )2) + 2‖AP‖2F

)

for any

u ≤
√
N

2‖AP‖2F + Tr((AP )2)
2‖AP‖F
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We end the proof of the first assertion by choosing

δ = 1
4

u2

Tr((AP )2) + 2‖AP‖2F
≤ N

8

(
1 + Tr((AP )2)

2‖AP‖2F

)
⇐= δ ≤ N

8

By lemma A.2, we have

2tTr(AP ) <
√
N =⇒ logE (exp (−t Tr (AHN ))) ≤ t2

2
(
2Tr((AP )2)

)
Thus, for any u ≥ 0 and any t ≥ 0 s.t. 2 tTr(AP ) <

√
N we have

P (−Tr(AHN ) ≥ u) ≤ E [exp (−u t− tTr(AHN ))]

This yields

P (−Tr(AHN ) ≥ u) ≤ exp (−ut+ t2 Tr((AP )2))

Choosing N and t such that

t = u

2Tr((AP )2) ≤
√
N

2Tr(AP ) ⇐⇒
√
N ≥ u Tr(AP )

Tr((AP )2)

we find that

P (Tr(AHN ) ≤ −u) ≤ exp
(
−1

4
u2

Tr((AP )2)

)

This implies that

0 ≤ δ ≤ N

4
Tr((AP )2)
Tr(AP )2

=⇒ P
(
Tr(AHN ) ≤ −2

√
δ Tr((AP )2)

)
≤ exp (−δ)

In the same vein, using the sub-Gaussian Laplace estimate (5.7) we
have

P (Tr(AHN ) ≥ u) ≤ E [exp (−u t+ tTr(AHN ))]

This implies that

P (Tr(AHN ) ≥ u) ≤ exp
(
−ut+ t2

2
[
6Tr((AP )2)

])
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for any t <
√
N

4Tr(AP ) . Choosing N and t such that

t = u

6Tr((AP )2) ≤
N1/2

4Tr(AP ) ⇐⇒
√
N ≥ 2

3 u
Tr(AP )

Tr((AP )2)

we conclude that

P (Tr(AHN ) ≥ u) ≤ exp
(
− u2

12Tr((AP )2)

)

Replacing u by

δ = u2

12Tr((AP )2) ≤
3
42 N

Tr((AP )2)
Tr(AP )2

we prove that

P
(
Tr(AHN ) ≥ 2

√
3δTr((AP )2)

)
≤ exp (−δ)

This ends the proof of the theorem.

6.10 Proof of theorem 5.4

We need the following lemma.

Lemma 6.4. For any collection of symmetric matrices (Ai)i∈I indexed
by some finite set I we have

4 log |I| ≤ N

=⇒ E
(

max
i∈I

Tr(AiHN )
)

≤ 2
√

log |I| max
i∈I

√[
Tr((AiP )2) + 2‖AiP‖2F

]
(6.21)

In addition, we have

E
(

max
i∈I

Tr(AiH)
)
≤ 2

√
log |I| max

i∈I

√
[Tr((AiP )2)]
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Proof. Applying Jensen’s inequality to the logarithm we check that

0 < t ≤
√
N

4 maxi∈I ‖AiP‖F

=⇒ E
(

max
i∈I

Tr(AiHN )
)
≤ 1
t

log
∑
i∈I

E (exp (t Tr(AiHN )))

In this situation, using (5.7) we have the estimate

E
(

max
i∈I

Tr(AiHN )
)

≤ 1
t

log
∑
i∈I

exp
(
t2
[
Tr((AiP )2) + 2‖AiP‖2F

])

≤ log |I|
t

+ t max
i∈I

[
Tr((AiP )2) + 2‖AiP‖2F

]
as soon as 0 ≤ t ≤

√
N

4 maxi∈I ‖AiP‖F . We prove (6.21) by choosing

t =
√

log |I|
maxi∈I

[
Tr((AiP )2) + 2‖AiP‖2F

] ≤ √
N

4 maxi∈I ‖AiP‖F

as soon as 4 log |I| ≤ N .
This ends the proof of (6.21). Using the Laplace trace formula (5.1)

the last assertion follows the same line of arguments, thus it is skipped.
This ends the proof of the lemma.

We now move to prove theorem 5.4. We recall that,

‖HN‖op = sup
x,y∈B

〈HNx, y〉 = sup
A∈A

Tr(AHN )

with the sets (A,B) introduced in (1.21). Observe that for any x, y ∈ B

Tr((xy′P )2) + 2‖xy′P‖2F = 〈x, Py〉2 + 2〈x, y〉〈x, P 2y〉 ≤ 3 λ1(P )2

=⇒ max
A∈A

√[
Tr((AP )2) + 2‖AP‖2F

]
≤
√

3 λ1(P )
(6.22)

We recall that B can be covered by an ε-net Bε ⊂ B of cardinality
|Bε| ≤ (1 + 2/ε)r, in the sense that for any x ∈ B there exists some
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xε ∈ Bε such that ‖x− xε‖ ≤ ε. Using the decomposition

xy′ − xεy′ε = (x− xε)(y − yε)′ + xε(y − yε)′ + (x− xε)y′ε

we check that A can be covered by an ε-net Aε ⊂ A w.r.t. the Frobenius
norm of cardinality |Aε| ≤ (1 + 6/ε)2r. In addition, we have

|Tr(HN (xy′ − xεy′ε))| ≤
2
3 ε sup

A∈A
Tr(AHN )

=⇒
(

1− 2
3 ε

)
sup
A∈A

Tr(AHN ) ≤ sup
A∈Aε

Tr(AHN )
(6.23)

Taking the expectation we conclude that

E [‖HN‖op] ≤ 2
√

3
(

1− 2
3 ε

)−1 √
log (1 + 6/ε)

√
r λ1(P )

as soon as N ≥ 8r log (1 + 6/ε). Choosing ε = 2/10 we find that

N ≥ 8r log (31)

=⇒ E [‖HN‖op] ≤ 6
√
r λ1(P ) =⇒ E [λ1 (PN ) /λ1(P )] ≤ 1 + 6

√
r

N

This ends the proof of the first assertion.
Now we come to the proof of (5.9). Combining (5.8) with the estimate

(6.22) we check that for any A ∈ A the probability of the event

Tr(AHN ) ≥ 2
√

3δ λ1(P ) is less than e−δ

as soon as 0 ≤ 8δ ≤ N . Using the estimate

P
(

max
i∈I

Tr(AiHN ) ≥ 2
√

3δ λ1(P )
)

≤
∑
i∈I

P
(
Tr(AiHN ) ≥ 2

√
3δ λ1(P )

)
≤ (1 + 6/ε)2r e−δ

which is valid for any ε-net Aε = {Ai : i ∈ I} ⊂ A, we find that the
probability of the event

sup
A∈Aε

Tr(AHN ) ≤ 2
√

3δ λ1(P ) is greater than 1− (1 + 6/ε)2r e−δ
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Using (6.23) we also check that the probability of the event

‖HN‖op ≤ 2
√

3
(

1− 2
3 ε

)−1 √
δ + 2r log (1 + 6/ε) λ1(P )

is greater than 1− e−δ, for any (N, δ, ε) such that

N/8 ≥ δ + 2r log (1 + 6/ε)

We end the proof of (5.9) by choosing ε = 2/10. This ends the proof of
the theorem.

We come to the proof of corollary 5.5. Following the proof of propo-
sition 5.4 and using (5.4), we check that the probability of the event

‖H‖op ≤ λ1(P )
(

1− 2
3 ε

)−1
2
√
δ + 2r log (1 + 6/ε)

is greater than 1− e−δ, for any δ ≥ 0 and ε ∈]0, 1[. Choosing ε = 2/10
we conclude that for any δ ≥ 0 the probability of the event

‖H‖op ≤
5
2 λ1(P )

√
δ + 7r is greater than 1− e−δ (6.24)

By Weyl’s inequality (2.5) we have

sup
1≤k≤r

|λk(PN )− λk(P )| ≤ ‖PN − P‖op = 1√
N
‖HN‖op

This completes the proof of the corollary.



Appendices



A
Appendix

This Appendix contains the proofs of a number of results and formulae
in the order in which the appear in the main text. In particular, the
proof of lemma 2.1, formula (3.2), formula (3.7), formulae (3.5) and
(3.8), corollary 3.2, formula (4.5), formula (4.15), formulae (5.1), (5.2),
and (5.3), formula (5.6), and formula (5.7) are given here in order.

A.1 Proof of lemma 2.1

For any n ≥ 0 and 0 ≤ q < p we have

Bpn+q(
p− 1 terms︷ ︸︸ ︷

0, . . . , 0 , xp, xp+1, . . . , xpn+q)

=
∑

1≤k≤n

(pn+ q)!
k!

∑
m1+...+mk=p(n−k)+q, mi≥0

∏
1≤i≤k

xp+mi
(p+mi)!

We check this claim applying the summation formula∑
k≥1

∑
n≥kp

an bn,k =
∑
1≤n

∑
0≤q<p

anp+q
∑

1≤k≤n
bnp+q,k

95
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to the equation

exp

∑
n≥p

tn

n! xn


= 1 +

∑
k≥1

∑
n≥kp

tn
1
k!

∑
m1+...+mk=p(n−k)+q, mi≥0

∏
1≤i≤k

xp+mi
(p+mi)!

= 1 +
∑
1≤n

∑
0≤q<p

tnp+q

(np+ q)!
∑

1≤k≤n

(np+ q)!
k!

×
∑

m1+...+mk=p(n−k)+q, mi≥0

∏
1≤i≤k

xp+mi
(p+mi)!

Also observe that

exp

∑
n≥p

tn

n! xn



= 1 +
∑
1≤n

tnp

(np)!

[(np)!
n!

(
xp
p!

)n

+
∑

1≤k<n

(np)!
k!

∑
m1+...+mk=p(n−k)

∏
1≤i≤k

xp+mi
(p+mi)!



+
∑
1≤n

∑
1≤q<p

tnp+q

(np+ q)!
∑

1≤k≤n

(np+ q)!
k!

×
∑

m1+...+mk=p(n−k)+q, mi≥0

∏
1≤i≤k

xp+mi
(p+mi)!
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Under our assumption, we have∑
1≤k<n

(np)!
k!

∑
m1+...+mk=p(n−k)

∏
1≤i≤k

xp+mi
(p+mi)!

≤ βpn
∑

1≤k<n

(np)!
k! ρk

∑
m1+...+mk=p(n−k)

1

≤ βpn
∑

1≤k<n

(np)!
k! ρk 2p(n−k)+k−1

= 1
2 (2β)pn

∑
1≤k<n

(np)!
k!

(
ρ

2p−1

)k
In the same vein, we have∑

1≤k≤n

(np+ q)!
k!

∑
m1+...+mk=p(n−k)+q, mi≥0

∏
1≤i≤k

xp+mi
(p+mi)!

≤ βpn+q ∑
1≤k≤n

(np+ q)!
k! ρk

∑
m1+...+mk=p(n−k)+q, mi≥0

1

≤ 1
2 (2β)pn+q ∑

1≤k≤n

(np+ q)!
k!

(
ρ

2p−1

)k
This completes the proof of this lemma.

A.2 Proof of (3.2)

The proof is partly based on the estimate

2−n

n! E(Xn) ≤ 1
2n

∑
0≤k<n

2−k

k! υ2k Tr(P )k Pn−k (A.1)

For n = 1, 2 the inequality (A.1) reduces to an equality. The proof of
the above formulae can be found in [10]. We also have the identity∑

0≤k≤n

(2k)!
22kk!2 = (2n+ 1)!

22nn!2 ≤ 2n+ 1√
3n+ 1

(A.2)
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The proof of the first assertion in the above display can be found in
[70] (cf. formula (1.38) in Section 1.2). The r.h.s. estimate comes from
the central binomial estimates

1√
4n
≤ (2n)!

22nn!2 ≤
1√

3n+ 1
(A.3)

The proof of the above estimate can be found in [39]. Using (A.1) we
check the trace estimates

Tr [E (Xn)] = E
(
‖X‖2n

)
≤ (2n)!

2nn! Tr(P )n

≤ 2n√
3n+ 1

n! Tr(P )n ≤ 2n−1 n! Tr(P )n

On the other hand, we have the rather crude estimates

‖E [M2n,n(P )] ‖ ≤ (2n)!
2nn! E

(
‖X− P‖2

)n
(A.4)

for any compatible matrix norm. For instance, for the Frobenius norm
we find that

‖M2n,n(P )‖F ≤
(2n)!
2nn!

[
Tr
(
E(H2)

)]n
= (2n)!

2nn!
[
Tr(P 2) + Tr(P )2

]n
Using (A.1) and (A.3) we have the rather crude estimate

E [‖X− P‖nF ]

≤ 2n−1
[
E
[
‖X‖2n

]
+ ‖P‖nF

]

= 2n−1
[
2n−1 n! + 1

]
Tr(P )n ≤ n!

2 (4Tr(P ))n

Therefore, for any partition π of [n] withm blocks πi of size |πi| = ni ≥ 2
we have

‖Mπ(P )‖F ≤
∏

1≤i≤m
E [‖X− P‖niF ] ≤ 2−m (4Tr(P ))n

∏
1≤i≤m

ni!
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This implies that

‖Mn,m(P )‖F ≤
2−m

m!
∑

n1+...+nm=n

n!
n1! . . . nm!

∏
1≤i≤m

E [‖X− P‖niF ]

≤ n!
m! 2−m (4Tr(P ))n

(
n− 2m+m− 1

n− 2m

)

≤ n!
m! (8Tr(P ))n 2−(2m+1)

The last assertion comes from the fact that the number of solutions to
the equation

j1 + j2 + . . .+ jp = q with ji ≥ 0 is given by
(
p+ q − 1

q

)

and
(
n

p

)
≤ 2n for any 0 ≤ p ≤ n. This ends the proof of (3.2).

A.3 Proof of (3.7)

Recall that

P = I =⇒ X law= χr U =⇒ X− I = (χr − 1) U + (U− I) (A.5)

where U := XX
′ stands for the random projection matrix associated

with an uniform random vector X := X/
√
‖X‖ on the unit sphere, and

χr = ‖X‖2 is an independent χ-square random variable with r degrees
of freedom.

We use the binomial formula

E [(X− I)n] = (−1)n
(

1− 1
r

)
I + E

([
‖X‖2 − 1

]n) 1
r
I

and
E
[
‖X‖2k

]
=

∏
0≤l<k

(r + 2l)

The above formula can be checked using (A.5). Notice that Un = U and
(U − I)n = (−1)n+1(U − I) =⇒ U(U − I)n = 0 = U(U − I)n for any
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n ≥ 1. This yields

E [(X− I)n] = rn−1
[
(−1)n

(1
r

)n−1

+
∑

1≤l≤n

(
n

l

) (
−1
r

)n−l ∏
0≤j<l

(
1 + 2j

r

) I

Integrating sequentially the non-crossing indices, for any partition of
[n] of type µ ` n we find that

Mπ(I)

= 1µ1=0
∏

2≤k≤n
E
(
(X− I)k

)µk = rn−m 1µ1=0
∏

2≤k≤n(−1)n
(1
r

)k−1
+

∑
1≤l≤k

(
k

l

) (
−1
r

)k−l ∏
0≤j<l

(
1 + 2j

r

)µk I

Also observe that for any 2t < 1 we have

logE
(
et(‖X‖

2−1)
)

= (r − 1) t+ r

2
∑
n≥2

(2t)n

n

This yields the formula

E
([
‖X‖2 − 1

]n)
= Bn

(
r − 1, r 22−1 (2− 1)!, . . . , r 2n−1 (n− 1)!

)
≥ 1

In this situation, the polynomial formula (3.12) reduces to

E [(X− I)n] =
[1
r
Bn
(
r − 1, r 22−1 (2− 1)!, . . . , r 2n−1 (n− 1)!

)

+(−1)n
(

1− 1
r

)]
I
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A more thorough discussion on more general rank-one matrix moments
can be found in [10]. Finally observe that

r−(n−1)E [(X− I)n] =
[
(−1)n

(1
r

)n−1

+
∏

0≤j<n

(
1 + 2j

r

)
+

∑
1≤l<n

(
n

l

) (
−1
r

)n−l ∏
0≤j<l

(
1 + 2j

r

) I

This implies that

r−(n−1)E [(X− I)n] −→r→∞ (1n>1 + O(1/r)) I

The end of the proof of (3.9) is now easily completed. This ends the
proof of (3.7).

A.4 Proof of (3.5) and (3.8)

For any n ≥ 1 and any collection of symmetric matrices Q1, . . . , Qn
with Q1 = I we have the reduction formula

E((XQ2)(XQ3) . . . (XQn)X) = E ((XQ1) Tr [(XQ2)(XQ3) . . . (XQn)])

=
∑

1≤m≤n

∑
τ∈Pn,m

2n−m

×

 ∏
1≤k≤n

(k − 1)!rk(τ)

  ∏
2≤i≤m

Tr(Qτi)

 (Qτ1)sym

(A.6)
In the above display, τ1 ≤ . . . ≤ τm stands for the m ordered blocks of
the partition τ (=⇒ τ1 3 1), rk(τ) stands for the number of blocks of
size k, and

τi = {ji1, . . . , ji|τi|} with ji1 ≤ . . . ≤ ji|τi| =⇒ Qτi = Qji1
Qji2

. . . Qji|τi|

The proof of the above formulae can be found in [10]. We further assume
that π ∈ Pn,m − Nn,m is an X-connected crossing partition of [n] in
the sense that Xπ cannot be written in terms of the product of two
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independent random matrices. In this situation, we have

Xπ = [(X1Q2)(X1Q3) . . . (X1Qm1)X1]Qm1+1 with m1 = |π1|

and some random matrices Qj independent of X1 and such that

h(π) := |{2 ≤ i ≤ m1 : Qi = I}| ≤ m1 − 2

For any rank one matrix X = XX ′, for some column vector X ∈ Rr,
and for any collection of matrices (Ri)1≤i≤p and (Si)0≤i≤q we have

Tr [(XR1) . . . (XRp)] S0 [(XS1) . . . (XSp)]

= S0 [(XR1) . . . (XRp)] [(XS1) . . . (XSp)]

Combining the above decomposition with the reduction formula (A.6)
we check that

E (Xπ) =
h(π)∑
l=0

∑
k∈Jπ

rl αk,l(π) E
(
Xϕk,l(π)

)
for any X-connected crossing partition π of [n] with b blocks.

In the above display, αk,l(π) ≥ 0 stands for some non-negative
parameters whose values doesn’t depend on r, ϕk,l(π) a collection of
partitions on [n−m1] with (b−1) blocks, and Jπ is a set with cardinality
less than 2B(m1), with the Bell number B(m1) :=

∑
1≤k≤m1 S(m1, k).

We further assume that for any π ∈ Pn,m −Nn,m we have

E(Xπ) = cπ r
n−m (1 + O(1/r)) r−1 I

for any 1 ≤ m ≤ n < n and some finite constant cπ whose values doesn’t
depend on r. This result is clearly met for n = 5. In this case P4,2−N4,2
reduces to the partition with b = 2 blocks

π1 = {1, 3} ≤ π2 = {2, 4} =⇒ E(X1X2X1X2) = 3 (r + 2) I

Under the above induction hypothesis and applying (3.4) when ϕk,l(π) ∈
Nn,m we have

E (Xπ) = cπ r
m1−2 r(n−m1)−(b−1) (1 + O(1/r)) I

= cπ r
n−b (1 + O(1/r)) r−1 I



A.4. Proof of (3.5) and (3.8) 103

When π is crossing but non-necessarily X-connected we have

E (Xπ) = E (C1) . . .E (Ck)

with some X-connected components Ci, with 1 ≤ i ≤ k. Each of them,
say Ci is associated with a partition of [ni] with bi blocks for some
parameters n = n1 + . . .+ nk and b = b1 + . . .+ bk. Since π is crossing
at least one of the components, say Cj is crossing. In this case we have

E (Xπ) = cπ r
n1−b1 rnk−bk (1 + O(1/r)) r−1 I

= cπ r
n−b (1 + O(1/r)) r−1 I

This ends the proof of (3.5).
The proof of (3.8) relies on the decomposition

(Xαπ(1) − I) . . . (Xαπ(n) − I) =
∑

ε=(ε1,...,εn)∈{0,1}n
(−1)n−

∑
1≤i≤n εi Xεπ

with
Xεπ := Xε1απ(1) . . .X

εn
απ(n)

Using (2.14) we check that

π ∈ Qn,b and b > bn/2c =⇒ E(Mπ(P )) = 0

We further assume that π ∈ Q−n,b is a crossing partition with a number
of blocks b ≤ bn/2c.

For any ε = (ε1, . . . , εn) ∈ {0, 1}n with
∑

1≤i≤n εi = m we have

Xεπ
law= Xϕε(π)

for some partition ϕε(π) of [m] with a number of blocks

b− b(n−m)/2c ≤ bm := |ϕε(π)| ≤ b ∧m

For any m > n − 2b the partition ϕε(π) has at least bm ≥ b − b(n −
m)/2c ≥ 1 blocks. In this situation, since ϕε(π) may be a crossing
partition by (3.4) and (3.5) we have

E
(
Xϕε(π)

)
= rm−bm (1 + O(1/r)) I

≤ rm+b(n−m)/2c−b (1 + O(1/r)) I

≤ r(n+m)/2−b (1 + O(1/r)) r−1 I

≤ rn−b (1 + O(1/r)) r−1 I
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In the last assertion we have used the fact thatm ≤ n and bk/2c ≤ k−1,
which is valid for any k ≥ 1. In the reverse angle, when m ≤ n− 2b the
partition ϕε(π) may have a single block. In this situation, arguing as
above we have

E
(
Xϕε(π)

)
= rm−1 (1 + O(1/r)) I ≤ rn−2b−1 (1 + O(1/r)) I

≤ rn−b (1 + O(1/r)) r−1 I

This ends the proof of (3.8).

A.5 Proof of corollary 3.2

Combining (1.4) with theorem 3.1, for any 2N ≥ n ≥ 1 we have

E [PnN ] = Pn +
∑

1≤k≤n

∑
1≤l≤bk/2c

1
Nk−l (n)k ∂k,l(P )

= Pn +
∑

1≤l≤bn/2c

∑
2l≤k≤n

1
Nk−l (n)k ∂k,l(P )

The last assertion comes from the iterative series formula∑
1≤k≤n

∑
1≤l≤bk/2c

ak,l =
∑

1≤l≤bn/2c

∑
2l≤k≤n

ak,l

applied to the array

ak,l := 1
Nk−l (n)k ∂k,l(P )

Assume that n = 2m. In this case, we have

∑
1≤l≤bn/2c

∑
2l≤k≤n

ak,l =
∑

1≤l≤m

∑
2l≤k≤n

al+(k−l),l =
∑

1≤l≤m

2m−l∑
k=l

bk,l

with the array

bk,l := al+k,l = 1
Nk

(n)l+k ∂l+k,l(P )
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Observe that∑
1≤l≤m

2m−l∑
k=l

bk,l =
∑

1≤p≤m

∑
1≤k≤p

bp,k +
∑

1≤p<m

∑
1≤k≤m−p

bm+p,k

=
∑

1≤p≤m

1
Np

∑
1≤k≤p

(n)p+k ∂p+k,k(P )

+
∑

1≤p<m

1
Nm+p

∑
1≤k≤m−p

(n)k+m+p ∂m+p+k,k(P )

This yields the formula

∑
1≤l≤m

2m−l∑
k=l

bk,l =
∑

1≤p≤m

1
Np

∑
p<k≤2p

(n)k ∂k,k−p(P )

+
∑

m<p<2m

1
Np

∑
p<k≤2m

(n)k ∂k,k−p(P )

=
∑

1≤p<n

1
Np

∑
p<k≤(2p)∧n

(n)k ∂k,k−p(P )

For odd parameters n = (2m+ 1) we have∑
1≤k≤2m+1

∑
1≤l≤bk/2c

ak,l

=
∑

1≤l≤m
a2m+1,l +

∑
1≤l≤m

∑
2l≤k≤2m

ak,l

=
∑

1≤p≤m

1
Np

∑
p<k≤2p

(n)k ∂k,k−p(P ) + 1
Nn−1 δn,1(P )

+
∑

m<p<2m

1
Np

∂n,n−p(P ) +
∑

p<k≤2m
(n)k ∂k,k−p(P )


=

∑
1≤p≤m

1
Np

∑
p<k≤2p

(n)k ∂k,k−p(P )

+ 1
Nn−1 δn,1(P ) +

∑
m<p<2m

1
Np

∑
p<k≤n

(n)k ∂k,k−p(P )
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This yields the formula∑
1≤k≤n

∑
1≤l≤bk/2c

ak,l =
∑

1≤p≤m

1
Np

∑
p<k≤(2p)∧n

(n)k ∂k,k−p(P )

+
∑

m<p<n

1
Np

∑
p<k≤(2p)∧n

(n)k ∂k,k−p(P )

This ends the proof of the first assertion. The last differential-type
matrix moment formula comes from the fact that

E(PnN ) = 1
Nn

∑
1≤m≤n

(N)m M◦n,m(P )

= 1
Nn

∑
1≤l≤m≤n

s(m, l) N l M◦n,m(P )

=
∑

1≤l≤n

1
Nn−l

∑
l≤m≤n

s(m, l) M◦n,m(P )

=
∑

0≤k<n

1
Nk

∑
n−k≤m≤n

s(m,n− k) M◦n,m(P )

This ends the proof of the corollary.

A.6 Proof of (4.5)

Observe that for any n ≥ 1 and m ≥ 0 we have

Xn+m = ‖X‖2m Xn = (Tr [X])m Xn =⇒ Xn exp [tX] = Xn exp [tTr [X]]

In addition, we have the exponential formulae

Xn = ‖X‖2(n−1) X = X
Tr(X) ‖X‖

2n

=⇒ exp [tX] = I + X
Tr(X) exp [tTr [X]]

(A.7)

Assume that P = I. In this case the projection matrix X/Tr(X) and the
χ-square variable Tr(X) are independent. This yields for any t < 1/2
the formula

E (exp [tX]) = I + E (X/Tr(X)) E (exp [tTr [X]])

=
(

1 + 1
r (1− 2t)r/2

)
I
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For any n ≥ 1 and any parameter t s.t. I − 2tP is invertible we have
the change of variable formula

E (Xn exp [tX]) = E (Xn exp [tTr [X]]) = E (exp [tTr [X]]) E [Ynt ]
(A.8)

where Yt stands for Wishart distribution with a one degree of freedom
and covariance matrix Pt := [I − 2tP ]−1P . We check (A.8) recalling
that X has a Wishart distribution with a one degree of freedom and
covariance matrix P .

Using formulae (A.1), the matrix moments (A.8) can be computed
explicitly in terms of the covariance matrix P . For instance, we have

∂tE (exp [tX]) = E (exp (tTr [X])) [I − 2tP ]−1P ⇐⇒ (4.5)

A.7 Proof of (4.15)

Applying (4.14) we prove that

E
(
Tr
[
exp

(
t

2
HN

Tr(P )

)])
≤ r exp

(
NL

(
t√
N

)
$+

(
P

Tr(P )

))
Combining the above estimate with the Laplace transform method for
random matrices presented in proposition 3.1 in [93] we check that

P
(1

2
λ1(HN )
Tr(P ) ≥ v

)

≤ inf
t∈[0,1]

{
e−vt E

(
Tr
[
exp

(
t

2
HN

Tr(P )

)])}

≤ r exp

−N$+

(
P

Tr(P )

)
L?

 v
√
N $+

(
P

Tr(P )

)



We end the proof of (4.15) using (4.6). This ends the proof of the
estimate (4.15).

Combining (4.15) with the almost sure estimate

λ1(PN ) ≤ λ1(P ) + 1√
N

λ1(HN )
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we also check that the probability of the event

λ1(PN ) ≤ λ1(P )

+2Tr(P )
[
δ + log (r)

N
+ 2

√
δ + log (r)

N
$+

(
P

Tr(P )

) ]
(A.9)

is greater than 1− e−δ.

A.8 Proof of (5.1), (5.2), and (5.3)

We use the fact that

Tr([AH]) =
∑

u∈([r]×[r])
A(u) H(u)

where H(u) are Gaussian random variables with covariance matrix

C(u, v) = E(H(u)H(v)) = 2(P _⊗ P )u,v

=⇒ logE (exp [tTr(AH)]) = t2

2
∑

u,v∈([r]×[r])
C(u, v) A(u) A(v)

This ends the proof of (5.1).
To check (5.2) we observe that

‖H‖2F =
∑

u∈([r]×[r])
H(u)2

This implies that

logE
(
exp

(
t‖H‖2F

))
= 1

2
∑
n≥1

(2t)n

n
Tr(Cn)

This assertion comes from the fact that
∑
u∈([r]×[r]) H(u)2 is a χ-square

random variable associated with a centered Gaussian r2-dimensional
vector with covariance matrix C. On the other hand, using (1.3) we
have

C = 2 (P _⊗ P ) and (P _⊗ P )n = (Pn _⊗ Pn)

=⇒ Tr(Cn) = 2n Tr(Pn _⊗ Pn) = 2n−1 [Tr(Pn)2 + Tr(P 2n)
]
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This ends the proof of (5.2).
Also observe that

E
(
‖H‖2nF

)
= Bn

(
Tr(P )2 + Tr(P 2), 42−1 (2− 1)!

[
Tr(P 2)2 + Tr(P 4)

]
,

. . . , 4n−1 (n− 1)!
[
Tr(Pn)2 + Tr(P 2n)

])
with the complete Bell polynomials Bn defined in (2.16).

Now we come to the proof of (5.3). Let ek be the r-column vectors
with null entries but the k-th unit one. Choosing A = ek,l in (5.5), we
find that

Tr (AHN ) = HN (k, l)

Tr((AP )2) = P (k, l)2 + P (k, l)P (l, l)
2

= (P _⊗ P )(k,l),(k,l) = E(H(k, l)2)/2

and

‖AP‖2F = σ2
k,l := P 2(k, k) + P 2(l, l)

4 + 2−1P 2(k, k) 1k=l

This implies that

E
(

cosh
(
t HN (k, l)− t2

2 E(H(k, l)2)
))

≤ exp
[
−2t2 σ2

k,l log
(

1− 2|t|
N1/2 σk,l

)]
On the other hand, for any 0 < t ≤ (2σk,l)−1 we have

E (exp [t |HN (k, l)|]) ≤ 2 E (cosh (t HN (k, l)))

Using Hölder’s inequality we find the rather crude estimate
‖HN‖F ≤

∑
1≤k,l≤r

|HN (k, l)|

=⇒ E
(

exp
[
t ‖HN‖F −

(rt)2

2 E(‖H‖2F )
])

≤ 2 exp
[
−2(rt)2 (rσ)2 log

(
1− 2r2t

N1/2 σ

)]
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as soon as 0 < t ≤ (2rσ)−1 with σ := maxk,l σk,l. We conclude that

∃t > 0 s.t. supN≥1 E [exp (t ‖HN‖F )] <∞

⇐⇒ ∃c <∞ s.t. supN≥1 E [‖HN‖nF ] ≤ cn n!

for some constant c whose value depends on P . The proof of the equiva-
lence between the growth of the moments and the Hardy’s exponential
condition can be found in [53, 79] (see for instance Section 5, theorem
3 in [79]). This ends the proof (5.3).

A.9 Proof of (5.6)

The proof of (5.6) is a direct consequence of the following lemma.

Lemma A.1. For any n ≥ 1, A = (xy′ + yx′)/2 with x, y ∈ Rr we have

4 (AP )nA = an(x, y)
(
xy′ + yx′

)
+ bn(x, y)

[
〈x, Px〉 yy′ + 〈y, Py〉 xx′

]
with the symmetric functions

an(x, y) = 2−(n−1) ∑
0≤l≤bn/2c

(
n

2l

)
〈x, Py〉n−2l (〈x, Px〉 〈y, Py〉)l

bn(x, y) := 2−(n−1) ∑
0≤l≤b(n−1)/2c

(
n

2l + 1

)

× 〈x, Py〉n−1−2l (〈x, Px〉 〈y, Py〉)l

Proof. For any n ≥ 1, A = (xy′ + yx′)/2 with x, y ∈ Rr we have

(AP )n = pn AP + qnBP with B = 〈x, Px〉 yy′ + 〈y, Py〉 xx′

and some polynomial functions pn, qn of maximal degree (n− 1) in the
couple of variables u := 〈x, Py〉 and v := 〈x, Px〉 〈y, Py〉. By Cauchy
Schwartz inequality we have u2 ≤ v.

We check this assertion by induction w.r.t. the parameter n ≥ 1. For
n = 1 the result is clear with pn = 1 and qn = 0. Assume the assertion
has been checked up to rank (n− 1). In this case we have

(AP )n = pn−1 (AP )2 + qn−1BPAP
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Observe that

4 (AP )2 = (xy′ + yx′)P (xy′ + yx′)P = 2u AP +BP

and

2 BPAP =
(
〈x, Px〉 yy′P + 〈y, Py〉 xx′P

)
(xy′P + yx′P )

= 〈x, Px〉〈x, Py〉 yy′P
+ 〈x, Px〉 〈y, Py〉 (yx′ + xy′)P

+ 〈y, Py〉〈x, Py〉 xx′P
= u BP + 2v AP

This implies that

(AP )n = pn−1

(
u

2 AP + BP

4

)
) + qn−1

[
u

2 BP + v AP

]
from which we find the recursion[

pn
qn

]
=
[
u/2 v

1/4 u/2

] [
pn−1
qn−1

]

The eigenvalues of the above matrix are given by

α− = 1
2
[
u−
√
v
]
≤ 0 ≤ α+ = 1

2
[
u+
√
v
]

The eigenvectors U− and U+ are given by

U− =
[

2
√
v

−1

]
and U+ =

[
2
√
v

1

]

This implies that[
1
0

]
=
[
p1
q1

]
= a− U− + a+ U+ = 1

4
√
v

(U− + U+)

=⇒
[
pn+1
qn+1

]
= a− α

n
− U− + a+ αn+ U+

= 1
4
√
v

[
2
√
v
(
αn+ + αn−

)
αn+ − αn+

]
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On the other hand we have

2n
(
αn+ + αn−

)
=

∑
0≤k≤n

(
n

k

)
un−k

(
1 + (−1)k

)
vk/2

= 2
∑

0≤l≤bn/2c

(
n

2l

)
un−2l vl

In the same vein, we have

2n
(
αn+ − αn−

)
=

∑
0≤k≤n

(
n

k

)
un−k

(
1− (−1)k

)
vk/2

= 2
√
v

∑
0≤l≤b(n−1)/2c

(
n

2l + 1

)
un−1−2l vl

This implies that

pn+1 = 1
2n

∑
0≤l≤bn/2c

(
n

2l

)
un−2l vl

and
qn+1 = 1

2n+1

∑
0≤l≤b(n−1)/2c

(
n

2l + 1

)
un−1−2l vl

This ends the proof of the lemma.
We end the proof of the spectral estimate stated in (5.6) using the

formula ∑
0≤l≤bn/2c

(
n

2l

)
= 2n−1 =

∑
0≤l≤b(n−1)/2c

(
n

2l + 1

)

which can be found in e.g. [70, 71]. This ends the proof of (5.6).

A.10 Proof of (5.7)

The proof of the sub-Gaussian estimates (5.7) is based on the following
technical lemma.
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Lemma A.2. For any symmetric matrix A and any 2|t|‖AP‖F ≤
√
N

we have
logE (exp (t Tr (AHN )))

≤ t2 Tr((AP )2)− 2t2 ‖AP‖2F log
(
1− 2|t| N−1/2 ‖AP‖F

)
In addition, for any A ≥ 0 and any 2tTr(AP ) <

√
N we have

logE (exp (t Tr (AHN ))))

≤ t2 Tr((AP )2)
[
1− 2 log

[
1− 2t

N1/2 Tr(AP )
]]

and
logE (exp (−tTr (AHN )))

≤ t2 Tr((AP )2)+

t
2
√
N Tr(AP )

(
1− 2t√

N
Tr(AP )

)
log

[
1− 1√

N

(
2tλr

(
A1/2PA1/2

))2
]

Proof. Using (5.5) we find the estimate

E
(
exp

(
t Tr (AHN )− t2 Tr((AP )2)

))

≤ exp

2t2 ‖AP‖2F
∑
n≥1

1
n

( 2|t|
N1/2 ‖AP‖F

)n

= exp
[
−2t2 ‖AP‖2F log

(
1− 2|t|

N1/2 ‖AP‖F
)]

Whenever A ≥ 0 and 2tTr(AP ) <
√
N , using (2.3) we have

E
(
exp

(
tTr (AHN )− t2 Tr((AP )2)

))
≥ 1

as well as

exp

∑
n≥3

tn

n

2n−1

Nn/2−1 Tr(AP )n


≤ exp
[
−2t2 Tr((AP )2) log

(
1− 2t

N1/2 Tr(AP )
)]
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On the other hand, we have the decomposition

∑
m≥1

(−t)m+2

m+ 2
1

Nm/2 2m+1 Tr((AP )m+2)

= 2t√
N

∑
m≥1

t2m+1

2m+ 2
1

Nm−1/2 22m Tr((AP )2m+2)

−
∑
m≥1

t2m+1

2m+ 1
1

Nm−1/2 22m Tr((AP )2m+1)

≤ −
(

1− 2t√
N

Tr(AP )
) ∑

m≥1

t2m+1

2m+ 1
1

Nm−1/2 22m Tr((AP )2m+1)

This yields the estimate

E
(
exp

(
−t Tr (AHN )− t2 Tr((AP )2)

))

≤ exp
[
− 1√

N

(
1− 2t√

N
Tr(AP )

)

×
∑
m≥1

t2m+1

2m+ 1
1

Nm−1 22m Tr((AP )2m+1)



≤ exp
[
− t2
√
N Tr(AP )

(
1− 2t√

N
Tr(AP )

)

×
∑
m≥1

(2tλr
(
A1/2PA1/2

)
)2m

m

1
Nm


as soon as 2tTr(AP ) <

√
N . This ends the proof of the lemma.

Combining lemma A.2 with the estimate − log (1− x) ≤ x
1−x ≤ 2x

≤ 1, which is valid for any 0 ≤ x ≤ 1/2, we obtain the sub-Gaussian
property (5.7).
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