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DIVISIBILITY OF BINOMIAL COEFFICIENTS BY POWERS OF TWO

LUKAS SPIEGELHOFER AND MICHAEL WALLNER

Abstract. For nonnegative integers j and n let Θ(j, n) be the number of entries in the n-th
row of Pascal’s triangle that are not divisible by 2j+1. In this paper we prove that the family
j 7→ Θ(j, n) usually follows a normal distribution. The method used for proving this theorem
involves the computation of first and second moments of Θ(j, n), and uses asymptotic analysis
of multivariate generating functions by complex analytic methods, building on earlier work
by Drmota (1994) and Drmota, Kauers and Spiegelhofer (2016).

1. Introduction

Divisibility of binomial coefficient by powers of primes is a notion strongly linked to the
base-p expansion of integers. This connection is highlighted by Kummer’s famous result [23]
stating that the highest power m of a prime p dividing a binomial coefficient

(
n
t

)
equals the

number of borrows occurring in the subtraction n − t in base p. No less well-known is Lucas’
congruence [24]:

(1.1)

(
n

t

)
≡
(
nν−1

tν−1

)
· · ·
(
n0

t0

)
mod p,

where n = (nν−1 · · ·n0)p and t = (tν−1 · · · t0)p are the expansions of n and t in base p. A
wealth of classical results related to divisibility of binomial coefficients can be found in Dickson’s
book [7]. More recent surveys concerning binomial coefficients modulo prime powers were written
by Granville [17] and Singmaster [28]. We note that Kummer’s theorem has been generalized
to q-multinomial coefficients by Fray [14] and to generalised binomial coefficients by Knuth and
Wilf [22]. Also, Lucas’ congruence has been extended in different directions, see [5, 14, 16, 17, 21].

The main object of study in the present paper is the number of binomial coefficients
(
n
k

)

exactly divisible by a power of 2. More generally, for nonnegative integers j and n and a
prime p we define

(1.2) ϑp(j, n) :=

∣∣∣∣
{
t ∈ {0, . . . , n} : νp

((
n

t

))
= j

}∣∣∣∣ ,

where νp(m) is the largest k such that pk | m. Moreover, we define partial sums:

(1.3) Θp(j, n) :=
∑

0≤i≤j

ϑp(i, n) =

∣∣∣∣
{
t ∈ {0, . . . , n} : 2j+1 ∤

(
n

t

)}∣∣∣∣ .
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Lucas’ congruence yields a formula for the case j = 0 (see Fine [12]):

(1.4) ϑp(0, n) =
∏

0≤i<ν

(ni + 1) = 2|n|13|n|24|n|3 · · · p|n|p−1 ,

where |n|d is the number of times the digit d occurs in the base-p expansion of n. In particular,
writing s2(n) = |n|1 for the binary sum-of-digits function, we obtain (see Glaisher [15])

(1.5) ϑ2(0, n) = 2s2(n).

For j ≥ 1, the quantities ϑp(j, n) and Θp(j, n) can be expressed using block-counting functions.
For a finite word w on the symbols 0, . . . , p − 1, containing at least one symbol 6= 0, and a
nonnegative integer n, we define |n|w as the number of times the word w occurs as a contiguous
subword of the binary expansion of n. It was proved by Rowland [26], and implicitely by Barat
and Grabner [2], that ϑp(j, n)/ϑp(0, n) is given by a polynomial Pj in the variables Xw, where w
are certain finite words in {0, . . . , p− 1}, and each variable Xw is set to |n|w. For example, we
have the following formulas, found by Howard [20]:

ϑ2(1, n)

ϑ2(0, n)
=

1

2
|n|10

ϑ2(2, n)

ϑ2(0, n)
= −1

8
|n|10 +

1

8
|n|210 + |n|100 +

1

4
|n|110,

ϑ2(3, n)

ϑ2(0, n)
=

1

24
|n|10 −

1

16
|n|210 −

1

2
|n|100 −

1

8
|n|110 +

1

48
|n|310 +

1

2
|n|10|n|100

+
1

8
|n|10|n|110 + 2|n|1000 +

1

2
|n|1010 +

1

2
|n|1100 +

1

8
|n|1110.

The number of terms in these expressions is sequence A275012 in Sloane’s OEIS [29] and can
be seen as a measure of complexity of the sequence n 7→ ϑ2(j, n). This was noted by Rowland
(see the comments to A001316, A163000 and A163577 in the OEIS). In the recent paper [30]
the authors prove a structural result on the polynomials representing ϑp(j, n)/ϑp(0, n), which
also allows to compute them efficiently. We note that the above representation as a polynomial
implies that n 7→ ϑp(j, n) is a p-regular sequence in the sense of Allouche and Shallit [1].

The above formulas are exact ; in this paper we want to consider matters from a more ana-
lytical point of view and we are interested in asymptotic properties of divisibility of binomial
coefficients. For some asymptotic results on binomial coefficients modulo primes and prime
powers we refer the reader to the papers by Holte [19], Barat and Grabner [2, 3] and Grei-
necker [18]. Our main result is related to a theorem proved by Singmaster [27] saying that any
given integer d divides almost all binomial coefficients. From his Theorem 1(C) it follows that,
for all j ≥ 0,

(1.6)
1

N

∑

0≤n<N

Θp(j, n)

n+ 1
= o(1).

(Note that there are n + 1 elements in row number n of Pascal’s triangle.) This behaviour is
clearly different from the divisibility pattern of the sequence of positive integers: we have

lim
N→∞

1

N
|{0 ≤ n < N : ν2(n) ≤ j}| = lim

N→∞

1

N

∣∣{0 ≤ n < N : 2j+1 ∤ n
}∣∣ = 1− 1

2j+1
.

We are interested in the “typical” divisibility of a binomial coefficient: our main theorem
states that the probability distribution defined by j 7→ Θ2(j, n)/(n + 1) usually is close to a
normal distribution with expected value logn/ log 2− s2(n) and variance log n/ log 2. This is a
refinement of the case p = 2 of Equation (1.6).
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A related result, concerning columns of Pascal’s triangle, was proved by Emme and Hu-
bert [10], continuing work by Emme and Prikhod’ko [11]. In that paper, Emme and Hubert
consider the quantity

µa(d) = lim
N→∞

1

N
|{n < N : s2(n+ a)− s2(n) = d}|

and they prove a central limit type theorem for these values. Note that the connection to
columns in Pascal’s triangle is given by the identity s2(n+ a)− s2(n) = s2(a)− ν2

(
n+a
a

)
, which

can be derived from Legendre’s relation ν2(n!) = n− s2(n).
Notation. In this paper, s2(n) denotes the binary sum-of-digits function, that is, the number

of 1s in the binary expansion of n. Moreover, νp(m) is the maximal k such that pk | m. We
write νp

(
n
k

)
:= νp

((
n
k

))
.

2. The main result

Let Φ(x) = 1√
2π

∫ x

−∞ e−t2/2 dt and set Θ2(j, n) = 0 for j < 0. For convenience, we define

Θp(x, n) := Θp(⌊x⌋, n) for real x. Then the following theorem holds.

Theorem 2.1. Assume that ε > 0. For an integer λ ≥ 0 we set Iλ = [2λ, 2λ+1). Then
∣∣∣∣
{
n ∈ Iλ :

∣∣∣∣
Θ2(λ− s2(n) + u, n)

n+ 1
− Φ

(
u√
λ

)∣∣∣∣ ≥ ε for some u ∈ R

}∣∣∣∣ = O
(

2λ√
λ

)
,

where the implied constant may depend on ε.

Informally, for most n ∈ Iλ the distribution function defined by k 7→ Θ(k, n)/(n+ 1) follows
a normal distribution with expected value λ− s2(n) and variance λ.

Remark 1. Let n be a nonnegative integer and define the expected value

(2.1) µn =
1

n+ 1

∑

k≥0

kϑ(k, n).

We have

µn =
1

n+ 1

∑

k≥0

∑

0≤t≤n

k

[[
ν2

(
n

t

)
= k

]]
=

1

n+ 1

∑

0≤t≤n

ν2

(
n

t

)

=
2

n+ 1

∑

0≤t≤n

s2(t)− s2(n)

by the identity ν2
(
n
t

)
= s2(n− t) + s2(t)− s2(n) we noted before. Here [[S ]] denotes the Iverson

bracket which is 1 if the statement S is true, and 0 otherwise. Using Delange [6], we obtain the
representation

µn = log(n+ 1)/ log 2− s2(n) + F
(
log(n+ 1)/ log 2

)
,

where F is a continuous function of period 1. If 2λ ≤ n < 2λ+1, we have therefore µn =
λ− s2(n) +O(1), which is consistent with Theorem 2.1.

Remark 2. Due to the recurrence relation underlying the values ϑ2(j, n) (see Section 3.2) the
intervals Iλ =

[
2λ, 2λ+1

)
are the easiest to work with. However, we can extend our result to

intervals [0, N) by concatenating intervals Iλ: we obtain
∣∣∣∣∣

{
n < N : sup

u∈R

∣∣∣∣∣
Θ(⌊log2 n⌋ − s2(n) + u, n)

n+ 1
− Φ

(
u√
log2 n

)∣∣∣∣∣ ≥ ε

}∣∣∣∣∣ = O
(

N√
logN

)
,

where log2 n = logn/ log 2. We skip the details of the proof.
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Idea of the proof of Theorem 2.1. The essential idea is to show that, for given u and ε > 0,
Θ(λ−s2(n)+u, n)/(n+1) is ε-close to Φ(u/

√
λ) for all but few n ∈ [2λ, 2λ+1). If this is achieved,

we can perform this approximation for all u ∈ K, where K is evenly spaced in [−R
√
λ,R

√
λ]

and |K| → ∞ as λ → ∞, synchronously. By monotonicity of the functions involved, we obtain

uniformity of the approximation for all u ∈ [−R
√
λ,R

√
λ]. Choosing R large enough, we obtain

a uniform estimate for all u ∈ R as stated in the theorem.
In order to prove the needed closeness property, we consider the random variable n 7→ Θ(λ−

s2(n) + u, n)− Φ(u/
√
λ)n. By bounding the second moment, using a procedure similar to the

method used by Drmota, Kauers and Spiegelhofer [9] (see also [31]), we obtain an upper bound
of the difference for all but few n.

This “orthogonal” approach enables us to prove a statement on the distribution of j 7→ Θ(j, n)
for most n by studying the random variable n 7→ Θ(j, n) on

[
2λ, 2λ+1

)
.

3. Proof of the main theorem

3.1. Reduction of the main theorem. Assume that λ, k ≥ 0 and define the random variable

Xλ,k : n 7→ Θ̃(k, n)− Φ

(
k − λ√
λ

)
n(3.1)

on
{
2λ, 2λ+1, . . . , 2λ+1−1

}
, where Φ is the normal distribution function. We will also use Xλ,x

for real values of x. The central statement of this paper is contained in the following proposition,
from which we will derive the main theorem.

Proposition 3.1. Let R > 0 be a real number. There exists a constant C such that

E(X2
λ,λ+u) =

1

2λ

∑

2λ≤n<2λ+1

X2
λ,λ+u ≤ C

4λ√
λ

for all u and λ such that |u| ≤ R
√
λ. In particular, for all ε > 0 and |u| ≤ R

√
λ we have

(3.2)

∣∣∣∣
{
n ∈

[
2λ, 2λ+1

)
:

∣∣∣∣Θ̃(λ+ u, n)− Φ

(
u√
λ

)
n

∣∣∣∣ ≥ 2λε

}∣∣∣∣ ≤ 2λ
C√
λε2

.

The second part of this proposition can be derived as follows: We let M denote the left hand
side of (3.2). Then we have

C
4λ√
λ
≥ 1

2λ

∑

2λ≤n<2λ+1

X2
λ,λ+u ≥ 1

2λ
M(2λε)2.

Note that this is similar to an application of Chebyshev’s inequality.

We wish to derive Theorem 2.1 from this proposition. Equation (3.2) states that Θ̃(λ+ u, n)
is “usually” close to a Gaussian distribution. We make this more precise in the following. We
consider the quantity Xλ,λ+u at N many points, where N is chosen later. Set

U =
{
(−1 + 2n/N)R

√
λ : 0 ≤ n ≤ N

}
.

Clearly, we have

(3.3)
∣∣{n ∈

[
2λ, 2λ+1

)
: |Xλ,λ+u| ≥ 2λε for some u ∈ U

}∣∣ ≤ C(N + 1)2λ
1√
λε2

.

Let u1 and u2 be adjacent elements of U and assume that u1 ≤ u ≤ u2. By the triangle

inequality, the mean value theorem and monotonicity of Θ̃ and Φ applied to (3.1) we have

|Xλ,λ+u| ≤ min
(
|Xλ,λ+u1

|, |Xλ,λ+u2
|
)
+ n

(
Φ(u2/

√
λ)− Φ(u1/

√
λ)
)

≤ min
(
|Xλ,λ+u1

|, |Xλ,λ+u2
|
)
+ 2λ

4R

N
.
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Using this inequality and (3.3) it follows that
∣∣{n ∈

[
2λ, 2λ+1

)
: |Xλ,λ+u| ≥ 2λ

(
δ + 4R/N

)
for some u, |u| ≤ R

√
λ
}∣∣

≤
∣∣{n ∈

[
2λ, 2λ+1

)
: min

(
|Xλ,λ+u1

|, |Xλ,λ+u2
|
)
≥ 2λδ for some u1, u2 ∈ U

}∣∣

=
∣∣{n ∈

[
2λ, 2λ+1

)
: |Xλ,λ+u| ≥ 2λδ for some u ∈ U

}∣∣

≤ C(N + 1)2λ
1√
λδ2

.

For given ε > 0, we choose δ = ε/10 and N = ⌈10R/ε⌉. This implies (we also replace n by
n+ 1, introducing a small error which is accounted for by the error term)

(3.4)

∣∣∣∣
{
n ∈ Iλ :

∣∣∣∣Θ̃(λ+ u, n)− Φ

(
u√
λ

)
(n+ 1)

∣∣∣∣ ≥ 2λ
ε

2
for some |u| ≤ R

√
λ

}∣∣∣∣ = O
(

2λ√
λ

)

for some implied constant depending on ε and R.
Let ε be given and choose R in such a way that Φ(u/

√
λ) ≤ ε/2 for u ≤ −R

√
λ (note that

also Φ(u/
√
λ) ≥ 1− ε/2 for u ≥ R

√
λ). Assume that n ∈ Iλ is such that for all |u| ≤ R

√
λ

∣∣∣∣∣
Θ̃(λ+ u, n)

n+ 1
− Φ

(
u√
λ

)∣∣∣∣∣ <
ε

2
.

Then by monotonicity (remember that Θ(k, n) are partial sums) we have Θ̃(λ + u, n)/(n +

1) ∈ [0, ε], Φ(u/
√
λ) ∈ [0, ε] for u ≤ −R

√
λ and likewise Θ̃(λ + u, n)/(n + 1) ∈ [1 − ε, 1],

Φ(u/
√
λ) ∈ [1− ε, 1] for u ≥ R

√
λ, therefore
∣∣∣∣∣
Θ̃(λ+ u, n)

n+ 1
− Φ

(
u√
λ

)∣∣∣∣∣ < ε

for all real u. Using also equation (3.4) we obtain
∣∣∣∣∣

{
n ∈ Iλ :

∣∣∣∣∣
Θ̃(λ+ u, n)

n+ 1
− Φ

(
u√
λ

)∣∣∣∣∣ ≥ ε for some u ∈ R

}∣∣∣∣∣

≤
∣∣∣∣∣

{
n ∈ Iλ :

∣∣∣∣∣
Θ̃(λ+ u, n)

n+ 1
− Φ

(
u√
λ

)∣∣∣∣∣ ≥
ε

2
for some |u| ≤ R

√
λ

}∣∣∣∣∣

≤
∣∣∣∣
{
n ∈ Iλ :

∣∣∣∣Θ̃(λ+ u, n)− Φ

(
u√
λ

)
(n+ 1)

∣∣∣∣ ≥ 2λ
ε

2
for some |u| ≤ R

√
λ

}∣∣∣∣

= O
(

2λ√
λ

)

and the proof of the second part is complete.
It remains to prove the first part of Proposition 3.1. Motivated by Chebyshev’s inequality,

the main idea in its proof is to show that the the random variable Xλ,k possesses a small second
moment.

3.2. A recurrence relation for the values ϑp(j, n). Carlitz [4] found a recurrence for the
values ϑp(j, n), involving a second family ψp of values. We will be working with a shifted

and rarefied family ϑ̃p, which satisfies a simpler recurrence relation (compare the paper by the
authors [30, Section 2.3]): define, for k, n ≥ 0,

ϑ̃p(k, n) =

{
ϑp

(
k−sp(n)

p−1 , n
)
, k ≥ sp(n) and p− 1 | k − sp(n);

0, otherwise.
(3.5)
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Setting for simplicity ϑ̃p(k, n) = 0 if k < 0 or n < 0, we obtain the following recurrence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2 2 2 2

2 1 4 1 4 4 1 4 4 4 1 4

3 2 2 2 8 2 2 4 8 2 8 8 2 2

4 1 4 4 1 4 5 4 4 16 4 4

5 2 2 2 2 8 8

6 1

Table 1. Some coefficients of ϑ̃2(k, n). The first variable corresponds to the
row number.

relation for k, n ≥ 0.

(3.6)
ϑ̃p(0, n) = δ0,n, for n ≥ 0;

ϑ̃p(k, 0) = δk,0, for k ≥ 0,

and for n ≥ 0 and 0 ≤ a < p,

(3.7) ϑ̃p(k, pn+ a) = (a+ 1)ϑ̃p(k − a, n) + (p− a− 1)ϑ̃p(k − p− a, n− 1).

For the rest of the paper, we will restrict ourselves to the case p = 2. We will therefore
usually omit the subscript 2. Assume that λ, k ≥ 0. Then the above recurrence reads

(3.8)

ϑ̃(0, n) = δ0,n, for n ≥ 0;

ϑ̃(k, 0) = δk,0, for k ≥ 0;

ϑ̃(k, 2n) = ϑ̃(k, n) + ϑ̃2(k − 2, n− 1),

ϑ̃(k, 2n+ 1) = 2ϑ̃(k − 1, n).

Note that

(3.9) ϑ̃(k, 2λ − 1) = 2λδk,λ.

3.3. OGFs for the moments. We are interested in the quantity

Θ̃(j, n) =
∑

i≤j

ϑ̃(i, n).(3.10)

For most n these values should follow a normal distribution with expectation λ and variance λ.
In order to compute the second moment ofXλ,k, we will have to treat the following quantities.

We define

mλ,k :=
1

2λ

∑

2λ≤n<2λ+1

ϑ̃(k, n), mλ,k :=
1

2λ

∑

2λ≤n<2λ+1

Θ̃(k, n),(3.11)

m′
λ,k :=

1

2λ

∑

2λ≤n<2λ+1

n ϑ̃(k, n), m
′
λ,k :=

1

2λ

∑

2λ≤n<2λ+1

n Θ̃(k, n),(3.12)

m
(2)
λ,k :=

1

2λ

∑

2λ≤n<2λ+1

ϑ̃(k, n)2 m
(2)
λ,k :=

1

2λ

∑

2λ≤n<2λ+1

Θ̃(k, n)2(3.13)
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and the corresponding generating functions

M(x, y) =
∑

λ,k≥0

mλ,kx
λyk, M(x, y) =

∑

λ,k≥0

mλ,kx
λyk,

M ′(x, y) =
∑

λ,k≥0

m′
λ,kx

λyk, M
′(x, y) =

∑

λ,k≥0

m
′
λ,kx

λyk,

M (2)(x, y) =
∑

λ,k≥0

m
(2)
λ,kx

λyk, M
(2)(x, y) =

∑

λ,k≥0

m
(2)
λ,kx

λyk.

We begin with the easier cases, concerning mλ,k and m′
λ,k. We have m0,k = 2δk,1 and for k ≥ 0

and λ ≥ 1 we obtain by splitting into even and odd integers, applying the recurrence (3.8) and

the identity ϑ̃(k, 2λ − 1) = 2λδk,λ,

mλ,k =
1

2λ

∑

2λ−1≤n<2λ

ϑ̃(k, 2n) +
1

2λ

∑

2λ−1≤n<2λ

ϑ̃(k, 2n+ 1)

=
1

2

1

2λ−1

∑

2λ−1≤n<2λ

ϑ̃(k, n) +
1

2

1

2λ−1

∑

2λ−1≤n<2λ

ϑ̃(k − 2, n− 1)

+
1

2λ−1

∑

2λ−1≤n<2λ

ϑ̃(k − 1, n)

=
1

2

(
mλ−1,k−2 + 2mλ−1,k−1 +mλ−1,k

)
+

1

2λ
ϑ̃(k − 2, 2λ−1 − 1)− 1

2λ
ϑ̃(k − 2, 2λ − 1)

=
1

2

(
mλ−1,k−2 + 2mλ−1,k−1 +mλ−1,k

)
+

1

2
δλ,k−1 − δλ,k−2.

For convenience, as we noted above, we set ϑ̃(k, n) = 0 if k < 0 or n < 0. We obtain

M(x, y) =
∑

λ,k≥0

mλ,kx
λyk =

∑

k≥0

m0,ky
k +

∑

λ≥1
k≥0

mλ,kx
λyk

= 2y +
∑

λ≥1
k≥0

(1
2
mλ−1,k−2 +mλ−1,k−1 +

1

2
mλ−1,k +

1

2
δλ,k−1 − δλ,k−2

)
xλyk

= 2y +

(
xy2

2
+ xy +

x

2

)
M(x, y) +

1

2

∑

λ≥1

xλyλ+1 −
∑

λ≥1

xλyλ+2

= 2y +
x

2
(1 + y)2M(x, y) +

y

2

(
1

1− xy
− 1

)
− y2

(
1

1− xy
− 1

)

= 2y +
x

2
(1 + y)2M(x, y) +

1

2

xy2

1− xy

(
1− 2y

)
,

therefore

(3.14) M(x, y) =
2y + 1

2
xy2

1−xy (1− 2y)

1− x
2 (1 + y)2

=
y

2

4− 3xy − 2xy2

(1 − xy)
(
1− x

2 (1 + y)2
) .

We will use this identity in a moment in the treatment of the values m′
λ,k. Moreover, we clearly

have

(3.15) M(x, y) =
1

1− y

y

2

4− 3xy − 2xy2(
1− xy

)(
1− x

2 (1 + y)2
) .
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For λ ≥ 1 and k ≥ 0 we have

m′
λ,k =

1

2λ

∑

2λ−1≤n<2λ

2nϑ̃(k, 2n) +
1

2λ

∑

2λ−1≤n<2λ

(2n+ 1)ϑ̃(k, 2n+ 1)

=
1

2λ−1

∑

2λ−1≤n<2λ

nϑ̃(k, n) +
1

2λ−1

∑

2λ−1−1≤n<2λ−1

(n+ 1)ϑ̃(k − 2, n)

+
2

2λ−1

∑

2λ−1≤n<2λ

nϑ̃(k − 1, n) +
1

2λ−1

∑

2λ−1≤n<2λ

ϑ̃(k − 1, n)

= m′
λ−1,k +m′

λ−1,k−2 +
1

2λ−1

(
2λ−1 − 1

)
ϑ̃
(
k − 2, 2λ−1 − 1

)

− 1

2λ−1

(
2λ − 1

)
ϑ̃
(
k − 2, 2λ − 1

)
+mλ−1,k−2 +

1

2λ−1
ϑ̃
(
k − 2, 2λ−1 − 1

)

− 1

2λ−1
ϑ̃
(
k − 2, 2λ − 1

)
+ 2m′

λ−1,k−1 +mλ−1,k−1

= m′
λ−1,k + 2m′

λ−1,k−1 +m′
λ−1,k−2 +mλ−1,k−1 +mλ−1,k−2

+ 2λ−1δλ,k−1 − 2λ+1δλ,k−2

We obtain

M ′(x, y) =
∑

λ,k≥0

m′
λ,kx

λyk =
∑

k≥0

m′
0,ky

k +
∑

λ≥1
k≥0

m′
λ,kx

λyk

= 2y +
∑

λ≥1
k≥0

(
m′

λ−1,k + 2m′
λ−1,k−1 +m′

λ−1,k−2

+mλ−1,k−1 +mλ−1,k−2 + 2λ−1δλ,k−1 − 2λ+1δλ,k−2

)
xλyk

= 2y +
(
x+ 2xy + xy2

)
M ′(x, y) + xy(1 + y)M(x, y)

+
∑

λ≥0

2λxλ+1yλ+2 −
∑

λ≥0

2λ+2xλ+1yλ+3

= 2y + x(1 + y)2M ′(x, y) + xy(1 + y)M(x, y) +
xy2(1− 4y)

1− 2xy
.

Inserting the formula for M , we obtain

(3.16) M ′(x, y) =
1

1− x(1 + y)2

(
2y +

xy2(1 + y)

2

4− 3xy − 2xy2

(1− xy)
(
1− x

2 (1 + y)2
) + xy2(1− 4y)

1− 2xy

)
.

and
(3.17)

M
′(x, y) =

1(
1− y

)(
1− x(1 + y)2

)
(
2y +

xy2(1 + y)

2

4− 3xy − 2xy2

(1− xy)
(
1− x

2 (1 + y)2
) + xy2(1− 4y)

1− 2xy

)
.

Note that the denominator of M ′ has a simple structure, therefore it will not be too difficult to
analyze the coefficients asymptotically.
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Let us proceed to the main term. We want to extract this term as a diagonal of a trivariate
generating function. We define therefore, for λ, k, ℓ ≥ 0,

(3.18)

aλ,k,ℓ :=
∑

2λ≤n<2λ+1

ϑ̃(k, n)ϑ̃(ℓ, n),

bλ,k,ℓ :=
∑

2λ≤n<2λ+1

ϑ̃(k, n)ϑ̃(ℓ, n− 1),

cλ,k,ℓ :=
∑

2λ≤n<2λ+1

ϑ̃(k, n− 1)ϑ̃(ℓ, n),

where b and c will act as auxiliary variables. For convenience, we define aλ,k,ℓ = bλ,k,ℓ = cλ,k,ℓ =
0 for k < 0 or ℓ < 0.

By splitting into even and odd indices and using (3.8), we obtain for λ ≥ 1 and k, ℓ ≥ 0

aλ,k,ℓ =
∑

2λ−1≤n<2λ

(
ϑ̃(k, n) + ϑ̃(k − 2, n− 1)

)(
ϑ̃(ℓ, n) + ϑ̃(ℓ − 2, n− 1)

)

+ 4
∑

2λ−1≤n<2λ

ϑ̃(k − 1, n) ϑ̃(ℓ− 1, n)

= aλ−1,k,ℓ + bλ−1,k,ℓ−2 + cλ−1,k−2,ℓ + aλ−1,k−2,ℓ−2 + 4aλ−1,k−1,ℓ−1

+ ϑ̃(k − 2, 2λ−1 − 1) ϑ̃(ℓ− 2, 2λ−1 − 1)− ϑ̃(k − 2, 2λ − 1) ϑ̃(ℓ − 2, 2λ − 1)

= aλ−1,k,ℓ + bλ−1,k,ℓ−2 + cλ−1,k−2,ℓ + aλ−1,k−2,ℓ−2 + 4aλ−1,k−1,ℓ−1

+ 4λ−1δk−1,λδℓ−1,λ − 4λδk−2,λδℓ−2,λ,

bλ,k,ℓ = 2
∑

2λ−1≤n<2λ

(
ϑ̃(k, n) + ϑ̃(k − 2, n− 1)

)
ϑ̃(ℓ − 1, n− 1)

+ 2
∑

2λ−1≤n<2λ

ϑ̃(k − 1, n)
(
ϑ̃(ℓ, n) + ϑ̃(ℓ− 2, n− 1)

)

= 2bλ−1,k,ℓ−1 + 2aλ−1,k−2,ℓ−1 + 2aλ−1,k−1,ℓ + 2bλ−1,k−1,ℓ−2

+ 2ϑ̃(k − 2, 2λ−1 − 1)ϑ̃(ℓ − 1, 2λ−1 − 1)− 2ϑ̃(k − 2, 2λ − 1)ϑ̃(ℓ− 1, 2λ − 1)

= 2bλ−1,k,ℓ−1 + 2aλ−1,k−2,ℓ−1 + 2aλ−1,k−1,ℓ + 2bλ−1,k−1,ℓ−2

+ 2 · 4λ−1δk−1,λδℓ,λ − 2 · 4λδk−2,λδℓ−1,λ,

and by exchanging b and c resp. k and ℓ,

cλ,k,ℓ = 2cλ−1,k−1,ℓ + 2aλ−1,k−1,ℓ−2 + 2aλ−1,k,ℓ−1 + 2cλ−1,k−2,ℓ−1

+ 2 · 4λ−1δk,λδℓ−1,λ − 2 · 4λδk−1,λδℓ−2,λ.

We translate these recurrences into identities for trivariate generating functions. Set

A(x, y, z) :=
∑

λ,k,ℓ≥0

aλ,k,ℓx
λykzℓ,

B(x, y, z) :=
∑

λ,k,ℓ≥0

bλ,k,ℓx
λykzℓ,

C(x, y, z) :=
∑

λ,k,ℓ≥0

cλ,k,ℓx
λykzℓ.
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Then

A(x, y, z) =
∑

k,ℓ≥0

ϑ̃(k, 1)ϑ̃(ℓ, 1)ykzℓ

+
∑

λ≥1
k,ℓ≥0

(
aλ−1,k,ℓ + bλ−1,k,ℓ−2 + cλ−1,k−2,ℓ + aλ−1,k−2,ℓ−2 + 4aλ−1,k−1,ℓ−1

)
xλykzℓ

+
∑

λ≥1
k,ℓ≥0

4λ−1δk−1,λδℓ−1,λx
λykzℓ −

∑

λ≥1
k,ℓ≥0

4λδk−2,λδℓ−2,λx
λykzℓ

= 4yz + x
(
1 + 4yz + y2z2

)
A(x, y, z) + xz2B(x, y, z) + xy2C(x, y, z)

+
∑

λ≥1

4λ−1xλyλ+1zλ+1 − 4
∑

λ≥1

4λ−1xλyλ+2zλ+2

= 4yz + x
(
1 + 4yz + y2z2

)
A(x, y, z) + xz2B(x, y, z) + xy2C(x, y, z)

+ xy2z2
1− 4yz

1− 4xyz
,

B(x, y, z) =
∑

k,ℓ≥0

ϑ̃(k, 1)ϑ̃(ℓ, 0)ykzℓ

+ 2
∑

λ≥1
k,ℓ≥0

(
bλ−1,k,ℓ−1 + aλ−1,k−2,ℓ−1 + aλ−1,k−1,ℓ + bλ−1,k−1,ℓ−2

)
xλykzℓ

+ 2
∑

λ≥1
k,ℓ≥0

4λ−1δk−1,λδℓ,λx
λykzℓ − 2

∑

λ≥1
k,ℓ≥0

4λδk−2,λδℓ−1,λx
λykzℓ

= 2y + 2xy
(
1 + yz

)
A(x, y, z) + 2xz

(
1 + yz

)
B(x, y, z)

+ 2
∑

λ≥1

4λ−1xλyλ+1zλ − 8
∑

λ≥1

4λ−1xλyλ+2zλ+1

= 2y + 2xy
(
1 + yz

)
A(x, y, z) + xz

(
1 + yz

)
B(x, y, z)

+ 2xy2z
1− 4yz

1− 4xyz
,

C(x, y, z) = 2z + 2xz
(
1 + yz

)
A(x, y, z) + 2xy

(
1 + yz

)
C(x, y, z)

+ 2xyz2
1− 4yz

1− 4xyz
.

It follows that

B(x, y, z) =
2y + 2xy2z 1−4yz

1−4xyz

1− 2xz(1 + yz)
+

2xy(1 + yz)

1− 2xz(1 + yz)
A(x, y, z),

C(x, y, z) =
2z + 2xyz2 1−4yz

1−4xyz

1− 2xy(1 + yz)
+

2xz(1 + yz)

1− 2xy(1 + yz)
A(x, y, z),
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and therefore we obtain after some rewriting

M
(2) =

1

2λ(1− y)(1− z)
A(x, y, z)

=
1

2λ(1− y)(1− z)

4yz + xz2
2y+2xy2z 1−4yz

1−4xyz

1−2xz(1+yz) + xy2
2z+2xyz2 1−4yz

1−4xyz

1−2xy(1+yz) + xy2z2 1−4yz
1−4xyz

1− x(1 + yz)2 − xyz
1−2xz(1+yz) −

xyz
1−2xy(1+yz)

.

(3.19)

Note that we have the same denominator as in [9].

3.4. Asymptotic expansion of the first moment. Recall that we want to compute mλ,λ+u =
[xλyλ+u]M(x, y) where the rational functionM(x, y) is given in (3.15). We will adapt the method
of [8] which also captures the (Gaussian) fluctuations n+ u for u sufficiently small.

Lemma 3.2. For λ→ ∞ we have

mλ,λ+u =
3

2
2λΦ

(
u√
λ

)(
1 +O

(
1√
λ

)
+O

(
u2√
λ3

))
.

Proof. The nature of the random variable Θ̃ displayed in (3.10) implies that partial sums will
play a key role. Their avatar is encoded in the factor 1

1−y of M(x, y). It proves convenient, to

first compute the asymptotic expansion of the coefficients of

M̃(x, y) := (1− y)M(x, y).

First, we extract the n-th coefficient with respect to x by a partial fraction decomposition.
We get

m̃λ,λ+u := [xλyλ+u]M̃(x, y) =
1

2λ+1
[yλ+u]

y(y + 2)(1 + y)2λ

1 + y2
+O(1).

The error term arises from the second fraction in the partial fraction decomposition. Next we
apply a simple generalization of [8, Theorem 2]. We omit the details as the ideas carry directly
over. In words, we apply a saddle point method like extensively discussed in [13]. The dominant
singularity ρλ and the variation constant σ2

λ are given by

ρλ = 1− 2

3λ
+O

(
1

λ2

)
,

σ2
λ =

λ

2
− 7

9
+O

(
1

λ

)
.

We get

m̃λ,λ+u =
3

2

2λ√
πλ

e−
u2

λ

(
1 +O

(u
λ

))
.

Next, we come back to M(x, y). We want to compute

[xλyλ+u]M(x, y) =

λ+u∑

k=0

m̃λ,k.

We choose a positive number ε > 1
2 . Then, we split the sum at u = λε into two parts. Using

our asymptotic result for m̃λ,λ+u, we see that for large λ the first sum is negligible as

λ−λε∑

k=0

m̃λ,λ+u ≤ C(λ− λε)
2λ√
λ
e−λ2ε−1

= o
(
e−λδ

)
,
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for 0 < δ < 2ε− 1 and a suitable constant C > 0. We continue with the second sum using our
asymptotic result again. For the main term we get

3

2

2λ√
πλ

u∑

k=−λε

e−
k2

λ =
3

2

2λ√
2π

∫ u/
√
λ

−λε−1/2

e−
v2

2 dv

(
1 +O

(
1√
λ

))

=
3

2
2λΦ

(
u√
λ

)(
1 +O

(
1√
λ

))
,

where in the first equality we also made a change of variable scaling the path of integration by√
λ, and in the third equality we completed the tail. This last operation only introduced an

error term of order O(e−nε−1/2

).
It remains to consider the error term. Yet similar reasoning shows

u∑

k=−λε

k

λ
e−

k2

λ = 2e−
u2

λ +O
(
1

λ

)
.

This ends the proof. �

3.5. Asymptotic expansion of the mixed term. As a next step we compute m
′
λ,λ+u =

[xλyλ+u]M′(x, y) from (3.16).

Lemma 3.3. For λ→ ∞ we have

m
′
λ,λ+u =

7

3
4λΦ

(
u√
λ

)(
1 +O

(
1√
λ

)
+O

(
u2√
λ3

))
.

Proof. The ideas and techniques are the same as in the proof of Lemma 3.2 and were performed
with the help of Maple. As the denominator is of order 4 in x, we perform a partial fraction
decomposition with respect to x. This gives 4 rational functions where we extract coefficient of
xλ and get rational functions in y where only one of them has coefficients of order O(4λ). We
omit these technical steps. �

3.6. Asymptotic expansion of the second moment. We want to show an asymptotic for-

mula for the values m
(2)
λ,λ+u.

Lemma 3.4. For λ→ ∞ we have

m
(2)
λ,λ+u =

7

3
4λ Φ

(
u√
λ

)2(
1 +O

(
1√
λ

)
+O

(
u2√
λ3

))
.

Proof. We use the same idea as before performing the summation (here in two variables) later.
But as we are dealing with a function in three variables, it is more suitable to use the techniques
of [9, Proposition 4.3]. We only sketch the main differences here. (We are aware of the theory of
Pemantle andWilson [25], which provides a method to obtain asymptotics of certain multivariate
functions. However we noted in [9] that the trivariate function considered there turns out to be
a limit case which has to be treated separately. As this function possesses, up to a factor, the
same denominator as our function M

(2), the same restriction applies here.) Set

G(x, y, z) := 4yz + xz2
2y + 2xy2z 1−4yz

1−4xyz

1− 2xz(1 + yz)
+ xy2

2z + 2xyz2 1−4yz
1−4xyz

1− 2xy(1 + yz)
+ xy2z2

1− 4yz

1− 4xyz

and

H(x, y, z) := 1− x(1 + yz)2 − xyz

1− 2xz(1 + yz)
− xyz

1− 2xy(1 + yz)
.



DIVISIBILITY OF BINOMIAL COEFFICIENTS 13

Then, by definition, we have

M
(2)(x, y, z) =

1

2λ(1− y)(1 − z)

G(x, y, z)

H(x, y, z)
.

The first difference is that we continue to compute the asymptotic expansion of the coefficients

of G(x,y,z)
H(x,y,z) first. As done before, we define the shorthand

m̃
(2)
λ,λ+u1,λ+u2

:=
1

2λ
[xλyλ+u1zλ+u2 ]

G(x, y, z)

H(x, y, z)
.

Note that the denominator H is identical to the denominator in [9]. Thus we can follow the
known computations. Here we introduce a perturbation in the y- and z-coordinate given by
λ+u1 and λ+u2, respectively. Then, Cauchy’s integral formula over the same contour as in [9]
gives

[
xλyλ+uzλ+u

]
F (x, y, z) = O

(
8(1−ε)λ

)

+
1

(2πi)2

∫∫

γ1×γ1

−G(f(y, z), y, z)
xyzHx(f(y, z), y, z)

(
f(y, z)y1+u1/λz1+u2/λ

)−λ
dy dz.

where the implied constant does not depend on u. Note the missing (1− y)(1− z) factors in the
denominator.

Then we continue like in the old proof, yet combine it with the ideas of [8] to capture the
perturbation by u in a Gaussian integral. Finally, we get

m̃
(2)
λ,λ+u1,λ+u2

=
7

3

4λ

πλ
e−

u2
1
+u2

2
λ

(
1 +O

(u
λ

))
.

It remains to compute the partial sums in the second and third variable. However, this is
analogous to the proof of Lemma 3.2, and we get our final result. �

3.7. Small second moment. Finally, we show that (3.1) is the proper rescaling and that it

possesses a small second moment. We define the random variable X̂λ,k uniformly distributed
on
{
2λ, . . . , 2λ+1 − 1

}
according to the following ansatz

X̂λ,k := n 7→ Θ̃(k, n)− vλ,kn− wλ,k,

where vλ,k and wλ,k are independent of n. Note that this random variable encodes a more
general rescaling as the constant term wλ,k is also present. We will see that its size (if properly
chosen) does not influence the result.

The second moment of X̂λ,k is equal to

E(X̂2
λ,k) = E

(
Θ̃(k, n)2

)
− 2vλ,kE

(
nΘ̃(k, n)

)
− 2wλ,kE

(
Θ̃(k, n)

)

+ v2λ,kE
(
n2
)
+ 2vλ,kwλ,kE (n) + w2

λ,k.

As X̂λ,k is uniformly distributed on
{
2λ, . . . , 2λ+1 − 1

}
we directly compute

E (n) =
3

2
2λ − 1

2
, and

E
(
n2
)
=

7

3
4λ − 3

2
2λ +

1

6
.

Therefore, Lemmata 3.2, 3.3, and 3.4 show that for

vλ,k = O (1) and wλ,k = O
(

2λ√
λ

)
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the dominant terms of the second moment E(X̂2
λ,k) have an exponential growth of order 4λ. In

particular, we get the explicit result

E(X̂2
λ,k) =

7

3
4λ
(
vλ,k − Φ

(
u√
λ

))2

+O
(

4λ√
λ

)
.

Thus, we see that if we choose

vλ,k = Φ

(
u√
λ

)(
1 +O

(
1

λ1/4

))
and wλ,k = O

(
2λ√
λ

)
.

it gives

E
(
X2

λ,k

)
= O

(
4λ√
λ

)
.

This proves Proposition 3.1. As mentioned before, this proof also gives the possible size for a
constant (with respect to n) term wλ,k such that the result still holds.

Furthermore, it is also possible to specify the constant C in the speed of convergence, and
get further error terms automatically. Yet, the computations quickly become cumbersome.
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