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Abstract. We compute metric properties of Cayley graphs of the integers with respect
to various infinite generating sets. When the generating set S is the set of all powers of
a prime, we find explicit formulas for the smallest positive integer of a given length. We
also prove that such graphs are infinite dimensional in a strong sense by showing that they
fail to have Yu’s property A. Finally, we consider more general generating sets and relate
geometric properties of these Cayley graphs to deep unsolved problems in number theory.

1. Introduction

Let G be a group. If we fix a generating set S for G, then we can construct a graph
Γ = Γ(G,S) corresponding to G and S by taking the vertices of Γ to be the elements of G
itself and connecting any two vertices g and h by an edge whenever gs = h for some element
s ∈ S. We can consider the graph Γ as a metric space by setting the length of each edge
to be 1 and taking the path metric on Γ; this procedure turns the algebraic object G into a
geometric object Γ. The drawback of this approach is that different choices of S can lead to
wildly different geometric objects; however, when G is a finitely generated group, any two
choices of finite generating sets S and S ′ will give rise to two graphs that are the same on
the large scale, see Section 2.

In this paper, we investigate the extent to which different choices of infinite generating
sets S can change the graph Γ(G,S) when G = Z.

We are chiefly interested in generating sets that are closed under additive inverses and
are closed under taking powers. The simplest such generating set is the collection Sg =
{1,±g,±g2,±g3, . . .}. We denote Γ(Z, Sg) by Cg. Edges in the graph Cg connect each
vertex to infinitely many other vertices, see Figure 1. It is not difficult to see that the graphs
C2 and C3 are distinct, but the question of whether they are the same on the large scale
remains open [9] and motivates our study of the metric properties of these graphs.

When g is prime, the study of these graphs leads to an interesting interplay between
geometric group theory (the geometry of the graph) and number theory (the structure of
the integer vertices). For example, in C2 we can ask for the value of the smallest n > 0 (in
the usual ordering of the integers) at distance d from 0. Looking at Figure 1, one can see
that 3 is the smallest positive number that is at distance 2 from 0; extrapolating this figure
further, one can verify that 11 is the smallest positive integer at distance 3 from 0. This
investigation for all bases g > 1 gives rise to the formulas for λg(d) in Section 3.

These formulas for λg(d) show that these graphs all have infinite diameter. It is natural
to wonder how large these graphs are in some precise sense. It was shown that the large-
scale dimension of these graphs is infinite [1]. We show that these graphs have interesting
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−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

Figure 1. Some edges emanating from 0 in red, from 1 in blue, and from 4
in orange in the graph C2. Each vertex is incident with infinitely many edges.
Observe that the distance from 0 to 3 is 2.

structures we call k-prisms. Any graph with k-prisms has infinite dimension in a strong
sense. This allows us to generalize that result and show that these graphs fail to have Yu’s
property A.

In the final section of the paper, we investigate more general generating sets for collec-
tions P of positive integers. These generating sets take the form SP =

⋃
g∈P Sg. For such

generating sets, questions about the diameter of the resulting graphs are already interesting
and difficult. In particular, we show that when P is the set of all primes, the diameter of
the resulting graph is either 3 or 4; moreover if Goldbach’s conjecture holds, it is 3. We
also conduct numerical investigations to narrow the search for the smallest positive length-3
integer in the graph Γ(Z, SP ) with P equal to the set of all primes.

2. Preliminaries

Let G be a group with a fixed generating set S. We will assume that the identity is
not in S and that S is symmetric in the sense that s ∈ S implies s−1 ∈ S. We define a
graph Γ = Γ(G,S), called the Cayley graph of G with respect to S as in the introduction:
the vertices of Γ are in one-to-one correspondence with the elements of G. We connect the
elements g and h in G with an edge precisely when there is an s ∈ S such that gs = h.
We can view G as a metric space by taking the edge-length metric dS on Γ. More precisely,
if g and h ∈ G, then write g−1h as a word in the elements of S with minimal length, say
g−1h = s1s2 · · · sn. Then gs1s2 · · · sn = h, and there is a path of length n between g and h
in the Cayley graph. Thus dS(g, h) = n.

Alternatively, we could define a norm ‖·‖S on G with respect to the generating set S by
setting ‖g‖S = min{n : s1s2 · · · sn = g, si ∈ S}. The distance dS(g, h) = ‖g−1h‖S defines a
metric on G called the left-invariant word metric.
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Example 2.1. The dihedral group of order 10 can be described as the symmetries of a
regular pentagon. It can be presented in terms of generators and relations as

D2·5 = 〈r, s | r5 = 1, s2 = 1, rs = sr−1〉.
With S = {r, r−1, s}, we compute dS(rs, r2sr−1) = 2. Indeed, using the relations of D2·5, we
find

dS(rs, r2sr−1) = ‖s−1r−1r2sr−1‖S = ‖s−1rsr−1‖S = ‖s−1sr−1r−1‖S = ‖r−2‖S = 2.

The Cayley graph of the dihedral group of order 10 with S = {s, r, r−1} is indicated on
the left-hand side of Figure 2. Notice that vertices are connected by (undirected) edges
precisely when the two vertices differ by right multiplication by an element of {s, r, r−1}. In
the right-hand side of that figure, we indicate a geodesic between the elements rs = sr4 and
r2sr−1 = sr2.

r

r2
r3

r4

e

sr4

sr3

sr2

sr

s

r

r2
r3

r4

e

sr4

sr3

sr2
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Figure 2. On the left the Cayley graph of the dihedral group of order 10
with the generating set {s, r, r−1}. Left-multiplication by s is shown by a red
edge, while left-multiplication by r or r−1 is shown in blue. On the right is a
visualization of the distance between sr4 and sr2.

While it is true that different choices of generating sets can give rise to vastly different
metric spaces, in the case that G is finitely generated, any two finite generating sets give
rise to metric spaces that are quasi-isometric (see below). Quasi-isometry is one of several
notions of large-scale equivalence of metric spaces, but it is the only one that we will consider.

Definition 2.2. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is said to
be a quasi-isometric embedding if there exist constants A ≥ 1 and B ≥ 0 such that for all
x, x′ ∈ X,

1

A
dY (f(x), f(x′))−B ≤ dX(x, x′) ≤ AdY (f(x), f(x′)) +B.

Definition 2.3. The metric spaces (X, dX) and (Y, dY ) are said to be quasi-isometric if
there is a quasi-isometric embedding f : X → Y , and there is some K ≥ 0 such that for
every y ∈ Y there is some x ∈ X so that dY (y, f(x)) ≤ K. In this case, we describe the map
f as a quasi-isometry.

Example 2.4. The Cayley graph Γ(G,S) is quasi-isometric to the group G in the metric
dS described above via the identity map, with A = 1, B = 0, and K = 0.
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−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Figure 3. The Cayley graph Γ(Z, {±2,±3}) is shown. Notice that the iden-
tity map from Z in the standard metric to this Cayley graph is a surjective
quasi-isometry with A = 2, B = 0, and K = 0.

Example 2.5. Let G be a finitely generated group with finite (symmetric) generating sets S
and T . The identity map id : G→ G is a quasi-isometric embedding from (G, dS) to (G, dT )
with A equal to the maximum of the of the longest S-path that represents an element of T
and the longest T -path that represents an element of S, and B = 0. Moreover, id(G) = G,
so with K = 0 we see that the identity map is a quasi-isometry.

3. Metric properties of Cg

We are interested in the case of infinite generating sets for G = Z. In particular, let g > 0
be an integer, and denote by Cg = Γ(Z, Sg) the Cayley graph of Z with the generating set
Sg = {±gi : i ∈ Z≥0}. Let dg = dSg denote the corresponding edge-length metric. We denote
the distance dg(0, n) by `g(n) and refer to this as the length of n.

The following theorems of Nathanson [9] give a method of computing length in Cg.

Theorem 3.1 ([9, Theorem 3]). Let g be an even positive integer. Every integer n has a
unique representation in the form

n =
∞∑
i=0

εig
i

such that
(1) εi ∈ {0,±1,±2, . . . ,±g/2} for all nonnegative integers i,
(2) εi 6= 0 for only finitely many nonnegative integers i,
(3) if |εi| = g/2, then |εi+1| < g/2 and εiεi+1 ≥ 0.

Moreover, n has length

`g(n) =
∞∑
i=0

|εi|.

Theorem 3.2 ([9, Theorem 6]). Let g be an odd integer, g ≥ 3. Every integer n has a
unique representation in the form

n =
∞∑
i=0

εig
i

such that
(1) εi ∈ {0,±1,±2, . . . ,±(g − 1)/2} for all nonnegative integers i,
(2) εi 6= 0 for only finitely many nonnegative integers i.

Moreover, n has length

`g(n) =
∞∑
i=0

|εi|.
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Figure 4. Plots of y = `g(20233509) as a function of g.

For any integers n and g > 2, Theorems 3.1 and 3.2 give a unique g-adic expression for
n that realizes a geodesic path from 0 to n. Thus there is N > 0 such that n =

∑N
i=0 εig

i,
εN 6= 0, and `g(n) =

∑∞
i=0 |εi|. We call n =

∑N
i=0 εig

i the minimal g-adic expansion, and
denote it by

[n]g = [ε0, ε1, . . . , εN ].

It is interesting to look at how `g(n) varies as a function of g. See Figure 4. We chose a
random number n = 20,233,509, and produced a plot of y = `g(n) for a range of values for
g. For g sufficiently large, we have `g(n) = n, but it appears that interesting things happen
along the way.

Example 3.3. The minimal 5-adic expansion of 46 is [46]5 = [1,−1, 2], so 46 = 1−5+2 ·52,
and `5(46) = 1 + 1 + 2 = 4.

We denote by λg(h) the smallest positive integer of length h in Cg. We find an explicit
formula for λg in Theorems 3.4 and 3.5 below using Nathanson’s g-adic representation [9] of
positive integers. The first few values are tabulated in Table 1. We remark that the values of
λ2 show up in The On-Line Encyclopedia of Integer Sequences (OEIS) as A007583, and the
values of λ3 show up as A007051. The sequences of values for λp for other primes p do not
seem to appear. Figure 5 shows the integers less than 10,000 and their 19-length, together
with the graph of y = λ19(x).

Theorem 3.4. Let g > 0 be an odd integer, and let k > 0 be an integer. Let q = b 2k
g−1
c, and

let r = k mod g−1
2

so that k = q(g−1
2

) + r. Then

λg(k) =


1 + gq−1(g − 2)

2
if r = 0,

1 + gq(2r − 1)

2
otherwise.

Proof. We consider each case separately.
Case 1. (r = 0): Let q = b 2k

g−1
c and z = 1+gq−1(g−2)

2
. First, we show `g(z) = k. A

straightforward computation shows that the minimal g-adic expansion of z is given
by

[z]g =

[
1 + gq−1(g − 2)

2

]
g

= [−b,−b, . . . ,−b, b],

https://oeis.org
https://oeis.org/A007583
https://oeis.org/A007051
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Table 1. First few values of λp(k) for primes p < 30.

k 2 3 5 7 11 13 17 19 23 29

1 1 1 1 1 1 1 1 1 1 1
2 3 2 2 2 2 2 2 2 2 2
3 11 5 3 3 3 3 3 3 3 3
4 43 14 8 4 4 4 4 4 4 4
5 171 41 13 11 5 5 5 5 5 5
6 683 122 38 18 6 6 6 6 6 6
7 2731 365 63 25 17 7 7 7 7 7
8 10923 1094 188 74 28 20 8 8 8 8
9 43691 3281 313 123 39 33 9 9 9 9
10 174763 9842 938 172 50 46 26 10 10 10
11 699051 29525 1563 515 61 59 43 29 11 11
12 2796203 88574 4688 858 182 72 60 48 12 12
13 11184811 265721 7813 1201 303 85 77 67 35 13
14 44739243 797162 23438 3602 424 254 94 86 58 14
15 178956971 2391485 39063 6003 545 423 111 105 81 15
16 715827883 7174454 117188 8404 666 592 128 124 104 44
17 2863311531 21523361 195313 25211 1997 761 145 143 127 73
18 11453246123 64570082 585938 42018 3328 930 434 162 150 102
19 45812984491 193710245 976563 58825 4659 1099 723 181 173 131
20 183251937963 581130734 2929688 176474 5990 3296 1012 542 196 160

Figure 5. The integers up to 10,000 whose 19-lengths are x are shown to-
gether with the graph of y = λ19(x).

where b = g−1
2
, and there are q digits in the expansion [z]g. Note that in this case

since r = 0, we have q = b 2k
g−1
c = 2k

g−1
. It follows that `g(z) = b · q = k, as desired.

Suppose x ≤ z is a positive integer of length k. Let [x]g = [ε0, . . . , εn] be the
minimal g-adic expansion of x. By Theorem 3.2, we have |εi| ≤ b for all i. There
must be q digits in the expansion [x]g so that n ≤ q−1, since if n > q−1 and εn > 0,
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then x > z. Since `g(x) = `g(z) = k, we must have

`g(x)− `g(z) =

q−1∑
i=0

(b− |εi|) = 0.

But this means n = q−1 and |εi| = b for all i. Since x ≤ z, we cannot have a number
less than −g−1

2
for εi, i = 0, . . . , q − 2, thus we must have −g−1

2
= εi. Similarly, we

cannot have a number larger than g−1
2

for εq−1. We cannot have εq−1 <
g−1

2
without

changing the length. Therefore z = x.
Case 2: (r 6= 0): With q = b 2k

g−1
c and z = 1+gq(2r−1)

2
we see

[z]g =

[
1 + gq(2r − 1)

2

]
g

= [−b,−b, . . . ,−b, r] ,

where there are q + 1 digits in the minimal g-adic expansion. It is clear that `g(z) =
k. Suppose x ≤ z is a positive integer of length k. Theorem 3.2 tells us [x]g =
[ε0, . . . , εn] with |εi| ≤ b for all i. It is helpful to note that z < [−b,−b, ...,−b, b] <
[−b,−b, ...,−b, 1] where there are q+1 digits in the middle expression and q+2 digits
on the right. Hence if n > q and εn > 0 then x > z. Thus since `g(x) = `g(z) we
have

r − εq +

q−1∑
i=0

g − 1

2
− |εi| = 0.

This means each of the summands must be 0. Hence εq = r and εi = −g−1
2

for all i.
Therefore, z is truly the smallest integer of length k. �

Theorem 3.5. Let g > 0 be an even integer, and let k > 0 be an integer. Let r = k mod
g − 1. Define integers q, A, and B by

q =

{
b k
g−1
c − 1 if r = 0,

b k
g−1
c if 1 ≤ r ≤ g − 1;

A =

{
g/2 if r = 0 or r > g/2,

r otherwise;

B =


g/2− 1 if r = 0,
r − g/2 if r > g/2,
0 otherwise.

Then
λg(k) =

g(1− g2q)

2(1 + g)
+ Ag2q +Bg2q+1.

Proof. Let b = g/2. One can see that

z :=
g(1− g2q)

2(1 + g)
+ Ag2q +Bg2q+1 = [−b,−(b− 1),−b,−(b− 1), . . . , A,B]g,

where there are 2q+2 digits in the representation. Suppose first B 6= 0 and x ≤ z has length
k. By Theorem 3.1, [x]g = [ε0, ..., εn] where εi ∈ {0,±1,±2, . . . ,±g/2} for all 0 ≤ i ≤ n
and if |εi| = g/2, then |εi+1| < g/2 and εiεi+1 ≥ 0. Notice z ≤ [0, 0, . . . , 1]g where there are
2q + 3 digits in the representation on the right. Hence, it is clear that n ≤ 2q + 2. �
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4. Cg fails to have property A

Richard E. Schwartz [9, Problem 6] asked whether (C2, d2) and (C3, d3) are quasi-isometric.
This question could be answered in the negative by finding a quasi-isometry invariant that
distinguishes them. Therefore the question of determining quasi-isometry invariants for Cg

for different values of g is an interesting one. Adams, Gulbrandsen, and Vasilevska show
that the asymptotic dimension of Cg is infinite for g ∈ {2, 3}[1, Theorem 5]. The asymptotic
dimension is a large-scale analog of dimension that belongs to a family conditions on covers
of metric spaces. For metric spaces with infinite asymptotic dimension, it is interesting to
consider another quasi-isometry invariant: Yu’s property A.

Definition 4.1 ([14]). A (discrete) metric space X is said to have property A if for all R > 0
and all ε > 0, there exists a family {Ax}x∈X of finite, non-empty subsets of X × Z≥1 such
that

(1) for all x, y ∈ X with d(x, y) ≤ R, we have #(Ax∆Ay)

#(Ax∩Ay)
≤ ε, and

(2) there exists a B > 0 such that for every x ∈ X, if (y, n) ∈ Ax, then d(x, y) ≤ B.
Here #A is the cardinality of A and Ax∆Ay denotes the symmetric difference.

We use an example of Nowak [10] to show that Cg fails to have property A for every integer
g > 1. This can be interpreted as saying that Cg is infinite dimensional in a strong sense.

Example 4.2. We note that any tree has property A. To see this we need to show that for
every ε > 0 and for all R > 0 there exists a family {Ax}x∈T of finite subsets of T × N and
an r > 0 such that

(1) #(Ax∆Ay)

#(Ax∩Ay)
< ε, if d(x, y) ≤ R, and

(2) Ax ⊂ B(x, r)× N for every x ∈ T .
To show this, we first fix a geodesic ray γ0 and suppose that for all x ∈ T , γx is a ray

that begins at x with the property that γ0 ∩ γx is a geodesic ray. It is easy to see that such
a γx exists and is unique in a tree. Now let ε > 0 and R > 0 be given and take r ≥ R

ε
.

Put Ax = γx([0, r]) × {1}. Then, since (Ax∆Ay) = (Ax \ Ay) ∪ (Ay \ Ax) and both Ax and
Ay intersect γ0 except at possibly R places, we have that #(Ax∆Ay) < 2R. Furthermore,
#(Ax ∩ Ay) ≥ 2R

ε
, and so #(Ax∆Ay)

#(Ax∩Ay)
≤ ε. Finally, it is clear that Ax ⊂ B(x, r)× N.

Example 4.3. Let {0, k}n be the set of vertices of an n-dimensional cube at scale k endowed
with the `1-metric. The disjoint union

∐∞
n=1{0, k}n can be metrized in such a way that it is

a locally finite metric space that fails to have property A [10].

In order to utilize Example 4.3 we define the notion of k-prisms. We show that a metric
space with k-prisms has disjoint isometric copies of {0, k}n for all n. Thus, the existence of
k-prisms is an obstruction to having property A.

Definition 4.4. Let k be a positive integer. We say that a metric space X has k-prisms if
for any finite set F ⊂ X there exists an isometry T such that

(1) T (F ) ∩ F = ∅ and
(2) d(x, T (y)) = k + d(x, y) for all x, y ∈ F .

Remark 4.5. We note that if a metric space X has k-prisms then X has nk-prisms for all
n ∈ N. To show this we use induction on n. The base case is trivial since X having k-prisms
means X has 1k-prisms. Now we assume the X has (n − 1)k-prisms and we wish to show
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 6. Constructing a 1-prism over {1, 2, 4, 5} in C2.

that X has nk-prisms. Then since X has (n− 1)k-prisms for any finite subset F , there is an
isometry Tn−1 so that Tn−1(F ) ∩ F = ∅ and d(x, Tn−1(y)) = (n− 1)k + d(x, y). Since X has
k-prisms, we can find an isometry Tn taking the set F ∪Tn−1(F ) to an isometric copy so that
each vertex of F ∪ Tn−1(F ) is at distance k from its image. Thus, if we restrict Tn to the
image Tn−1(F ), we see that d(x, Tn(Tn−1(y))) = k+ d(x, Tn−1(y)) = k+ (n− 1)k+ d(x, y) =
nk + d(x, y) and Tn(F ) ∩ F = ∅. Therefore X has nk-prisms for all n ≥ 1.

Lemma 4.6. The space Cg has k-prisms for every k.

Proof. Let F 6= ∅ be an arbitrary finite subset of Cg. By Remark 4.5, it suffices to find an
isometry T such that F ∩ T (F ) = ∅ and d(x, T (y)) = 1 + d(x, y) for all x, y ∈ F . Now we
know from Theorem 3.1 and Theorem 3.2 that for any g we have a unique representation for
an integer x of the form,

x =
∞∑
i=0

εig
i,

where the requirements of the εi change depending on whether g is even or odd, and εi = 0
for all but finitely many indices. Since F is finite, there is some positive integer m so that
εi = 0 for all i > m for each x ∈ F . Now, we define an isometry T that takes x =

∑m
i=0 εig

i

to T (x) =
∑m

i=0 εig
i + gm+2. We note that choosing gm+1 is not sufficient since we cannot

expect this expression to be in the canonical form. Clearly T is an isometry. Now we see
that

d(x, T (y)) = d

(
m∑
i=0

εig
i,

m∑
i=0

δig
m + gm+2

)
=

m∑
i=0

|δi − εi|+ 1 = d(x, y) + 1.

So d(x, T (y)) = d(x, y) + 1, and by construction F ∩ T (F ) = ∅. Therefore Cg has k-prisms
for each k. �

In Figure 4 we give an example of a 1-prism constructed by the method of this proof over
a set in C2.

Lemma 4.7. The space Cg contains an infinite geodesic ray.
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Proof. We note that since Cg has 1-prisms we can start with a single point x ∈ Cg. We
use the Tn from Remark 4.5 and obtain an infinite geodesic ray made up of the points
{x, T1(x), T2(T1(x)), T3(T2(T1(x))), ...}. This sequence has the property that d(x, Tn(x)) =
n+ d(x, T1(x)) and d(Ti(x), Tj(x)) = i− j. Thus we have an infinite geodesic ray. �

Lemma 4.8. If X 6= ∅ has k-prisms for some k, then X contains an isometric copy of
{0, k}n. In particular, the space Cg contains an isometric copy of {0, k}n for each n and for
each k.

Proof. Let X be a metric space with k-prisms for some k. In order to show that X has an
isometric copy of {0, k}n, we use induction. To this end we note that if X has k-prisms
then for any finite subset F ⊂ X, there exists an isometry T such that T (F ) ∩ F = ∅ and
d(x, T (y)) = k + d(x, y) for all x, y ∈ F .

Taking any a ∈ X, we apply the k-prism condition to find a map T such that d(a, T (a)) =
k. Clearly, {a, T (a)} is an isometric copy of {0, k}. Now we assume that X has an isometric
copy, C, of {0, k}n−1. Then T (C) is also an isometric copy of {0, k}n−1. We claim that
C ∪ T (C) is an isometric copy of {0, k}n. This follows from the fact that d(x, T (y)) =
k + d(x, y) for all x, y ∈ C ∪ T (C). Therefore if X has k-prisms then X has an isometric
copy of {0, k}n.

In particular, since Cg has k-prisms for all k, Cg has an isometric copy of {0, k}n for all
k. �

Theorem 4.9. Let X be any discrete metric space with k-prisms for some k ≥ 1, then X
does not have property A.

Proof. First we note that if Z has property A and if Y ⊂ Z then Y has property A. Now
given Lemma 4.6 we take Y to be the graph in Example 4.3, which does not have property A.
Then since X has k-prisms for some k, we see that X has an infinite geodesic ray and an
isometric copy of {0, k}n for each n. Thus we have disjoint k-scale n-cubes for every n and
so Y ⊂ X. Since Y does not have property A, X cannot have property A. �

Corollary 4.10. Let g > 1 be an integer. Then Cg fails to have Yu’s property A.

Definition 4.11. The direct sum of a sequence {Gn}∞n=1 of groups Gn is the set of all
sequences {gn}∞n=1 where gn ∈ Gn and gn is equal to the identity element of Gn for all but a
finite set of indices. This is denoted ⊕∞n=1Gn.

Example 4.12. We remark that the fact that k is fixed in the definition of k-prisms is
important. We describe a space X with property A that contains an isometric copy of
{0, n!}n for each n. This space has the property that for every finite subset F ⊂ X there
is a k and an isometry T : F → X such that d(x, T (y)) = k + d(x, y) for all x, y ∈
F , yet X does not have k-prisms for any fixed k. Our example is X = ⊕∞i=1Z with the
metric d(x, y) =

∑∞
i=1 i|xi − yi|, which Yamauchi showed has property A [13]. To show X

contains an isometric copy of {0, n!}n for each n, we define an isometry f : {0, n!}n → X by
f(t1, . . . , tn) = ( t1

1
, t2

2
, . . . , tn

n
, 0, 0, . . .). Then, since each ti is either 0 or n!, it follows that

each ti is divisible by i, so ti
i
∈ Z. Also, for any s and t in {0, n!}n,

d`1(s, t) =
n∑

i=1

|si − ti| =
n∑

i=1

i

∣∣∣∣sii − ti
i

∣∣∣∣ = d(f(s), f(t)).

Thus X contains an isometric copy of {0, n!}n.
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5. Metric properties of CP

One can consider more general infinite generating sets for Z. Let P be a set of positive
integers. Let CP = Γ(Z, SP ) denote the Cayley graph of Z with the generating set

SP =
⋃
a∈P

{±ai : i ∈ Z≥0}.

We give CP the edge-length metric dSP
, and use `P (x) to denote the length of x in the

metric dSP
; i.e., `P (x) = dSP

(0, x).
It is natural to consider determining the length function for CP and whether CP has

property A for various collections P ; however, it is already a difficult problem to compute
the diameter of CP with respect to a generating set with more than one element.

Question 5.1. Let P be a set of primes. Let λP (h) denote the smallest positive integer of
length h in CP . Compute the function λP (h).

There are partial results addressing Question 5.1 when #P < ∞. Hadju and Tijdeman
[6] prove that exp(ck) < λP (k) < exp((k log k)C), with some constant c depending on P and
an absolute constant C.

Nathanson [8] gives a class of generating sets for Z whose arithmetic diameters are infinite.

Theorem 5.2 ([8, Theorem 5]). If P is a finite set of positive integers, then CP has infinite
diameter.

Theorem 5.2 does not hold for infinite P . The ternary Goldbach conjecture states that
every odd integer n greater than 5 can be written as the sum of three primes. H. A. Helfgott’s
proof [7, Main Theorem] of this implies if P is the set of all primes, then CP is at most 4.

Theorem 5.3. Let P be the set of all primes. The diameter of CP is 3 or 4.

Proof. It is easy to see that `P(n) = 1 for n ∈ {1, 2, 3, 4, 5}. Helfgott [7, Main Theorem]
proves that every odd integer greater than 5 can be written as the sum of three primes. Since
every even integer greater than 4 can be expressed as 1 less than an odd integer greater than
5, we have that `P(n) ≤ 4 for all n ∈ Z.

Since not every integer is a prime power, the diameter of CP is at least 2. To show that the
diameter is not 2, it suffices to produce an integer that is not a prime power and cannot be
expressed as the sum or difference of prime powers, where the prime power p0 = 1 is allowed.
Such integers are surprisingly hard to find. First note that the Goldbach conjecture asserts
that every even integer greater than 2 can be expressed as the sum of two primes. This has
been computationally verified integers less than 4 · 1018 [11]. It follows that `P(n) ≤ 2 for
even integers n < 4 · 1018. Thus a search for an integer of length 3 should be restricted to
odd integers. An odd integer M is length 3 if

(1) M is not prime power;
(2) |M ± 2n| is not prime power for all n ≥ 0.
Cohen and Selfridge [4, Theorem 2] use covering congruences to prove the existence of

an infinite family of integers M satisfying item (2) and give an explicit 94-digit example of
such an integer. Zhi-Wei Sun [12] adapts their work to produce a much smaller example.
Specifically, let

M = 47867742232066880047611079, and let N = 66483084961588510124010691590.
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Sun proves that if x ≡ M mod N , then x is not of the form |pa ± qb| for any primes p, q
and nonnegative integers a, b1. We use Atkin and Morain’s ECPP (Elliptic Curve Primality
Proving) method [2] implemented by Morain in Magma [3] to look in this congruence class
for an element that is provably not a prime power. We find that M and M +N are prime,
but

M + 2N = 133014037665409087128068994259

= 23 · 299723 · 19295212676140402555471

is not a prime power. Thus `P(M + 2N) = 3, and the result follows. �

Remark 5.4. Assuming Goldbach’s conjecture, the diameter of CP is 3.

It is still an open problem to find the smallest integer n that is not of the form |pa ± qb|,
for any primes p, q and nonnegative integers a, b [5, A19]. Explicit computations [4, 12] show
that the smallest such integer must be larger than 225. Such elements, if not prime powers,
would have P-length 3. We have extended slightly their computation and confirmed that
`P(n) < 3 for all n < 58,164,433 ≈ 225.79. For

n = 58164433 = 4889 · 11897,

we could not show `P(n) = 2. It is possible that this integer is the smallest positive integer
of length 3.

Theorem 5.5. Let P denote the set of all primes, and let S ⊂ P be a finite subset. Let
P ′ = P \ S. If R = maxp∈S{`P ′(p)}, then diam(CP ′) ≤ 3 max{R, 3} + 1. In particular, the
diameter of CP ′ is finite.

Proof. First note that if p is a prime in S, then `P ′(p) ≤ R. If p is a prime not in S,
then by the ternary Goldbach conjecture [7, Main Theorem] we have `P ′(p) ≤ 3. Thus
`P ′(p) ≤ max{R, 3} for any prime p.

Since every even integer is one less than an odd integer, it suffices to show that `P ′(n) ≤
3 max{R, 3} for every positive odd integer n. By the ternary Goldbach conjecture, every
odd integer n > 5 can be expressed as the sum of three primes. Let n = p+ q+ r > 5 be an
odd integer for some primes p, q, r. Then

`P ′(n) ≤ `P ′(p) + `P ′(q) + `P ′(r) ≤ max{R, 3}+ max{R, 3}+ max{R, 3},
and the result follows. �
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