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Abstract

In this paper we study a natural generalization of the Stern-Brocot sequences which comes

from the introduction of weighted mediants. We focus our attention on the case k = 3, in which

(2a+ c)/(2b+ d) and (a+ 2c)/(b+ 2d) are the two mediants inserted between a/b and c/d. We

state and prove several properties about the cross-differences of Stern-Brocot sequences with

k = 3, and give a proof of the fractal-like rule that describes the cross-differences of the unit

k = 3 Stern-Brocot sequences, i.e. the one with usual starting terms 0/1, 1/1 and with reduction

of fractions.

1 Introduction

The Stern–Brocot tree is an object of classical interest in number theory. Discovered indepen-

dently by Moritz Stern in 1858 [13] and Achille Brocot in 1861 [6], it was originally used as a

way to find rational approximations of certain kinds to specific numbers. As a consequence, the

Stern-Brocot tree is deeply connected to the theory of continued fractions. It also comes up in a

variety of other contexts, including Farey Sequences, Ford Circles, and Hurwitz’ theorem.

The classical Stern-Brocot sequences are generated row by row, as follows: the first row has

entries 0
1 and 1

0 . In each subsequent row, all entries from the previous row are copied and between

every pair of neighboring entries a
b and c

d the mediant fraction a+c
b+d is inserted. This process is

repeated ad infinitum; the result gives the Stern-Brocot sequences as rows.

One can generalize the notion of a mediant if we assign integer weights to fractions. Suppose we
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assign weight m to the left fraction a/b and weight n to the right fraction c/d. Then the weighted

mediant is (ma + nc)/(mb + nd). The total weight in this case is m + n, so that the classical case

corresponds to a total weight of 2 with m = n = 1.

James Propp proposed a weighted generalization of the Stern-Brocot sequences [11] via a mod-

ified mediant-insertion process. Instead of a single mediant fraction, all possible weighted mediants

of total weight k are inserted, in increasing order, between every pair of consecutive fractions in the

previous row. The number of inserted mediant fractions is k − 1; thus the classical Stern-Brocot

sequences correspond to the case k = 2, while we focus our attention here on the case k = 3.

Our main results in this paper are the following: we state and prove several properties of the

cross-differences of Stern-Brocot sequences with k = 3, culminating in a proof of the fractal-like rule

that governs the cross-differences in Stern-Brocot sequences corresponding to the starting terms

0/1 and 1/1, and with reduction of fractions.

In Section 2, we define precisely the Stern-Brocot sequences from weighted mediants given a

pair of starting terms. We also define the cross-difference of two consecutive fractions a/b and c/d

in the same row as bc− ad. We discuss the properties of cross-differences.

In Section 3 we explain how reduction to lowest terms and cross-differences are related to each

other. In Section 4 we suggest a variation where the fractions are never reduced to lowest terms.

In this variation the formula for cross-differences is simple and has a fractal structure.

In Section 5 we go back to our main object of study, the unit Stern-Brocot sequences of weight

3 and show how the reduction works in this case. Understanding the reduction allows us to make

a careful analysis of the cross-differences in the most interesting case, with starting terms 0/1 and

1/1 and in which fractions are reduced. This happens in Section 6 where we ultimately use our

analysis to prove the fractal-like rule which the cross-differences follow. The cross-differences of one

Stern-Brocot sequence exhibit some self-similar behavior, but they are not completely self-similar.

We call this structure quasi-fractal.

We continue describing our quasi-fractals in Section 7, where we give an explicit formula for

the cross-differences. We conclude in Section 8 with examples from real life where quasi-fractals

similar to ours appear.
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2 Stern-Brocot sequences from weighted mediants. Notation and

definitions

For a fixed parameter k, we say the weighted mediants of two fractions a/b and c/d are

(k − 1)a + c

(k − 1)b + d
,

(k − 2)a + 2c

(k − 2)b + 2d
, . . . ,

a + (k − 1)c

b + (k − 1)d

whence there are k − 1 mediants in all. As in the classical Stern-Brocot case, we start with two

terms and each row is obtained by inserting mediants between consecutive fractions in the previous

row. With this notation, the classical Stern-Brocot corresponds to k = 2 with starting terms 0/1

and 1/0. The second row is 0/1, 1/1, and 1/0. The sequences can be divided into two equivalent

halves by the mid-line. Indeed, if we swap numerators and denominators and reverse the order, the

left half becomes the right half. For this reason many researchers study only the left half of, that

is, the sequences with the starting numbers 0/1 and 1/1. The other rational starting points for the

classical Stern-Brocot sequences were studied in [1].

In this paper we restrict our attention to the case k = 3 with starting terms 0/1 and 1/1. We

call this case the unit case. Here is what the first three rows of the unit case look like:
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Let us now introduce some notation and definitions. If p
q and r

s are rational numbers in lowest

terms, their weighted mediants are the numbers 2p+r
2q+s and p+2r

q+2s in lowest terms. We call these

the left and right mediants of p
q and r

s , respectively. We say that p
q and r

s are the parents of the

mediants 2p+r
2q+s and p+2r

q+2s . Notice that numbers in each row are in increasing order.

Next let SBi stand for the i-th row. By tradition, the first row—the starting terms 0
1 and 1

1

are considered row 0. The sequence SBi is also called the Stern-Brocot sequence of order i. Thus

SB0 = {01 ,
1
1} and SBi+1 is obtained by copying all terms from SBi and inserting between every

pair of consecutive fractions p
q ,

r
s ∈ SBi their weighted mediants.
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We say the cross-difference of two fractions p
q and r

s is C(pq ,
r
s) = qr−ps. We are most interested

in the cross-differences of consecutive numbers in SBi. As was the case when k = 2 [2], the

cross-difference essentially determines how fractions in the Stern-Brocot sequences are capable of

reducing. In particular, the factor by each the ratio of a weighted mediant is reduced to its lower

terms is a factor of C(pq ,
r
s), as we prove in Lemma 5.

The cross-difference of two fractions is positive if the second fraction is larger than the first. In

our case all the cross-differences are positive.

It is important to remember that the cross-difference depends on the representation of rational

numbers, not just on the numbers themselves. In particular, when we reduce one of the fractions

the value of the cross-difference decreases, and so the cross-difference is smallest when both rational

numbers are in lowest terms.

The following statements describe known results about 3-Stern-Brocot sequences [2].

Lemma 1. All the denominators in the Stern-Brocot sequence with k = 3 are odd and the numer-

ators in each row alternate between even and odd.

Corollary 2. All cross-differences are odd.

Lemma 3. The number of terms in SBn is 3n + 1.

Finally we state the theorem about rational numbers that appear in the Stern-Brocot sequences.

Theorem 4. All the rational numbers between 0 and 1 such that their representation in the lowest

terms has an odd denominator appear in the unit Stern-Brocot sequences.

3 Reduction and Cross-Differences

In the classical k = 2 Stern-Brocot case, the cross-difference of the initial terms is 1. It follows that

mediants are always in lowest terms.

In the k = 3 case, this is no longer true. For example, the second row of SB(01 ,
1
1) contains two

consecutive entries 1/3 and 4/9. Their weighted mediants before reduction are: 6/15 and 9/21.

They both are reduced by 3 and the new entries in the third row are 2/5 and 3/7.

There is a simple but important connection between the reduction and cross-differences.
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Lemma 5. The reduction factor of the left/right mediants of two fractions a
b and c

d divides their

cross-difference C
(
a
b ,

c
d

)
= bc− ad.

Proof. Suppose the left mediant 2a+c
2b+d is reducible. That is, 2a + c = gp, and 2b + d = gq, where

g = gcd(2a + c, 2b + d) is the reduction factor. Multiplying the first equality by b and the second

by a and subtracting them, we get

bc− da = 2ab + cb− 2ba− da = gpb− gqa = g(pb− qa).

That is g divides bc− ad. Similar reasoning shows the same is true for the right mediant.

From now we will focus not on the rows of the Stern-Brocot sequences, but rather on the rows

of cross-differences.

4 No Reduction

Let us first consider a simple question: what are the cross-differences of the Stern-Brocot sequences

which are obtained from the starting terms 0
1 and 1

1 , except where we do not reduce fractions? In

this case, consecutive fractions a
b and c

d in any row become the fractions a
b , 2a+c

2b+d , a+2c
b+2d , and c

d in the

next row. Since these fractions are never reduced, their pairwise consecutive cross-differences are

(bc−ad), 3(bc−ad), and (bc−ad). Thus the rows of consecutive cross-differences evolve according

to a simple propagation rule:

No-Reduction Propagation Rule. An instance of C in row r becomes C, 3C, C in row r + 1.

The single cross-difference in row zero is 1, so in the no-reduction case all cross-differences are

powers of 3. For instance, the cross-differences in the first row are: 1, 3, 1 and the cross-differences

in the second row are: 1, 3, 1, 3, 9, 3, 1, 3, 1.

To make it easy to visualize the rows of the cross-differences, we take the base-3 logarithm of

every cross-difference and present them as a graph. Figure 1 shows the first and the second row;

the graphs have been rescaled to the same size to emphasize the differences in shape.
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Figure 1: The first and the second row of cross-differences

Figure 2 shows the third and fourth row. It is easy to see how each figure is generated from the

previous: the left third and right third of the graph are copies of the previous row, while the middle

third is the same copy moved up by 1. The graphs exhibit a self-similar, fractal-like structure.

Figure 2: The third and the fourth row of cross-differences

We can explicitly specify the value at the ith index in each row of cross-differences, where

indexing begins at 0:

Lemma 6. In the no-reduction case, the i-th cross-difference is 3n(i) where n(i) is the number of

1s in the ternary expansion of i.

Proof. We argue by induction. The base case of the is trivial, so let us suppose the claim holds for

row n. By the propagation rule above, the values at indices 3i, 3i + 1, and 3i + 2 of row (n + 1)

are C, 3C, and C respectively, where C is the value at index i in row n. The induction step now

follows from the fact that n(3i) = n(3i + 2) = n(i) whereas n(3i + 1) = n(i) + 1.

We would like to emphasize two properties of the cross-differences of the sequences without

reduction that will survive the transition to reduction.

Property 1. The value of the cross-difference is the same for all the values of i with the same

set of ones in the ternary expression.

Property 2. The values of the cross-differences at index i is the same for every row that

contains this index.
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The second property allows us to view the row of cross-differences as a single infinite sequence

which is the union of all the sequences.

Before proceeding to the reduction case, let us examine another graphical representation of

cross-differences. We divide the interval [0, 1] into 3i equal intervals and define a piece-wise constant

function which, on the ith interval, is equal to the base-3 logarithm of the i-th cross-difference. For

example, the second row corresponds to the function in Figure 3.

Figure 3: A piece-wise constant representation of the second row.

Observe that the intervals where the function vanishes on the ith row form the ith iteration of

the Cantor set. The first several iterations of the Cantor set are shown in Figure 4.

Figure 4: Iterations of the Cantor Set.

5 Reduction

We now return to the case with reduction. When a fraction is reduced by a factor of m, both

cross-differences in which it participates are divided by m. It follows by induction that even in the

case where fractions are reduced, all cross-differences are powers of 3.

Our ultimate goal is to give an explicit description (as in Lemma 6) which characterizes the

cross-differences in Stern-Brocot sequences with reduction. To do so, it will be critical to understand

precisely where, and by what factor, fractions are reduced.

To that end, let us consider the Stern-Brocot sequences modulo 9. More formally, we replace

each fraction a/b with x/y, where x, y are the residues of a, b respectively modulo 9. For every

fraction a/b (mod 9) which occurs in the Stern-Brocot sequences, there are 17 distinct possibilities

modulo 9 for the fraction which follows it:
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(i) The cross-difference is 1 modulo 9. There are 9 such pairs.

(ii) The cross-difference is 3 modulo 9. There are 6 such pairs.

(iii) The cross-difference is 0 modulo 9, in which case c/d = a/b modulo 9 or c/d = (9−a)/(9− b)

modulo 9.

The third point is noteworthy since it means that not all possible fractions c/d (mod 9) with

(bc− ad) ≡ 0 (mod 9) can follow a/b in a Stern-Brocot sequence.

Lemma 7. If the cross-difference of two consecutive fractions a/b and c/d is divisible by 9, then

either (c− a)/(d− b) = 0/0 modulo 9 or (c + a)/(d + b) = 0/0 modulo 9.

Proof. There are two ways for consecutive fractions a/b and c/d with cross-difference divisible by

9 to appear in a Stern-Brocot sequence:

(i) They are the left and the right mediant of two fractions with cross-difference equal to 3, and

neither was reduced.

(ii) The cross-difference of their parents is divisible by 9.

Case 1: Suppose p/q and r/s are the parents of a/b, c/d. If p or r is divisible by 3, then the

other must be as well. Since there was no reduction, this means a+c = (2p+r)+(p+2r) = 3(p+r) is

divisible by 9. Now q and s must leave distinct (non-zero) residues modulo 3, for otherwise b = 2q+s

and d = q + 2s would be divisible by 3 and the mediants would reduce. Then q + s ≡ 0 (mod 3),

so that b + d = (2q + s) + (q + 2s) = 3(q + s) is divisible by 9 as well. Thus the claim holds in this

case, and analogous reasoning applies to the case where q or s is divisible by 3.

Hence we can assume none of p, q, r, s is divisible by 3. As before, we only need to check

one representative modulo 3. There are 16 possibilities for (p, q, r, s) (mod 3). Up to symmetry –

we can swap p/q with r/s, and also swap numerators with denominators – it therefore suffices to

consider the following cases: (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (1, 2, 2, 2), and

(2, 2, 2, 2). However, we can exclude cases when p/q ≡ r/s (mod 3) since these cases result in a

reduction. We can also exclude cases when the cross-difference is not divisible by 3. We are left

with just two possibilities: (1, 1, 2, 2) and (1, 2, 2, 1).
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Both of these possibilities have p + r ≡ q + s ≡ 0 (mod 3). Then a/b = (2p + r)/(2q + s) and

c/d = (p+2r)/(q+2s), whence a+c = (2p+r)+(p+2r) = 3(p+r) and b+d = (2q+s)+(s+2q) =

3(q + s) are both divisible by 9. Thus the claim holds in this case.

Case 2: In this case we cannot assume that a/b and c/d are the left and the right mediant of

some pair of fractions in the previous row, since one of them might have been in the previous row.

However, it still makes sense to speak of the parents of a/b and c/d, where we simply mean the

pair of fractions in the previous row between which a/b and c/d lie (inclusive at either endpoint).

Suppose the parents’ cross-difference is divisible by 9. By induction on the row number we can

assume the lemma holds in the previous row, so that the parents p/q and r/s either have equal or

complementary remainders modulo 9. First suppose p/q ≡ r/s (mod 9); then the left and the right

mediants will be reduced by a factor of exactly 3. Indeed, we have 2p + r ≡ p + 2r ≡ 0 (mod 3)

and similarly 2q + s ≡ q + 2s ≡ 0 (mod 3) so the mediants are reduced by a factor of at least 3.

On the other hand, we need 3|p, q, r, s in order to reduce by a factor of 9, which contradicts the

fact that p/q, r/s are reduced fractions.

Then in order for 9|(bc− ad) we must in fact have 27|(qr− ps). It’s not hard to check now that

numbers in the next row are all equal to of p/q modulo 9. Thus every pair of consecutive numbers

is the same modulo 9.

Suppose instead that the parents p/q and r/s are complementary modulo 9, i.e. (p+r)/(q+s) =

0/0 (mod 9). Then the left mediant and right mediant modulo 9 are p/q and r/s respectively, so

there is no reduction. The four fractions in the next row are p/q, p/q, r/s, and r/s modulo 9.

Every consecutive pair here is either the same or complementary modulo 9, as required.

As part of the proof of Lemma 7 we established the following fact:

Corollary 8. If the cross-difference of two fractions is divisible by 9 and they are the same modulo

9, then both new mediants are reduced by 3. If the fractions are complementary modulo 9, then

there is no reduction in new mediants.

We are now ready to prove the main theorem about reduction.

Theorem 9. When fractions in the Stern-Brocot sequences reduce non-trivially, they do so by a

factor of exactly 3.
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Proof. In order for a fraction to reduce by a higher power of 3, we require the parents’ cross-

difference be divisible by 9. Indeed, consider the left mediant (2a + c)/(2b + d). If 9 divides both

2a + c and 2b + d, then it divides their linear combination: b(2a + c) − a(2b + d) = bc − ad. The

theorem now is the consequence of Corollary 8.

As a consequence, reduction in the Stern-Brocot sequences is symmetric.

Lemma 10. The left mediant reduces by the same factor as the right mediant reduces.

Proof. We saw before that the reduction happens precisely when a/b and c/d have the same re-

mainders modulo 3. Then the left and right mediant will always reduce at the same time, and by

Theorem 9 they reduce by the same factor.

Theorem 9 tells us something about the values we see in Stern-Brocot sequences. Suppose a/b

and c/d are consecutive fractions in row i. Then if there is no reduction, both new mediants have

numerators that are more than max(a, c) and, similarly, denominators that are more than max(b, d).

If there was a reduction and new mediants are x/y and z/w, then the numerators are consecutive:

either increasing a < x < z < b, or decreasing a > x > z > b. The analogous statement for

denominators holds as well.

6 Cross-differences

We continue our discussion of cross-differences in the Stern-Brocot sequences with reduction.

Denote by Cn the ordered list of cross-differences of adjacent pairs in the Stern-Brocot sequence

of order n, so that C0 = {1}, C1 = {1, 3, 1}, and C2 = {1, 3, 1, 3, 9, 3, 1, 3, 1}. We see that these two

rows are the same as the rows without reduction (see Figure 1).

Starting from the next row, a different picture emerges. Figure 5 shows the base-3 logarithm of

C3 = {1, 3, 1, 3, 9, 3, 1, 3, 1, 1, 1, 1, 9, 27, 9, 1, 1, 1, 1, 3, 1, 3, 9, 3, 1, 3, 1}.

Figures 6 and 7 show C4 and C5 respectively.

We see that each new picture is divided into three parts. The first part and the last part are

copies of the previous picture. We will prove this later, but for now we simply note the similarity to

the no-reduction case. The middle part is some adjustment of the previous picture. These pictures

look fractal-like, but are not quite fractals. We call them quasi-fractals.
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Figure 5: The third row of cross-differences

Figure 6: The fourth row of cross-differences

Figure 7: The fifth row of cross-differences
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In this section we will give, with proof, a rule which describes how to get from Cn to Cn+1. It

is natural to think of replacing each value in Cn with three values to obtain Cn+1, since a value in

Cn is the cross-difference of two consecutive fractions a/b and c/d, which turn into four fractions

(and hence, three cross-differences) when the two mediants are inserted in row n + 1. The rule to

go from one value in Cn to the corresponding three values in Cn+1 is quite simple, and given by

the following lemma.

Lemma 11. The cross-difference V in one row is replaced in the next row by either (V, 3V, V ) or

(V/3, V/3, V/3).

Proof. The first case occurs when mediants do not reduce, the second when they do.

It remains to determine precisely when each rule applies. Let us denote the ith entry in row Cn

as Cn(i). At least one of the cases is straightforward:

Lemma 12. If Cn(i) = 1, then

(Cn+1(3i), Cn+1(3i + 1), Cn+1(3i + 2)) = (1, 3, 1).

Proof. If Cn(i) = 1, the mediants clearly cannot be reduced.

For other cases we need to look in some surrounding neighborhood.

Lemma 13. If Cn(i) is a strict local maximum, then

(Cn+1(3i), Cn+1(3i + 1), Cn+1(3i + 2)) = (Cn(i), 3Cn(i), Cn(i)).

Proof. A local maximum can only occur as the cross-difference between a left and right mediant.

Indeed, when a fraction is copied to the next row its cross-differences are either equal to the

neighboring cross-differences if there was a reduction, or smaller if there was no reduction.

Hence the fractions a/b and c/d corresponding to Cn(i) are the left and right mediants of the

same parents, and they must not have been reduced. Suppose the parents of a/b and c/d are

p/q and r/s. We must have either p 6≡ r (mod 3) or q 6≡ s (mod 3) since a/b and c/d were not

reduced, and so we can compute the mediants of a/b and c/d exactly as (5p + 4r)/(5q + 4s) and
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(4p + 5r)/(4q + 5s). Since p ≡ r (mod 3) and q ≡ s (mod 3) do not both hold, these mediants are

irreducible as claimed.

It turns out these are the only cases where the first rule applies.

Lemma 14. If Cn(i) 6= 1 nor Cn(i) is a strict local maximum, then

(Cn+1(3i), Cn+1(3i + 1), Cn+1(3i + 2)) = (Cn(i)/3, Cn(i)/3, Cn(i)/3).

Proof. Suppose Cn(i) corresponds to the consecutive fractions a/b and c/d. The fact that Cn(i)

is not a local maximum means that either one of the corresponding fractions was copied from the

previous row, or that both of them are mediants that were reduced.

In the first case, we can assume without loss of generality that a/b was copied from the previous

row. Denote by z/w the other parent of c/d. Either c/d was not reduced, so that c = (2a + z)

and d = (2b + w), or else c/d was reduced, in which case c = (2a + z)/3 and d = (2b + w)/3. We

consider these cases separately.

First suppose c/d is not reduced. Then either a 6≡ z or b 6≡ w (mod 3), while the theorem

statement requires 3|bc− ad whence 3|bz − aw. We can now do casework on a, b, z, w modulo 3. If

neither a nor b is divisible by 3, then neither z nor w is divisible by 3. The divisibility properties

of the mediants will not change if we multiply both a and z by a number not divisible by 3; the

same is true for b and z, so without loss of generality we may assume that a, b ≡ 1 (mod 3). Now

if z ≡ 1 (mod 3), then 3|bz − aw forces w ≡ 1 (mod 3) which contradicts the fact that c/d does

not reduce. Otherwise, if z ≡ 2 (mod 3) then 3|bz − aw forces w ≡ 2 (mod 3) and the mediants

of a/b and c/d reduce, as claimed. This leaves only the case when exactly one of a, b is divisible

by 3; without loss of generality we assume it is a. Then 3|bz − aw forces 3|z, and we can assume

(as before) without loss of generality that b ≡ 1 (mod 3). If w ≡ 1 (mod 3), we contradict the fact

that c/d does not reduce. If instead w ≡ 2 (mod 3), then the mediants of a/b and c/d reduce as

claimed.

Suppose instead that c/d is reduced. The theorem statement requires 3|bc− ad, so since c/d is

reduced we must have 9|bz−aw. It now follows from Corollary 8 that a ≡ z mod 9 and b ≡ w mod 9.

It’s now easy to check that the mediants of a/b and c/d reduce: we have c = (2a + z)/3 and

13



d = (2b + w)/3, so

2a + c = 2a + (2a + z)/3 ≡ 3a ≡ 0 mod 3.

Similarly,

2b + d = 2b + (2b + w)/3 ≡ 3b ≡ 0 mod 9.

Thus the claim holds in the first case.

Now consider the second case, in which a/b and c/d are the reduced left and right mediant of

the same parents. That means the cross-difference of their parents p/q and r/s is divisible by 9.

We can now apply Corollary 8 to conclude that c/d = a/b modulo 9, whence their mediants reduce

as well.

Combining all the cases we get our main theorem on how the cross-differences propagate.

Theorem 15. If Cn(i) = 1 or Cn(i) is a strict local maxima, then

(Cn+1(3i), Cn+1(3i + 1), Cn+1(3i + 2)) = (Cn(i), 3Cn(i), Cn(i)).

Otherwise,

(Cn+1(3i), Cn+1(3i + 1), Cn+1(3i + 2)) = (Cn(i)/3, Cn(i)/3, Cn(i)/3).

7 Cross-Differences Continued

Here we want to look at different cool properties of the rows of the cross-differences.

Lemma 16. Suppose Cn(i) = 1. Then the values in row n + m with the indices between 3mi and

3m(i+1)−1 inclusive are the copy of Cm. In other words, Cn+m(3mi+k) = Cm(k), for 0 ≤ k < 3m.

Proof. If some range in the row of cross-differences starts and ends with 1, the result of repeated

propagation does not depend on the neighbors. Thus if we start with just 1, the result of m

consecutive propagation is Cm.

We promised this statement before: the proof is immediate now.

Corollary 17. The first and the last thirds of Cn are copies of Cn−1.

14



Proof. The first/last third of Cn are the result of the propagation of the first/last 1 in C1.

This fact is similar to Property 2 for the sequences without reduction, in the sense that it allows

us to view all the rows of cross-differences as a single infinite sequence.

What happens to the middle third? Notice that C3 has three ones in a row in a place that we

can call the first third of the middle third. It follows that Cn+3 will have three copies of Cn in the

first third of the middle third.

In general, we see copies of previous rows on the outskirts of a given row. The new things

happen in the very middle of a row. In order to better describe this middle behavior we introduce

the notion of a steeple.

7.1 Steeples

The steeple is defined as the largest range of values in a row of cross-differences containing the

middle and not containing ones.

In Figure 8 we show the logarithms of the steeples in the first eight rows in sequence, separated

by zeroes. From the picture we can see that the even-indexed logarithmic steeples can be obtained

from the previous steeple via a shift up by 1. The odd-indexed logarithmic steeples have a middle

third that is the same as the previous steeple shifted up by 1, while the first and last third consist

of ones.

Figure 8: Steeples

The following lemma gives a full description of steeples. First, we define m(i) as the index of the

first zero or two in the ternary representation of i padded to have n digits. We begin our indexing

at 1, and call this number the middleness of the index i. For the middle index i = (3n − 1)/2, the

middleness is not defined. Otherwise, the smaller m(i) is, the further away from the middle the
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index i is.

Lemma 18. If m = m(i) > dn/2e, then i corresponds to a steeple. Moreover, Cn(i) = 32m−n−1.

If i is the middle point, then Cn(i) = 3n.

Proof. We proceed by induction. The base case is clear, so let us suppose that the lemma holds

for the n-th steeple.

Notice that the only peak in the steeple is the middle point. By the propagation rule, the

middle point in row n becomes three points in row n + 1 with values (3n, 3n+1, 3n) and indices

(3n+1−3)/2, (3n+1−1)/2, (3n+1+1)/2. The middleness of the indices (3n+1−3)/2 and (3n+1+1)/2

is n + 1. This matches the formula.

On the other hand, consider index i in row n that does not correspond to the middle. It

propagates to three points with indices 3i, 3i + 1, and 3i + 2 in row n + 1. That is, the new three

indices have the same first n digits in their ternary representation as i. Therefore they have the

same middleness. According to the propagation rule, the new cross-differences are decreased by a

factor of 3; this agrees with the formula, since the value of m does not change while the value of n

increases by 1.

The description of steeples that we inferred from Figure 8 now follows as a corollary.

Corollary 19. The steeple in an odd row is equal to the previous steeple times 3. The middle third

of the steeple in an even row is equal to the previous steeple times 3, while the first and last third

are all threes.

Each steeple is surrounded by ones, and every row consists of steeples of various heights together

with ones; ones become new steeples in future rows. The next corollary describes how a new set of

ones is generated from a steeple in an even row.

Corollary 20. In an odd row n = 2k − 1, if the middleness of i is k + 1, then Cn(i) = 1.

Proof. These values are propagated from the set of threes in the previous steeple.

7.2 Recursive description

We are now ready to describe the recursive construction of rows.
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Theorem 21. Consider row Cn and m ≤ dn/2e. The part of the row that has middleness m

consists of 3m−1 copies of the row Cn+1−2m.

Proof. This part of the row is propagated from a series of 3m−1 consecutive ones in row C2m−1,

which are in turn generated from the steeple in row C2m−2.

For example, consider C4. The first and last third of this row are copies of C3, and the middle

third is divided into three parts of equal size. The first and the last part are three copies of C1.

Finally, the middle part of the middle third is the steeple.

The next odd-indexed row has the same description as the previous row with shifted indices.

For each new odd row the description goes deeper into the past.

7.3 Counts

In this section we count how many times each value appears in row Cn. We start by describing all

the peaks.

Lemma 22. All the peaks equal to 3m in Cn, m > 1, are obtained as the propagation of the peaks

3m−1 at level Cn−1. All the peaks equal to 3 in Cn are a propagation of all the terms of value 1 in

Cn−1.

Proof. Peaks can only be achieved through the propagation of the first type: V to (V, 3V, V ).

We would like to count how many of ones, threes and so on are there in the lists of cross-

differences. For this we define two sequences: a(n) = 3n− (−1)n and b(n) = 0n. The sequence a(n)

is sequence A105723 in the OEIS [10]. Starting from index zero the sequence a(n) looks like: 0, 4,

8, 28, 80, 244, 728, 2188, and so on. The sequence b(n) is the characteristic function of 0: sequence

A7 in the OEIS.

The following theorem describes the counts in terms of these two sequences. The cross-

differences in row n are equal to 3k, where 0 ≤ k ≤ n.

Theorem 23. In row n, the number of cross-differences that are equal to 1 is b(n) + a(n)/2. For

k > 0, the number of cross-differences equal to 3k is b(n − k) + a(n − k): the number of peaks of

value 3k is b(n− k) + a(n− k)/2, while the number of non-peaks of value 3k is a(n− k)/2.
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Proof. The proof is by induction on n. For the base of induction consider n equal to zero or one.

In row zero, the number of cross-differences equal to 1 is 1 = b(0)+a(0)/2. In row one, the number

of cross-differences equal to 1 is 2 = a(1)/2 and the number of 3-peaks is 1 = b(0) + a(0)/2. There

are no other possible values for k. Let us now assume the statement is true up to row i.

The number of ones in row i+1 is twice the number of ones in the previous row plus three times

the number of non-peak 3s in the previous row. Thus it is equal to 2(b(i) + a(i)/2) + 3a(i− 1)/2.

For i ≥ 1 it iss not hard to check that a(i + 1) = 2a(i) + 3a(i − 1); indeed, 3i+1 − (−1)i+1 =

2(3i − (−1)i) + 3(3i−1 − (−1)i−1). Hence the claim holds when k = 0.

In general, the number of non-peaks of value 3k in row i + 1, where k > 0 is twice the number

of peaks of the same value in the previous row plus three times the number of non-peaks of the

next value. The calculation is the same as above.

The number of peaks of value 3k in row i + 1, for k > 0, is the number of peaks equal to 3k−1

in row i, or the total number of ones if k = 1. Thus the number of peaks of value 3k in row i + 1

is b(i− k + 1) + a(i− k + 1)/2. This proves our statement for peaks.

Hence the number of cross-differences that equal to 1 as a function of the row number n is 1

when n = 0 and a(n)/2 otherwise: 1, 2, 4, 14, 40, 122, 364, and so on. This is sequence A152011 in

the OEIS [10]. The number of cross-differences that are equal to 3k in row n is b(n− k) + a(n− k).

We note that the first time a particular value appears it occurs exactly once in the middle of

its row. Afterwards, each non-one value is split evenly between peaks and non-peaks.

7.4 Ternary representation

In this section we give a recursive method of computing the cross-difference at any index i in terms

of its ternary representation. Recall that since the first third of Cn is a copy of Cn−1, we can

interpret the cross-differences as a single infinite sequence. Thus the value of the cross-difference

depends only on the index i (and not the row number).

Suppose the ternary representation of i has n digits, and let m = m(i) be the middleness of i.

If m > dn/2e, then we can apply the steeple formula in Lemma 18 to calculate the cross-difference

explicitly as 32m−n−1. If m ≤ dn/2e, then we conclude from Theorem 21 that the range of indices

with the same first m digits as i corresponds to 3m−1 consecutive copies of Cn+1−2m. Then the
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cross-difference at index i is the same as the cross-difference at index i′, where i′ is obtained from

i by removing the m + (m− 1) = 2m− 1 leading ternary digits.

• If the number of leading ones is less than half of the total length, remove these ones and the

same number of digits after that, plus one extra digit. Continue recursively.

• If the number of ones is not less than a half, then we are in a steeple and should use the

steeple formula.

It is easy to see that only the positions of the 1s in the ternary representation of i affect the

recursive procedure, so we may freely interchange 0s and 2s. Thus we have the following lemma:

Lemma 24. The value at index i is the same as at index j if i and j have 1s in exactly the same

positions in their ternary representations.

7.5 Particular values

Let us look at the specific case when the cross-difference is one. From Theorem 23 we know that

the number of ones in row n is (3n − (−1)n)/2, so asymptotically half of the values are 1.

On the other hand, this set contains all the numbers without ones in their ternary representation.

The latter set tends to the Cantor set, which has zero density — our set is much bigger. Compare

this to the no-reduction case, in which the cross-differences are one precisely on the Cantor set.

To make the contrast clear, we draw the set of unit cross-differences in Figure 9; the format is the

same as in Figure 4.

Figure 9: The representation of ones

8 Quasi-fractals in real life

Part of why fractals are such a popular object of study is their ubiquity in real life. Famous

examples of naturally occurring fractals include Romanesco broccoli, ammonite sutures, mountain
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ranges, and ferns. Surprisingly, the quasi-fractals that are discussed in the paper can be found in

real life as well. The examples we present here are man-made, however.

The contour in Figure 6 reminded the second author of her alma mater, Moscow State University.

Figure 10 shows the front profile of the main building. Note how the center tower is not simply

a scaled copy of the side towers, but is rather more elaborate – it resembles a steeple. On the

fringes of the center tower we can see smaller sub-towers which parallel Theorem 21. The large flat

portions mimic long runs of 1s in the sequence of cross-differences.

Figure 10: Moscow State University [14]

Quasi-fractals also appear in jewelry. In Figure 11 below, we can see the motif of “identical left

and right part (earrings), with a similar but more complicated middle part (the pendant)” once

again. This holds recursively within the necklace as well.

Figure 11: Magenta Stone Studded Necklace and Earrings [15]
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