ON THE NUMBER OF PRIMES UP TO THE n TH RAMANUJAN PRIME

CHRISTIAN AXLER

Abstract

The nth Ramanujan prime is the smallest positive integer R_{n} such that for all $x \geq R_{n}$ the interval $(x / 2, x]$ contains at least n primes. In this paper we undertake a study of the sequence $\left(\pi\left(R_{n}\right)\right)_{n \in \mathbb{N}}$, which tells us where the nth Ramanujan prime appears in the sequence of all primes. In the first part we establish new explicit upper and lower bounds for the number of primes up to the nth Ramanujan prime, which imply an asymptotic formula for $\pi\left(R_{n}\right)$ conjectured by Yang and Togbé. In the second part of this paper, we use these explicit estimates to derive a result concerning an inequality involving $\pi\left(R_{n}\right)$ conjectured by of Sondow, Nicholson and Noe.

1. Introduction

Let $\pi(x)$ denotes the number of primes not exceeding x. In 1896, Hadamard [6] and de la ValléePoussin [15] proved, independently, the asymptotic formula $\pi(x) \sim x / \log x$ as $x \rightarrow \infty$, which is known as the Prime Number Theorem. Here, $\log x$ is the natural logarithm of x. In his later paper [16], where he proved the existence of a zero-free region for the Riemann zeta-function $\zeta(s)$ to the left of the line $\operatorname{Re}(s)=1$, de la Vallée-Poussin also estimated the error term in the Prime Number Theorem by showing

$$
\begin{equation*}
\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) . \tag{1.1}
\end{equation*}
$$

The prime counting function and the asymptotic formula (1.1) play an important role in the definition of Ramanujan primes, which have their origin in Bertrand's postulate.

Bertrand's Postulate. For each $n \in \mathbb{N}$ there is a prime number p with $n<p \leq 2 n$.
In terms of the prime counting function, Bertrand's postulate states that $\pi(2 n)-\pi(n) \geq 1$ for every $n \in \mathbb{N}$. Bertrand's postulate was first proved by Chebyshev [4] in 1850. In 1919, Ramanujan [8] proved an extension of Bertrand's postulate by investigating inequalities of the form $\pi(x)-\pi(x / 2) \geq n$ for $n \in \mathbb{N}$. In particular, he found that

$$
\pi(x)-\pi\left(\frac{x}{2}\right) \geq 1 \quad(\text { respectively } 2,3,4,5, \ldots)
$$

for every

$$
\begin{equation*}
x \geq 2 \quad(\text { respectively } 11,17,29,41, \ldots) . \tag{1.2}
\end{equation*}
$$

Using the fact that $\pi(x)-\pi(x / 2) \rightarrow \infty$ as $x \rightarrow \infty$, which follows from (1.1), Sondow [10] introduced the notation R_{n} to represent the smallest positive integer for which the inequality $\pi(x)-\pi(x / 2) \geq n$ holds for every $x \geq R_{n}$. In (1.2), Ramanujan calculated the numbers $R_{1}=2, R_{2}=11, R_{3}=17, R_{4}=29$, and $R_{5}=41$. All these numbers are prime, and it can easily be shown that R_{n} is actually prime for every $n \in \mathbb{N}$. In honor of Ramanujan's proof, Sondow [10] called the number R_{n} the nth Ramanujan prime. A legitimate question is, where the nth Ramanujan prime appears in the sequence of all primes. Letting p_{k} denotes the k th prime number, we have $R_{n}=p_{\pi\left(R_{n}\right)}$, and it seems natural to study the sequence $\left(\pi\left(R_{n}\right)\right)_{n \in \mathbb{N}}$. The first few values of $\pi\left(R_{n}\right)$ for $n=1,2,3, \ldots$ are

$$
\pi\left(R_{n}\right)=1,5,7,10,13,15,17,19,20,25,26,28,31,35,36,39,41,42,49,50,51,52,53, \ldots
$$

For further values of $\pi\left(R_{n}\right)$, see 9 . Since both R_{n} for large n and $\pi(x)$ for large x are hard to compute, we are interested in explicit upper and lower bounds for $\pi\left(R_{n}\right)$. Sondow [10, Theorem 2] found a first lower bound for $\pi\left(R_{n}\right)$ by showing that the inequality

$$
\begin{equation*}
\pi\left(R_{n}\right)>2 n \tag{1.3}
\end{equation*}
$$

[^0]holds for every positive integer $n \geq 2$. Combined with [10, Theorem 3] and the Prime Number Theorem, we get the asymptotic relation
\[

$$
\begin{equation*}
\pi\left(R_{n}\right) \sim 2 n \quad(n \rightarrow \infty) \tag{1.4}
\end{equation*}
$$

\]

This, together with (1.3), means, roughly speaking, that the probability of a randomly chosen prime being a Ramanujan prime is slight less than $1 / 2$. The first upper bound for $\pi\left(R_{n}\right)$ is also due to Sondow [10, Theorem 2]. He found that the upper bound $\pi\left(R_{n}\right)<4 n$ holds for every positive integer n, and conjectured [10, Conjecture 1] that the inequality $\pi\left(R_{n}\right)<3 n$ holds for every positive integer n. This conjecture was proved by Laishram [7. Theorem 2] in 2010. Applying Theorem 4 from the paper of Sondow, Nicholson and Noe [11], we get a refined upper bound for the number of primes less or equal to $\pi\left(R_{n}\right)$, namely that the inequality $\pi\left(R_{n}\right) \leq \pi\left(41 p_{3 n} / 47\right)$ holds for every positive integer n with equality at $n=5$. Srinivasan [12, Theorem 1.1] proved that for every $\varepsilon>0$ there exists a positive integer $N=N(\varepsilon)$ such that

$$
\begin{equation*}
\pi\left(R_{n}\right)<\lfloor 2 n(1+\varepsilon)\rfloor \tag{1.5}
\end{equation*}
$$

for every positive integer $n \geq N$ and conclude [12, Corollary 2.1] that $\pi\left(R_{n}\right) \leq 2.6 n$ for every positive integer n. The present author [1, Theorem 3.22] showed independently that for each $\varepsilon>0$ there is a computable positive integer $N=N(\varepsilon)$ so that $\pi\left(R_{n}\right) \leq\lceil 2 n(1+\varepsilon)\rceil$ for every positive integer $n \geq N$ and conclude that

$$
\begin{equation*}
\pi\left(R_{n}\right) \leq\lceil t n\rceil \tag{1.6}
\end{equation*}
$$

for every positive integer n, where t is a arbitrary real number satisfying $t>48 / 19$. The inequality (1.5) was improved by Srinivasan and Nicholson [14, Theorem 1]. They proved that

$$
\pi\left(R_{n}\right) \leq 2 n\left(1+\frac{3}{\log n+\log \log n-4}\right)
$$

for every positive integer $n \geq 242$. Later, Srinivasan and Arés [13, Theorem 1.1] found a more precise result by showing that for every $\varepsilon>0$ there exists a positive integer $N=N(\varepsilon)$ such that

$$
\begin{equation*}
\pi\left(R_{n}\right)<2 n\left(1+\frac{\log 2+\varepsilon}{\log n+j(n)}\right) \tag{1.7}
\end{equation*}
$$

for every positive integer $n \geq N$, where j is any positive function satisfying $j(n) \rightarrow \infty$ and $n j^{\prime}(n) \rightarrow 0$ as $n \rightarrow \infty$. Setting $\varepsilon=0.5$ and $j(n)=\log \log n-\log 2-0.5$, they found [13, Corollary] that the inequality (1.7) holds for every positive integer $n \geq 44$. In 2016, Yang and Togbé [17, Theorem 1.2] established the following current best upper and lower bound for $\pi\left(R_{n}\right)$ when n satisfies $n>10^{300}$.
Proposition 1.1 (Yang, Togbé). Let n be a positive integer with $n>10^{300}$. Then

$$
\beta<\pi\left(R_{n}\right)<\alpha
$$

where

$$
\begin{aligned}
& \alpha=2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2-0.13}{\log ^{2} n}\right) \\
& \beta=2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2+0.11}{\log ^{2} n}\right)
\end{aligned}
$$

The proof of Proposition 1.1 is based on explicit estimates for the k th prime number p_{k} obtained by Dusart [5, Proposition 6.6 and Proposition 6.7] and on Srinivasan's lemma [12, Lemma 2.1] concerning Ramanujan primes. Instead of using Dusart's estimates, we use the estimates obtained in 3, Corollary 1.2 and Corollary 1.4] to get the following improved upper bound for $\pi\left(R_{n}\right)$.

Theorem 1.2. Let n be a positive integer satisfying $n \geq 5225$ and let

$$
\begin{equation*}
U(x)=\frac{\log 2 \log x(\log \log x)^{2}-c_{1} \log x \log \log x+c_{2} \log x-\log ^{2} 2 \log \log x+\log ^{3} 2+\log ^{2} 2}{\log ^{4} x+\log ^{3} x \log \log x-\log ^{3} x \log 2-\log ^{2} x \log 2} \tag{1.8}
\end{equation*}
$$

where $c_{1}=2 \log ^{2} 2+\log 2$ and $c_{2}=\log ^{3} 2+2 \log ^{2} 2+0.565$. Then

$$
\pi\left(R_{n}\right)<2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}+U(n)\right)
$$

With the same method, we used for the proof of Theorem 1.2, we get the following more precised lower bound for the number of primes not exceeding the nth Ramanujan prime.

Theorem 1.3. Let n be a positive integer satisfying $n \geq 1245$ and let

$$
\begin{equation*}
L(x)=\frac{\log 2 \log x(\log \log x)^{2}-d_{1} \log x \log \log x+d_{2} \log x-\log ^{2} 2 \log \log x+\log ^{3} 2+\log ^{2} 2}{\log ^{4} x+\log ^{3} x \log \log x-\log ^{3} x \log 2-\log ^{2} x \log 2} \tag{1.9}
\end{equation*}
$$

where $d_{1}=2 \log ^{2} 2+\log 2+1.472$ and $d_{2}=\log ^{3} 2+2 \log ^{2} 2-2.51$. Then

$$
\pi\left(R_{n}\right)>2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}+L(n)\right)
$$

A direct consequence of Theorem 1.2 and Theorem 1.3 is the following result, which implies the correctness of a conjecture stated by Yang and Togbé [17, Conjecture 5.1] in 2015.

Corollary 1.4. Let $n \geq 2$ be a positive integer. Then

$$
\pi\left(R_{n}\right)=2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}+\frac{\log 2(\log \log n)^{2}}{\log ^{3} n}+O\left(\frac{\log \log n}{\log ^{3} n}\right)\right)
$$

The initial motivation for writing this paper, was the following conjecture stated by Sondow, Nicholson and Noe [11, Conjecture 1] involving $\pi\left(R_{n}\right)$.

Conjecture 1.5 (Sondow, Nicholson, Noe). For $m=1,2,3, \ldots$, let $N(m)$ be given by the following table:

m	1	2	3	4	5	6	$7,8, \ldots, 19$	$20,21, \ldots$
$N(m)$	1	1245	189	189	85	85	10	2

Then we have

$$
\begin{equation*}
\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right) \quad \forall n \geq N(m) \tag{1.10}
\end{equation*}
$$

Note that the inequality (1.10) clearly holds for $m=1$ and every positive integer n. In the cases $m=2,3, \ldots, 20$, the inequality (1.10) has been verified for every positive integer n with $R_{m n}<10^{9}$. For any fixed positive integer m, we have, by (1.4), $\pi\left(R_{m n}\right) \sim 2 m n \sim m \pi\left(R_{n}\right)$ as $n \rightarrow \infty$. A first result in the direction of Conjecture 1.5 is due to Yang and Togbé [17, Theorem 1.3]. They used Proposition 1.1 to find the following result, which proves Conjecture 1.5 when n satisfies $n>10^{300}$.

Proposition 1.6 (Yang, Togbé). For $m=1,2,3, \ldots$, and $n>10^{300}$, we have

$$
\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)
$$

Using the same method, we apply Theorem 1.2 and Theorem 1.3 to get the following result.
Theorem 1.7. The Conjecture 1.5 of Sondow, Nicholson and Noe holds except for $(m, n)=(38,9)$.

2. Preliminaries

Let n be a positive integer. For the proof of Theorem 1.2 and Theorem 1.3 we need sharp estimates for the nth prime number. The current best upper and lower bound for the nth prime number were obtained in [3, Corollary 1.2 and Corollary 1.4] and are given as follows.

Lemma 2.1. For every positive integers $n \geq 46254381$, we have

$$
p_{n}<n\left(\log n+\log \log n-1+\frac{\log \log n-2}{\log n}-\frac{(\log \log n)^{2}-6 \log \log n+10.667}{2 \log ^{2} n}\right) .
$$

Lemma 2.2. For every positive integer $n \geq 2$, we have

$$
p_{n}>n\left(\log n+\log \log n-1+\frac{\log \log n-2}{\log n}-\frac{(\log \log n)^{2}-6 \log \log n+11.508}{2 \log ^{2} n}\right) .
$$

3. Proof of Theorem 1.2

To prove Theorem 1.2, we use the method investigated by Yang and Togbé [17] for the proof of the upper bound for $\pi\left(R_{n}\right)$ given in Proposition 1.1 First, we note following result, which was obtained by Srinivasan [12, Lemma 2.1]. Although it is a direct consequence of the definition of a Ramanujan prime, it plays an important role in the proof of the upper bound for $\pi\left(R_{n}\right)$ in Proposition 1.1

Lemma 3.1 (Srinivasan). Let $R_{n}=p_{s}$ be the nth Ramanujan prime. Then we have $2 p_{s-n}<p_{s}$ for every positive integer $n \geq 2$.

Now, let n be a positive integer. We define for each real x with $2 n<x<2.6 n$ the functions

$$
\begin{equation*}
G(x)=x\left(\log x+\log \log x-1+\frac{\log \log x-2}{\log x}-\frac{(\log \log x)^{2}-6 \log \log x+10.667}{2 \log ^{2} x}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H(x)=x\left(\log x+\log \log x-1+\frac{\log \log x-2}{\log x}-\frac{(\log \log x)^{2}-6 \log \log x+11.508}{2 \log ^{2} x}\right), \tag{3.2}
\end{equation*}
$$

and consider the function $F_{1}:(2 n, 2.6 n) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F_{1}(x)=G(x)-2 H(x-n) . \tag{3.3}
\end{equation*}
$$

In the following proposition, we note a first property of the function $F_{1}(x)$ concerning its derivative.
Proposition 3.2. Let n be a positive integer with $n \geq 16$. Then $F_{1}(x)$ is a strictly decreasing function on the interval $(2 n, 2.6 n)$.

Proof. Setting

$$
q_{1}(x)=\frac{\log \log x-2}{\log x}-\frac{(\log \log x)^{2}-4 \log \log x+4.667}{2 \log ^{2} x}+\frac{(\log \log x)^{2}-7 \log \log x+13.667}{\log ^{3} x}
$$

and

$$
\begin{aligned}
r_{1}(x)=- & \frac{2(\log \log (x-n)-1)}{\log (x-n)}+\frac{(\log \log (x-n))^{2}-4 \log \log (x-n)+5.508}{2 \log ^{2}(x-n)} \\
& -\frac{2(\log \log (x-n))^{2}-14 \log \log (x-n)+29.016}{\log ^{3}(x-n)}
\end{aligned}
$$

a straightforward calculation shows that the derivative of $F_{1}(x)$ is given by

$$
F_{1}^{\prime}(x)=\log x-2 \log (x-n)+\log \log x-2 \log \log (x-n)+\frac{1}{\log x}+q_{1}(x)+r_{1}(x)
$$

Note that $\log \log (x-n) \geq 1, t^{2}-4 t+4.667>0$ and $2 t^{2}-14 t+29.016>0$ for every $t \in \mathbb{R}$. Hence

$$
\begin{aligned}
& F_{1}^{\prime}(x)<\log x-2 \log (x-n)+\log \log x-2 \log \log (x-n)+\frac{1}{\log x}+\frac{\log \log x-2}{\log x} \\
&+\frac{(\log \log x)^{2}-7 \log \log x+13.667}{\log ^{3} x}+\frac{(\log \log (x-n))^{2}-4 \log \log (x-n)+5.508}{\log ^{2}(x-n)} .
\end{aligned}
$$

The function $t \mapsto(\log \log t-2) / \log t$ has a global maximum at $t=\exp (\exp (3))$. Together with $32 \leq$ $2 n<x<2.6 n$, and the fact that the functions $t \mapsto\left((\log \log t)^{2}-7 \log \log t+13.667\right) / \log ^{3} t$ and $t \mapsto$ $\left((\log \log t)^{2}-4 \log \log t+5.508\right) / \log ^{3} t$ are monotonic decreasing for every $t>1$, we obtain that

$$
F_{1}^{\prime}(x)<1.772-\log n+\log \log (2.6 n)-\log \left(\log ^{2} n\right)
$$

Finally, we use the fact that $t \log ^{2} t>e^{1.772} \log (2.6 t)$ for every $t \geq 6$ to get $F_{1}^{\prime}(x)<0$ for every $x \in$ $(2 n, 2.6 n)$, which means that $F_{1}(x)$ is a strictly decreasing function on the interval $(2 n, 2.6 n)$.

Next, we define the function $\gamma: \mathbb{R}_{\geq 4} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\gamma(x)=\frac{\log 2+\log 2 / \log x+0.565 / \log ^{2} x}{\log x+\log \log x-\log 2-\log 2 / \log x} \tag{3.4}
\end{equation*}
$$

A simple calculation shows that

$$
\begin{equation*}
\gamma(x)=\frac{\log 2}{\log x}-\frac{\log 2 \log \log x-\log ^{2} 2-\log 2}{\log ^{2} x}+U(x) \tag{3.5}
\end{equation*}
$$

where $U(x)$ is defined as in (1.8). In the following lemma, we note some useful properties of $\gamma(x)$.
Lemma 3.3. Let $\gamma(x)$ be defined as in (3.4). Then the following hold:
(a) $\gamma(x)>0$ for every $x \geq 8$,
(b) $\gamma(x)<\log 2 / \log x$ for every $x \geq 10734$,
(c) $\gamma(x)<1 / 4$ for every $x \geq 10734$.

Proof. The statement in (a) is clear. To prove (b), we first note that $U(x)<\log 2(\log \log x)^{2} / \log ^{3} x$ for every $x \geq 230 \geq \exp (\exp (1+\log 2))$. Now we use (3.5) and the fact that $(\log \log x-\log 2-1) \log x \geq$ $(\log \log x)^{2}$ for every $x \geq 10734$, to conclude (b). Finally, (c) is a direct consequence of (b).

Now, we give a proof of Theorem 1.2 ,
Proof of Theorem 1.2. First, we consider the case where n is a positive integer with $n \geq 528491312 \geq$ $\exp (\exp (3))$. By (1.3) and (1.6), we have $2 n<\pi\left(R_{n}\right)<2.6 n$. Hence $\pi\left(R_{n}\right) \geq 2 n \geq 1056982624$ and $\pi\left(R_{n}\right)-n \geq 528491312$. Now we apply Lemma 2.1 and Lemma 2.2 to get that $F_{1}\left(\pi\left(R_{n}\right)\right)>$ $p_{\pi\left(R_{n}\right)}-2 p_{\pi\left(R_{n}\right)-n}$, where F_{1} is defined as in (3.3). Since $R_{n}=p_{\pi\left(R_{n}\right)}$, Srinivasan's Lemma 3.1 yields

$$
\begin{equation*}
F_{1}\left(\pi\left(R_{n}\right)\right)>0 \tag{3.6}
\end{equation*}
$$

For convenience, we write in the following $\gamma=\gamma(n)$ and $\alpha=2 n(1+\gamma)$. Now, by (3.5), we need to show that $\pi\left(R_{n}\right)<\alpha$. For this, we first show that $F_{1}(\alpha)<0$. By Lemma 3.3, we have $2 n<\alpha<2.6 n$. Further,

$$
\begin{equation*}
\frac{F_{1}(\alpha)}{2 n}=(1+\gamma) \log 2-\gamma \log n+\gamma+A_{1}+B_{1}+C_{1}+D_{1}+(1+2 \gamma) \frac{0.841}{2 \log ^{2}(n+2 n \gamma)} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{1}= & (1+\gamma) \log (1+\gamma)-(1+2 \gamma) \log (1+2 \gamma) \\
B_{1}= & (1+\gamma) \log \log (2 n+2 n \gamma)-(1+2 \gamma) \log \log (n+2 n \gamma) \\
C_{1}= & (1+\gamma) \frac{\log \log (2 n+2 n \gamma)-2}{\log (2 n+2 n \gamma)}-(1+2 \gamma) \frac{\log \log (n+2 n \gamma)-2}{\log (n+2 n \gamma)} \\
D_{1}= & -(1+\gamma) \frac{(\log \log (2 n+2 n \gamma))^{2}-6 \log \log (2 n+2 n \gamma)+10.667}{2 \log ^{2}(2 n+2 n \gamma)} \\
& +(1+2 \gamma) \frac{(\log \log (n+2 n \gamma))^{2}-6 \log \log (n+2 n \gamma)+10.667}{2 \log ^{2}(n+2 n \gamma)}
\end{aligned}
$$

In the following, we give upper bounds for the quantities A_{1}, B_{1}, C_{1} and D_{1}. We start with A_{1}. We use the inequalities

$$
\begin{equation*}
t-\frac{t^{2}}{2}<\log (1+t)<t \tag{3.8}
\end{equation*}
$$

which hold for every real $t>0$, and Lemma 3.3(c) to get

$$
\begin{equation*}
A_{1}<(1+\gamma) \gamma-(1+2 \gamma)\left(2 \gamma-2 \gamma^{2}\right)=-\gamma-\gamma^{2}+4 \gamma^{3}<-\gamma \tag{3.9}
\end{equation*}
$$

Next, we estimate B_{1}. Using the right-hand side inequality of (3.8), we easily get

$$
\begin{equation*}
B_{1}<\frac{(1+\gamma) \log 2}{\log n}-\gamma \log \log n \tag{3.10}
\end{equation*}
$$

To find an upper bound for C_{1}, we note that $t \mapsto(\log \log t-2) / \log t$ is a decreasing function on the interval $(\exp (\exp (3)), \infty)$. Together with Lemma 3.3(a), we obtain that the inequality

$$
\begin{equation*}
C_{1}<0 \tag{3.11}
\end{equation*}
$$

holds. Finally, we estimate D_{1}. For this purpose, we consider the function $f:(1, \infty) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{(\log \log x)^{2}-6 \log \log x+10.667}{2 \log ^{2} x}
$$

By the mean value theorem, there exists a real number $\xi \in(n+2 n \gamma, 2 n+2 n \gamma)$ such that $f(2 n+2 n \gamma)-$ $f(n+2 n \gamma)=n f^{\prime}(\xi)$. Since $f^{\prime \prime}(x) \geq 0$ for every $x>1$, we get $f^{\prime}(\xi) \geq f^{\prime}(n+2 n \gamma) \geq f^{\prime}(n)$. Hence we get

$$
f(n+2 n \gamma)-f(2 n+2 n \gamma)=-n f^{\prime}(\xi) \leq-n f^{\prime}(n)=\frac{(\log \log n)^{2}-7 \log \log n+13.667}{\log ^{3} n}
$$

Therefore

$$
D_{1}<(1+\gamma) \frac{(\log \log n)^{2}-7 \log \log n+13.667}{\log ^{3} n}+\gamma f(n+2 n \gamma)
$$

Since $f(x)$ is a strictly decreasing function on the interval $(1, \infty)$, it follows that the inequality

$$
\begin{equation*}
D_{1}<(1+\gamma) \frac{(\log \log n)^{2}-7 \log \log n+13.667}{\log ^{3} n}+\gamma \frac{(\log \log n)^{2}-6 \log \log n+10.667}{2 \log ^{2} n} \tag{3.12}
\end{equation*}
$$

holds. Combining (3.7) with (3.9)-(3.12), we get

$$
\begin{aligned}
\frac{F_{1}(\alpha)}{2 n}<(1 & +\gamma) \log 2-\gamma \log n+\frac{(1+\gamma) \log 2}{\log n}-\gamma \log \log n+(1+\gamma) \frac{r_{1}(\log \log n)}{\log ^{3} n} \\
& +\gamma \frac{r_{2}(\log \log n)}{2 \log ^{2} n}+(1+2 \gamma) \frac{0.841}{2 \log ^{2} n}
\end{aligned}
$$

where $r_{1}(t)=t^{2}-7 t+13.667$ and $r_{2}(t)=t^{2}-6 t+10.667$. The functions $t \mapsto r_{1}(\log \log t) / \log t, t \mapsto$ $r_{1}(\log \log t) / \log ^{2} t$ and $t \mapsto r_{2}(\log \log t) / \log t$ are decreasing on the interval $(1, \infty)$. Hence $r_{1}(\log \log n) \leq$ $r_{1}(3)$ and $r_{2}(\log \log n) \leq r_{2}(3)$. Together with Lemma 3.3(a), Lemma 3.3(b) and $n \geq \exp (\exp (3))$, we obtain that

$$
\frac{F_{1}(\alpha)}{2 n}<(1+\gamma) \log 2-\gamma \log n+\frac{(1+\gamma) \log 2}{\log n}-\gamma \log \log n+\frac{0.565}{\log ^{2} n}
$$

Now we use (3.4) to get that the right-hand side of the last inequality is equal to 0 . Hence $F_{1}(\alpha)<0$. Together with $2 n<\pi\left(R_{n}\right), \alpha<2.6 n$, the inequality (3.6) and Proposition 3.2, we get $\pi\left(R_{n}\right)<\alpha$. We conclude by direct computation.

We get the following weaker but more compact upper bounds for the parameter s.
Corollary 3.4. For every positive integer $n \geq 2$, we have

$$
\pi\left(R_{n}\right)<2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}+\frac{\log 2(\log \log n)^{2}}{\log ^{3} n}\right)
$$

Proof. If $n \geq 5225$, the corollary follows directly from Theorem 1.2, since $U(x) \leq \log 2(\log \log x)^{2} / \log ^{3} x$ for every $x \geq 230$. For the remaining cases of n, we use a computer.

In the next corollary, we reduce the number 10^{300} in Proposition 1.1 as follows.
Corollary 3.5. For every positive integer n satisfying $n \geq 4842763560306$, we have

$$
\pi\left(R_{n}\right)<2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2-0.13}{\log ^{2} n}\right)
$$

Proof. Note that $U(x) \leq 0.13 / \log ^{2} x$ for every $x \geq 4842763560306$. Now we can use Theorem 1.2,
Corollary 3.6. Let n be a positive integer satisfying $n \geq 640$. Then

$$
\pi\left(R_{n}\right)<2 n\left(1+\frac{\log 2}{\log n}\right)
$$

Proof. For every positive integer $n \geq 10734$, we have

$$
\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}-\frac{\log 2(\log \log n)^{2}}{\log ^{3} n}>0
$$

an it suffices to apply Corollary 3.4. We conclude by direct computation.

4. Proof of Theorem 1.3

Using a simalar argument as in the proof of Lemma 3.1, Yang and Togbé [17, p. 248] derived the following result.

Lemma 4.1 (Yang, Togbé). Let $R_{n}=p_{s}$ be the nth Ramanujan prime. Then we have $p_{s}<2 p_{s-n+1}$ for every positive integer n.

Next, we define for each positive integer n the function $F_{2}:(2 n, 2.6 n) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F_{2}(x)=H(x)-2 G(x-n+1) \tag{4.1}
\end{equation*}
$$

where the functions $G(x)$ and $H(x)$ are given by (3.1) and (3.2), respectively. In Proposition 3.2 we showed that for every positive integer $n \geq 16$, the function $F_{1}(x)$ is decreasing on the interval $(2 n, 2.6 n)$. In the following proposition, we get a similar result for the function $F_{2}(x)$.
Proposition 4.2. Let n be a positive integer with $n \geq 15$. Then $F_{2}(x)$ is a strictly decreasing function on the interval $(2 n, 2.6 n)$.

Proof. A straightforward calculation shows that the derivative of $F_{2}(x)$ is given by

$$
\begin{aligned}
F_{2}^{\prime}(x)= & \log x-2 \log (x-n+1)+\log \log x-2 \log \log (x-n+1)+\frac{1}{\log x}+\frac{\log \log x-2}{\log x} \\
& -\frac{(\log \log x)^{2}-4 \log \log x+5.508}{2 \log ^{2} x}+\frac{(\log \log x)^{2}-7 \log \log x+14.508}{\log ^{3} x} \\
& -\frac{2(\log \log (x-n+1)-1)}{\log (x-n+1)}+\frac{(\log \log (x-n+1))^{2}-4 \log \log (x-n+1)+4.667}{2 \log ^{2}(x-n+1)} \\
& -\frac{2(\log \log (x-n+1))^{2}-14 \log \log (x-n+1)+27.334}{\log ^{3}(x-n+1)} .
\end{aligned}
$$

Now we argue as in the proof of Proposition 3.2 to obtain that the inequality

$$
F_{2}^{\prime}(x)<1.717-\log n+\log \log (2.6 n)-\log \left(\log ^{2} n\right)
$$

holds for every real x such that $2 n<x<2.6 n$. Since $t \log ^{2} t>e^{1.717} \log (2.6 t)$ for every $t \geq 6$, we get that $F_{2}(x)$ is a strictly decreasing function on the interval ($2 n, 2.6 n$).

Now, we define the function $\delta: \mathbb{R}_{\geq 4} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\delta(x)=\frac{\log 2+\log 2 / \log x-(1.472 \log \log x+2.51) / \log ^{2} x}{\log x+\log \log x-\log 2-\log 2 / \log x} . \tag{4.2}
\end{equation*}
$$

A simple calculation shows that

$$
\begin{equation*}
\delta(x)=\frac{\log 2}{\log x}-\frac{\log 2 \log \log x-\log ^{2} 2-\log 2}{\log ^{2} x}+L(x), \tag{4.3}
\end{equation*}
$$

where $L(x)$ is given by (1.9). In the following lemma, we note two properties of the function $\delta(x)$, which will be useful in the proof of Theorem 1.3 .

Lemma 4.3. Let $\delta(x)$ be defined as in (4.2). Then the following two inequalities hold:
(a) $\delta(x)>0.638 / \log x$ for every $x \geq \exp (\exp (3))$,
(b) $\delta(x)<\log 2 / \log x$ for every $x \geq 230$.

Proof. Since $0.055 \log x+0.812>0.638 \log \log x$ for every $x \geq 4.71 \cdot 10^{8}$, it follows that the inequality

$$
(\log 2-0.638) \log x+(1+0.638) \log 2-\frac{1.472 \cdot 3+2.51-0.638 \log 2}{e^{3}}>0.638 \log \log x
$$

holds for every $x \geq 4.71 \cdot 10^{8}$. The function $t \mapsto \log \log t / \log t$ is decreasing for $x \geq e^{e}$. Hence

$$
(\log 2-0.638) \log x+(1+0.638) \log 2-\frac{1.472 \log \log x+2.51-0.638 \log 2}{\log x}>0.638 \log \log x
$$

for every $x \geq \exp (\exp (3))$. Now it suffices to note that the last inequality is equivalent to $\delta(x)>$ $0.638 / \log x$. This proves (a). Next, we prove (b). Since $\log 2 \log \log x>\log 2+\log ^{2} 2$ for every $x \geq 230 \geq$ $\exp (\exp (1+\log 2))$, we obtain that the inequality

$$
\log 2+\log ^{2} 2<\log 2 \log \log x+\frac{1.472+2.51-\log ^{2} 2}{\log x}
$$

holds for $x \geq 230$. Again, it suffices to note that the last inequality is equivalent to $\delta(x)<\log 2 / \log x$.
Finally, we give the proof of Theorem 1.3 ,
Proof of Theorem 1.3. First, we consider the case where n is a positive integer with $n \geq 528491312 \geq$ $\exp (\exp (3))$. By (1.3) and (1.6), we have $2 n<\pi\left(R_{n}\right)<2.6 n$. Further, $\pi\left(R_{n}\right)>2 n \geq 1056982624$ and $\pi\left(R_{n}\right)-n>528491312$. Applying Lemma 2.1 and Lemma 2.2, we get $F_{2}\left(\pi\left(R_{n}\right)\right)<p_{\pi}\left(R_{n}\right)-$ $2 p_{\pi\left(R_{n}\right)-n+1}$, where F_{2} is defined as in (4.1). Note that $R_{n}=p_{\pi\left(R_{n}\right)}$. Hence, by Lemma 4.1 we get

$$
\begin{equation*}
F_{2}\left(\pi\left(R_{n}\right)\right)<p_{\pi\left(R_{n}\right)}-2 p_{\pi\left(R_{n}\right)-n+1}<0 \tag{4.4}
\end{equation*}
$$

In the following, we use, for convenience, the notation $\delta=\delta(n)$ and write $\beta=2 n(1+\delta)$. So, by (4.3), we need to prove that $\beta<\pi\left(R_{n}\right)$. For this purpose, we first show that $F_{2}(\beta)>0$. From Lemma 4.3, it follows that $2 n<\beta<2.6 n$. Furthermore, we have

$$
\begin{equation*}
\frac{F_{2}(\beta)}{2 n}=(1+\delta) \log 2-\delta \log n-\frac{\log n}{n}+\delta+\frac{1}{n}+A_{2}+B_{2}+C_{2}+D_{2}-\frac{0.841(1+\delta)}{2 \log ^{2}(2 n+2 n \delta)} \tag{4.5}
\end{equation*}
$$

where the quantities A_{2}, B_{2}, C_{2} and D_{2} are given by

$$
\begin{aligned}
A_{2}= & (1+\delta) \log (1+\delta)-\left(1+2 \delta+\frac{1}{n}\right) \log \left(1+2 \delta+\frac{1}{n}\right) \\
B_{2}= & (1+\delta) \log \log (2 n+2 n \delta)-\left(1+2 \delta+\frac{1}{n}\right) \log \log (n+2 n \delta+1) \\
C_{2}= & (1+\delta) \frac{\log \log (2 n+2 n \delta)-2}{\log (2 n+2 n \delta)}-\left(1+2 \delta+\frac{1}{n}\right) \frac{\log \log (n+2 n \delta+1)-2}{\log (n+2 n \delta+1)} \\
D_{2}= & -(1+\delta) \frac{(\log \log (2 n+2 n \delta))^{2}-6 \log \log (2 n+2 n \delta)+10.667}{2 \log ^{2}(2 n+2 n \delta)} \\
& +\left(1+2 \delta+\frac{1}{n}\right) \frac{(\log \log (n+2 n \delta+1))^{2}-6 \log \log (n+2 n \delta+1)+10.667}{2 \log ^{2}(n+2 n \delta+1)}
\end{aligned}
$$

To show that $F_{2}(\beta)>0$, we give in the following some lower bounds for the quantities A_{2}, B_{2}, C_{2} and D_{2}. To find a lower bound for A_{2}, we consider the function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x \log x$. Then $A_{2}=f(1+\delta)-f(1+2 \delta+1 / n)$. By the mean value theorem, there exists $\xi \in(1+\delta, 1+2 \delta+1 / n)$, so that $A_{2}=-(\delta+1 / n)(\log \xi+1)$. Since $\log \xi \leq \log (1+2 \delta+1 / n) \leq 2 \delta+1 / n$, we get

$$
A_{2} \geq-\delta-2 \delta^{2}-\frac{1}{n}\left(1+3 \delta+\frac{1}{n}\right)
$$

Applying Lemma 4.3(b) to the last inequality, we obtain that

$$
\begin{equation*}
A_{2} \geq-\delta-\frac{2 \log ^{2} 2}{\log ^{2} n}-\frac{1}{\log ^{2} n} \frac{(1+3 \delta+1 / n) \log ^{2} n}{n} \geq-\delta-\frac{0.961}{\log ^{2} n} \tag{4.6}
\end{equation*}
$$

Our next goal is to estimate B_{2}. For this purpose, we use the right-hand side inequality of (3.8), Lemma 4.3 (b) and the inequality $1 /(x \log x)<0.0037 / \log ^{2} x$, which holds for every $x \geq 2036$, to get

$$
\begin{equation*}
\log \log (n+2 n \delta+1)<\log \log n+\frac{2 \log 2}{\log ^{2} n}+\frac{1}{n \log n}<\log \log n+\frac{1.39}{\log ^{2} n} \tag{4.7}
\end{equation*}
$$

On the other hand, we have

$$
\log \log (2 n+2 n \delta)=\log \log n+\log \left(1+\frac{\log 2+\log (1+\delta)}{\log n}\right)
$$

Applying the left-hand side inequality of (3.8), we obtain that

$$
\log \log (2 n+2 n \delta) \geq \log \log n+\frac{\log 2}{\log n}+\frac{\log (1+\delta)}{\log n}-\frac{(\log 2+\log (1+\delta))^{2}}{2 \log ^{2} n}
$$

Combined with

$$
(\log 2+\log (1+\delta))^{2} \leq(\log 2+\delta)^{2} \leq\left(\log 2+\frac{\log 2}{\log n}\right)^{2} \leq 0.53
$$

it follows that the inequality

$$
\log \log (2 n+2 n \delta) \geq \log \log n+\frac{\log 2}{\log n}+\frac{\log (1+\delta)}{\log n}-\frac{0.265}{\log ^{2} n}
$$

holds. Again, we use the left-hand side inequality of (3.8) to establish

$$
\log \log (2 n+2 n \delta) \geq \log \log n+\frac{\log 2}{\log n}+\frac{\delta-\delta^{2} / 2}{\log n}-\frac{0.265}{\log ^{2} n}
$$

Now we apply Lemma 4.3(a) and Lemma 4.3(b) to obtain that

$$
\log \log (2 n+2 n \delta) \geq \log \log n+\frac{\log 2}{\log n}+\frac{0.361}{\log ^{2} n}
$$

Together with the definition of B_{2} and (4.6), we get

$$
B_{2} \geq-\delta \log \log n+\frac{(1+\delta) \log 2}{\log n}-\frac{\log \log n}{n}-\frac{1.029+2.419 \delta}{\log ^{2} n}-\frac{1.39}{n \log ^{2} n}
$$

Finally, we use a computer and Lemma 4.3(b) to get

$$
\begin{equation*}
B_{2} \geq-\delta \log \log n+\frac{(1+\delta) \log 2}{\log n}-\frac{1.113}{\log ^{2} n} \tag{4.8}
\end{equation*}
$$

Next, we find an lower bound for C_{2}. For this, we apply the inequality

$$
\frac{2(1+2 \delta+1 / n)}{\log (n+2 n \delta+1)} \geq \frac{2(1+\delta)}{\log (2 n+2 n \delta)}
$$

to the definition of C_{2} to get

$$
C_{2} \geq(1+\delta) \frac{\log \log (2 n+2 n \delta)}{\log (2 n+2 n \delta)}-\left(1+2 \delta+\frac{1}{n}\right) \frac{\log \log (n+2 n \delta+1)}{\log (n+2 n \delta+1)}
$$

We use $2 n+2 n \delta \geq n+2 n \delta+1 \geq n$ to obtain that the inequality

$$
C_{2} \geq-\log \log (n+2 n \delta+1) \frac{(\delta+1 / n) \log n+(1+2 \delta+1 / n)(\log 2+\log (1+\delta))}{\log (2 n+2 n \delta) \log (n+2 n \delta+1)}
$$

holds. Applying the right-hand side inequality of (3.8) and Lemma 4.3(b) to the last inequality, we get

$$
C_{2} \geq-\log \log (n+2 n \delta+1) \frac{(\log 2 / \log n+1 / n) \log n+(1+2 \log 2 / \log n+1 / n)(\log 2+\log 2 / \log n)}{\log (2 n+2 n \delta) \log (n+2 n \delta+1)}
$$

A computation shows that

$$
\left(1+\frac{2 \log 2}{\log n}+\frac{1}{n}\right)\left(\log 2+\frac{\log 2}{\log n}\right) \leq 0.778 .
$$

Hence

$$
C_{2} \geq-\frac{(\log 2+0.778) \log \log (n+2 n \delta+1)}{\log (2 n+2 n \delta) \log (n+2 n \delta+1)}-\frac{\log n \log \log (n+2 n \delta+1)}{n \log (2 n+2 n \delta) \log (n+2 n \delta+1)} .
$$

Note that the function $t \mapsto \log \log t / \log t$ is a decreasing function for every $t>e^{e}$, we obtain that

$$
\begin{equation*}
C_{2} \geq-\frac{(\log 2+0.778) \log \log n}{\log ^{2} n}-\frac{\log \log n}{n \log n} \geq-\frac{1.472 \log \log n}{\log ^{2} n} . \tag{4.9}
\end{equation*}
$$

Finally, we estimate D_{2}. For this purpose, we consider the function $f:(1, \infty) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{(\log \log x)^{2}-6 \log \log x+10.667}{2 \log ^{2} x} .
$$

Note that $f(x)$ is a strictly decreasing function on the interval $(1, \infty)$ and the numerator of $f(x)$ is positive for every real $x>1$. Together with $2 n+2 n \delta \geq n+2 n \delta+1 \geq n$, we get

$$
\begin{equation*}
D_{2} \geq\left(\delta+\frac{1}{n}\right) \frac{(\log \log n)^{2}-6 \log \log n+10.667}{2 \log ^{2} n}>0 \tag{4.10}
\end{equation*}
$$

Finally, we combine (4.5) with (4.6) and (4.8)-(4.10) to get that the inequality

$$
\begin{aligned}
\frac{F_{2}(\beta)}{2 n} & >(1+\delta)\left(\log 2+\frac{\log 2}{\log n}\right)-\delta \log n-\frac{\log n-1}{n}-\frac{1.472 \log \log n+2.4945}{\log ^{2} n}-\delta \log \log n-\frac{0.841 \delta}{2 \log ^{2} n} \\
& \geq \delta(-\log n-\log \log n+\log 2+\log 2 / \log n)+\log 2-\frac{1.472 \log \log n+2.51}{\log ^{2} n}+\frac{\log 2}{\log n}
\end{aligned}
$$

holds. Now it suffices to use (4.2) to get that the right-hand side of the last inequality is equal to 0 and it follows that $F_{2}(\beta)>0$. Together with $2 n<\pi\left(R_{n}\right), \beta<2.6 n$, the inequality (4.4) and Proposition4.2, we obtain that $\pi\left(R_{n}\right)>\beta$ for every positive integer $n \geq 528491312$. We conclude by direct computation.

Since $L(x) \geq 0$ for every $x \geq 10^{57}$, we use Theorem 1.3 to get the following weaker but more compact lower bound for $\pi\left(R_{n}\right)$.

Corollary 4.4. Let n be a positive integer satisfying $n \geq 10^{57}$. Then

$$
\pi\left(R_{n}\right)>2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2}{\log ^{2} n}\right)
$$

In the next corollary, we use Theorem 1.3 to find that the lower bound for $\pi\left(R_{n}\right)$ given in Proposition 1.1 also holds for every positive integer n satisfying $51396214158824 \leq n \leq 10^{300}$.

Corollary 4.5. Let n be a positive integer satisfying $n \geq 51396214158824$. Then

$$
\pi\left(R_{n}\right)>2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n-\log ^{2} 2-\log 2+0.11}{\log ^{2} n}\right)
$$

Proof. The claim follows directly by Theorem 1.3 and the fact that $L(x) \geq-0.11 / \log ^{2} x$ for every $x \geq 51396214158824$.

Finally, we give the following result concerning a lower bound for $\pi\left(R_{n}\right)$.
Corollary 4.6. Let n be a positive integer satisfying $n \geq 85$. Then

$$
\pi\left(R_{n}\right)>2 n\left(1+\frac{\log 2}{\log n}-\frac{\log 2 \log \log n}{\log ^{2} n}\right)
$$

Proof. Since $L(x)+\left(\log ^{2} 2+\log 2\right) / \log ^{2} x \geq 0$ for every $x \geq 20$, we apply Theorem 1.3 to get the correctness of the corollary for every positive integer $n \geq 1245$. We conclude by direct computation.

5. Proof of Theorem 1.7

In this section we give a proof of Theorem 1.7 by using Theorem 3.22 of [1]. For this, we need to introduce the following notations. By [2, Corollary 3.4 and Corollary 3.5], we have

$$
\begin{equation*}
\frac{x}{\log x-1-\frac{1}{\log x}}<\pi(x)<\frac{x}{\log x-1-\frac{1.17}{\log x}} \tag{5.1}
\end{equation*}
$$

where the left-hand side inequality is valid for every $x \geq 468049$ and the right-hand side inequality holds for every $x \geq 5.43$. Using the right-hand side inequality of (5.1), we get $p_{n}>n\left(\log p_{n}-1-1.17 / \log p_{n}\right)$ for every positive integer n. In addition, we set $\varepsilon>0$ and $\lambda=\varepsilon / 2$. Let $S=S(\varepsilon)$ be defined by

$$
S=\exp \left(\sqrt{1.17+\frac{2(1+\varepsilon)}{\varepsilon}\left(0.17+\frac{\log 2}{\log (2 \cdot 5.43)}\right)+\left(\frac{1}{2}+\frac{(1+\varepsilon) \log 2}{\varepsilon}\right)^{2}}+\frac{1}{2}+\frac{(1+\varepsilon) \log 2}{\varepsilon}\right)
$$

and let $T=T(\varepsilon)$ be defined by $T=\exp (1 / 2+\sqrt{1.17+0.17 / \lambda+1 / 4})$. By setting $X_{9}=X_{9}(\varepsilon)=$ $\max \{468049,2 S, T\}$, we get the following result.

Lemma 5.1. Let $\varepsilon>0$. For every positive integer n satisfying $n \geq\left(\pi\left(X_{9}\right)+1\right) /(2(1+\varepsilon))$, we have

$$
R_{n} \leq p_{\lceil 2(1+\varepsilon) n\rceil}
$$

Proof. This follows from Theorem 3.22 and Lemma 3.23 of 1 .
The following proof of Theorem 1.7 consists of three steps. In the first step, we apply Theorem 1.2 and Theorem 1.3 to derive a lower bound for the quantity $m \pi\left(R_{n}\right)-\pi\left(R_{m n}\right)$, which holds for every positive integers m and n satisfying $m \geq 2$ and $n \geq \max \{\lceil 5225 / m\rceil, 1245\}$. Then, in the second step, we use this lower bound and a computer to establish Theorem 1.7 for the cases $m=2$ and $m \in\{3,4, \ldots, 19\}$. Finally, we consider the case where $m \geq 20$. In this case, we first show that the inequality $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ holds for every positive integer $n \geq 1245$. So it suffices to show that the required inequality also holds for every positive integers m and n with $m \geq 20$ and $N(m) \leq n \leq 1244$, where $N(m)$ is defined as in Theorem 1.7, with the only exception $(m, n)=(38,9)$. For this purpose, note that

$$
\begin{equation*}
\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right) \quad \Leftrightarrow \quad R_{m n} \leq p_{m \pi\left(R_{n}\right)} \tag{5.2}
\end{equation*}
$$

Now, for each $n \in\{2, \ldots, 1244\}$ we use (5.2) and Lemma 5.1 with $\varepsilon=\pi\left(R_{n}\right) / 2 n-1$ (note that $\varepsilon>0$ by (1.3)) to find a positive integer $M(n)$, so that $R_{m n} \leq p_{m \pi\left(R_{n}\right)}$ for every positive integer $m \geq M(n)$. Finally we check with a computer for which $m<M(n)$ the inequality $R_{m n} \leq p_{m \pi\left(R_{n}\right)}$ holds.

Proof of Theorem 1.7. First, we note that the inequality (1.10) holds for $m=1$. So, we can assume that $m \geq 2$. Let n be a positive integer with $n \geq \max \{\lceil 5225 / m\rceil, 1245\}$. By (3.4), (3.5) and Theorem (1.2, we have

$$
\begin{equation*}
\pi\left(R_{m n}\right)<2 m n\left(1+\frac{\log 2+\log 2 / \log (m n)+0.565 / \log ^{2}(m n)}{\log (m n)+\log \log (m n)-\log 2-\log 2 / \log (m n)}\right) \tag{5.3}
\end{equation*}
$$

and, by (4.2), (4.3) and Theorem 1.3) we have

$$
\begin{equation*}
\pi\left(R_{n}\right)>2 n\left(1+\frac{\log 2+\log 2 / \log n-(1.472 \log \log n+2.51) / \log ^{2} n}{\log n+\log \log n-\log 2-\log 2 / \log n}\right) \tag{5.4}
\end{equation*}
$$

We set $\lambda(x)=\log x+\log \log x-\log 2-\log 2 / \log x$ and $\phi(x)=1.472 \log \log x+2.51$. Then, by (5.3) and (5.4), we get

$$
\begin{equation*}
\frac{m \pi\left(R_{n}\right)-\pi\left(R_{m n}\right)}{2 m n}>\frac{W_{m}(n)}{\lambda(n) \lambda(m n)} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{gathered}
W_{m}(n)=\log 2 \log m+\log 2(\log \log (m n)-\log \log n)+\log 2\left(\frac{\log (m n)}{\log n}-\frac{\log n}{\log (m n)}\right) \\
+ \\
+\log 2\left(\frac{\log \log (m n)}{\log n}-\frac{\log \log n}{\log (m n)}\right)-\frac{\phi(n) \lambda(m n)}{\log ^{2} n}-\frac{0.565 \lambda(n)}{\log ^{2}(m n)} .
\end{gathered}
$$

Clearly, it suffices to show that $W_{m}(n) \geq 0$. Setting $g(x)=\log \log x$, we get, by the mean value theorem, that there exists a real number $\xi \in(n, m n)$ such that $g(m n)-g(n)=(m-1) n g^{\prime}(\xi)$. Hence

$$
\begin{equation*}
\log \log (m n)-\log \log n=\frac{(m-1) n}{\xi \log \xi} \geq \frac{m-1}{m \log (m n)} \geq \frac{1}{2 \log (m n)} \tag{5.6}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
\frac{\log (m n)}{\log n}-\frac{\log n}{\log (m n)}=\frac{\log m}{\log n}+\frac{\log m}{\log (m n)} \tag{5.7}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\frac{\log \log (m n)}{\log n}-\frac{\log \log n}{\log (m n)}>\frac{\log m \log \log n}{\log ^{2}(m n)} \tag{5.8}
\end{equation*}
$$

Combining (5.6)-(5.8) with the definition of $W_{m}(n)$, we obtain that the inequality

$$
W_{m}(n)>\log m\left(\log 2+\frac{\log 2}{\log n}\right)+\log 2\left(\frac{\log m+1 / 2}{\log (m n)}+\frac{\log m \log \log n}{\log ^{2}(m n)}\right)-\frac{\phi(n) \lambda(m n)}{\log ^{2} n}-\frac{0.565 \lambda(n)}{\log ^{2}(m n)}
$$

Since $\lambda(x)<\log x+\log \log x-\log 2<\log x+\log \log x$, we get

$$
\begin{aligned}
W_{m}(n)> & \log m\left(\log 2+\frac{\log 2}{\log n}-\frac{\phi(n)}{\log ^{2} n}\right)+\log 2\left(\frac{\log m+1 / 2}{\log (m n)}+\frac{\log m \log \log n}{\log ^{2}(m n)}\right) \\
& -\frac{\phi(n)}{\log n}-\frac{\phi(n) \log \log (m n)}{\log ^{2} n}+\frac{\phi(n) \log 2}{\log ^{2} n}-\frac{0.565 \log n}{\log ^{2}(m n)}-\frac{0.565 \log \log n}{\log ^{2}(m n)} .
\end{aligned}
$$

Now, we use the right-hand side inequality of (3.8) to get $\log \log (m n) \leq \log \log n+\log m / \log n$. Finally, we have

$$
\begin{gather*}
W_{m}(n)>\log m\left(\log 2+\frac{\log 2}{\log n}-\frac{\phi(n)}{\log ^{2} n}-\frac{\phi(n)}{\log ^{3} n}\right)-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n} \tag{5.9}\\
+\frac{(\log m+1 / 2) \log 2-0.565}{\log (m n)}+\frac{(\log m \log 2-0.565) \log \log n}{\log ^{2}(m n)}
\end{gather*}
$$

for every positive integers m and n satisfying $m \geq 2$ and $n \geq \max \{\lceil 5225 / m\rceil, 1245\}$. Next, we use this inequality to prove the theorem. For this purpose, we consider the following three cases:
(i) Case 1: $m=2$.

First, let $n \geq 4903689$. In this case, we have $(\log m+1 / 2) \log 2-0.565 \geq 0.262$ and $\log m \log 2-$ $0.565>-0.085$. Hence

$$
\frac{(\log m+1 / 2) \log 2-0.565}{\log (m n)}+\frac{(\log m \log 2-0.565) \log \log n}{\log ^{2}(m n)}>0
$$

Applying this inequality to (5.9), we get

$$
W_{2}(n)>\log 2\left(\log 2+\frac{\log 2}{\log n}-\frac{\phi(n)}{\log ^{2} n}-\frac{\phi(n)}{\log ^{3} n}\right)-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n} .
$$

Since $\log 2-\phi(x) / \log x-\phi(x) / \log ^{2} x>0$ for every real $x \geq 10377$, we get

$$
W_{2}(n)>\log ^{2} 2-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n} .
$$

Note that the right-hand side of the last inequality is positive. Combined with (5.5), we get that $\pi\left(R_{2 n}\right) \leq 2 \pi\left(R_{n}\right)$ holds for every positive integer $n \geq 4903689$. A direct computation shows that the inequality $\pi\left(R_{2 n}\right) \leq 2 \pi\left(R_{n}\right)$ also holds for every positive integer n so that $1245 \leq n \leq$ 4903689 .
(ii) Case 2: $m \in\{3,4, \ldots, 19\}$.

First, we consider the case where $n \geq 6675$. By (5.9), we have

$$
W_{m}(n)>\log m\left(\log 2+\frac{\log 2}{\log n}-\frac{\phi(n)}{\log ^{2} n}-\frac{\phi(n)}{\log ^{3} n}\right)-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n} .
$$

We set $\delta_{2}=0.003314$ to obtain that the inequality

$$
\delta_{2}+\frac{\log 2}{\log x}-\frac{\phi(x)}{\log ^{2} x}-\frac{\phi(x)}{\log ^{3} x}>0
$$

holds for every real $x \geq 6675$. So we see that

$$
W_{m}(n)>\left(\log 2-\delta_{2}\right) \log 3-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n}
$$

and since the right-hand side of the last inequality is positive, we use (5.5) to conclude that $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ holds for each $m \in\{3,4, \ldots, 19\}$ and every positive integer $n \geq 6675$. For $m \in\{3,4\}$, we verify with a direct computation that the inequality $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ also holds for every positive integer n so that $189 \leq n \leq 6674$. For $m \in\{5,6\}$, we use a computer to check that the inequality $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ is also valid for every positive integer n satisfying $85 \leq n \leq 6674$. Finally, if $m \in\{7,8, \ldots, 19\}$, a computer check shows that the required inequality also holds for every positive integer n with $10 \leq n \leq 6674$.
(iii) Case 3: $m \geq 20$.

First, let $n \geq 1245$. Setting $\delta_{3}=0.03$, we obtain, similar to Case 2, that

$$
W_{m}(n)>\left(\log 2-\delta_{3}\right) \log 20-\frac{\phi(n)}{\log n}-\frac{\phi(n)(\log \log n-\log 2)}{\log ^{2} n}
$$

Note that the right-hand side of the last inequality is positive. Together with (5.5), we get that $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ holds for all positive integers m and n satisfying $m \geq 20$ and $n \geq 1245$. Now, for each $n \in\{2, \ldots, 1244\}$, we use (5.2), Lemma 5.1 with $\varepsilon=\pi\left(R_{n}\right) / 2 n-1$ and a C ++ version of the following MAPLE code to find positive integer $M(n) \geq 20$, so that $R_{m n} \leq p_{m \pi\left(R_{n}\right)}$ for every positive integer $m \geq M(n)$ and then we check for which m with $20 \leq m<M(n)$ the inequality $R_{m n} \leq p_{m \pi\left(R_{n}\right)}$ holds:

```
> restart: with(numtheory): Digits := 100:
>for n from 1244 by -1 to 2 do
    ep := pi(R[n])/(2*n)-1: # R[n] denotes the nth Ramanujan prime
    lambda := ep/2:
    S := ceil(evalf(exp(sqrt(1.17+2*(1+ep)/ep*(0.17+log(2)/log(2*5.43))+
            (1/2+(1+ep)*log(2)/ep) 2)+1/2+(1+ep)*log(2)/ep):
    T := ceil(evalf(exp(sqrt(1.17+0.17/lambda+1/4)+1/2))):
    X9 := max(468049,2*S,T): M := ceil((1+pi(X9))/(2*(1+ep))):
    # Hence pi(R[mn]) <= m*pi(R[n]) for all m >= M by Lemma 5.1
    while M*pi(R[n]) - pi(R[n*M]) >= 0 and M >= 20 do
            M := M-1:
    end do:
    L[n] := M+1:
end do:
```

Since $L[i]=20$ for every $i \in\{2, \ldots, 1244\} \backslash\{9\}$ and $L[9]=39$, we get that $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ for every positive integers n, m with $n \in\{2, \ldots, 1244\} \backslash\{9\}$ and $m \geq 20$ and for every positive integers n, m with $n=9$ and $m \geq 39$. A direct computation shows that the inequality $\pi\left(R_{9 m}\right) \leq m \pi\left(R_{9}\right)$ holds for every m with $20 \leq m \leq 37$ as well and that $38 \pi\left(R_{9}\right)-\pi\left(R_{9.38}\right)=-2$.
So, we showed that the inequality $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ holds for every $m \in \mathbb{N}$ and every positive integer $n \geq N(m)$ with the only exception $(m, n)=(38,9)$, as desired.

We use Theorem 1.7 and a computer to get the following remark.

Remark. The inequality $\pi\left(R_{m n}\right) \leq m \pi\left(R_{n}\right)$ fails if and only if $(m, n) \in \mathbb{N}_{\geq 2} \times\{1\}$ (see (1.3)) or

$$
\begin{aligned}
(m, n) \in\{ & (2,3),(2,7),(2,8),(2,9),(2,22),(2,23),(2,25),(2,37),(2,38),(2,49),(2,53),(2,54), \\
& (2,55),(2,66),(2,82),(2,83),(2,84),(2,85),(2,86),(2,87),(2,101),(2,102),(2,113), \\
& (2,114),(2,115),(2,160),(2,161),(2,162),(2,179),(2,180),(2,184),(2,185),(2,186), \\
& (2,232),(2,240),(2,241),(2,246),(2,247),(2,376),(2,377),(2,378),(2,379),(2,380), \\
& (2,381),(2,386),(2,387),(2,388),(2,412),(2,531),(2,532),(2,537),(2,538),(2,547), \\
& (2,548),(2,549),(2,550),(2,551),(2,552),(2,553),(2,554),(2,555),(2,556),(2,557), \\
& (2,558),(2,792),(2,793),(2,794),(2,795),(2,796),(2,797),(2,798),(2,799),(2,800), \\
& (2,801),(2,802),(2,803),(2,804),(2,1140),(2,1141),(2,1142),(2,1146),(2,1147), \\
& (2,1202),(2,1241),(2,1242),(2,1243),(2,1244),(3,9),(3,11),(3,23),(3,25),(3,49), \\
& (3,54),(3,55),(3,56),(3,57),(3,66),(3,67),(3,83),(3,84),(3,114),(3,115),(3,160), \\
& (3,187),(3,188),(4,9),(4,11),(4,37),(4,38),(4,42),(4,54),(4,55),(4,82),(4,83), \\
& (4,84),(4,114),(4,115),(4,188),(5,3),(5,9),(5,84),(6,28),(6,54),(6,55),(6,84), \\
& (7,3),(7,9),(8,9),(9,9),(10,9),(11,3),(11,9),(12,9),(13,9),(14,9),(15,3),(15,9), \\
& (16,9),(17,9),(18,9),(19,9),(38,9)\} .
\end{aligned}
$$

References

[1] C. Axler, On generalized Ramanujan primes, Ramanujan J. 39 (2016), no. 1, 1-30.
[2] C. Axler, New bounds for the prime counting function, Integers 16 (2016), Paper No. A22, 15 pp.
[3] C. Axler, New estimates for the n-th prime number, preprint, 2017. Available at arxiv.org/1706.03651
[4] P. Chebychev, Mémoire sur les nombres premiers, Mémoires des savants étrangers de l'Acad. Sci. St.Pétersbourg 7 (1850), 17-33 [Also, Journal de mathématiques pures et appliques 17 (1852), 366-390].
[5] P. Dusart, Estimates of some functions over primes without R.H., preprint, 2010. Available at arxiv.org/1002. 0442
[6] J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199-220.
[7] S. Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory 6 (2010), no. 8, 1869-1873.
[8] S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919), 181-182.
[9] N. J. A. Sloane, Sequence A179196, The on-line encyclopedia of integer sequences, oeis.org/A179196
[10] J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009), no. 7, 630-635.
[11] J. Sondow, J. W. Nicholson and T. D. Noe, Ramanujan primes: bounds, runs, twins, and gaps, J. Integer Seq. 14 (2011), no. 6, Article 11.6.2, 11 pp.
[12] A. Srinivasan, An upper bound for Ramanujan primes, Integers 14 (2014), Paper No. A19, 3 pp.
[13] A. Srinivasan and P. Arés, New upper bounds for Ramanujan primes, preprint, 2017. Available at arxiv.org/1706.07241
[14] A. Srinivasan and J. W. Nicholson, An improved upper bound for Ramanujan primes, Integers 15 (2015), Paper No. A52, 6 pp .
[15] C.-J. de la Vallée Poussin, Recherches analytiques la théorie des nombres premiers, Ann. Soc. scient. Bruxelles 20 (1896), 183-256.
[16] C.-J. de la Vallée Poussin, Sur la fonction $\zeta(s)$ de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Mem. Couronnés de l'Acad. Roy. Sci. Bruxelles 59 (1899), 1-74.
[17] S. Yang and A. Togbé, On the estimates of the upper and lower bounds of Ramanujan primes, Ramanujan J. 40 (2016), no. 2, 245-255.

Institute of Mathematics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
E-mail address: christian.axler@hhu.de

[^0]: Date: November 15, 2017.
 2010 Mathematics Subject Classification. Primary 11N05; Secondary 11A41, 11B05.
 Key words and phrases. Bertrand's Postulate, distribution of prime numbers, Ramanujan primes.

