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Abstract. We consider a group of computation units
trying to cooperatively solve a distributed optimization
problem with shared linear equality and inequality con-
straints. Assuming that the computation units are commu-
nicating over a network whose topology is described by a
time-invariant directed graph, by combining saddle-point
dynamics with Lie bracket approximation techniques we
derive a methodology that allows to design distributed
continuous-time optimization algorithms that solve this
problem under minimal assumptions on the graph topol-
ogy as well as on the structure of the constraints. We
discuss several extensions as well as special cases in which
the proposed procedure becomes particularly simple.

1. Introduction
Driven by new applications and advancing communica-
tion technologies, the idea of solving optimization prob-
lems in a distributed fashion using a group of agents in-
terchanging information over a communication network
has gained a lot of interest during the last decades. Ap-
plication examples include, among others, optimal power
dispatch problems in Smart Grids [16], distributed ma-
chine learning [5] or formation control problems [7]. Be-
sides several results on distributed computation [10], con-
trollability and stabilization [3, 8, 17], there also exists a
vast body of literature on distributed optimization algo-
rithms, both in discrete- [27, 5] as well as continuous-time
[15, 33, 13, 28, 18, 31], where in the present work we will
focus on the latter one. While in most of the works a
consensus-based approach is used where all agents aim to
agree on a common solution of the overall optimization
problem, in the last years other solutions have been pro-

* This article is a sligthly extended version of [26] with an extra illustra-
tion Figure 2 and an additional result Lemma 4.

posed as well [28]. However, it is usually assumed that
the underlying communication network is of undirected
nature and it has turned out that establishing distributed
optimization algorithms in the presence of directed com-
munication structures is much more difficult. While there
exist some approaches aiming to address this problem
[18, 31], these are limited to unconstrained optimization
problems using a consensus-based approach.

The contribution of this work is to provide a novel ap-
proach to the design of continuous-time distributed opti-
mization algorithms applicable to a very general class of
constrained optimization problems under mild assump-
tions on the possibly directed underlying communication
network. The main idea of our approach is to employ
classical saddle-point dynamics with proven convergence
guarantees in a centralized setting and derive distributed
approximations thereof. To this end, we follow a two
step procedure where we first propose suitable Lie bracket
representations of saddle-point dynamics and then use
ideas from geometric control theory to design distributed
approximations thereof. This idea has already been em-
ployed in previous works using a consensus-based ap-
proach [14] and for more general optimization problems
with linear equality constraints in a gradient-free setting
[25]. However, the focus in both works was on the first
step of rewriting the saddle-point dynamics and the sec-
ond step of designing distributed approximations was
rarely treated. In the present paper we further contribute
to both steps: on the one hand, we extend the class of op-
timization problems the approach is applicable to, and, on
the other, we present an algorithm for the design of suit-
able approximations. While we limit ourselves to convex
optimization problems with linear equality and inequality
constraints, we emphasize that the same techniques may
be used for a much larger class of optimization problems.
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2. Preliminaries

2.1. Notation
We denote by Rn the set of n-dimensional real vectors,
by Rn

+ those with positive entries and by Rn
++ those with

strictly positive entries. We further write C p, p ∈ N, for
the set of p-times continuously differentiable real-valued
functions. The gradient of a function f : Rn → R, f ∈ C1,
with respect to its argument x ∈ Rn, will be denoted by
∇x f : Rn → Rn; we often omit the subscript, if it is clear
from the context. We denote the (i, j)th entry of a matrix
A ∈ Rn×m by aij, and sometimes denote A by A = [aij].
The rank of A is denoted by rank(A). We use ei to denote
the vector with the ith entry equal to 1 and all other entries
equal to 0, and also use the short-hand notation 1n =
[1, . . . , 1]T . For a vector λ ∈ Rn we let diag(λ) ∈ Rn×n

denote the diagonal matrix whose diagonal entries are the
entries of λ. Given two continuously differentiable vector
fields f1 : Rn → Rn and f2 : Rn → Rn, the Lie bracket of
f1 and f2 evaluated at x is defined to be

[ f1, f2](x) :=
∂ f2

∂x
(x) f1(x)− ∂ f1

∂x
(x) f2(x). (1)

For a set of vector fields Φ = { f1, f2, . . . , fp}, fi : Rn →
Rn, fi ∈ C1, we denote by LB(Φ) the set of Lie brackets
generated by Φ. For an (iterated) Lie bracket B = [B1, B2],
B1, B2 ∈ LB(Φ), we then let left(B) = B1, right(B) = B2
denote the left and right factor of B, respectively. We
further define the degree of a Lie bracket B ∈ LB(Φ) as
δ(B) = δ̃Φ(B) and the degree of the kth vector field as
δk(B) = δ̃{ fk}(B), where

δ̃S (B) =

{
1 if B ∈ S
δ̃S (left(B)) + δ̃S (right(B)) otherwise,

with S ⊆ Φ. We denote the sign function by sgn : R →
{−1, 0, 1}, where sgn(−a) = −1, sgn(a) = 1 for any a > 0
and sgn(0) = 0. For a vector x = [x1, . . . , xn]T ∈ Rn and
a finite set S ⊂ {1, . . . , n}, we denote by xS the set of all
xi with i ∈ S. We also denote the complement of a set
S ⊂ Rn by Sc.

2.2. Basics on graph theory
We recall some basic notions on graph theory, and refer
the reader to [4] or other standard references for more
information. A directed graph (or simply digraph) is an
ordered pair G = (V , E), where V = {v1, v2, . . . , vn} is
the set of nodes and E ⊆ V × V is the set of edges, i.e.
(vi, vj) ∈ E if there is an edge from node vi to vj. In our
setup the edges encode to which other agents some agent
has access to, i.e. (vi, vj) ∈ E means that node vi receives
information from node vj. We say that node vj is an out-
neighbor of node vi if there is an edge from node vi to node

vj. The adjacency matrix A = [aij] ∈ Rn×n associated to G
is defined as

aij =

{
1 if i 6= j and (vi, vj) ∈ E ,
0 otherwise.

(2)

We also define the out-degree matrix D = [dij] associated
to G as

dij =

{
∑n

k=1 aik if i = j
0 otherwise.

(3)

Finally, we call G = D−A = [gij] ∈ Rn×n the Laplacian
of G. A digraph is said to be undirected if (vi, vj) ∈ E
implies that (vj, vi) ∈ E , or, equivalently, if G = G>.
Further, a digraph G is called weight-balanced if 1T

n G = 0.
A directed path in G is a sequence of nodes connected by
edges and we write pi1ir = 〈vi1 |vi2 | . . . |vir 〉 for a path from
node vi1 to node vir . We further denote by head(pi1ir ) = i1
and tail(pi1ir ) = ir the head and the tail of a path pi1ir ,
respectively. We also let `(pi1ir ) = r− 1 denote the length
of the path. A digraph G is said to be strongly connected
(or simply connected in case of undirected graphs) if there
is a directed path between any two nodes. For a path pij
from node vi to node vj we denote by subpathi•(pij) and
subpath•j(pij) the set of all subpaths of pij (not including
pij itself) which, respectively, start at vi or end at vj. Given
a subpath q ∈ subpathi•(pij), we denote by qc the path in
subpath•j(pij) whose composition with q gives pij.

3. Problem setup

Consider an optimization problem of the form

min
x

F(x) =
n

∑
i=1

Fi(xi)

s.t aix− bi = 0, i ∈ Ieq ⊆ {1, 2, . . . , n},
cix− di ≤ 0, i ∈ Iineq ⊆ {1, 2, . . . , n},

(4)

where x = [x1, . . . , xn]> ∈ Rn, ai ∈ R1×n, ci ∈ R1×n, and
the Fi : R→ R, Fi ∈ C2, are assumed to be strictly convex
functions. We assume further that the feasible set of (4) is
non-empty and that there exists a unique solution x∗ ∈ Rn

to (4).
The problem can be interpreted as having n computa-

tion units or agents available, each one trying to optimize
its own objective function Fi while, if i ∈ Iineq or i ∈ Ieq,
respecting the ith global constraints among all agents. It is
reasonable to assume that the constraints are associated to
the agents in such a way that the constraint corresponding
to agent i involves its own state. This is ensured by the
following assumption on the set of constraints:

2



Assumption 1. For ai = [ai1, . . . , ain] 6= 0, ci =
[ci1, . . . , cin] 6= 0, i = 1, . . . , n, we have that aii 6= 0 and
cii 6= 0 for all i = 1, . . . , n. •

It should be noted that, for the ease of presentation,
we limit ourselves to the case that each agent has at most
one equality and one inequality constraint but the fol-
lowing results apply with some modifications to the case
where each agent has several constraints, i.e., ai ∈ RMi×n,
ci ∈ Rmi×n for some mi, Mi ∈ N. Our intention is to fo-
cus on presenting our results in a more understandable
fashion and avoid complicated notations introduced when
considering more general problem setups.

Going along that direction of a simpler notation, we
augment the problem (4) by non-restrictive constraints
such that exactly one equality and one inequality con-
straint is associated to each agent, i.e., we consider the
augmented problem

min
x

F(x) =
n

∑
i=1

Fi(xi)

s.t aix− bi = 0, i = 1, 2, . . . , n,
cix− di ≤ 0, i = 1, 2, . . . , n,

(5)

where ai = 0, bi = 0 for i /∈ Ieq and ci = 0, di > 0 for
i /∈ Iineq, such that the feasible set as well as the solution
of (4) and (5) are the same.

In the following, we wish to design continuous-time
algorithms that “converge” to an arbitrarily small neigh-
borhood of the solution of (5) and that can be implemented
in a distributed fashion, i.e., each agent only uses informa-
tion of its own state and objective function Fi as well as
those of its out-neighbors, where out-neighboring agents
are defined by a communication graph.

More precisely, we assume that the communication
topology is given by some directed graph G = (V , E),
where V = {v1, v2, . . . , vn} is a finite set of nodes and
E ⊆ V × V is the set of edges between the nodes. In our
setup, the nodes play the role of the n agents and the
edges define the allowed communication links between
the agents, i.e., if there exists an edge from agent i to agent
j, then agent i has access to the state of agent j. Using the
graph Laplacian G = [gij] associated to G, we then have
the following definition of a distributed algorithm:

Definition 1. We say that a continuous-time algorithm
with agent dynamics of the form

żj = f j(t, z), (6)

j = 1, 2, . . . , N, z = [z1, z2, . . . , zN ]
> ∈ RN , f j : R×Rn →

R, is distributed w.r.t. the graph G if it can equivalently be
written as

żj = f̃ j(t, zN (i)), (7)

where N (i) := {j = 1, 2, . . . , N : gij 6= 0} is the set of
indices of all out-neighboring agents. •

In words, fi may only depend on zi and all states zj
whose corresponding agent j have a communication link
to agent j, i.e., the algorithm obeys the communication
topology defined by the directed graph G.

Our approach relies on the use of saddle-point dynam-
ics, i.e. algorithms that utilize the saddle point property of
the Lagrangian. The Lagrangian L : Rn ×Rn ×Rn

+ → R
associated to (5) is given by

L(x, ν, λ) =
n

∑
i=1

Fi(xi) + νi
>(aix− bi) + λi

>(cix− di)

= F(x) + ν>(Ax− b) + λ>(Cx− d), (8)

where we have used the stacked matrices

C =
[
c1
> . . . cn

>]> , d =
[
d1 . . . dn

]> ,
A =

[
a1
> . . . an

>]> , b =
[
b1 . . . bn

]> ,
λ =

[
λ1 . . . λn

]> , ν =
[
ν1 . . . νn

]> ,
(9)

with ν ∈ Rn, λ ∈ Rn being the associated Lagrange mul-
tipliers. Here, a point (x?, ν?, λ?) ∈ Rn ×Rn ×Rn

+ is said
to be a (global) saddle point of L if for all x ∈ Rn, ν ∈ Rn,
λ ∈ Rn

+ we have

L(x?, ν, λ) ≤ L(x?, ν?, λ?) ≤ L(x, ν?, λ?). (10)

It is well-known that if the Lagrangian has some saddle
point (x?, ν?, λ?), then x? is a solution of (5). In the present
setup, since (5) is a convex problem and the feasible set
is non-empty, the existence of a saddle point is ensured
(cf. e.g. [20]) such that finding a saddle point of L is
equivalent to finding a solution to (5). We further require
the following regularity assumption to hold:

Assumption 2. The constraints in (4) fulfill the
Mangasarian-Fromovitz constraint qualifications at the
optimal solution x?, i.e., the vectors ai, i ∈ Ieq, are linearly
independent and there exists q ∈ Rn such that ciq < 0 for
all i ∈ Iineq for which cix? − di = 0 and aiq = 0 for all
i ∈ Ieq. •

This assumption ensures that the set of saddle points of
the Lagrangian associated to (4) is non-empty and com-
pact, see [32, Theorem 1]. Note that, due to the augmenta-
tion of the optimization problem, the set of saddle points
of the Lagrangian L associated to (5) is in general not com-
pact and we will care for that by modifying the saddle-
point dynamics. To be more precise, in the following
Lemma we propose a modified saddle-point dynamics,
which is an extension of the one proposed in [13], and
show asymptotic stability of a compact subset of the set of
saddle points.
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Lemma 1. Consider the following modified saddle-point
dynamics

ẋ = −∇xL(x, ν, λ) = −∇F(x)−A>ν−C>λ (11a)
ν̇ = ∇νL(x, ν, λ) + w(ν) = Ax− b + w(ν) (11b)

λ̇ = diag(λ)∇λL(x, ν, λ) = diag(λ)(Cx− d), (11c)

where F : Rn → R, F ∈ C2, is strictly convex and where
w : Rn → Rn is defined as

w(ν) = −
n

∑
i=1

i/∈Ieq

νi ei (12)

with ei ∈ Rn being the ith unit vector. Let

M :=
{
(x, ν, λ) ∈ Rn ×Rn ×Rn

+ : (13)

x = x∗, νi = 0 for i /∈ Ieq, λi = 0 for i /∈ Iineq,

L(x∗, ν, λ) ≤ L(x∗, ν∗, λ∗) ≤ L(x, ν∗, λ∗)
}

and suppose that Assumption 2 holds. Then the setM is
asymptotically stable for (11) with region of attraction

R(M) ⊆
{
(x, ν, λ) ∈ Rn ×Rn ×Rn : λ ∈ Rn

++

}
. (14)

•

Remark 1. Since a point in M might as well lie on the
boundary ofR(M), one needs to modify the correspond-
ing notions of stability accordingly, by restricting the
neighborhoods to the set of admissible initial conditions
(cf. [11]); from now on, we assume that this is understood,
without stating it. •

Remark 2. The term w in (11b) is usually not included in
saddle-point dynamics. Here, it is used to render the dy-
namics of the additional dual variables introduced due to
the augmentation asymptotically stable. It should be noted
that the augmentation might lead to a significantly larger
state vector of (11) compared to the saddle-point dynamics
corresponding to the original optimization problem (4).
However, it should be kept in mind that, besides possible
performance benefits (cf. Remark 9), the main reason for
the augmentation is a significantly simpler notation and it
is not crucial for the following methodology to apply (cf.
Remark 4). •

A proof of Lemma 1 is given in Appendix A.1. While
(11) converges to a solution of (4), it is in general not dis-
tributed in the aforementioned sense. Note that if the
underlying graph is undirected and the constraints are
only imposed between neighboring agents, then (11) is
indeed distributed. In the following, we wish to derive
dynamics that “approximate” those of (11) arbitrarily close,
in a sense that will be made precise shortly, and are addi-
tionally distributed, even when the underlying graph is

directed. To be more precise, we consider agent dynamics
of the form

ẋσ
i = uσ

x,i(t, xσ
N (i), νσ

N (i), λσ
N (i)) (15a)

ν̇σ
i = uσ

ν,i(t, xσ
N (i), νσ

N (i), λσ
N (i)) (15b)

λ̇σ
i = uσ

λ,i(t, xσ
N (i), νσ

N (i), λσ
N (i)), (15c)

where i = 1, 2, . . . , n, σ ∈ R+ is a parameter and

N (i) := {j = 1, 2, . . . , n : gij 6= 0} (16)

is the set of indices of all out-neighboring agents of the ith
agent. Note that (15) is obviously distributed according to
Definition 1. Our objective is then to design functions uσ

x,i,
uσ

ν,i, uσ
λ,i, i = 1, 2, . . . , n, parametrized by σ ∈ R+, such

that the trajectories
(
xσ(t), νσ(t), λσ(t)

)
of (15) uniformly

converge to the trajectories
(
x(t), ν(t), λ(t)

)
of (11) with

increasing σ. To this end, the main idea of the proposed
methodology is to rewrite the right-hand side of (11) in
terms of Lie brackets of admissible vector fields, i.e., vector
fields that can be computed locally by the nodes, and
then employ ideas from geometric control theory to derive
suitable approximations.

4. Main results

Consider the saddle-point dynamics (11). As a first step,
we separate the right-hand side into admissible and non-
admissible vector fields, where admissible refers to the
part of the dynamics that can be computed locally by the
nodes. For the ease of presentation we assume in the
following that the constraints of agent i are only imposed
to its out-neighboring agents, i.e., we impose the following
assumption on the constraints:

Assumption 3. For ai = [ai1, . . . , ain], ci = [ci1, . . . , cin],
i = 1, 2, . . . , n, we have for each j = 1, . . . , n, that aij 6= 0
or cij 6= 0 only if gij 6= 0. •

In other words, we thereby assume that the con-
straints match the communication topology induced by
the graph1. Under this assumption, the right-hand side
of (11b), (11c) is admissible, while parts of the right-hand
side of (11a) are not. Note that the gradient of F is ad-
missible, since F is a separable function; the remaining
terms, however, are not necessarily admissible, since the
underlying communication graph is directed. Now, for
Ai = [aij], Ci = [cij], we define the admissible part of

1 It should be noted that the following results can be extended to prob-
lems where this assumption does not hold, cf. Remark 6 as well as in
the example in Section 5.2.
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A>, C> as

Ãadm =
n

∑
i=1

n

∑
j=1

sgn(|gij|)aji ei e>j , (17)

C̃adm =
n

∑
i=1

n

∑
j=1

sgn(|gij|)cji ei e>j , (18)

where sgn : R → {−1, 0, 1} is the sign function and ei is
the ith unit vector. Observe that Ãadm, C̃adm correspond to
the admissible part of A> and C>, respectively. We then
let

Ãrest = A> − Ãadm, C̃rest = C> − C̃adm, (19)

and define the complete state of (11) as

z := [x>, ν>, λ>]> ∈ R3n. (20)

Hence, we can write the saddle-point dynamics (11) as

ż = fadm(z) +

−Ãrestν− C̃restλ
0
0

 , (21)

where fadm : R3n → R3n is defined as

fadm(z) =

−∇F(x)− Ãadmν− C̃admλ
Ax− b + w(ν)

diag(λ)
(
Cx− d

)
 . (22)

There, fadm is admissible whereas the second part in (21)
is not. The essential idea to derive suitable distributed
approximations is to rewrite the non-admissible part in
terms of Lie brackets of admissible vector fields and we
will elaborate on that in the following.

4.1. Rewriting the non-admissible vector
fields

We first define the index set

I(i) := {i, n + i, 2n + i}, (23)

i = 1, 2, . . . , n, associating the components of z to the ith
agent, i.e., zI(i) is the state of agent i. We then define a set
of vector fields hi,j : R3n → R3n, i, j = 1, 2, . . . , 3n, as

hi,j(z) = zi ej, (24)

where ej ∈ R3n is the jth unit vector. Observe that hi,j is an
admissible vector field if and only if there exist `, k such
that i ∈ I(`), j ∈ I(k) and gk` 6= 0. Before we present a
general construction rule, let us first illustrate the main
idea by means of a simple example.

Example 1. Consider the graph shown in Figure 1 with
n = 5 nodes. Let hi,j be defined as in (24) and observe that
hn+3,n+2, hn+2,1 are admissible. Consider the Lie bracket[

hn+3,n+2, hn+2,1
]
(z)

= e1 e>n+2zn+3 en+2 − en+2 e>n+3zn+2 e1

= zn+3 e1, (25)

which, according to (24), is equal to hn+3,1(z), i.e., a non-
admissible vector field. Given the graphical representation
in Figure 1, this can be interpreted as a “fictitious” edge
from agent 1 to agent 3, generated by the Lie bracket of
two admissible vector fields. This observation is of key
importance in the rest of the paper. More generally, we
can observe that [

hi,j, hj,k
]
(z) = hi,k(z) (26)

for any i, j, k = 1, 2, . . . , 3n. •
Next, we generalize this idea. Let pij = 〈vi1 | . . . |vir 〉 be

a path in G = (V , E) from node vi to node vj, i.e. i = i1,
j = ir, vi1 , . . . , vir ∈ V , r ≥ 2, and let `(pij) = r− 1 denote
its length. We now, recursively, define a mapping Rk1,k2 ,
k1, k2 = 1, 2, . . . , 3n, from a given path pij in G to the set of
vector fields on R3n:

• for `(pij) = 1, we define

Rk1,k2(pij) = hk1,k2 . (27)

• for `(pij) ≥ 2, we show, c.f. Lemma 2, that for all
q1, q2 ∈ subpathi•(pij) and k1, k2, s1, s2 = 1, 2, . . . , 3n,
we have that[

Rk1,s1(q
c
1), Rs1,k2(q1)

]
=
[
Rk1,s2(q

c
2), Rs2,k2(q2)

]
; (28)

hence we define

Rk1,k2(pij) = [Rk1,s(qc), Rs,k2(q)], (29)

where q is any subpath in subpathi•(pij) and s ∈
I(tail(q)).

Remark 3. Observe that Rk1,k2 is independent of the path
pij according to the definition (27). However, the path
comes into play when it gets to choosing k1, k2 such that
the resulting Lie bracket is a Lie bracket of admissible
vector fields, cf. Lemma 2.

Using these definitions, we next state a result that extends
the ideas from Example 1.

Lemma 2. Consider a directed graph G = (V , E) of n
nodes. Let pij be a path between vi and vj, vi, vj ∈ V , and
let Rk1,k2 be defined as in (27), (29). Then, if k1 6= k2, we
have for all z ∈ R3n

Rk1,k2

(
pij
)
(z) = zk1 ek2 = hk1,k2(z), (30)

and, if k1 ∈ I
(
tail(pij)

)
, k2 ∈ I

(
head(pij)

)
, then

Rk1,k2(pij) is a Lie bracket of admissible vector fields. •
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1

zI(1)

2

zI(2)

3

zI(3)

4

zI(4)

5

zI(5)

hn+2,1(z) hn+3,n+2(z) h2n+4,3(z) h2n+5,2n+4(z)

hn+3,1(z) =
[
hn+3,n+2, hn+2,1

]
(z) h2n+5,3(z) = [h2n+5,2n+4, h2n+4,3](z)

Figure 1. A communication structure with n = 5 nodes is depicted. The arrows indicate to which agent state some agent has access
to, e.g., agent 1 has access to the state of agent 2 given by zI(2) = [x2, ν2, λ2]

> but not the other way round. The dotted green arrow
shows a fictitious edge with associated vector fields created by Lie brackets of admissible vector fields.

Proof. We prove the result by induction. For paths of the
form pi1i2 = 〈vi1 |vi2〉, i.e., `(pi1i2) = 1, by (24) and (27)
equation (30) follows immediately. Further we observe
that the vector field (27) is admissible if k1 ∈ I(j), k2 ∈
I(i) and gij 6= 0, which is true since pij is a path in G.
Suppose now that the result holds for all paths p with
`(p) ≤ ¯̀, ¯̀ ≥ 2. Let pi1i` = 〈vi1 |vi2 | . . . |vik 〉 be any path
with `(pi1ik ) = ¯̀ + 1. Let further qr ∈ subpathi1•(pi1ik )

be a subpath of pi1ik that ends at vr, r = i2, i3, . . . , ik−1.
Then, since `(qr) ≤ ¯̀, `(qc

r) ≤ ¯̀, we have by (29) and the
induction hypothesis

Rk1,k2(pi1ik
)
(z) =

[
Rk1,s(qc

r), Rs,k2(qr)
]
(z)

=
[
hk1,s, hs,k2

]
(z)

= ek2 e>s zk1 es − es e>k1
zs ek2

= zk1 ek2 , (31)

where s ∈ I(tail(qr)) and where we used that k1 6= k2.
This proves (30). Further, if k1 ∈ I

(
tail(pi1ik )

)
, i.e., k1 ∈

I
(
tail(qc

r)
)
, then, by the induction hypothesis and with

s ∈ I(tail(qr)) = I(head(qc
r)), Rk1,s(qc

r) is a Lie bracket of
admissible vector fields. Similarly, if k2 ∈ I

(
head(pi1ik )

)
,

by the induction hypothesis and with s ∈ I(tail(qr)), also
Rs,k2(qr) is a Lie bracket of admissible vector fields. Thus,
Rk1,k2(pi1ik

)
is a Lie bracket of admissible vector fields as

well which concludes the proof.

Remark 4. The same result holds true if we drop the as-
sumption that each agent has exactly one equality and one
inequality constraint, since this only leads to a reformu-
lation of the index sets I(i), i = 1, 2, . . . , n. Interestingly,
additional constraints also introduce additional degrees
of freedom in rewriting the non-admissible vector fields
since the index set I(tail(q)) grows. •

Remark 5. It is worth pointing out that vector fields of the
form (24) are not the only ones that can be used to rewrite
non-admissible vector fields in terms of Lie brackets of
admissible vector fields. In fact, there exists a whole class
of vector fields which can be employed for this purpose.

Similar as in [19], some of them might have beneficial
properties in terms of the approximation. •

While Lemma 2 holds for any directed path in G, in
the following, we will use the shortest path since this
leads to iterated Lie brackets of smallest degree. We do
not discuss how to compute the paths here since this is
a problem on its own but refer the reader to standard
algorithms, see, e.g., [9]. Further, the choice of subpath
and the state index s in the recursion (29) is arbitrary as
well. In Lemma 3 in Section 4.2, we provide a particular
choice that turns out to be beneficial in the construction of
the approximating input sequences. The next result is an
immediate consequence of Lemma 2.

Proposition 1. Suppose that Assumption 3 holds. Suppose
G = (V , E) is strongly connected and, for all i, j = 1, . . . , n
let pij, denote a path from node vi to node vj, where vi, vj ∈
V . Then, with z = [x>, ν>, λ>]>, the dynamics (21) can
equivalently be written as

ż = fadm(z)−
n

∑
i=1

n

∑
j=1

ãrest,ij Rn+j,i
(

pij
)
(z)

−
n

∑
i=1

n

∑
j=1

c̃rest,ijR2n+j,i
(

pij
)
(z)

(32)

and the right-hand side is a linear combination of Lie brackets of
admissible vector fields. •

Remark 6. If Assumption 3 does not hold the terms
[0, fadm,2(z), 0]>, [0, 0, fadm,3(z)]> may no longer be ad-
missible. While [0, fadm,2(z), 0]> can be rewritten using
Lemma 2, for [0, 0, fadm,3(z)]> different construction tech-
niques are required, since fadm,3 is bilinear as a function
of x and λ. However, it should be noted that it is as well
possible to rewrite these terms in a similar manner. •

Remark 7. In general, having a strongly connected graph
is sufficient but not necessary. In fact, it is sufficient that
there exists a path from node vi to node vj for all i, j such
that ãrest,ij 6= 0 or c̃rest,ij 6= 0. •
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Now that we have rewritten the non-admissible vector
fields in terms of iterated Lie brackets of admissible vector
fields, there is still the issue of how to generate suitable
functions uσ

x,i, uσ
ν,i, uσ

λ,i to be addressed. We will touch
upon this in the next section and thereby provide a result
on how (15) and (32) are related in terms of their stability
properties under a suitable choice of the input functions.

4.2. Construction of distributed control laws
Our main objective in this section is to elaborate on how to
construct suitable input functions uσ

x,i, uσ
ν,i, uσ

λ,i such that
the trajectories of (15) uniformly converge to those of (32)
as we increase σ. The following procedure is based on
the results presented in [21], [30], [22]. In [22], the relation
between the trajectories of a system of the form

żσ = f0(zσ) +
M

∑
k=1

φk(zσ)Uσ
k (t), zσ(0) = z0, (33)

where f0, φk : RN → RN , Uσ
k : R → R, z0 ∈ RN and the

trajectories of an associated extended system

ż = f0(z) + ∑
B∈B

vBB(z), z(0) = z0, (34)

is studied, where B is a set of Lie brackets of the vector
fields φk, k = 1, . . . , M, and vB ∈ R is the corresponding
coefficient. In our setup, (15) will play the role of (33) with
φk being the admissible vector fields and (32) plays the role
of (34) with B being the set of Lie brackets of admissible
vector fields required to rewrite the non-admissible vector
fields. It is shown in [22] that, under a suitable choice
of the input functions Uσ

k , the solutions of (33) uniformly
converge to those of (34) on compact time intervals for
increasing σ, i.e., for each ε > 0 and for each T ≥ 0, there
exists σ∗ > 0 such that for all σ > σ∗ and t ∈ [0, T] we
have that

‖z(t)− zσ(t)‖ ≤ ε. (35)

An algorithm for constructing suitable input functions Uσ
k

that fulfill these assumptions is presented in [21] as well as
in a brief version in [30]; we will follow this idea in here,
however, given that in [21] the input functions are not
given in explicit form, here we exploit the special structure
of the admissible vector fields in order to simplify this
procedure and arrive at explicit formulas for a large class
of scenarios, applicable to our work.

4.2.1. Writing the Lie brackets in terms of a P. Hall
basis

The algorithm presented in [22] requires the brackets B
in (34) to be brackets in a so-called P. Hall basis; we need
to “project” the brackets in (32) to such a basis, in the

sense that will be made precise shortly. We first recall
the definition of a P. Hall basis; we let δ(B) to denote the
degree of a bracket B.

Definition 2. [P. Hall basis of a Lie algebra] Let Φ =
{φ1, φ2, . . . , φm} be a set of smooth vector fields. A P. Hall
basis PH(Φ) = (P,≺) of the Lie algebra generated by Φ
is a set P of brackets equipped with a total ordering≺ that
fulfills the following properties:

[PH1] Every φk is in P.

[PH2] φk ≺ φj if and only if k < j.

[PH3] If B1, B2 ∈ P and δ(B1) < δ(B2), then B1 ≺ B2.

[PH4] Each B = [B1, B2] ∈ P if and only if

[PH4.a] B1, B2 ∈ P and B1 ≺ B2

[PH4.b] either δ(B2) = 1 or B2 = [B3, B4] for some
B3, B4 such that B3 � B1. •

Note that [PH2] is usually not included in the definition
of a P. Hall basis, but it is common to include it for the
approximation problem at hand. Further, the construction
rule [PH4] ensures that no brackets are included in the
basis that are related to other brackets in the basis by the
Jacobi identity or skew-symmetry; thus the brackets are
in this sense independent. However, this does not mean
that, when evaluating the brackets, the resulting vector
fields are independent, which we will exploit later. It is
as well worth mentioning that the ordering fulfilling the
properties [PH1] - [PH4] is in general not unique, i.e., for a
given set of vector fields Φ, there may exist several P. Hall
bases.

Let us now return to our setup. Let Φ be given by the
set of admissible vector fields defined as

Φ :=
{

hi,j : ∃k1, k2∈ {1, 2, . . . , n} such that i ∈ I(k1),

j ∈ I(k2), gk2k1 6= 0
}

, (36)

where hi,j is defined in (24). Every bracket in the set of Lie
brackets of admissible vector fields B can then be written
as a linear combination of elements of a corresponding
P. Hall basis by successively resorting the brackets, making
use of skew-symmetry and the Jacobi identity. Such a
projection algorithm is for example given in [29] and in
the following we let

projPH : B → P (37)

denote the projection operator for a given P. Hall basis
PH = (P,≺). However, for brackets of higher degree,
this might be tedious and results in a large number of
brackets; we hence propose an alternative approach. In-
stead of resorting the complete brackets appearing in (32),
we suggest to reduce the resorting steps by a proper choice
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of the subpaths in the construction procedure presented
in Lemma 2. The main idea is to choose the subpath q in
(29) in such a way that, in each recursion step, the degree
of the left factor of the bracket is strictly smaller than the
degree of the right factor and such that the degree of the
left factor of the right factor is smaller than that of the left
factor of the original bracket such that [PH4.a] and [PH4.b]
are automatically fulfilled. Since the degree directly corre-
sponds to the length of the subpath this can be achieved
by choosing the subpath appropriately, see also Figure 2.
We make this idea more precise in the following Lemma.

Lemma 3. Consider a directed graph G = (V , E) of n
nodes. Let the set of admissible vector fields be defined
according to (36). Let some P. Hall basis PH(Φ) = (P,≺)
be given and let projPH : B → P denote a projection
operator onto the P. Hall basis. Let pi1ir be a path from
node vi1 ∈ V to node vir ∈ V and define

R̃k1,k2(pi1ir ) (38)

=


Rk1,k2(pi1ir ) if `(pi1ir ) = 1,
projPH

(
[Rk1,s(qc), Rs,k2(q)]

)
if `(pi1ir ) = 2, 3, 4, 6,

[R̃k1,s(qc), R̃s,k2(q)] otherwise,

where

s =

{
n + iθ(pi1 ir )

if 1 ≤ k1 ≤ 2n

n + iθ(pi1 ir )
if 2n + 1 ≤ k1 ≤ 3n

(39)

q = pi1iθ(pi1 ir )
∈ subpathi1•(pi1ir ) (40)

θ(pi1ir ) =

{
1
2 `(pi1ir ) + 1 if `(pi1ir ) = 2, 4,
b 1

2 `(pi1ir )c+ 2 otherwise,
(41)

with bac being the largest integer value smaller than
a ∈ R+. Then R̃k1,k2(pi1ir )(z) = Rk1,k2(pi1ir )(z) for all z ∈
R3n and R̃k1,k2(pi1ir ) ∈ P for all k1 ∈ I(tail(pi1ir )), k2 ∈
I(head(pi1ir )). •

Proof. A proof is given in Appendix A.2.

Remark 8. It should be noted that the projection can be
computed easily in the given case. To this end, first notice
that – by the choice of subpaths – for `(pi1ir ) = 2, 3, the
brackets admit the following structure

Rk1,k2(pi1ir ) =

{
[φa1 , φa2 ] if `(pi1ir ) = 2[
φa1 , [φa2 , φa3 ]

]
if `(pi1ir ) = 3

(42)

for some a1/2/3 ∈ N+ depending on k1, k2, pi1ir , where
φai ∈ Φ, i = 1, 2, 3. For such brackets, the projection on
the P. Hall basis PH is easily computed making use of
skew-symmetry and the Jacobi-identity and we obtain

projPH
(
[φa1 , φa2 ]

)
=

{
[φa1 , φa2 ] if a1 < a2,
−[φa2 , φa1 ] if a1 > a2,

(43)

and

projPH
([

φa1 , [φa2 , φa3 ]
])

= (44)
[
φa2 , [φa1 , φa3 ]

]
−
[
φa3 , [φa1 , φa2 ]

]
if a1 = min

i=1,2,3
ai,[

φa1 , [φa2 , φa3 ]
]

if a2 = min
i=1,2,3

ai,

−
[
φa1 , [φa3 , φa2 ]

]
if a3 = min

i=1,2,3
ai.

In the same manner, for `(pi1ir ) = 4, 6, we have

Rk1,k2(pi1ir ) =

{
[Ba1 , Ba2 ] if `(pi1ir ) = 4,[
Ba1 , [Ba2 , Ba3 ]

]
if `(pi1ir ) = 6,

(45)

where the Bai are Lie brackets of the φi with δ(Bai ) = 2,
i = 1, 2, 3. The projection is then done by first projection
the inner brackets Bai on the P. Hall basis using (43) and
then resorting Rk1,k2(pi1ir ) as in (43), (44). •

Remark 9. It is worth pointing out, as become clear in
the proof, that the aforementioned result is indepen-
dent of the choice of s as given in (39); in fact, any
s ∈ I

(
iθ(r)

)
= {iθ(r), n + iθ(r), 2n + iθ(r)} can be taken.

Although the particular choice made does not make any
difference in rewriting the non-admissible vector fields,
it becomes relevant in designing suitable approximating
inputs. In particular, the choice of s controls in which com-
ponents of the complete state the perturbing inputs are
injected. The specific choice (39) is motivated by the idea
of injecting the most perturbation in the dual variables.
Observe that the degrees of freedom for s increase with
the number of constraints of each agent. In particular, it
might as well happen that there is no degree of freedom if
we do not augment the optimization problem (4). •

Using Lemma 3 we can then write (32) as

ż = fadm(z)−
n

∑
i=1

n

∑
j=1

crest,ijR̃n+j,i
(

pij
)
(z)

−
n

∑
i=1

n

∑
j=1

arest,ijR̃2n+j,i
(

pij
)
(z).

(46)

and we can identify the set of brackets B in (34) with

B =
{

R̃n+j,i
(

pij
)

: arest,ij 6= 0, i, j = 1, . . . , n
}

∪
{

R̃2n+j,i
(

pij
)

: crest,ij 6= 0, i, j = 1, . . . , n
}

,
(47)

where now B ⊂ P for some P. Hall basis PH = (P,≺),
and for the coefficients we have

vR̃n+i,j(pij)
= −arest,ijsign

(
R̃n+i,j(pij)(1)

)
(48a)

vR̃2n+i,j(pij)
= −crest,ijsign

(
R̃n+i,j(pij)(1)

)
. (48b)

We are now ready to apply the algorithm presented in [21]
to construct suitable approximating inputs and we will
discuss that in the following section.
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p16 6 5 4 3 2 1

q = p14 ∈ subpath1•(p16) 1234

qc 456

p13 ∈ subpath1•(p14) 123

p34 34

Figure 2. An illustration of the idea of choosing the subpaths. The complement of the subpath qc is strictly shorter than the subpath
q such that in the recursion (29) the left factor of the bracket has strictly smaller degree than the right factor, hence [PH4.a] in the
Definition of a P. Hall basis holds. Also, the subpath p34 of the subpath q is strictly shorter than qc such that in the recursion (29) the
left factor of the right factor of the bracket has strictly smaller degree than the left factor of the bracket, thus making sure that [PH4.b]
holds as well.

4.2.2. Approximating input sequences

We now consider the collection of all agent dynamics (15)
given by

żσ = uσ(t, zσ) =

uσ
x(t, xσ, νσ, λσ)

uσ
ν (t, xσ, νσ, λσ)

uσ
λ(t, xσ, νσ, λσ)

 , (49)

where zσ = [xσ>, νσ>, λσ>]>, xσ ∈ Rn, and νσ ∈ Rn, λσ ∈
Rn are the stacked vectors of all xσ

i , νσ
i , λσ

i , i = 1, 2, . . . , n,
respectively, and uσ

x , uσ
ν , uσ

λ : R × Rn × Rn × Rn → Rn

are the stacked vectors of all uσ
x,i, uσ

ν,i, uσ
λ,i, i = 1, 2, . . . , n,

respectively. Following the algorithm presented in [21],
we let the input take the form

uσ(t, zσ) = fadm(zσ) +
M

∑
k=1

φk(zσ)Uσ
k (t), (50)

where Φ = {φ1, φ2, . . . , φM} is the set of admissible vector
fields defined in (36) and where φk ∈ P for some P. Hall ba-
sis PH(Φ) = (P,≺). Further, Uσ

k : R→ R, k = 1, . . . , M,
are so-called approximating input sequences with sequence
parameter σ ∈ N+ which in the following we aim to con-
struct in such a way that the solutions of (49) uniformly
converge to those of (46) with increasing σ. The algorithm
in [21] relies on a “superposition principle”, i.e., we group
all brackets in B defined by (47) into equivalence classes,
which we later denote by E, and associate to each class an
input Uσ

k,E and then add them up as

Uσ
k (t) = ∑

E∈E
Uσ

k,E(t), (51)

where E is the set of all equivalence classes in B. Roughly
speaking, two brackets are said to be equivalent if each
vector field appears the same number of times in the

bracket but possibly in a different order. A precise defi-
nition of the equivalence relation is given in Definition 3.
For each bracket E ∈ E and k = 1, . . . , M we then define
the corresponding input Uσ

k,E(t) as follows:

• If δk(E) = 0: Uσ
k,E(t) = 0.

• If δ(E) = 2, δk(E) = 1:

Uσ
k,E(t) = 2

√
σRe

(
ηE,k(ωE)eiσωEt). (52)

• If δ(E) = N, δk(E) = 1:

Uσ
k,E(t) = 2σ N−1

N

|E|

∑
ρ=1

Re
(
ηE(ωE,ρ,k)eiσωt). (53)

Here, it is δ(E) = δ(B), δk(E) = δk(B) for any B ∈ E .
Further, ωE, ωE,ρ,k ∈ R are frequencies we will specify
later, ηE,k, ηE : R → C are coefficients to be chosen in
dependence of the frequencies, and i ∈ C is the imaginary
unit. However, the superposition principle does not hold
as desired but there are two major issues one has to take
care of:

1. The input sequences Uσ
k,E may not interfere with each

other in a way which ensures that the superposition
principle holds; this can be dealt with by a proper
choice of the frequencies.

2. Each input sequence Uσ
k,E not only excites the desired

brackets E ∩ B, but also all other equivalent brackets
in E; we can overcome this by a proper choice of the
coefficients ηω,k, ηω. The idea behind this is to also
excite the undesired equivalent brackets on purpose,
which itself excite the desired brackets, in such a way
that the undesired equivalent brackets all cancel out.
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While the problem at hand does not allow for simplifica-
tions in the choice of the frequencies, the calculation of
proper coefficients ηω,k, ηω can be simplified drastically by
exploiting some structural properties of the set of brackets
B. More precisely, there are two properties that turn out
to be beneficial: First, in each bracket B ∈ B each vector
field φk appears only once, i.e., δk(B) ∈ {0, 1}, for any
B ∈ B, k = 1, . . . , M, and second, for any bracket B ∈ B,
all equivalent brackets either evaluate to the same vector
field as B or vanish, see Lemma 4. We present and discuss
the simplified algorithm in Appendix A.4.

4.3. Distributed algorithm
We next state our main result which relates the solu-
tions of (11) with those of (49) in closed-loop with the
distributed control input (50)-(53). We use the notion prac-
tically uniformly asymptotically stability from [11, 12], without
explicitly defining it here.

Theorem 1. Consider the distributed optimization prob-
lem (4) and suppose that the communication topology
is given by a strongly connected digraph with n nodes.
Assume that F is strictly convex and suppose further that
Assumption 1 - 3 hold. Consider the agent dynamics (49)
with the control law (50)-(53). Then, for each ε > 0 and for
each initial condition zσ(0) = z(0) = z0 ∈ R(M), with
R(M) given in (14), there exists σ∗ > 0 such that for all
σ > σ∗ the following holds:

1. For all t ≥ 0, we have∥∥zσ(t)− z(t)
∥∥ ≤ ε, (54)

where zσ(t) is the solution of (49) with the control law
(50) - (53) and z(t) =

(
x(t), ν(t), λ(t)

)
is the solution of

(11), with initial condition zσ(0) = z(0) = z0.

2. The set M defined by (13) is practically uniformly
asymptotically stable. •

We postpone the proof of this result to Appendix A.5
and focus on its useful implications in the next section.

5. Special cases and examples
In this section we discuss special cases in which the in-
puts can be given in explicit form and present several
simulation examples illustrating the previous results.

5.1. Explicit representation of approximating
inputs for low order brackets

While the algorithm given in Appendix A.4 can in general
be complicated to implement, this procedure becomes

particularly simple to implement in scenarios where the
set of brackets B defined in (47) only contains brackets of
degree less or equal than three. As stated in our next result,
in this case the set of equivalent brackets only contains the
bracket itself but no other bracket, thus the second issue
(2) in Section 4.2.2 does not come into play.

Proposition 2. Consider (46) and assume that all paths pij
fulfill `(pij) ≤ 3. Let PH(Φ) = (P,≺) be any P. Hall basis
of Φ defined by (36) that fulfills hk1,k2 ≺ hk3,k4 for all k4 > k2.
Then, for any path pij with `(pij) ≤ 3, we have that

E
(

R̃r+j,i(pij)
)
= {B ∈ P : B ∼ R̃r+j,i(pij), B(z) 6≡ 0}
= R̃r+j,i(pij) (55)

for r ∈ {n, 2n}, where the equivalence relation ∼ is defined by
Definition 3.

Remark 10. It should be noted that the ordering of the
P. Hall basis is important for this result to hold. Further,
if Assumption 3 does not hold, different brackets are in-
troduced in (46) which still are of degree three under the
assumption that all paths pij fulfill `(pij) ≤ 3 but have a
different structure. Hence, the assumption on the ordering
usually is not sufficient anymore.

A proof of this result can be found in Appendix A.3.
The condition that all paths pij in (46) are of length less or
equal than three holds, for example, if the longest cordless
cycle in G is of length 4. Using the result of Proposition 2
and following the algorithm presented in Appendix A.4,
we obtain

• if E = B = [φk1 , φk2 ]:

Uσ
k,E(t) (56)

=


−
√

2σ 1
βE

√
|vBωE| cos(σωBt) if k = k1

sgn(vBωB)
√

2σβE
√
|vBωE| sin(σωBt) if k = k2

0 otherwise,

• if E = B =
[
φk1 , [φk2 , φk3 ]

]
:

Uσ
k,E(t) (57)

=


−σ

2
3 2βE(ωE,k1 ωE,k2)

1
3 cos(σωE,kt) if k = k1, k3

−σ
2
3 2 1

β2
E
(ωE,k1 ωE,k2)

1
3 cos(σωE,k2 t) if k = k2

0 otherwise,

where βE 6= 0 is a design parameter. The frequencies
ωE, ωE,k ∈ R \ {0} need to be chosen such that they fulfill
the following properties:

• All frequencies ωE, E ∈ E , δ(E) = 2, are distinct.

• For each E = B =
[
φk1 , [φk2 , φk3 ]

]
, the set of frequencies

{ωE,k1 , ωE,k2 , ωE,k3} is minimally canceling, see Defini-
tion 4.
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• The collection of sets{
{ωE}E∈E ,δ(E)=2, {ωE,k1 , ωE,k2 , ωE,k3}E∈E ,δ(E)=3

}
is an independent collection, see Definition 5.

It should be noted that similar explicit formulas can as
well be obtained for brackets of higher degree but they
become more complicated. The main reason is that, while
for brackets of degree strictly less than four all equivalent
brackets evaluate to zero (cf. Table 2), this is no longer
the case for brackets of higher degree such that now the
second issue discussed in Section 4.2.2 needs to be taken
care of.

5.2. Simulation examples
Next, we present some simulated examples to illustrate
our results: We consider an optimization problem of the
form (4) with n = 5 agents, where, for i = 1, 2, . . . , 5,
Fi(xi) = (xi − i)2, and the constraints are given by

x1 − x2≤− 10, x2 = x3 + 1, (58a)
x4 + x3≤− 3, x5 − x2 = 7, (58b)

such that after augmentation we have for the matrices
that define the constraints in (5)

A =


0 0 0 0 0
0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 1

 , b =


0
1
0
0
7

 , (59)

C =


1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

 , d =


−10

K
K
−3

K

 , (60)

where K = 3 but can as well be chosen arbitrary as long as
K > 0. We consider two different communication graphs
as depicted in Figure 3, where graph (b) is the same as
graph (a) except that the communication link from agent 5
to agent 2 got broken, thus an additional fictitious edge is
required. While the constraints match the communication
topology of graph (a), i.e., Assumption 3 holds, this is not
the case for graph (b) due to the last constraint in (58).
We first consider the case that graph (a) represents the
communication topology. In this case, the graph Laplacian
is given by

G =


2 −1 0 0 −1
0 1 −1 0 0
−1 0 1 0 0

0 0 −1 1 0
0 −1 0 −1 2

 (61)

and hence

Ãadm =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , C̃adm =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 . (62)

The saddle-point dynamics (21) are then given by

ż = fadm(z)− (−e3z7 − e2z11 − e2z10 + e3z14)

= fadm(z) + hn+2,3(z) + h2n+1,2(z) (63)
+ hn+5,2(z)− h2n+4,3(z),

where the admissible part fadm : R15 → R15 is defined
by (22) and the remaining four vector fields are non-
admissible. Following Lemma 2 and choosing the sub-
paths as suggested in Lemma 3 we then rewrite the non-
admissible vector fields as given in Table 1.

Graph (a)

1 2

3

4

5

Graph (b)

1 2

3

4

5

Figure 3. Two communication graphs (a) and (b) for the simula-
tion example from Section 5.2. The dashed green arrows indicate
the required fictitious edges, respectively.

vector corresponding Lie bracket
field path representation

hn+2,3 〈v3|v1|v2〉
[
hn+2,n+1, hn+1,3

]
h2n+1,2 〈v1|v3|v1〉

[
h2n+1,2n+3, h2n+3,3

]
hn+5,2 〈v2|v3|v1|v5〉

[
hn+5,n+1, [hn+1,n+3, hn+3,2]

]
h2n+4,3 〈v3|v1|v5|v4〉

[
h2n+4,2n+5, [h2n+5,2n+1, h2n+1,3]

]
Table 1. The results of applying Lemma 2 to rewrite the non-
admissible vector fields in the example from Section 5.2 in terms
of Lie brackets of admissible vector fields (n = 5).

As a next step, we need to project the Lie brackets on
any P. Hall basis PH(Φ) = (P,≺) with

Φ = { hn+2,n+1, hn+1,3, h2n+1,2n+3, h2n+3,3, hn+5,n+1,
hn+1,n+3, hn+3,2, h2n+4,2n+5, h2n+5,2n+1, h2n+1,3}.

In general, we can choose any P. Hall basis and then make
use of Remark 8 for the projection. However, in this case

11



it is also easily possible to properly choose the ordering
of the P. Hall basis in such a way that the brackets in Ta-
ble 1 are already in P. More precisely, we only have to
make sure that hn+2,n+1 ≺ hn+1,3, h2n+1,2n+3 ≺ h2n+3,3,
hn+1,n+3 ≺ hn+3,2, hn+1,n+3 ≺ hn+5,n+1, h2n+5,2n+1 ≺
h2n+1,3, h2n+5,2n+1 ≺ h2n+4,2n+5. Note that this is in gen-
eral not possible, since the conditions might be conflicting
and – to keep this example more general – we do not adapt
the ordering in that way in our implementation.

We are now ready to apply the algorithm presented
in Appendix A.4. We do not discuss the resulting in-
put sequences in detail here and also do not provide the
complete simulation results due to space limitations, but
instead do this for the case that the communication graph
is given by graph (b). We refer the interested reader to em-
ploy the provided Matlab implementation [23]. We next
discuss the implications of having the communication
graph given by graph (b) in Figure 3 instead of graph (a).
Since the link from node 2 to node 3 is missing in the
graph, Assumption 3 does no longer hold. In particular,
the vector field hn+2,n+5(z) = zn+2 en+5, which is included
in the admissible vector field fadm in case the communica-
tion is given by graph (a), now is non-admissible. Despite
Assumption 3 not being fulfilled, we can still use Lemma 2
to rewrite h2,n+5, since the result is completely indepen-
dent of this assumption. Indeed, the corresponding path
is given by p52 = 〈v5|v4|v3|v1|v2〉 and we obtain

h2,n+5(z) (64)

=
[
[h2,n+1, hn+1,n+3], [hn+3,n+4, hn+4,n+5]

]
(z).

We can then follow the same procedure as discussed be-
fore to project on any P. Hall basis, where Φ now addition-
ally includes the vector fields h2,n+1, hn+1,n+3, hn+3,n+4,
and hn+4,n+5, and then apply the algorithm presented in
Appendix A.4. The corresponding simulation results are
depicted in Figure 4.

6. Conclusion and outlook
We presented a new approach to distributed optimization
problems where the communication topology is given by
a directed graph. Our approach is based on a two-step
procedure where in a first step first we derived suitable
Lie bracket representations of saddle-point dynamics and
then used Lie bracket approximations techniques from ge-
ometric control theory to obtain distributed control laws.
While we limited ourselves to the class of convex problems
with separable cost function and linear equality and in-
equality constraints that match the communication topol-
ogy, we emphasize that the methodology is applicable
to a much larger class of optimization problems, includ-
ing, for example, non-linear constraints, constraints not
compatible with the graph structure or non-separable cost

functions. Additionally, similar techniques can be applied
to distributed control problems. We also presented a sim-
plified algorithm for the design of approximating inputs
that exploits the problem structure. Summarizing, the
presented approach provides a systematic way to address
distributed optimization problems under mild assump-
tions on the communication graph as well as the problem
structure. However, the design of suitable approximating
inputs with improved transient and asymptotic behavior
is complex and still an important issue to be addressed.
While filters can be used as a simple remedy to this prob-
lem, there are also two other ways we plan to approach
this problem: (1) altering the choice of admissible vector
fields and (2) modifying the design of the approximating
inputs including an optimal choice of parameters.
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A. Appendix

A.1. Proof of Lemma 1

Proof. The proof follows a similar argument as the one
in [11, Theorem 5.1.3]. First, using (11c), we have

λi(t) = exp
(∫ t

0

(
aix(τ)− bi

)
dτ
)
λi(0), (65)

for all i = 1, 2, . . . , n; hence, λi(0) > 0 implies that
λi(t) > 0, for all t ≥ 0, and consequently, the set R(M)
is positively invariant. Let (x?, ν?, λ?) be an arbitrary
point inM. Consider the candidate Lyapunov function
V : Rn ×Rn ×Rn

+ → R+,0 defined as

V(x, ν, λ) = 1
2‖x− x?‖2 + 1

2‖ν− ν?‖2

+
n

∑
i=1

(λi − λi
?)−

n

∑
i:λ?

i 6=0
λ∗i ln( λi

λ?
i
). (66)

We first observe that V is positive definite with respect
to (x?, ν?, λ?) on R(M), and that all the level sets are
compact. To see this, note that according to [6, p. 207, eq.
(1.5)], the function D : Rn

++ ×Rn
++ → R defined as

D(λ?, λ) =
n

∑
i=1

(
λi − λ?

i + λ?
i (ln(λ

?
i )− ln(λi))

)
(67)

=
n

∑
i=1

(λi − λ?
i )−

n

∑
i:λ?

i 6=0
λ?

i ln( λi
λ?

i
) (68)

is positive for all (λ?, λ) ∈ Rn
++ × Rn

++ and zero if and
only if λ = λ∗ [6, Condition I.] and its level sets are com-
pact [6, Condition V.]. Thus, with V(x, ν, λ) additionally
being quadratic in x and ν, positive definiteness and com-
pactness of all level sets follows and hence V is uniformly
unbounded onR(M). The derivative of V along the tra-
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jectories of (11) is then given by

V̇(x, ν, λ) (69)

= −(x− x?)>
(
∇F(x) + A>ν + C>λ

)
+ (ν− ν?)>(Ax− b)

−
n

∑
i=1

i/∈Ieq

ν2
i +

n

∑
i=1

λi(cix− di)−
n

∑
i:λ?

i 6=0
λi(cix− di)

= −(x− x?)>∇F(x)− ν>
(

Ax− b− (Ax? − b)
)

− λ>
(

Ax− b− (Ax? − b)
)
+ (ν− ν?)>(Ax− b)

−
n

∑
i=1

i/∈Ieq

ν2
i +

n

∑
i=1

(λi − λ?
i )(cix− di) + F(x)− F(x),

Using strict convexity of F, we now have that −(x −
x?)>∇F(x) < F(x?) − F(x), for all x 6= x? and hence
we obtain for all x 6= x?

V̇(x, ν, λ) (70)

< F(x?)− F(x)− ν>
(

Ax− b− (Ax? − b)
)

− λ>
(
Cx− d− (Cx? − d)

)
+ (ν− ν?)>(Ax− b)

−
n

∑
i=1

i/∈Ieq

ν2
i +

n

∑
i=1

(λi − λi
?)(cix− di) + F(x)− F(x)

= L(x?, ν, λ)− L(x, ν, λ) + L(x, ν, λ)− L(x, ν?, λ?)

−
n

∑
i=1

i/∈Ieq

ν2
i

= L(x?, ν, λ)− L(x, ν?, λ?)−
n

∑
i=1

i/∈Ieq

ν2
i . (71)

Due to the saddle point property (10) the derivative of V
along the flow is strictly negative, for all (x, ν, λ) except
for (x, ν, λ) ∈ M; thus, (x?, ν?, λ?) is stable according to
[11, Theorem 2.2.2]. This procedure can be repeated for
any point (x?, ν?, λ?) ∈ M, henceM is stable. Let Lorig
denote the Lagrangian associated to the original problem
(4) and let Sorig denote the corresponding set of saddle
points. Observe that L(x, ν, λ) = Lorig(x, νIeq , λIineq) −
∑n

i=1,i/∈Iineq
λidi such that λ?

i = 0 for all i = 1, 2, . . . , n,
i /∈ Iineq, for any saddle point (x?, ν?, λ?) of L, since bi > 0
for i = 1, 2, . . . , n, i /∈ Iineq. Thus, the set of saddle points
of L is given by

S = { (x, ν, λ) ∈ Rn ×Rn ×Rn
+ : (72)

(x, νIeq , λIineq) ∈ Sorig, λi = 0 for i /∈ Iineq}

and hence, M = {(x, ν, λ) ∈ Rn × Rn × Rn :
(x, νIeq , λIineq) ∈ S and νi = 0 for i /∈ Ieq, λi = 0 for i /∈

Iineq}. Since Sorig is compact due to Assumption 2, the set
M is compact as well. The same argument as the one in
the proof of [11, Theorem 5.1.3] then yields that the set of
saddle points is asymptotically stable with respect to the
set of initial conditionsR(M).

A.2. Proof of Lemma 3

Proof. We first observe first that (38) is the same as (27),
(29) with a special choice of the subpath as well as an
additional projection with the property projPH

(
B
)
(z) =

B(z) for all z ∈ R3n. Hence, it immediately follows that
R̃k1,k2(pi1ir )(z) = Rk1,k2(pi1ir )(z). In the same manner, we
also have that

δ
(

R̃k1,k2(pi1ir )
)
= δ

(
Rk1,k2(pi1ir )

)
= `(pi1ir ). (73)

We show the second part by induction. First observe
that for paths pi1ir with `(pi1ir ) = 1 it is clear that
R̃k1,k2(pi1ir ) ∈ P since Rk1,k2(pi1ir ) is an admissible vec-
tor field by Lemma 2 and all admissible vector fields are
in P. Further, for paths pi1ir with `(pi1ir ) ∈ {2, 3, 4, 6} it is
also follows from the definition of the projection operator
that R̃k1,k2(pi1ir ) ∈ P. Suppose now that the result holds
true for all paths p with `(p) = ¯̀, where ¯̀ ≥ 2, and con-
sider a path pi1ir with `(pi1ir ) = ¯̀ + 1. Observe that all
subbrackets of R̃k1,k2(pi1ir ) are in P by the induction hy-
pothesis and hence, by [PH3], [PH4.a], [PH4.b], we have
R̃k1,k2(pi1ir ) ∈ P if

δ
(
left(R̃k1,k2(pi1ir ))

)
< δ

(
right(R̃k1,k2(pi1ir ))

)
(74)

δ
(
left(right(R̃k1,k2(pi1ir )))

)
< δ

(
left(R̃k1,k2(pi1ir ))

)
; (75)

we will show next that these conditions are fulfilled for
for the above choice of subpaths. By (38) and (40) we have
that

δ
(
right(R̃k1,k2(pi1ir ))

)
= δ

(
R̃s,k2(q)

)
= `(q)

δ
(
left(R̃k1,k2(pi1ir ))

)
= δ

(
R̃k1,s(qc)

)
= `(pi1ir )− `(q).

Since b a
b c ≥

a−b+1
b , for all a ∈ Z, b ∈ N, we have that

`(q) = θ(pi1ir )− 1 ≥ `(pi1 ir )+1
2 , (76)

for `(pi1ir ) ≥ 5, and hence we obtain

δ
(
right(R̃k1,k2(pi1ir ))

)
− δ
(
left(R̃k1,k2(pi1ir ))

)
≥ `(pi1ir ) + 1− `(pi1ir ) > 0. (77)

Thus, (74) holds. For (75), we first note that

δ
(
left(right(R̃k1,k2(pi1ir )))

)
= δ

(
left(R̃s,k2(q))

)
(78)
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and, since left(R̃s,k2(q)) ∈ P by the induction hypothe-
sis, it is δ

(
left(R̃s,k2(q))

)
≤ δ

(
right(R̃s,k2(q))

)
= `(q) −

δ
(
left(R̃s,k2(q))

)
according to [PH4.a]. Hence, we obtain

δ
(
left(right(R̃k1,k2(pi1ir )))

)
≤ `(q)

2 . (79)

As a result, (75) is fulfilled when

`(q)
2 ≤ `(pi1ir )− `(q). (80)

We now compute

3
2 `(q) =

3
2b

`(pi1 ir )

2 c+ 3
2 ≤

3
4 `(pi1ir ) +

3
2 ≤ `(pi1ir ),

for `(pi1ir ) ≥ 6; for `(pi1ir ) = 5, we have that 3
2 `(q) =

9
2 < `(pi1ir ), thus (80) holds for all considered pi1ir which
proves that (75) holds; this concludes the proof.

A.3. Proof of Proposition 2
Proof. It is clear that (55) holds for `(pij) = 2, since
R̃r+j,i(pij) is a bracket of degree two, i.e., a bracket of the
form [φk1 , φk2 ], k1 6= k2, such that

E
(
projPH([φk1 , φk2 ])

)
=

{
[φk1 , φk2 ] if k1 < k2

[φk2 , φk1 ] if k2 < k1.
(81)

Consider now a path pi1i4 = 〈vi1 |vi2 |vi3 |vi4〉, i1 6= i2 6=
i3 6= i4, i.e., `(pi1i4) = 3. Then

R̃r+i4,i1(pi1i4)

= projPH
(

Rr+i4,i1(pi1i4)
)

= projPH
([

hr+i4,r+i3 , [hr+i3,r+i2 , hr+i2,i1 ]
])

= −
[
hr+i4,r+i3 , [hr+i2,i1 , hr+i3,r+i2 ]

]
, (82)

where we have used the assumption on the ordering of
the P. Hall basis. The only equivalent bracket in P is then
given by B =

[
hr+i3,r+i2 , [hr+i2,i1 , hr+i4,r+i3 ]

]
, but we have

that B(z) ≡ 0, since

[hr+i2,i1 , hr+i4,r+i3 ](z)

= er+i3 e>r+i4 ei1 zr+i2 − ei1 e>r+i2 er+i3 z+i2 = 0. (83)

Thus, the claim follows.

A.4. A simplified algorithm for the
construction of approximating sequences

Our objective in this section is to provide a modified ver-
sion of the construction procedure from [21] using the
structural properties of the problem at hand, which leads
to considerable simplifications. Given the scopes of this
paper and the complicated nature of the subject, we do

not discuss this algorithm in detail; we refer the reader
to [24], as well as the original work [21]. We first provide
a formal definition of the already mentioned equivalence
relation on the set of Lie brackets:

Definition 3. [Equivalent brackets] Let PH = (P,≺) be a
P. Hall basis of Φ = {φ1, . . . , φM} and let δk(B) denote the
degree of the vector field φk in the bracket B ∈ PH. We
say that two brackets B1, B2 ∈ P are equivalent, denoted
by B1 ∼ B2, if δk(B1) = δk(B2) for all k = 1, . . . , M. •

For the construction of the sets of frequencies, we also
need the following two definitions:

Definition 4. [Minimally canceling] A set Ω =
{ω1, . . . , ωm} is called minimally canceling if for each col-
lection of integers {yi}m

i=1, such that ∑m
k=1 |yk| ≤ m we

have ∑m
k=1 ykωk = 0 if and only if all yk are equal. •

Definition 5. [Independent collection] A finite collection
of sets {Ωλ}N

λ=1, where Ωλ = {ωλ,1, ωλ,2 . . . , ωλ,Mλ
}, is

called independent if the followings hold:

1. the sets Ωλ are pairwise disjoint, and

2. for each collection of integers {yi,k}N
i=1, k = 1, . . . , Mi,

such that

N

∑
i=1

Mi

∑
k=1

yi,kωi,k = 0 and
N

∑
i=1

Mi

∑
k=1
|yi,k| ≤

N

∑
i=1

Mi

we have

Mi

∑
k=1

yi,kωi,k = 0, (84)

for each i = 1, 2, . . . , N. •

Consider now an extended system of the form

ż = f0(z) + ∑
B∈B

δ(B)≥2

vBB(z), (85)

where f0 : RN → RN , B ⊂ P for some P. Hall basis
PH(Φ) = (P,≺), Φ = {φ1, φ2, . . . , φM}, φk : RN → RN ,
f0, φk sufficiently smooth, and vB ∈ R \ {0}. Suppose
that for any B ∈ B, we have that δk(B) ∈ {0, 1}, k =
1, 2, . . . , M. Consider the system

Ẋσ = f0(Xσ) +
M

∑
k=1

φk(Xσ)Uσ
k (t). (86)

The following algorithm allows to compute suitable input
functions Uσ

k such that the solutions of (86) uniformly con-
verge to those of (85) with increasing σ. It should as well
be mentioned that we also provide an exemplary imple-
mentation of the algorithm in Matlab which is available
at [23].
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δ(B) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

|Efull(B)| 1 2 3! 4! 5! 6! 7! 8! 9! 10! 11! 12! 13! 14! 15! 16!
|E(B)| 1 1 2 3 5 9 16 28 51 93 170 315 585 1089 2048 3855

Table 2. A comparison of |Efull(B)| and |E(B)| for a specific choice of the P. Hall basis that fulfills the assumptions as in Proposition 2.
The numbers were obtained by symbolically computing the resulting vector fields using a computer algebra system. Interestingly, the
sequence of |E(B)| has two matching sequences [1] and [2] except for the value for δ(B) = 15 which should be 1091 or 1092, thus we
conjecture that these sequences are a good upper bound for |E(B)|.

Algorithm

Step 1: For all B ∈ B, determine the associated (reduced)
equivalence class

E(B) = {B̃ ∈ P : B̃ ∼ B, B̃(z) 6≡ 0}
= {B̃E,1, B̃E,2, . . . , B̃E,|E(B)|},

and let E = {E(B), B ∈ B}. For each E ∈ E , set

ṽB =

{
vB if B ∈ B
0 otherwise.

Step 2: For all E ∈ E , δ(E) = 2, choose |E2| distinct fre-
quencies ωE ∈ R, and for all E ∈ E , δ(E) ≥ 3 choose |E|
sets

Ω+
E,ρ,k =

{
ωE,ρ,k if δk(E) = 1
∅ if δk(E) = 0

Ω−E,ρ,k = −Ω+
B,ρ,k,

k = 1, . . . , M, ρ = 1, . . . , |E(B)|, such that

1. For each E ∈ E , δ(E) ≥ 3, and each ρ = 1, . . . , |E|, the
set Ω+

E,ρ =
⋃M

k=1 Ω+
E,ρ,k is minimally canceling.

2. The collection of sets{{
ωE,−ωE

}
E∈E2

,
{

Ω+
E,ρ ∪Ω−E,ρ

}
E∈E ,δ(E)≥3,
ρ=1,...,|E(B)|

}
is independent.

Step 3: For all E ∈ E with δ(E) ≥ 3, compute

ΞE =


ξ+B̃E,1,1

ξ+B̃E,1,2
. . . ξ+B̃E,1,|E|

ξ+B̃E,2,1
ξ+B̃E,2,2

. . . ξ+B̃E,2,|E|
...

...
. . .

...
ξ+B̃E,|E| ,1

ξ+B̃E,|E| ,2
. . . ξ+B̃E,|E| ,|E|

 ,

where

ξ+B,ρ = ĝB(ωE,ρ,θB(1), ωE,ρ,θB(2), . . . , ωE,ρ,θB(δ(B))),

with θB(i) = k if the ith vector field in B is φk and where
ĝB : Rδ(B) → R is defined as follows:

• If δ(B) = 1, then ĝB(ω̃1) = 1.

• If B = [B1, B2], then

ĝB(ω̃1, ω̃2, . . . , ω̃δ(B)) =
ĝB2(ω̃1, ω̃2, . . . , ω̃δ(B1)

)

∑
δ(B1)
i=1 ω̃i

× ĝB2(ω̃δ(B1)+1, ω̃δ(B1)+2, . . . , ω̃δ(B1)+δ(B2)
).

Step 4: For all E ∈ E with δ(E) = 2, i.e., E(B) = {B} =[
φk1 , φk2

]
, set

ηE,k1(ωE) = i 1
βE

sign(ṽBωE)
√

1
2 |ṽBωE|

ηE,k2(ωE) = βE

√
1
2 |ṽBωE|,

where βE 6= 0. For all E ∈ E with δ(E) ≥ 3 let


γE,1
γE,2...

γE,|E|

 = Ξ−1
E


ṽB̃E,1

ṽB̃E,2...
ṽB̃E,|E|


and compute ηE(ω) as follows:

• If δ(E) is odd, take

ηE(ω) = βE,ω
( 1

2 γE,ρiδ(E)−1) 1
δ(E)

for all ω ∈ Ω+
E,ρ, and

• if δ(E) is even, take

ηE(ω̃) = iβE,ωsign(γE,ρ(t)iδ(B)−2)
∣∣∣ 1

2 γE,ρ(t)iδ(B)−2
∣∣∣ 1

δ(B)

for some ω̃ ∈ Ω+
E,ρ and

ηE(ω) = βE,ω

∣∣∣ 1
2 γE,ρ(t)iδ(B)−2

∣∣∣ 1
δ(B)

for all ω ∈ Ω+
E,ρ \ {ω̃}.
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In both cases βE,ω ∈ R can be chosen freely such that it
fulfills ∏ω∈Ω+

E,ρ
βE,ω = 1.

Step 5: Compute the input according to Uσ
k (t) =

∑E∈E Uσ
k,E(t) with Uσ

k,E : R→ R being defined as follows:

• If δk(E) = 0: Uσ
k,E(t) = 0.

• If δ(E) = 2, δk(E) = 1:

Uσ
k,E(t) = 2

√
σRe

(
ηE,k(ωE)eiσωEt).

• If δ(E) = N, δk(E) = 1:

Uσ
k,E(t) = 2σ N−1

N

|E|

∑
ρ=1

Re
(
ηE(ωE,ρ,k)eiσωt).

Note that this algorithm is a reformulation of the one
presented in [21] (see [24] for a derivation) exploiting two
structural properties of the problem at hand: (1) each
B ∈ B fulfills δk(B) ∈ {0, 1} for all k = 1, 2, . . . , M and
(2) a large number of the equivalent brackets evaluate to
zero (see Table 2). Note that (1) simplifies the calculation
of ξ+B,ρ in step 3 and (2) reduces the cardinality of each
E(B) in step 1, where usually the full equivalence class
Efull(B) = {B̃ ∈ B : B̃ ∼ B} is used, thus leading to a
reduction of the dimension of ΞE in step 3 and hence also
simplifying step 4. In fact, we can derive the following
result on the equivalent brackets:

Lemma 4. Consider graph G = (V , E) of n nodes. Let
pi1ir = (vi1 , vi2 , . . . , vir ) be the shortest path between
vi1 and vir , vik ∈ V for k = 1, 2, . . . , r, r ≥ 3. Let
Φ = {φa1 , φa2 , . . . , φar−1} be a set of vector fields with

φaj ∈ {hk1,k2 : k1 ∈ I(ij+1), k2 ∈ I(ij)}, (87)

for j = 1, 2, . . . , r − 1. Denote some given P. Hall basis
of Φ by PH(Φ) = (P,≺). Let B ∈ P and suppose that
δaj(B) ∈ {0, 1} for j = 1, 2, . . . , r− 1. Define J (B) = {j =
1, 2, . . . , r− 1 : δaj(B) = 1} and further denote

jmin(B) = min
j∈J (B)

{j}, jmax(B) = max
j∈J (B)

{j}. (88)

Then, if J (B) is a connected set, i.e., J (B) =
{jmin(B), jmin(B) + 1, . . . , jmin(B) + δ(B) − 1} and
jmax(B) = jmin(B) + δ(B)− 1, for any k1 ∈ I(ijmax(B)+1),
k2 ∈ I(ijmin(B)) and for all z ∈ R3n, we have that

B(z) = ±hk1,k2(z) or B(z) = 0. (89)

If J (B) is not a connected set, we have B(z) = 0 for all
z ∈ R3n. •

Proof. We prove this result by induction. Suppose first that
δ(B) = 1. Then J (B) = {jmin} = {jmax}, which means it
has only one element. Hence, the claim is obviously true.
Since the case of J (B) not being a connected set does not
appear for δ(B) = 1, we also look at δ(B) = 2. Let J (B) =
{j1, j2}, j1 6= j2. Observe that, for all j1, j2 = 1, 2, . . . , r− 1,
j1 6= j2, and j1 ≤ r− 2 (or j2 ≤ r− 1), we have

B(z) = [φaj1
, φaj2

](z)

= [hk1,k2 , hk3,k4 ](z)

= [zk1 ek2 , zk3 ek4 ]

= ek4 e>k3
ek2 zk1 − ek2 e>k1

ek4 zk3 , (90)

where k1 ∈ I(ij1+1), k2 ∈ I(ij1), k3 ∈ I(ij2+1), and k4 ∈
I(ij2). We then compute

[φaj1
, φaj2

](z) =


zk1 ek4 if k2 = k3

−zk3 ek2 if k1 = k4

0 otherwise.
(91)

Note that k2 = k3 only if ij1 = ij2+1, i.e., j1 = j2 + 1 =
jmax, jmin = j2, and k1 = k4 only if ij2 = ij1+1, i.e.,
j2 = j1 + 1 = jmax, j1 = jmin; hence B(z) is non-zero
only if J (B) = {j1, j2} is connected, which proves that
the claim is true for δ(B) = 2. Note also that the case
k1 = k4, k2 = k3 cannot occur since j1 6= j2. The sec-
ond claim (89) follows immediately from these consid-
erations. To proceed with our induction argument, sup-
pose now that the claim is true for all B ∈ P that fulfill
the assumptions with δ(B) ≤ δ∗, δ∗ ≤ r − 1. Consider
now some B ∈ P with δ(B) = δ∗ + 1 > 2. Every B
can be written as B = [B1, B2], where δ(B1), δ(B2) ≤ δ∗.
Let J (B) = {j1, j2, . . . , jδ(B)} and assume, without loss of
generality, that jk < jk+1, for all k = 1, . . . , δ(B)− 1. By
the induction hypothesis, B1(z) and B2(z) are non-zero
only if J (B1) and J (B2) are both connected sets. Since
J (B2) = J (B) \ J (B1) this is the case if and only if

J (B1) =

{
{j1, j2, . . . , jδ(B1)

} or
{jδ(B)−δ(B1)+1, jδ(B)−δ(B1)+2, . . . , jδ(B)}

=


{j1, j1 + 1, . . . , j1 + δ(B1)− 1}, or
{jδ(B)−δ(B1)+1, jδ(B)−δ(B1)+1 + 1, . . . ,

jδ(B)−δ(B1)+1 + δ(B1)− 1}.

We only consider the first case here, since the second case
can be treated analogously. Using the first equality above,
for k1 ∈ I(ij1+δ(B1)

), k2 ∈ I(ij1), and k3 ∈ I(ijδ(B)+1), k4 ∈
I(ijδ(B1)+1

), we have by the induction hypothesis that

B1(z) = ±hk1,k2(z) or B1(z) = 0 (92)

B2(z) = ±hk3,k4(z) or B2(z) = 0. (93)
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Obviously, following our previous calculations, [B1, B2]
is non-zero only if k2 = k3, meaning that j1 = jδ(B) + 1,
or if k1 = k4, meaning that j1 + δ(B1) = jδ(B1)+1. The
first case cannot occur, since δ(B) > 2 and jk+1 > jk; the
second case holds true if and only if J (B) is connected,
thus showing that B(z) is non-zero only if J (B) is con-
nected. To show that (89) holds, consider the case that
J (B) is connected, i.e., J (B) = {j1, j1 + 1, . . . , j1 + δ(B)},
jmin(B) = j1, jmax(B) = j1 + δ(B), and k1 = k4. Then,
following the same arguments as before, we have that
B(z) = ±hk3,k2(z) for k3 ∈ I(ijδ(B)+1

) = I(ijmax(B)+1),
k2 ∈ I(ij1) = I(ijmin(B)), which concludes the proof.

Remark 11. The condition that J (B) must be a connected
set can be interpreted as follows: Each admissible vector
field φaj can be associated to an edge in the communication
graph G. The condition then means that the vector fields
in the bracket must be ordered along a path. •

The algorithm presented beforehand still includes sev-
eral degrees of freedom, namely the specific choice of
frequencies in step 2 as well as the scalings βE, βE,ω in step
4. While the conditions on the frequencies are not hard to
satisfy and in fact, are not restrictive, it turns out that their
choice is crucial in practical implementations. There is still
no constructive way of choosing “good” frequencies that
we are aware of in the literature. The situation is similar as
it comes to the choice of scalings, but here a heuristic way
of how to choose them is to distribute the energy of the
approximating inputs among different admissible input
vector fields φk. In this spirit, we suggest decreasing the
amplitudes of the approximating inputs entering in the
primal variables, which will lead to an increase of the am-
plitudes of the inputs entering in the dual variables. Our
simulations results indicate that this procedure usually
leads to a better transient and asymptotic behavior of the
primal variables, which we are typically most interested
in.

A.5. Proof of Theorem 1

The proof of Theorem 1 relies on the next general stability
result. The proof follows in the same lines as the proof of
in [12, Theorem 1], and is omitted here.

Lemma 5. Consider

ż = f (t, z), z(t0) = z0, (94)

and a one-parameter family of dynamics

żσ = f σ(t, zσ), zσ(t0) = z0, (95)

where f , f σ : R× Rn → Rn, f , f σ ∈ C1 and σ ∈ N+ is a
parameter. Suppose that

1. a compact set S is locally uniformly asymptotically
stable for (94) with region of attractionR(S) ⊆ Rn;

2. the region of attractionR(S) is positively invariant for
(95);

3. for every ε > 0, for every T > t0 and for every z0 ∈
R(S) there exists σ∗ > 0 such that, for all σ > σ∗ and
for all t0 ∈ R, there exist unique solutions z(t), zσ(t) of
(94) and (95) that fulfill for all t ∈ [t0, T]

‖z(t)− zσ(t)‖ ≤ ε. (96)

Then the set S is locally practically uniformly asymptoti-
cally stable for (95) and zσ(t) uniformly converges to z(t)
on [t0, ∞) for increasing σ. •

We are now ready to prove Theorem 1 making use of
Lemma 5.

Proof of Theorem 1. Since the control law (50) is obtained
from the construction procedure presented in [21], it
follows directly from [21, Theorem 8.1] that for each
ε > 0, for each T > 0 and for each initial condition
zσ(0) = z0 ∈ R(M), there exists σ∗ > 0 such that for
all σ ≥ σ∗ and for all t ∈ [0, T] the inequality (54) holds.
Moreover, note that the set M defined by (13) is com-
pact by Assumption 2 (see also the proof of Lemma 1)
and asymptotically stable for (11) with region of attraction
R(M) = {(x, ν, λ) ∈ Rn ×Rn ×Rn : λ ∈ Rn

++}, accord-
ing to Lemma 1. Also, by the same argumentation as the
one in the proof of Lemma 1, the set R(M) is positively
invariant for (49) together with the control law (50) - (53).
Hence, all assumptions from Lemma 5 are fulfilled and
the result follows.
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