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RECURRENCE RELATIONS FOR BINOMIAL-EULERIAN POLYNOMIALS

JUN MA, SHI-MEI MA, AND YEONG-NAN YEH

Abstract. Binomial-Eulerian polynomials were introduced by Postnikov, Reiner and Williams.

In this paper, properties of the binomial-Eulerian polynomials, including recurrence relations

and generating functions are studied. We present three constructive proofs of the recurrence

relations for binomial-Eulerian polynomials. Moreover, we give a combinatorial interpretation

of the Betti number of the complement of the k-equal real hyperplane arrangement.
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1. Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. For

each π ∈ Sn, an index i is called a descent (resp. an ascent) of π if π(i) > π(i + 1) (resp.

π(i) < π(i+ 1)), where i ∈ [n− 1]. Define

Des (π) = {π(i) | π(i) > π(i+ 1), i ∈ [n− 1]}, des (π) = |Des (π)|,

Asc (π) = {π(i) | π(i) < π(i+ 1), i ∈ [n− 1]}, asc (π) = |Asc (π)|,

where |S| denote the cardinality of the set S. The classical Eulerian polynomials An(x) are

defined by

An(x) =
∑

π∈Sn

xdes (π) =
∑

π∈Sn

xasc (π). (1)

Let An(x) =
∑n−1

k=0

〈
n
k

〉
xk, where

〈
n
k

〉
are called the Eulerian numbers. The numbers

〈
n
k

〉
satisfy

the recurrence relation 〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n

k

〉
,

with the initial conditions
〈
1
0

〉
= 1 and

〈
1
k

〉
= 0 for k ≥ 1 (see [18, A008292]). In [4], Chung,

Graham and Knuth noted that if we set
〈
0
0

〉
= 0, then the following symmetrical identity holds:

∑

k≥0

(
a+ b

k

)〈
k

a− 1

〉
=

∑

k≥0

(
a+ b

k

)〈
k

b− 1

〉
, (2)

where a, b are positive integers. Subsequently, the q-generalizations of the identity (2) have been

pursued by several authors. See, e.g., [5, 10, 13, 17].

Let G = K1,n be the n-star graph with the central node n+1 connected to the nodes 1, · · · , n.

The associated polytope PB(K1,n) is called the stellohedron. Following [16, Section 10.4], the h-

polynomial of the n-dimensional stellohedron is given by

hB(K1,n)(x) = 1 + x
n∑

k=1

(
n

k

)
Ak(x), (3)
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which is named as the binomial-Eulerian polynomial (see [17]). As usual, let

Ãn(x) = hB(K1,n)(x).

The γ-positivity of Ãn(x) follows from a general result of Postnikov, Reiner and Williams [16,

Theorem 11.6]. As an application of the γ-positivity, we see that Ãn(x) is symmetric. Very

recently, Shareshian and Wachs [17] further studied γ-positivity of the binomial-Eulerian and

q-binomial-Eulerian polynomials, and noticed that the identity (2) is equivalent to the symmetry

of Ãn(x). The reader is referred to [1] for a survey of the theory of γ-positivity.

Definition 1.1. Let Qn be the set of permutations of [n] with the restriction that the entry n

appears as the first descent. For convenience, let the identity permutation 12 · · · n be an element

of Qn and we say that the entry n appears as the first descent of 12 · · · n (In fact, the identity

permutation has no descent).

For example, Q1 = {1},Q2 = {12, 21} and Q3 = {123, 132, 231, 312, 321}. Postnikov, Reiner

and Williams [16, Section 10.4] discovered that

Ãn(x) =
∑

π∈Qn+1

xdes (π).

The first few of Ãn(x) are given as follows:

Ã0(x) = 1, Ã1(x) = 1 + x, Ã2(x) = 1 + 3x+ x2, Ã3(x) = 1 + 7x+ 7x2 + x3.

It is clear that the ascent and descent statistics are equidistributed on Sn, since reversing

an element of Sn turns ascents into descents and vice versa. It is less obvious that ascent and

descent statistics are equidistributed on Qn, since reversing an element of Qn may leads to an

element of Sn\Qn.

This paper is motivated by the following problem.

Problem 1.2. Is there a bijective proof of the symmetry of Ãn(x) by using the descent and

ascent statistics on Qn?

This paper is organized as follows. In Section 2, we present three constructive proofs of the

recurrence relations for Ãn(x). In Theorem 2.11, as a combination of the first two constructive

proofs, we give a solution to Problem 1.2. In Section 3, we study the generating function of

a kind of multivariable binomial-Eulerian polynomials. As an application, in Theorem 3.5, we

give a combinatorial interpretation of the Betti number of the complement of the k-equal real

hyperplane arrangement.

2. Recurrence relations

2.1. The descent statistic on Qn.

It is well known that the Eulerian polynomials An(x) satisfy the recurrence relation

An+1(x) = (1 + nx)An(x) + x(1− x)A′
n(x),
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with the initial values A0(x) = A1(x) = 1 (see [3] for instance), and they can be defined by the

exponential generating function

A(x, z) =
∑

n≥0

An(x)
zn

n!
=

x− 1

x− ez(x−1)
.

It is easy to verify that

(1− xz)
∂

∂z
A(x, z) = A(x, z) + x(1− x)

∂

∂x
A(x, z). (4)

Set Ã0(x) = 1. We define Ã(x, z) =
∑

n≥0 Ãn(x)
zn

n! . It follows from (3) that

Ã(x, z) = exzA(x, z). (5)

Combining (4) and (5), we obtain

(1− xz)
∂

∂z
Ã(x, z) = (1 + x− xz)Ã(x, z) + x(1− x)

∂

∂x
Ã(x, z). (6)

Let Ãn(x) =
∑n

k=0 Ã(n, k)x
k. Equating the coefficients of xkzn/n! in both sides of (6) leads to

the following result.

Theorem 2.1. For n ≥ 1, we have

Ã(n+ 1, k) = (k + 1)Ã(n, k) + (n− k + 2)Ã(n, k − 1)− nÃ(n− 1, k − 1), (7)

with the initial conditions Ã(0, 0) = 1 and Ã(0, k) = 0 for k 6= 0.

In the following, we present a constructive proof of the recurrence relation (7). Let αi(π) be

the permutation in Sn−1 obtained from π by the following two steps:

• Step 1. Delete the entry i from π;

• Step 2. Every entry in π, which is larger than i, is decreased by 1.

Let βi,j(π) be the permutation in Sn+1 obtained from π by the following two steps:

• Step 1. Every entry in π, which is larger than or equal to i, is increased by 1;

• Step 2. Insert the entry i between j-st and (j+1)-st elements of π.

In the sequel, we define

Des ∗(π) = {0} ∪Des (π),

QDn,k = {π ∈ Qn | des (π) = k}.

Denote by FDn+1,k the set of pairs [π, i] such that π ∈ QDn+1,k and i ∈ {0, 1, 2, . . . , k}.

Hence

|FDn+1,k| = (k + 1)Ã(n, k).

We use RDn+2,k to denote the set of permutations π of [n+2] which satisfy the following three

conditions:

(1) the entry n+ 2 appears as the first descent of π from left to right;

(2) π has k descents;

(3) Either a = 1 or π(a− 1) > π(a+ 1), where a = π−1(1).

Lemma 2.2. There is a bijection φ = φn,k from RDn+2,k to FDn+1,k.
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Proof. For any π ∈ RDn+2,k, let a = π−1(1) and σ = α1(π). Clearly, σ ∈ QDn+1,k. Suppose

that

Des ∗(σ) = {j0, j1, . . . , jk}

with j0 < j1 < . . . < jk−1 and jk = 0. Note that a− 1 ∈ Des ∗(σ). Suppose that ji = a− 1 for

some i ∈ {0, 1, . . . , k}. Define a map φ : RDn+2,k 7→ FDn+1,k by letting φ(π) = [α1(π), i].

Conversely, for any [σ, i] ∈ FDn+1,k, suppose that Des ∗(σ) = {j0, j1, . . . , jk} with j0 < j1 <

. . . < jk−1, jk = 0 and a = ji. Let us consider the permutation π = β1,a(σ). Then π(1) = 1 if

a = 0; otherwise, π(a + 1) = 1 and π(a) > π(a + 2) since σ(a) > σ(a + 1). So, π ∈ RDn+2,k.

Thus, for any [σ, i] ∈ FDn+1,k, the inverse φ−1 of the map φ is given by φ−1(σ, i) = β1,a(σ). �

Let HDn+1,k−1 be the set of pairs [π, i] such that π ∈ QDn+1,k−1 and i ∈ {1, 2, . . . , n−k+2}.

Then

|HDn+1,k−1| = (n − k + 2)Ã(n, k − 1).

Denote by RHDn+1,k−1 the set of pairs [π, i] such that [π, i] ∈ HDn+1,k−1 and i > π−1(n+1)−1.

We use RDn+2,k to denote the set of permutations π of [n+2] which satisfy the following three

conditions:

(1) the entry n+ 2 appears as the first descent of π from left to right;

(2) π has k descents;

(3) Either a = n+ 2 or π(a− 1) < π(a+ 1), where a = π−1(1).

Lemma 2.3. There is a bijection θ = θn,k from RDn+2,k to RHDn+1,k−1.

Proof. For any π ∈ RDn+2,k, let a = π−1(1) and σ = α1(π). Clearly, σ ∈ QDn+1,k−1 and

asc (σ) = n− k + 1. Suppose that

Asc ∗(σ) = {j1, j2, . . . , jn−k+2}

with j1 < j2 < . . . < jn−k+2 = n+1. Note that a−1 ∈ Asc ∗(σ). Suppose that ji = a−1 for some

i ∈ {1, 2, . . . , n − k + 2}. Then i > σ−1(n + 1) − 1. Define a map θ : RDn+2,k 7→ RHDn+1,k−1

by letting θ(π) = [α1(π), i].

Conversely, for any [σ, i] ∈ RHDn+1,k−1, we have asc (σ) = n− k + 1. Suppose that

Asc ∗(σ) = {j1, j2, . . . , jn−k+2}

with j1 < j2 < . . . < jn−k+2 = n + 1 and a = ji. Let us consider the permutation π = β1,a(σ).

Thus, π−1(1) = n + 2 if a = n + 1; otherwise, π(a + 1) = 1 and π(a) < π(a + 2) since

σ(a) < σ(a+1). Hence π ∈ RDn+2,k since i > σ−1(n+1)− 1. Therefore, the inverse θ−1 of the

map θ is θ−1(σ, i) = β1,a(σ) for any [σ, i] ∈ RHDn+1,k−1. �

Let HDn,k−1 be the set of pairs [π, a] such that π ∈ QDn,k−1 and a ∈ {1, 2, . . . , n}. Then

|HDn,k−1| = nÃ(n− 1, k − 1).

Let RHDn+1,k−1 = HDn+1,k−1 \ RHDn+1,k−1. In fact, RHDn+1,k−1 is the set of pairs [π, i]

such that [π, i] ∈ HDn+1,k−1 and i ∈ {1, 2, . . . , π−1(n+ 1)− 1}.

Lemma 2.4. There is a bijection ψ = ψn,k from HDn,k−1 to RHDn+1,k−1.
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Proof. For any [σ, a] ∈ HDn,k−1, suppose p = σ−1(n), then 0 = σ(0) < σ(1) < σ(2) < . . . <

σ(p) = n since the entry n appears as the first descent of σ from left to right. There exists

a unique index i ∈ {0, 1, . . . , p − 1} such that σ(i) < a ≤ σ(i + 1) since a ∈ {1, 2, . . . , n}.

Then βa,i(σ) ∈ QDn+1,k−1 and [βa,i(σ), i + 1] ∈ RHDn+1,k−1. Define a map ψ : HDn,k−1 7→

RHDn+1,k−1 by letting ψ(σ, a) = [βa,i(σ), i + 1].

Conversely, for any [σ, i] ∈ RHn+1,k−1, suppose a = σ(i), then a ∈ {1, 2, . . . , n} since the

entry n + 1 appears as the first descent of σ from left to right and i < σ−1(n + 1). Moreover,

αa(σ) ∈ QDn,k−1 and αa(σ)(i− 1) < a ≤ αa(σ)(i). The inverse ψ−1 of the map ψ is

ψ−1(σ, i) = [αa(σ), a].

�

The proof of the recurrence relation (7):

Note that

QDn+2,k = RDn+2,k ∪RDn+2,k.

So

Ã(n + 1, k) = |QDn+2,k| = |RDn+2,k|+ |RDn+2,k|.

Lemma 2.2 implies that |RDn+2,k| = |FDn+1,k| = (k + 1)Ã(n, k). Lemmas 2.3 and 2.4 tell us

that

|RDn+2,k| = |RHDn+1,k−1|

= |HDn+1,k−1| − |RHDn+1,k−1|

= |HDn+1,k−1| − |HDn,k−1|

= (n − k + 2)Ãn,k−1 − nÃn−1,k−1.

Hence, Ã(n+ 1, k) = (k + 1)Ã(n, k) + (n− k + 2)Ã(n, k − 1)− nÃ(n− 1, k − 1). �

Corollary 2.5. The polynomials Ãn(x) satisfy the recurrence relation

Ãn+1(x) = (1 + (n+ 1)x) Ãn(x) + x(1− x)Ã′
n(x)− nxÃn−1(x),

with the initial value Ã0(x) = 1.

Based on empirical evidence, we propose the following conjecture.

Conjecture 2.6. For any n ≥ 1, the polynomial Ãn(x) has only real zeros.

2.2. The ascent statistic on Qn.

Theorem 2.7. We have Ã(n, k) = |{π ∈ Qn+1 : asc (π) = k}|.

Along the same lines of the proof of Theorem 2.1, we shall present a constructive proof of

Theorem 2.7.

For any n ≥ 1 and π ∈ Sn, we define

Asc ∗(π) = {n} ∪Asc (π),

QAn,k = {π ∈ Qn | asc (π) = k}.
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Suppose that the number of permutations in Qn+1 with k ascents is B̃(n, k). Let HAn+1,k−1

be the set of pairs [π, i] such that π ∈ QAn+1,k−1 and i ∈ {1, 2, . . . , n− k + 2}. Then

|HAn+1,k−1| = (n− k + 2)B̃(n, k − 1).

We use RAn+2,k to denote the set of permutations π of [n + 2] which satisfy the following

three conditions:

(1) the entry n+ 2 appears as the first descent of π from left to right;

(2) π has k ascents;

(3) Either a = 1 or π(a− 1) > π(a+ 1), where a = π−1(1).

Lemma 2.8. There is a bijection θ̂ = θ̂n,k from RAn+2,k to HAn+1,k−1.

Proof. For any π ∈ RAn+2,k, let a = π−1(1) and σ = α1(π). Clearly, σ ∈ QAn+1,k−1 and

des (σ) = n− k + 1. Suppose that

Des ∗(σ) = {j1, j2, . . . , jn−k+2}

with j1 < j2 < . . . < jn−k+1 and jn−k+2 = 0. Note that a−1 ∈ Des ∗(σ). Suppose that ji = a−1

for some i. Define a map θ̂ : RAn+2,k 7→ HAn+1,k−1 by letting θ̂(π) = [α1(π), i].

Conversely, for any [σ, i] ∈ HAn+1,k−1, we have des (σ) = n− k + 1. Suppose that

Des ∗(σ) = {j1, j2, . . . , jn−k+2}

with j1 < j2 < . . . < jn−k+1, jn−k+2 = 0 and a = ji. Let us consider the permutation

π = β1,a(σ). Then π−1(1) = 1 if a = 0; otherwise, π(a + 1) = 1 and π(a) > π(a + 2) since

σ(a) > σ(a+ 1). Hence π ∈ RAn+2,k. Therefore, the inverse θ̂−1 of the map θ̂ is

θ̂−1(σ, i) = β1,a(σ)

for any [σ, i] ∈ HAn+1,k−1. �

Denote by FAn+1,k the set of pairs [π, i] such that π ∈ QAn+1,k and i ∈ {1, . . . , k} ∪ {n+ 1}.

Hence

|FAn+1,k| = (k + 1)B̃(n, k).

Let RFAn+1,k be the set of pairs [π, i] in FAn+1,k such that i > π−1(n + 1) − 1. Use RAn+2,k

to denote the set of permutations π of [n+ 2] which satisfy the following three conditions:

(1) the entry n+ 2 appears as the first descent of π from left to right;

(2) π has k ascents;

(3) Either a = n+ 2 or π(a− 1) < π(a+ 1), where a = π−1(1).

Lemma 2.9. There is a bijection φ̂ = φ̂n,k from RAn+2,k to RFAn+1,k.

Proof. For any π ∈ RAn+2,k, let a = π−1(1) and σ = α1(π). Clearly, σ ∈ QAn+1,k. Suppose

that

Asc ∗(σ) = {j0, j1, . . . , jk}

with j0 < j1 < . . . < jk−1 < jk = n + 1. Note that a − 1 ∈ Asc ∗(σ). Moreover, suppose

that ji = a − 1 form some i. Then i > σ−1(n + 1) − 1 since a > π−1(n + 2). Define a map

φ̂ : RAn+2,k 7→ RFAn+1,k by letting φ̂(π) = [α1(π), i].
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Conversely, for any [σ, i] ∈ RFAn+1,k, suppose that

Asc ∗(σ) = {j0, j1, . . . , jk}

with j0 < j1 < . . . < jk−1 < jk = n+1 and a = ji. Let us consider the permutation π = β1,a(σ).

Then π(n+2) = 1 if a = n+1; otherwise, π(a+1) = 1 and π(a) < π(a+2) since σ(a) < σ(a+1).

So, π ∈ RAn+2,k since i > σ−1(n + 1) − 1. Thus, for any [σ, i] ∈ RFAn+1,k, the inverse φ̂−1 of

the map φ̂ is given by φ̂−1(σ, i) = β1,a(σ). �

Let HAn,k−1 be the set of pairs [π, a] such that π ∈ QAn,k−1 and a ∈ {1, 2, . . . , n}. Then

|HAn,k−1| = nB̃(n− 1, k − 1).

Let RFAn+1,k = FAn+1,k \ RFAn+1,k. Note that RFAn+1,k is the set of pairs [π, i] such that

[π, i] ∈ FAn+1,k and i ∈ {1, 2, . . . , π−1(n+ 1)− 1}.

Lemma 2.10. There is a bijection ψ̂ = ψ̂n,k from HAn,k−1 to RFAn+1,k.

Proof. For any [σ, a] ∈ HAn,k−1, suppose p = σ−1(n), then 0 = σ(0) < σ(1) < σ(2) < . . . <

σ(p) = n since the entry n appears as the first descent of σ from left to right. There exists a

unique index i ∈ {0, 1, . . . , p − 1} such that σ(i) < a ≤ σ(i + 1) since a ∈ [n]. Then βa,i(σ) ∈

QAn+1,k and [βa,i(σ), i + 1] ∈ RFAn+1,k. Define a map ψ̂ : HAn,k−1 7→ RFAn+1,k by letting

ψ̂(σ, a) = [βa,i(σ), i + 1].

Conversely, for any [σ, i] ∈ RFAn+1,k, suppose a = σ(i), then a ∈ [n] since the entry n + 1

appears as the first descent of σ from left to right and i ≤ σ−1(n + 1) − 1. Moreover, αa(σ) ∈

QAn,k−1 and αa(σ)(i−1) < a ≤ αa(σ)(i). The inverse ψ̂
−1 of the map ψ̂ is ψ̂−1(σ, i) = [αa(σ), a].

�

The proof of the theorem 2.7:

Note that QAn+2,k = RAn+2,k∪RAn+2,k. So B̃(n+1, k) = |QAn+2,k| = |RAn+2,k|+|RAn+2,k|.

Lemma 2.8 implies that |RAn+2,k| = |HAn+1,k| = (n− k + 2)B̃(n, k − 1). Lemmas 2.9 and 2.10

tell us that

|RAn+2,k| = |RFAn+1,k|

= |FAn+1,k| − |RFAn+1,k|

= |FAn+1,k| − |HAn,k−1|

= (k + 1)B̃n,k − nB̃n−1,k−1.

Thus B̃(n+1, k) = (k+1)B̃(n, k)+(n−k+2)B̃(n, k−1)−nB̃(n−1, k−1) and so B̃(n, k) has the

same recursion as Ã(n, k). It is easy to check that B̃(0, 0) = Ã(0, 0) = 1, B̃(1, 0) = Ã(1, 0) = 1

and B̃(1, 1) = Ã(1, 1) = 1. Hence B̃(n, k) = Ã(n, k). �

Theorem 2.11. There is a bijection Ωn from Qn to itself such that des (π) = asc (Ωn(π)).

Proof. we can give a recursive definition of the bijection Ωn. For n = 1, we have Q1 = {1}. Let

Ω1(1) = 1. For n = 2, we have Q2 = {12, 21}. Let Ω2(12) = 21 and Ω2(21) = 12.
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For any m = 1, 2, . . . , n + 1, suppose that Ωm is a bijection from Qm to itself such that

des (π) = asc (Ωm(π)) for any π ∈ Qm. Furthermore, for any pair [π, i] with π ∈ Qm and a

nonnegative integer i, we let

Ω̂m(π, i) = [Ωm(π), i] and Ω̂−1
m (π, i) = [Ω−1

m (π), i].

For any π ∈ Qn+2, suppose that π ∈ QDn+2,k for some k. Note that

QDn+2,k = RDn+2,k ∪RDn+2,k.

Combing the bijections in Lemmas 2.2, 2.3, 2.4, 2.8, 2.9 and 2.10 and the induction hypothesis,

we give the bijection Ωn+2 from Qn+2 to itself as follows:

(c1) If π ∈ RDn+2,k and Ω̂n+1 ◦ φ(π) ∈ RFAn+1,k, then let

Ωn+2(π) = φ̂−1 ◦ Ω̂n+1 ◦ φ(π);

(c2) If π ∈ RDn+2,k and Ω̂n+1 ◦ φ(π) ∈ RFAn+1,k, then let

Ωn+2(π) = θ̂−1 ◦ Ω̂n+1 ◦ ψ ◦ Ω̂−1
n ◦ ψ̂−1 ◦ Ω̂n+1 ◦ φ(π);

(c3) If π ∈ RDn+2,k, then let

Ωn+2(π) = θ̂−1 ◦ Ω̂n+1 ◦ θ(π).

�

By Theorems 2.1 and 2.7, we get
∑

σ∈Qn+1

xasc (σ) =
∑

σ∈Qn+1

xn−des (σ) =
∑

σ∈Qn+1

xdes (σ).

Hence

Ãn(x) = xnÃn

(
1

x

)
,

which implies that Ãn(x) is symmetric.

2.3. The nth-order recurrence relations.

Recall the following recurrence relation which is attributed to Euler (see [11] for instance):

An(x) =

n−1∑

k=0

(
n

k

)
(x− 1)n−k−1Ak(x) for n ≥ 1. (8)

As an analog of (8), we now present the following result.

Theorem 2.12. The polynomials Ãn(x) satisfy the recurrence relation

Ãn(x) =

n∑

j=1

(
n

j

)
(x− 1)j−1Ãn−j(x) + xn (9)

for n ≥ 1, with the initial value Ã0(x) = 1. Equivalently, we have

Ãn(x) =
n−1∑

k=0

(
n

k

)
(x− 1)n−k−1Ãk(x) + xn. (10)
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Proof. Let x be a positive integer. For any n ≥ 0, let Qn+1(x) be the set of pairs (π, φ) such

that π ∈ Qn+1 and φ is a map from Des (π) to {0, 1, . . . , x− 1}. Thus

Ãn(x) =
∑

π∈Qn+1

xdes (π) = |Qn+1(x)|.

For any (π, φ) ∈ Qn+1(x), there is a unique index k ≥ 1 which satisfies π(k − 1) < π(k) and

π(k) > π(k+1) > · · · > π(n+1). For the sequence π(k), π(k+1), . . . , π(n+1), if φ(π(i)) = 0 for

some k ≤ i ≤ n+1, then let k′ be the largest index in {k, k+1, . . . , n+1} such that φ(π(k′)) = 0;

otherwise, let k′ = k. Let

σ = π(1), π(2), . . . . , π(k′)

and

B = {π(k′ + 1), . . . , π(n+ 1)}.

Then σ is a permutation defined on the set {1, 2, . . . , n+ 1} \B and the entry n+ 1 appears as

the first descent of σ from left to right.

Now, we distinguish between the following two cases:

Case 1.π(k′) = n+ 1 and φ(π(k′)) 6= 0.

Then the entry n+ 1 is the unique descent of the permutation π. Thus, we have

φ(π(i)) 6= 0

for all π(i) ∈ Des (π). Note that 1 ≤ |B| ≤ n and there are
(

n
|B|

)
ways to form the set B. Since

Des (π) = {n+ 1} ∪ (B \ {π(n+ 1)}), there are

(x− 1)|Des (π)| = (x− 1)|B|

ways to form the map φ. This provides the term
∑

B⊆[n]

(x− 1)|B| = xn.

Case 2. Either (i) π(k′) 6= n+ 1 or (ii) π(k′) = n+ 1 and φ(π(k′)) = 0.

Let

red (σ) := red (σ(1)), red (σ(2)), . . . , red (σ(k′)) ∈ Sk′ ,

where red is an increasing map from {σ(1), σ(2), . . . , σ(k′)} to {1, 2, . . . , k′} such that red (σ(i)) <

red (σ(j)) if σ(i) < σ(j) for all i, j. Then the entry k′ is the first descent of the permu-

tation red (σ) from left to right since red (n + 1) = k′ and red (σ) ∈ Qk′ . Define a map

φ′ : Des (red (σ)) 7→ {0, 1, . . . , x− 1} by letting

φ′(i) = φ(red−1(i)) if red−1(i) 6= π(k′).

Then (red (σ), φ′) ∈ Qk′(x). Moreover, φ(i) ∈ {1, 2, . . . , x− 1} for any i ∈ B \ {π(n+ 1)}. Note

that 1 ≤ |B| ≤ n, k′ = n+1− |B|, there are
(

n
|B|

)
ways to form the set B and Qk′−1(x) ways to

form the pair (red (σ), φ′). Moreover, we have φ(i) ∈ {1, 2, . . . , x− 1} for any i ∈ B \{π(n+1)}.

This provides the term
n∑

j=1

(
n

j

)
(x− 1)j−1Ãn−j(x).

Hence we derive the recurrence relation (9). Setting k = n− j in (9), we immediately get (10).

This completes the proof.

�
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Let an =
∑

π∈Qn+1
2des (π). Note that

Ã(2, z) =
e2z

2− ez
.

Let
{
n
k

}
be the Stirling number of the second kind, which counts partitions of [n] into k nonempty

subsets. It is easy to verify that an = 2
∑n

k=0 k!
{
n+1
k+1

}
− 1. In particular, a0 = 1, a1 = 3, a2 =

11, a3 = 51. The numbers an have been studied by Gross [9], Nelsen and Schmidt [14]. It should

be noted that an is the number of chains in power set of [n] (see [18, A007047]).

Corollary 2.13. For n ≥ 1, we have

an =

n∑

j=1

(
n

j

)
an−j + 2n.

3. Multivariable binomial-Eulerian polynomials

Let π = π(1)π(2) · · · π(n) ∈ Sn. An excedance in π is an index i such that π(i) > i and

a fixed point in π is an index i such that π(i) = i. As usual, let exc (π), fix (π) and cyc (π)

denote the number of excedances, fixed points and cycles in π respectively. For example, the

permutation π = 3142765 has the cycle decomposition (1342)(57)(6), so cyc (π) = 3, exc (π) = 3

and fix (π) = 1. There is a large of literature devoted to various generalizations and refinements

of the joint distribution of excedances and cycles, see, e.g. [12, 15, 19] and the references therein.

Define

An(x, y, q) =
∑

π∈Sn

xexc (π)yfix (π)qcyc (π).

Let A(x, y, q; z) = 1 +
∑

n≥1An(x, y, q)
zn

n! . Brenti [3, Proposition 7.3] obtained that

A(x, 1, q; z) =

(
1− x

ez(x−1) − x

)q

.

Note that each object of Sn is a disjoint union of one object counted by A(x, 0, q; z) and some

fixed points. Since each fixed point contributes no excedance but one cycle, by rules of exponen-

tial generating function one has A(x, 1, q; z) = eqzA(x, 0, q; z) and A(x, y, q; z) = eyqzA(x, 0, q; z).

Therefore,

A(x, y, q; z) =

(
1− x

ez(x−y) − xe(1−y)z

)q

, (11)

which was also obtained by Ksavrelof and Zeng [12, p. 2]. In the rest of this section, we study

multivariable binomial-Eulerian polynomials.

A right-to-left maximum of σ ∈ Q is an element σi such that σi > σj for every j ∈ {i+ 1, i+

2, . . . , n} or i = n. Let RLMAX(σ) denote the set of entries of right-to-left maxima of σ. Let

rlmax(σ) = |RLMAX(σ)|. For example, RLMAX(163254) = {4, 5, 6} and rlmax(163254) = 3.

A block of σ is a substring which ends with a right-to-left maximum, and contains exactly this

one right-to-left maximum; moreover, the substring is maximal, i.e., not contained in any larger

such substring. Clearly, any permutation has a unique decomposition as a sequence of blocks.

Let bk (σ) and bkone (σ) be the numbers of blocks and blocks of length one of σ, respectively.

Let fcyc(σ) be the length (number of terms) of the first block of σ from left to right. For example,
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the block decomposition of 163254 is given by [16][325][4], bk (163254) = 3, bkone (163254) = 1

and fbk (163254) = 2.

For any σ ∈ Sn, we can write σ in standard cycle form satisfying the following conditions:

(i) each cycle is end with its largest element;

(ii) the cycles are written in decreasing order of their largest element.

In the following discussion, we shall always write the cycle structure of σ ∈ Sn in standard

cycle form.

Definition 3.1. Let Q̂n be the set of permutations of [n] with the restriction that the sequence

in the cycle containing n is increasing.

For example,

Q̂3 = {(3)(2)(1), (2, 3)(1), (3)(1, 2), (1, 3)(2), (1, 2, 3)}.

Define σ̂ to be the word obtained from σ ∈ Q̂n by writing it in standard cycle form and

erasing the parentheses. Then σ̂ ∈ Qn. Thus, we get a bijection from Q̂n to Qn. Suppose that

σ = (σ1, σ2, . . . , σi1)(σi1+1, σi1+2, . . . , σi2) · · · (σik−1+1, σik−2+2, . . . , σik) ∈ Q̂n.

Then σi1 , σi2 , . . . , σik are the largest elements of their cycles, and σi1 > σi2 > . . . > σik . Hence

σ(σi) > σi if and only if σi < σi+1. Let fcyc(σ) be the number of elements in the first cycle of σ.

From the above discussion, we can now conclude the following result.

Proposition 3.2. For any n ≥ 1, we have
∑

σ∈Qn

xasc (σ)ybkone (σ)qbk (σ)pfbk (σ) =
∑

σ∈Q̂n

xexc (σ)yfix (σ)qcyc (σ)pfcyc(σ).

Let Ãn(x, y, q, p) =
∑

σ∈Q̂n+1
xexc (σ)yfix (σ)qcyc (σ)pfcyc(σ). The first few Ãn(x, y, q, p) are given

as follows:

Ã0(x, y, q, p) = ypq,

Ã1(x, y, q, p) = y2pq2 + xp2q,

Ã2(x, y, q, p) = pq3y3 + pq2xy + 2p2q2xy + p3qx2.

Theorem 3.3. Let Ã(x, y, q, p; z) =
∑

n≥0 Ãn(x, y, q, p)
zn

n! . We have

Ã(x, y, q, p; z) = (expz + y − 1) pqA(x, y, q; z). (12)

Proof. Let n be a fixed positive integer. Given π ∈ Q̂n+1. Suppose the first cycle of π is given

by σ = (c1, c2, . . . , ck, n+ 1). So π can be split into the cycle σ and a permutation τ on the set

{1, 2, . . . , n + 1} \ {c1, c2, . . . , ck, n+ 1}, i.e., π = σ · τ . When k = 0, we have

exc (π) = exc (τ),fix (π) = fix (τ) + 1, cyc (π) = cyc (τ) + 1, fcyc(π) = 1.

This provides the term ypqAn(x, y, q). When 1 ≤ k ≤ n, there are
(
n
k

)
ways to form the set

{c1, c2, . . . , ck}. Moreover, we have

exc (π) = exc (τ) + k,fix (π) = fix (τ), cyc (π) = cyc (τ) + 1, fcyc(π) = k + 1.
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This provides the term
n∑

k=1

(
n
k

)
xkqpk+1An−k(x, y, q). Therefore, we obtain

Ãn(x, y, q, p) = ypqAn(x, y, q) +
n∑

k=1

(
n

k

)
xkqpk+1An−k(x, y, q). (13)

Multiplying both sides of (13) by zn/n! and summing over all nonnegative integers n, we get

that

Ã(x, y, q, p; z) = ypqA(x, y, q; z) + pq

∞∑

n=1

n∑

k=1

(
n

k

)
(xp)kAn−k(x, y, q)

zn

n!

= ypqA(x, y, q; z) + pq

∞∑

n=1

n∑

k=0

(
n

k

)
(xp)kAn−k(x, y, q)

zn

n!
− pq ((A(x, y, q; z) − 1)

= ypqA(x, y, q; z) + pq (expzA(x, y, q; z) − 1)− pq ((A(x, y, q; z) − 1)

= (expz + y − 1) pqA(x, y, q; z).

This completes the proof. �

From (12), we see that

Ã(x, 1,−1,−1; z) = e−xzA(x, 1,−1; z) =
e−z − xe−xz

1− x
,

Ã(x, 1,−1, 1; z) = −exzA(x, 1,−1; z) =
e2xz−z − xexz

x− 1
.

It is routine to check that

e−z − xe−xz

1− x
=

∞∑

n=0

(−1)n
1− xn+1

1− x

zn

n!
,

e(2x−1)z − xexz

x− 1
=

∞∑

n=0

(1− 2x)2n − x2n+1

x− 1

z2n

(2n)!
+

∞∑

n=1

(1− 2x)2n−1 + x2n

1− x

z2n−1

(2n − 1)!
. (14)

Therefore, we get the following corollary.

Corollary 3.4. For n ≥ 0, we have

Ãn(x, 1,−1,−1) =
∑

σ∈Q̂n+1

xexc (σ)(−1)cyc (σ)+fcyc(σ) = (−1)n(1 + x+ x2 + · · ·+ xn);

Ãn(x, 1,−1, 1) =
∑

σ∈Q̂n+1

xexc (σ)(−1)cyc (σ) =

n∑

k=0

xn−k

n∑

i=k

(−1)i−12n−i

(
n

i

)
.

It would be interesting to present a combinatorial proof of Corollary 3.4.

Let

B(n, k) =

n∑

i=k

(−1)k−i2n−i

(
n

i

)
.

It should be noted that the numbers B(n, k) are known as the (k − 2)-nd Betti numbers of the

complement of the k-equal real hyperplane arrangement in R
n (see [7, Theorem 4.1.5] for in-

stance). The Betti number B(n, i) was first studied by Björner and Welker [2], and subsequently
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studied by Green [7, 8]. The reader is referred to Green [8, page 1038] for various interpretations

of the numbers B(n, i).

From Corollary 3.4, we see that

∑

σ∈Q̂n+1

xexc (σ)(−1)cyc (σ) =

n∑

k=0

(−1)k+1B(n, k)xn−k. (15)

An anti-excedance in π ∈ Sn is an index i such that π(i) ≤ i. Let aexc (π) be the number of

anti-excedances of π. Clearly, exc (π)+aexc (π) = n for π ∈ Sn. For π ∈ Q̂n+1, if exc (π) = n−k,

then aexc (π) = k + 1. Therefore, using (15), we get the following result.

Theorem 3.5. For n ≥ 0, we have

B(n, k) =
∑

π∈Q̂n+1

exc (π)=n−k

(−1)cyc (π)+aexc (π).

Using Theorem (3.5), one may introduce some q-analogs of the Betti numbers B(n, k).

Let Bn(x) =
∑n

k=0B(n, k)xk. Combining (14) and (15), we obtain the following result.

Proposition 3.6. We have
∑

n≥0

Bn(x)
zn

n!
=
ez + xe(2+x)z

1 + x
.

Define

Tn(q) =
∑

σ∈Q̂n+1

qcyc (σ) =

n+1∑

k=1

T (n, k)qk.

Let T (q, z) =
∑

n≥0 Tn(q)
zn

n! . It follows from (12) that

T (q, z) = qez
∑

n≥0

n∑

k=0

[
n

k

]
qk
zn

n!
=

qez

(1− z)q
, (16)

where
[
n
k

]
is the signless Stirling number of the first kind, i.e., the number of permutations of

Sn with k cycles. Using (16), we immediately get the following result.

Proposition 3.7. For n ≥ 2, we have Tn(−1) =
∑

σ∈Q̂n+1
(−1)cyc (σ) = n− 1.

Let Fn(q) =
∑n

k=0

[
n
k

]
qk. Combining (16) and the well known recurrence relation Fn(q) =

(n−1+q)Fn−1(q), one can easily derive that the polynomials Tn(q) satisfy the recurrence relation

Tn+1(q) = (n + 1 + q)Tn(q)− nTn−1(q), (17)

with the initial conditions T0(q) = q, T1(q) = q + q2. Equivalently, we have

T (n+ 1, k) = (n+ 1)T (n, k) + T (n, k − 1)− nT (n− 1, k).

Recall that the Charlier polynomials are defined by

C(a)
n (x) =

n∑

k=0

(−a)n−k

(
n

k

)(
x

k

)
k!, a 6= 0.
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These polynomials are generated by e−az(1 + z)x =
∑

n≥0C
(a)
n (x)z

n

n! . Hence

Tn(q) = (−1)nqC(1)
n (−q) = q

n∑

k=0

(−1)k
(
n

k

)(
−q

k

)
k!.

It is well known that Charlier polynomials are orthogonal polynomials and have only real zeros.

Hence the polynomial Tn(q) has only real zeros for any n ≥ 0.
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