RECURRENCE RELATIONS FOR BINOMIAL-EULERIAN POLYNOMIALS

JUN MA, SHI-MEI MA, AND YEONG-NAN YEH

ABSTRACT. Binomial-Eulerian polynomials were introduced by Postnikov, Reiner and Williams. In this paper, properties of the binomial-Eulerian polynomials, including recurrence relations and generating functions are studied. We present three constructive proofs of the recurrence relations for binomial-Eulerian polynomials. Moreover, we give a combinatorial interpretation of the Betti number of the complement of the k-equal real hyperplane arrangement.

Keywords: Binomial-Eulerian polynomials; Eulerian polynomials; Recurrence relations

1. INTRODUCTION

Let \mathfrak{S}_n denote the symmetric group of all permutations of [n], where $[n] = \{1, 2, ..., n\}$. For each $\pi \in \mathfrak{S}_n$, an index *i* is called *a descent* (resp. *an ascent*) of π if $\pi(i) > \pi(i+1)$ (resp. $\pi(i) < \pi(i+1)$), where $i \in [n-1]$. Define

Des
$$(\pi) = \{\pi(i) \mid \pi(i) > \pi(i+1), i \in [n-1]\}, \text{ des } (\pi) = |\text{Des } (\pi)|,$$

Asc $(\pi) = \{\pi(i) \mid \pi(i) < \pi(i+1), i \in [n-1]\}, \text{ asc } (\pi) = |\text{Asc } (\pi)|,$

where |S| denote the cardinality of the set S. The classical Eulerian polynomials $A_n(x)$ are defined by

$$A_n(x) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{des}(\pi)} = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{asc}(\pi)}.$$
 (1)

Let $A_n(x) = \sum_{k=0}^{n-1} {n \choose k} x^k$, where ${n \choose k}$ are called the Eulerian numbers. The numbers ${n \choose k}$ satisfy the recurrence relation

$$\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n}{k},$$

with the initial conditions $\langle {}^{1}_{0} \rangle = 1$ and $\langle {}^{1}_{k} \rangle = 0$ for $k \ge 1$ (see [18, A008292]). In [4], Chung, Graham and Knuth noted that if we set $\langle {}^{0}_{0} \rangle = 0$, then the following symmetrical identity holds:

$$\sum_{k\geq 0} \binom{a+b}{k} \binom{k}{a-1} = \sum_{k\geq 0} \binom{a+b}{k} \binom{k}{b-1},\tag{2}$$

where a, b are positive integers. Subsequently, the q-generalizations of the identity (2) have been pursued by several authors. See, e.g., [5, 10, 13, 17].

Let $G = K_{1,n}$ be the *n*-star graph with the central node n+1 connected to the nodes $1, \dots, n$. The associated polytope $P_{\mathcal{B}(K_{1,n})}$ is called the *stellohedron*. Following [16, Section 10.4], the *h*-polynomial of the *n*-dimensional stellohedron is given by

$$h_{\mathcal{B}(K_{1,n})}(x) = 1 + x \sum_{k=1}^{n} \binom{n}{k} A_k(x),$$
(3)

²⁰¹⁰ Mathematics Subject Classification. Primary 05A15; Secondary 05A19.

which is named as the *binomial-Eulerian polynomial* (see [17]). As usual, let

$$A_n(x) = h_{\mathcal{B}(K_{1,n})}(x).$$

The γ -positivity of $\widetilde{A}_n(x)$ follows from a general result of Postnikov, Reiner and Williams [16, Theorem 11.6]. As an application of the γ -positivity, we see that $\widetilde{A}_n(x)$ is symmetric. Very recently, Shareshian and Wachs [17] further studied γ -positivity of the binomial-Eulerian and q-binomial-Eulerian polynomials, and noticed that the identity (2) is equivalent to the symmetry of $\widetilde{A}_n(x)$. The reader is referred to [1] for a survey of the theory of γ -positivity.

Definition 1.1. Let Q_n be the set of permutations of [n] with the restriction that the entry n appears as the first descent. For convenience, let the identity permutation $12 \cdots n$ be an element of Q_n and we say that the entry n appears as the first descent of $12 \cdots n$ (In fact, the identity permutation has no descent).

For example, $Q_1 = \{1\}, Q_2 = \{12, 21\}$ and $Q_3 = \{123, 132, 231, 312, 321\}$. Postnikov, Reiner and Williams [16, Section 10.4] discovered that

$$\widetilde{A}_n(x) = \sum_{\pi \in \mathcal{Q}_{n+1}} x^{\operatorname{des}(\pi)}.$$

The first few of $\widetilde{A}_n(x)$ are given as follows:

$$\widetilde{A}_0(x) = 1, \widetilde{A}_1(x) = 1 + x, \widetilde{A}_2(x) = 1 + 3x + x^2, \widetilde{A}_3(x) = 1 + 7x + 7x^2 + x^3.$$

It is clear that the ascent and descent statistics are equidistributed on \mathfrak{S}_n , since reversing an element of \mathfrak{S}_n turns ascents into descents and vice versa. It is less obvious that ascent and descent statistics are equidistributed on \mathcal{Q}_n , since reversing an element of \mathcal{Q}_n may leads to an element of $\mathfrak{S}_n \backslash \mathcal{Q}_n$.

This paper is motivated by the following problem.

Problem 1.2. Is there a bijective proof of the symmetry of $\widetilde{A}_n(x)$ by using the descent and ascent statistics on \mathcal{Q}_n ?

This paper is organized as follows. In Section 2, we present three constructive proofs of the recurrence relations for $\tilde{A}_n(x)$. In Theorem 2.11, as a combination of the first two constructive proofs, we give a solution to Problem 1.2. In Section 3, we study the generating function of a kind of multivariable binomial-Eulerian polynomials. As an application, in Theorem 3.5, we give a combinatorial interpretation of the Betti number of the complement of the k-equal real hyperplane arrangement.

2. Recurrence relations

2.1. The descent statistic on Q_n .

It is well known that the Eulerian polynomials $A_n(x)$ satisfy the recurrence relation

$$A_{n+1}(x) = (1+nx)A_n(x) + x(1-x)A'_n(x),$$

with the initial values $A_0(x) = A_1(x) = 1$ (see [3] for instance), and they can be defined by the exponential generating function

$$A(x,z) = \sum_{n \ge 0} A_n(x) \frac{z^n}{n!} = \frac{x-1}{x - e^{z(x-1)}}.$$

It is easy to verify that

$$(1 - xz)\frac{\partial}{\partial z}A(x, z) = A(x, z) + x(1 - x)\frac{\partial}{\partial x}A(x, z).$$
(4)

Set $\widetilde{A}_0(x) = 1$. We define $\widetilde{A}(x, z) = \sum_{n \ge 0} \widetilde{A}_n(x) \frac{z^n}{n!}$. It follows from (3) that

$$\hat{A}(x,z) = e^{xz} A(x,z).$$
(5)

Combining (4) and (5), we obtain

$$(1 - xz)\frac{\partial}{\partial z}\widetilde{A}(x, z) = (1 + x - xz)\widetilde{A}(x, z) + x(1 - x)\frac{\partial}{\partial x}\widetilde{A}(x, z).$$
(6)

Let $\widetilde{A}_n(x) = \sum_{k=0}^n \widetilde{A}(n,k) x^k$. Equating the coefficients of $x^k z^n/n!$ in both sides of (6) leads to the following result.

Theorem 2.1. For $n \ge 1$, we have

$$\widetilde{A}(n+1,k) = (k+1)\widetilde{A}(n,k) + (n-k+2)\widetilde{A}(n,k-1) - n\widetilde{A}(n-1,k-1),$$
(7)

with the initial conditions $\widetilde{A}(0,0) = 1$ and $\widetilde{A}(0,k) = 0$ for $k \neq 0$.

In the following, we present a constructive proof of the recurrence relation (7). Let $\alpha_i(\pi)$ be the permutation in \mathfrak{S}_{n-1} obtained from π by the following two steps:

- Step 1. Delete the entry *i* from π ;
- Step 2. Every entry in π , which is larger than *i*, is decreased by 1.

Let $\beta_{i,j}(\pi)$ be the permutation in \mathfrak{S}_{n+1} obtained from π by the following two steps:

- Step 1. Every entry in π , which is larger than or equal to *i*, is increased by 1;
- Step 2. Insert the entry *i* between *j*-st and (j+1)-st elements of π .

In the sequel, we define

$$\operatorname{Des}^{*}(\pi) = \{0\} \cup \operatorname{Des}(\pi),$$
$$QD_{n,k} = \{\pi \in \mathcal{Q}_n \mid \operatorname{des}(\pi) = k\}$$

Denote by $FD_{n+1,k}$ the set of pairs $[\pi, i]$ such that $\pi \in QD_{n+1,k}$ and $i \in \{0, 1, 2, \dots, k\}$. Hence

$$|FD_{n+1,k}| = (k+1)\widetilde{A}(n,k).$$

We use $RD_{n+2,k}$ to denote the set of permutations π of [n+2] which satisfy the following three conditions:

(1) the entry n + 2 appears as the first descent of π from left to right;

(2) π has k descents;

(3) Either a = 1 or $\pi(a - 1) > \pi(a + 1)$, where $a = \pi^{-1}(1)$.

Lemma 2.2. There is a bijection $\phi = \phi_{n,k}$ from $RD_{n+2,k}$ to $FD_{n+1,k}$.

Proof. For any $\pi \in RD_{n+2,k}$, let $a = \pi^{-1}(1)$ and $\sigma = \alpha_1(\pi)$. Clearly, $\sigma \in QD_{n+1,k}$. Suppose that

Des *(
$$\sigma$$
) = { $j_0, j_1, ..., j_k$ }

with $j_0 < j_1 < \ldots < j_{k-1}$ and $j_k = 0$. Note that $a - 1 \in \text{Des}^*(\sigma)$. Suppose that $j_i = a - 1$ for some $i \in \{0, 1, \ldots, k\}$. Define a map $\phi : RD_{n+2,k} \mapsto FD_{n+1,k}$ by letting $\phi(\pi) = [\alpha_1(\pi), i]$.

Conversely, for any $[\sigma, i] \in FD_{n+1,k}$, suppose that $\text{Des}^*(\sigma) = \{j_0, j_1, \dots, j_k\}$ with $j_0 < j_1 < \dots < j_{k-1}, j_k = 0$ and $a = j_i$. Let us consider the permutation $\pi = \beta_{1,a}(\sigma)$. Then $\pi(1) = 1$ if a = 0; otherwise, $\pi(a+1) = 1$ and $\pi(a) > \pi(a+2)$ since $\sigma(a) > \sigma(a+1)$. So, $\pi \in RD_{n+2,k}$. Thus, for any $[\sigma, i] \in FD_{n+1,k}$, the inverse ϕ^{-1} of the map ϕ is given by $\phi^{-1}(\sigma, i) = \beta_{1,a}(\sigma)$. \Box

Let $HD_{n+1,k-1}$ be the set of pairs $[\pi, i]$ such that $\pi \in QD_{n+1,k-1}$ and $i \in \{1, 2, \dots, n-k+2\}$. Then

$$|HD_{n+1,k-1}| = (n-k+2)\tilde{A}(n,k-1).$$

Denote by $RHD_{n+1,k-1}$ the set of pairs $[\pi, i]$ such that $[\pi, i] \in HD_{n+1,k-1}$ and $i > \pi^{-1}(n+1)-1$. We use $\overline{RD}_{n+2,k}$ to denote the set of permutations π of [n+2] which satisfy the following three conditions:

- (1) the entry n + 2 appears as the first descent of π from left to right;
- (2) π has k descents;
- (3) Either a = n + 2 or $\pi(a 1) < \pi(a + 1)$, where $a = \pi^{-1}(1)$.

Lemma 2.3. There is a bijection $\theta = \theta_{n,k}$ from $\overline{RD}_{n+2,k}$ to $RHD_{n+1,k-1}$.

Proof. For any $\pi \in \overline{RD}_{n+2,k}$, let $a = \pi^{-1}(1)$ and $\sigma = \alpha_1(\pi)$. Clearly, $\sigma \in QD_{n+1,k-1}$ and $\operatorname{asc}(\sigma) = n - k + 1$. Suppose that

Asc
$$^{*}(\sigma) = \{j_1, j_2, \dots, j_{n-k+2}\}$$

with $j_1 < j_2 < \ldots < j_{n-k+2} = n+1$. Note that $a-1 \in \operatorname{Asc}^*(\sigma)$. Suppose that $j_i = a-1$ for some $i \in \{1, 2, \ldots, n-k+2\}$. Then $i > \sigma^{-1}(n+1) - 1$. Define a map $\theta : \overline{RD}_{n+2,k} \mapsto RHD_{n+1,k-1}$ by letting $\theta(\pi) = [\alpha_1(\pi), i]$.

Conversely, for any $[\sigma, i] \in RHD_{n+1,k-1}$, we have asc $(\sigma) = n - k + 1$. Suppose that

Asc
$$^{*}(\sigma) = \{j_1, j_2, \dots, j_{n-k+2}\}$$

with $j_1 < j_2 < \ldots < j_{n-k+2} = n+1$ and $a = j_i$. Let us consider the permutation $\pi = \beta_{1,a}(\sigma)$. Thus, $\pi^{-1}(1) = n+2$ if a = n+1; otherwise, $\pi(a+1) = 1$ and $\pi(a) < \pi(a+2)$ since $\sigma(a) < \sigma(a+1)$. Hence $\pi \in \overline{RD}_{n+2,k}$ since $i > \sigma^{-1}(n+1) - 1$. Therefore, the inverse θ^{-1} of the map θ is $\theta^{-1}(\sigma, i) = \beta_{1,a}(\sigma)$ for any $[\sigma, i] \in RHD_{n+1,k-1}$.

Let $\overline{HD}_{n,k-1}$ be the set of pairs $[\pi, a]$ such that $\pi \in QD_{n,k-1}$ and $a \in \{1, 2, \ldots, n\}$. Then

$$|\overline{HD}_{n,k-1}| = n\widetilde{A}(n-1,k-1).$$

Let $\overline{RHD}_{n+1,k-1} = HD_{n+1,k-1} \setminus RHD_{n+1,k-1}$. In fact, $\overline{RHD}_{n+1,k-1}$ is the set of pairs $[\pi, i]$ such that $[\pi, i] \in HD_{n+1,k-1}$ and $i \in \{1, 2, \dots, \pi^{-1}(n+1) - 1\}$.

Lemma 2.4. There is a bijection $\psi = \psi_{n,k}$ from $\overline{HD}_{n,k-1}$ to $\overline{RHD}_{n+1,k-1}$.

5

Proof. For any $[\sigma, a] \in \overline{HD}_{n,k-1}$, suppose $p = \sigma^{-1}(n)$, then $0 = \sigma(0) < \sigma(1) < \sigma(2) < \ldots < \sigma(p) = n$ since the entry n appears as the first descent of σ from left to right. There exists a unique index $i \in \{0, 1, \ldots, p-1\}$ such that $\sigma(i) < a \leq \sigma(i+1)$ since $a \in \{1, 2, \ldots, n\}$. Then $\beta_{a,i}(\sigma) \in QD_{n+1,k-1}$ and $[\beta_{a,i}(\sigma), i+1] \in \overline{RHD}_{n+1,k-1}$. Define a map $\psi : \overline{HD}_{n,k-1} \mapsto \overline{RHD}_{n+1,k-1}$ by letting $\psi(\sigma, a) = [\beta_{a,i}(\sigma), i+1]$.

Conversely, for any $[\sigma, i] \in \overline{RH}_{n+1,k-1}$, suppose $a = \sigma(i)$, then $a \in \{1, 2, ..., n\}$ since the entry n+1 appears as the first descent of σ from left to right and $i < \sigma^{-1}(n+1)$. Moreover, $\alpha_a(\sigma) \in QD_{n,k-1}$ and $\alpha_a(\sigma)(i-1) < a \leq \alpha_a(\sigma)(i)$. The inverse ψ^{-1} of the map ψ is

$$\psi^{-1}(\sigma, i) = [\alpha_a(\sigma), a].$$

The proof of the recurrence relation (7):

Note that

$$QD_{n+2,k} = RD_{n+2,k} \cup \overline{RD}_{n+2,k}.$$

So

$$\widetilde{A}(n+1,k) = |QD_{n+2,k}| = |RD_{n+2,k}| + |\overline{RD}_{n+2,k}|.$$

Lemma 2.2 implies that $|RD_{n+2,k}| = |FD_{n+1,k}| = (k+1)\widetilde{A}(n,k)$. Lemmas 2.3 and 2.4 tell us that

$$\begin{aligned} |\overline{RD}_{n+2,k}| &= |RHD_{n+1,k-1}| \\ &= |HD_{n+1,k-1}| - |\overline{RHD}_{n+1,k-1}| \\ &= |HD_{n+1,k-1}| - |\overline{HD}_{n,k-1}| \\ &= (n-k+2)\widetilde{A}_{n,k-1} - n\widetilde{A}_{n-1,k-1}. \end{aligned}$$
$$(k+1)\widetilde{A}(n,k) + (n-k+2)\widetilde{A}(n,k-1) - n\widetilde{A}(n-1,k-1). \Box$$

Hence, $\tilde{A}(n+1,k) = (k+1)\tilde{A}(n,k) + (n-k+2)\tilde{A}(n,k-1) - n\tilde{A}(n-1,k-1).$

Corollary 2.5. The polynomials $\widetilde{A}_n(x)$ satisfy the recurrence relation

$$\widetilde{A}_{n+1}(x) = (1 + (n+1)x)\,\widetilde{A}_n(x) + x(1-x)\widetilde{A}'_n(x) - nx\widetilde{A}_{n-1}(x)$$

with the initial value $\widetilde{A}_0(x) = 1$.

Based on empirical evidence, we propose the following conjecture.

Conjecture 2.6. For any $n \ge 1$, the polynomial $\widetilde{A}_n(x)$ has only real zeros.

2.2. The ascent statistic on Q_n .

Theorem 2.7. We have $\widetilde{A}(n,k) = |\{\pi \in \mathcal{Q}_{n+1} : \operatorname{asc}(\pi) = k\}|.$

Along the same lines of the proof of Theorem 2.1, we shall present a constructive proof of Theorem 2.7.

For any $n \geq 1$ and $\pi \in \mathfrak{S}_n$, we define

$$\operatorname{Asc}^{*}(\pi) = \{n\} \cup \operatorname{Asc}(\pi),$$
$$QA_{n,k} = \{\pi \in \mathcal{Q}_n \mid \operatorname{asc}(\pi) = k\}$$

Suppose that the number of permutations in \mathcal{Q}_{n+1} with k ascents is $\tilde{B}(n,k)$. Let $HA_{n+1,k-1}$ be the set of pairs $[\pi, i]$ such that $\pi \in QA_{n+1,k-1}$ and $i \in \{1, 2, \ldots, n-k+2\}$. Then

$$|HA_{n+1,k-1}| = (n-k+2)B(n,k-1).$$

We use $RA_{n+2,k}$ to denote the set of permutations π of [n+2] which satisfy the following three conditions:

- (1) the entry n + 2 appears as the first descent of π from left to right;
- (2) π has k ascents;
- (3) Either a = 1 or $\pi(a 1) > \pi(a + 1)$, where $a = \pi^{-1}(1)$.

Lemma 2.8. There is a bijection $\hat{\theta} = \hat{\theta}_{n,k}$ from $RA_{n+2,k}$ to $HA_{n+1,k-1}$.

Proof. For any $\pi \in RA_{n+2,k}$, let $a = \pi^{-1}(1)$ and $\sigma = \alpha_1(\pi)$. Clearly, $\sigma \in QA_{n+1,k-1}$ and des $(\sigma) = n - k + 1$. Suppose that

Des *(
$$\sigma$$
) = { $j_1, j_2, \dots, j_{n-k+2}$ }

with $j_1 < j_2 < \ldots < j_{n-k+1}$ and $j_{n-k+2} = 0$. Note that $a-1 \in \text{Des}^*(\sigma)$. Suppose that $j_i = a-1$ for some *i*. Define a map $\hat{\theta} : RA_{n+2,k} \mapsto HA_{n+1,k-1}$ by letting $\hat{\theta}(\pi) = [\alpha_1(\pi), i]$.

Conversely, for any $[\sigma, i] \in HA_{n+1,k-1}$, we have des $(\sigma) = n - k + 1$. Suppose that

Des *(
$$\sigma$$
) = { $j_1, j_2, \dots, j_{n-k+2}$ }

with $j_1 < j_2 < \ldots < j_{n-k+1}$, $j_{n-k+2} = 0$ and $a = j_i$. Let us consider the permutation $\pi = \beta_{1,a}(\sigma)$. Then $\pi^{-1}(1) = 1$ if a = 0; otherwise, $\pi(a+1) = 1$ and $\pi(a) > \pi(a+2)$ since $\sigma(a) > \sigma(a+1)$. Hence $\pi \in RA_{n+2,k}$. Therefore, the inverse $\hat{\theta}^{-1}$ of the map $\hat{\theta}$ is

$$\hat{\theta}^{-1}(\sigma, i) = \beta_{1,a}(\sigma)$$

for any $[\sigma, i] \in HA_{n+1,k-1}$.

Denote by $FA_{n+1,k}$ the set of pairs $[\pi, i]$ such that $\pi \in QA_{n+1,k}$ and $i \in \{1, \ldots, k\} \cup \{n+1\}$. Hence

$$|FA_{n+1,k}| = (k+1)B(n,k).$$

Let $RFA_{n+1,k}$ be the set of pairs $[\pi, i]$ in $FA_{n+1,k}$ such that $i > \pi^{-1}(n+1) - 1$. Use $\overline{RA}_{n+2,k}$ to denote the set of permutations π of [n+2] which satisfy the following three conditions:

- (1) the entry n + 2 appears as the first descent of π from left to right;
- (2) π has k ascents;
- (3) Either a = n + 2 or $\pi(a 1) < \pi(a + 1)$, where $a = \pi^{-1}(1)$.

Lemma 2.9. There is a bijection $\hat{\phi} = \hat{\phi}_{n,k}$ from $\overline{RA}_{n+2,k}$ to $RFA_{n+1,k}$.

Proof. For any $\pi \in \overline{RA}_{n+2,k}$, let $a = \pi^{-1}(1)$ and $\sigma = \alpha_1(\pi)$. Clearly, $\sigma \in QA_{n+1,k}$. Suppose that

Asc
$$^*(\sigma) = \{j_0, j_1, \ldots, j_k\}$$

with $j_0 < j_1 < \ldots < j_{k-1} < j_k = n+1$. Note that $a-1 \in \operatorname{Asc}^*(\sigma)$. Moreover, suppose that $j_i = a-1$ form some *i*. Then $i > \sigma^{-1}(n+1) - 1$ since $a > \pi^{-1}(n+2)$. Define a map $\hat{\phi} : \overline{RA}_{n+2,k} \mapsto RFA_{n+1,k}$ by letting $\hat{\phi}(\pi) = [\alpha_1(\pi), i]$.

Conversely, for any $[\sigma, i] \in RFA_{n+1,k}$, suppose that

Asc
$$^*(\sigma) = \{j_0, j_1, \ldots, j_k\}$$

with $j_0 < j_1 < \ldots < j_{k-1} < j_k = n+1$ and $a = j_i$. Let us consider the permutation $\pi = \beta_{1,a}(\sigma)$. Then $\pi(n+2) = 1$ if a = n+1; otherwise, $\pi(a+1) = 1$ and $\pi(a) < \pi(a+2)$ since $\sigma(a) < \sigma(a+1)$. So, $\pi \in \overline{RA}_{n+2,k}$ since $i > \sigma^{-1}(n+1) - 1$. Thus, for any $[\sigma, i] \in RFA_{n+1,k}$, the inverse $\hat{\phi}^{-1}$ of the map $\hat{\phi}$ is given by $\hat{\phi}^{-1}(\sigma, i) = \beta_{1,a}(\sigma)$.

Let $\overline{HA}_{n,k-1}$ be the set of pairs $[\pi, a]$ such that $\pi \in QA_{n,k-1}$ and $a \in \{1, 2, \ldots, n\}$. Then

$$|\overline{HA}_{n,k-1}| = n\widetilde{B}(n-1,k-1).$$

Let $\overline{RFA}_{n+1,k} = FA_{n+1,k} \setminus RFA_{n+1,k}$. Note that $\overline{RFA}_{n+1,k}$ is the set of pairs $[\pi, i]$ such that $[\pi, i] \in FA_{n+1,k}$ and $i \in \{1, 2, \dots, \pi^{-1}(n+1) - 1\}$.

Lemma 2.10. There is a bijection $\hat{\psi} = \hat{\psi}_{n,k}$ from $\overline{HA}_{n,k-1}$ to $\overline{RFA}_{n+1,k}$.

Proof. For any $[\sigma, a] \in \overline{HA}_{n,k-1}$, suppose $p = \sigma^{-1}(n)$, then $0 = \sigma(0) < \sigma(1) < \sigma(2) < \ldots < \sigma(p) = n$ since the entry n appears as the first descent of σ from left to right. There exists a unique index $i \in \{0, 1, \ldots, p-1\}$ such that $\sigma(i) < a \leq \sigma(i+1)$ since $a \in [n]$. Then $\beta_{a,i}(\sigma) \in QA_{n+1,k}$ and $[\beta_{a,i}(\sigma), i+1] \in \overline{RFA}_{n+1,k}$. Define a map $\hat{\psi} : \overline{HA}_{n,k-1} \mapsto \overline{RFA}_{n+1,k}$ by letting

$$\hat{\psi}(\sigma, a) = [\beta_{a,i}(\sigma), i+1]$$

Conversely, for any $[\sigma, i] \in \overline{RFA}_{n+1,k}$, suppose $a = \sigma(i)$, then $a \in [n]$ since the entry n+1 appears as the first descent of σ from left to right and $i \leq \sigma^{-1}(n+1) - 1$. Moreover, $\alpha_a(\sigma) \in QA_{n,k-1}$ and $\alpha_a(\sigma)(i-1) < a \leq \alpha_a(\sigma)(i)$. The inverse $\hat{\psi}^{-1}$ of the map $\hat{\psi}$ is $\hat{\psi}^{-1}(\sigma, i) = [\alpha_a(\sigma), a]$.

The proof of the theorem 2.7:

Note that $QA_{n+2,k} = RA_{n+2,k} \cup \overline{RA}_{n+2,k}$. So $\widetilde{B}(n+1,k) = |QA_{n+2,k}| = |RA_{n+2,k}| + |\overline{RA}_{n+2,k}|$. Lemma 2.8 implies that $|RA_{n+2,k}| = |HA_{n+1,k}| = (n-k+2)\widetilde{B}(n,k-1)$. Lemmas 2.9 and 2.10 tell us that

$$|\overline{RA}_{n+2,k}| = |RFA_{n+1,k}|$$
$$= |FA_{n+1,k}| - |\overline{RFA}_{n+1,k}|$$
$$= |FA_{n+1,k}| - |\overline{HA}_{n,k-1}|$$
$$= (k+1)\widetilde{B}_{n,k} - n\widetilde{B}_{n-1,k-1}.$$

Thus $\widetilde{B}(n+1,k) = (k+1)\widetilde{B}(n,k) + (n-k+2)\widetilde{B}(n,k-1) - n\widetilde{B}(n-1,k-1)$ and so $\widetilde{B}(n,k)$ has the same recursion as $\widetilde{A}(n,k)$. It is easy to check that $\widetilde{B}(0,0) = \widetilde{A}(0,0) = 1$, $\widetilde{B}(1,0) = \widetilde{A}(1,0) = 1$ and $\widetilde{B}(1,1) = \widetilde{A}(1,1) = 1$. Hence $\widetilde{B}(n,k) = \widetilde{A}(n,k)$.

Theorem 2.11. There is a bijection Ω_n from Q_n to itself such that des $(\pi) = \operatorname{asc}(\Omega_n(\pi))$.

Proof. we can give a recursive definition of the bijection Ω_n . For n = 1, we have $Q_1 = \{1\}$. Let $\Omega_1(1) = 1$. For n = 2, we have $Q_2 = \{12, 21\}$. Let $\Omega_2(12) = 21$ and $\Omega_2(21) = 12$.

For any m = 1, 2, ..., n + 1, suppose that Ω_m is a bijection from \mathcal{Q}_m to itself such that $\operatorname{des}(\pi) = \operatorname{asc}(\Omega_m(\pi))$ for any $\pi \in \mathcal{Q}_m$. Furthermore, for any pair $[\pi, i]$ with $\pi \in \mathcal{Q}_m$ and a nonnegative integer i, we let

$$\hat{\Omega}_m(\pi, i) = [\Omega_m(\pi), i] \text{ and } \hat{\Omega}_m^{-1}(\pi, i) = [\Omega_m^{-1}(\pi), i].$$

For any $\pi \in \mathcal{Q}_{n+2}$, suppose that $\pi \in \mathcal{QD}_{n+2,k}$ for some k. Note that

$$QD_{n+2,k} = RD_{n+2,k} \cup \overline{RD}_{n+2,k}$$

Combing the bijections in Lemmas 2.2, 2.3, 2.4, 2.8, 2.9 and 2.10 and the induction hypothesis, we give the bijection Ω_{n+2} from Q_{n+2} to itself as follows:

(c₁) If $\pi \in RD_{n+2,k}$ and $\hat{\Omega}_{n+1} \circ \phi(\pi) \in RFA_{n+1,k}$, then let

$$\Omega_{n+2}(\pi) = \hat{\phi}^{-1} \circ \hat{\Omega}_{n+1} \circ \phi(\pi)$$

(c₂) If $\pi \in RD_{n+2,k}$ and $\hat{\Omega}_{n+1} \circ \phi(\pi) \in \overline{RFA}_{n+1,k}$, then let

$$\Omega_{n+2}(\pi) = \hat{\theta}^{-1} \circ \hat{\Omega}_{n+1} \circ \psi \circ \hat{\Omega}_n^{-1} \circ \hat{\psi}^{-1} \circ \hat{\Omega}_{n+1} \circ \phi(\pi);$$

 (c_3) If $\pi \in \overline{RD}_{n+2,k}$, then let

$$\Omega_{n+2}(\pi) = \hat{\theta}^{-1} \circ \hat{\Omega}_{n+1} \circ \theta(\pi).$$

By	Theorems	2.1	and	2.7,	we	get
----	----------	-----	-----	------	----	-----

$$\sum_{\sigma \in \mathcal{Q}_{n+1}} x^{\operatorname{asc}(\sigma)} = \sum_{\sigma \in \mathcal{Q}_{n+1}} x^{n - \operatorname{des}(\sigma)} = \sum_{\sigma \in \mathcal{Q}_{n+1}} x^{\operatorname{des}(\sigma)}.$$

Hence

$$\widetilde{A}_n(x) = x^n \widetilde{A}_n\left(\frac{1}{x}\right),$$

which implies that $\widetilde{A}_n(x)$ is symmetric.

2.3. The *n*th-order recurrence relations.

Recall the following recurrence relation which is attributed to Euler (see [11] for instance):

$$A_n(x) = \sum_{k=0}^{n-1} \binom{n}{k} (x-1)^{n-k-1} A_k(x) \quad \text{for } n \ge 1.$$
(8)

As an analog of (8), we now present the following result.

Theorem 2.12. The polynomials $\widetilde{A}_n(x)$ satisfy the recurrence relation

$$\widetilde{A}_n(x) = \sum_{j=1}^n \binom{n}{j} (x-1)^{j-1} \widetilde{A}_{n-j}(x) + x^n$$
(9)

for $n \geq 1$, with the initial value $\widetilde{A}_0(x) = 1$. Equivalently, we have

$$\widetilde{A}_{n}(x) = \sum_{k=0}^{n-1} \binom{n}{k} (x-1)^{n-k-1} \widetilde{A}_{k}(x) + x^{n}.$$
(10)

Proof. Let x be a positive integer. For any $n \ge 0$, let $\mathcal{Q}_{n+1}(x)$ be the set of pairs (π, ϕ) such that $\pi \in \mathcal{Q}_{n+1}$ and ϕ is a map from $\text{Des}(\pi)$ to $\{0, 1, \ldots, x-1\}$. Thus

$$\widetilde{A}_n(x) = \sum_{\pi \in \mathcal{Q}_{n+1}} x^{\operatorname{des}(\pi)} = |\mathcal{Q}_{n+1}(x)|.$$

For any $(\pi, \phi) \in \mathcal{Q}_{n+1}(x)$, there is a unique index $k \ge 1$ which satisfies $\pi(k-1) < \pi(k)$ and $\pi(k) > \pi(k+1) > \cdots > \pi(n+1)$. For the sequence $\pi(k), \pi(k+1), \ldots, \pi(n+1)$, if $\phi(\pi(i)) = 0$ for some $k \le i \le n+1$, then let k' be the largest index in $\{k, k+1, \ldots, n+1\}$ such that $\phi(\pi(k')) = 0$; otherwise, let k' = k. Let

$$\sigma = \pi(1), \pi(2), \dots, \pi(k')$$

and

$$B = \{\pi(k'+1), \dots, \pi(n+1)\}.$$

Then σ is a permutation defined on the set $\{1, 2, \dots, n+1\} \setminus B$ and the entry n+1 appears as the first descent of σ from left to right.

Now, we distinguish between the following two cases:

Case 1. $\pi(k') = n + 1$ and $\phi(\pi(k')) \neq 0$.

Then the entry n + 1 is the unique descent of the permutation π . Thus, we have

$$\phi(\pi(i)) \neq 0$$

for all $\pi(i) \in \text{Des}(\pi)$. Note that $1 \leq |B| \leq n$ and there are $\binom{n}{|B|}$ ways to form the set B. Since $\text{Des}(\pi) = \{n+1\} \cup (B \setminus \{\pi(n+1)\})$, there are

$$(x-1)^{|\text{Des}(\pi)|} = (x-1)^{|B|}$$

ways to form the map ϕ . This provides the term $\sum_{B \subseteq [n]} (x-1)^{|B|} = x^n$.

Case 2. Either (i) $\pi(k') \neq n + 1$ or (ii) $\pi(k') = n + 1$ and $\phi(\pi(k')) = 0$. Let

$$\operatorname{red}(\sigma) := \operatorname{red}(\sigma(1)), \operatorname{red}(\sigma(2)), \dots, \operatorname{red}(\sigma(k')) \in \mathfrak{S}_{k'}$$

where red is an increasing map from $\{\sigma(1), \sigma(2), \ldots, \sigma(k')\}$ to $\{1, 2, \ldots, k'\}$ such that red $(\sigma(i)) <$ red $(\sigma(j))$ if $\sigma(i) < \sigma(j)$ for all i, j. Then the entry k' is the first descent of the permutation red (σ) from left to right since red (n + 1) = k' and red $(\sigma) \in \mathcal{Q}_{k'}$. Define a map $\phi' : \text{Des}(\text{red}(\sigma)) \mapsto \{0, 1, \ldots, x - 1\}$ by letting

$$\phi'(i) = \phi(\text{red}^{-1}(i)) \text{ if } \text{red}^{-1}(i) \neq \pi(k').$$

Then $(\operatorname{red}(\sigma), \phi') \in \mathcal{Q}_{k'}(x)$. Moreover, $\phi(i) \in \{1, 2, \dots, x-1\}$ for any $i \in B \setminus \{\pi(n+1)\}$. Note that $1 \leq |B| \leq n, k' = n+1-|B|$, there are $\binom{n}{|B|}$ ways to form the set B and $\mathcal{Q}_{k'-1}(x)$ ways to form the pair $(\operatorname{red}(\sigma), \phi')$. Moreover, we have $\phi(i) \in \{1, 2, \dots, x-1\}$ for any $i \in B \setminus \{\pi(n+1)\}$. This provides the term

$$\sum_{j=1}^n \binom{n}{j} (x-1)^{j-1} \widetilde{A}_{n-j}(x).$$

Hence we derive the recurrence relation (9). Setting k = n - j in (9), we immediately get (10). This completes the proof.

Let $a_n = \sum_{\pi \in \mathcal{Q}_{n+1}} 2^{\text{des}(\pi)}$. Note that

$$\widetilde{A}(2,z) = \frac{e^{2z}}{2 - e^z}.$$

Let $\binom{n}{k}$ be the Stirling number of the second kind, which counts partitions of [n] into k nonempty subsets. It is easy to verify that $a_n = 2 \sum_{k=0}^n k! \binom{n+1}{k+1} - 1$. In particular, $a_0 = 1, a_1 = 3, a_2 = 11, a_3 = 51$. The numbers a_n have been studied by Gross [9], Nelsen and Schmidt [14]. It should be noted that a_n is the number of chains in power set of [n] (see [18, A007047]).

Corollary 2.13. For $n \ge 1$, we have

$$a_n = \sum_{j=1}^n \binom{n}{j} a_{n-j} + 2^n.$$

3. Multivariable binomial-Eulerian polynomials

Let $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$. An excedance in π is an index *i* such that $\pi(i) > i$ and a fixed point in π is an index *i* such that $\pi(i) = i$. As usual, let $\exp(\pi)$, $\operatorname{fix}(\pi)$ and $\operatorname{cyc}(\pi)$ denote the number of excedances, fixed points and cycles in π respectively. For example, the permutation $\pi = 3142765$ has the cycle decomposition (1342)(57)(6), so $\operatorname{cyc}(\pi) = 3$, $\operatorname{exc}(\pi) = 3$ and fix $(\pi) = 1$. There is a large of literature devoted to various generalizations and refinements of the joint distribution of excedances and cycles, see, e.g. [12, 15, 19] and the references therein.

Define

$$A_n(x, y, q) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{exc}(\pi)} y^{\operatorname{fix}(\pi)} q^{\operatorname{cyc}(\pi)}$$

Let $A(x, y, q; z) = 1 + \sum_{n \ge 1} A_n(x, y, q) \frac{z^n}{n!}$. Brenti [3, Proposition 7.3] obtained that

$$A(x, 1, q; z) = \left(\frac{1-x}{e^{z(x-1)} - x}\right)^{q}.$$

Note that each object of \mathfrak{S}_n is a disjoint union of one object counted by A(x, 0, q; z) and some fixed points. Since each fixed point contributes no excedance but one cycle, by rules of exponential generating function one has $A(x, 1, q; z) = e^{qz}A(x, 0, q; z)$ and $A(x, y, q; z) = e^{yqz}A(x, 0, q; z)$. Therefore,

$$A(x, y, q; z) = \left(\frac{1-x}{e^{z(x-y)} - xe^{(1-y)z}}\right)^q,$$
(11)

which was also obtained by Ksavrelof and Zeng [12, p. 2]. In the rest of this section, we study multivariable binomial-Eulerian polynomials.

A right-to-left maximum of $\sigma \in Q$ is an element σ_i such that $\sigma_i > \sigma_j$ for every $j \in \{i + 1, i + 2, ..., n\}$ or i = n. Let RLMAX(σ) denote the set of entries of right-to-left maxima of σ . Let rlmax(σ) = | RLMAX(σ)|. For example, RLMAX(163254) = $\{4, 5, 6\}$ and rlmax(163254) = 3. A block of σ is a substring which ends with a right-to-left maximum, and contains exactly this one right-to-left maximum; moreover, the substring is maximal, i.e., not contained in any larger such substring. Clearly, any permutation has a unique decomposition as a sequence of blocks. Let $bk(\sigma)$ and $bkone(\sigma)$ be the numbers of blocks and blocks of length one of σ , respectively. Let $fcyc(\sigma)$ be the length (number of terms) of the first block of σ from left to right. For example,

the block decomposition of 163254 is given by [16][325][4], bk (163254) = 3, bkone (163254) = 1 and fbk (163254) = 2.

For any $\sigma \in \mathfrak{S}_n$, we can write σ in standard cycle form satisfying the following conditions:

- (i) each cycle is end with its largest element;
- (ii) the cycles are written in decreasing order of their largest element.

In the following discussion, we shall always write the cycle structure of $\sigma \in \mathfrak{S}_n$ in standard cycle form.

Definition 3.1. Let \hat{Q}_n be the set of permutations of [n] with the restriction that the sequence in the cycle containing n is increasing.

For example,

$$\widehat{\mathcal{Q}}_3 = \{(3)(2)(1), (2,3)(1), (3)(1,2), (1,3)(2), (1,2,3)\}$$

Define $\hat{\sigma}$ to be the word obtained from $\sigma \in \hat{\mathcal{Q}}_n$ by writing it in standard cycle form and erasing the parentheses. Then $\hat{\sigma} \in \mathcal{Q}_n$. Thus, we get a bijection from $\hat{\mathcal{Q}}_n$ to \mathcal{Q}_n . Suppose that

$$\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{i_1})(\sigma_{i_1+1}, \sigma_{i_1+2}, \dots, \sigma_{i_2}) \cdots (\sigma_{i_{k-1}+1}, \sigma_{i_{k-2}+2}, \dots, \sigma_{i_k}) \in \mathcal{Q}_n.$$

Then $\sigma_{i_1}, \sigma_{i_2}, \ldots, \sigma_{i_k}$ are the largest elements of their cycles, and $\sigma_{i_1} > \sigma_{i_2} > \ldots > \sigma_{i_k}$. Hence $\sigma(\sigma_i) > \sigma_i$ if and only if $\sigma_i < \sigma_{i+1}$. Let $\text{fcyc}(\sigma)$ be the number of elements in the first cycle of σ .

From the above discussion, we can now conclude the following result.

Proposition 3.2. For any $n \ge 1$, we have

$$\sum_{\sigma \in \mathcal{Q}_n} x^{\operatorname{asc}(\sigma)} y^{\operatorname{bkone}(\sigma)} q^{\operatorname{bk}(\sigma)} p^{\operatorname{fbk}(\sigma)} = \sum_{\sigma \in \widehat{\mathcal{Q}}_n} x^{\operatorname{exc}(\sigma)} y^{\operatorname{fix}(\sigma)} q^{\operatorname{cyc}(\sigma)} p^{\operatorname{fcyc}(\sigma)}.$$

Let $\widetilde{A}_n(x, y, q, p) = \sum_{\sigma \in \widehat{\mathcal{Q}}_{n+1}} x^{\operatorname{exc}(\sigma)} y^{\operatorname{fix}(\sigma)} q^{\operatorname{cyc}(\sigma)} p^{\operatorname{fcyc}(\sigma)}$. The first few $\widetilde{A}_n(x, y, q, p)$ are given as follows:

$$A_0(x, y, q, p) = ypq,$$

$$\widetilde{A}_1(x, y, q, p) = y^2 pq^2 + xp^2 q,$$

$$\widetilde{A}_2(x, y, q, p) = pq^3 y^3 + pq^2 xy + 2p^2 q^2 xy + p^3 qx^2.$$

Theorem 3.3. Let $\widetilde{A}(x, y, q, p; z) = \sum_{n \ge 0} \widetilde{A}_n(x, y, q, p) \frac{z^n}{n!}$. We have

$$\widetilde{A}(x,y,q,p;z) = (e^{xpz} + y - 1) pqA(x,y,q;z).$$
(12)

Proof. Let n be a fixed positive integer. Given $\pi \in \widehat{\mathcal{Q}}_{n+1}$. Suppose the first cycle of π is given by $\sigma = (c_1, c_2, \ldots, c_k, n+1)$. So π can be split into the cycle σ and a permutation τ on the set $\{1, 2, \ldots, n+1\} \setminus \{c_1, c_2, \ldots, c_k, n+1\}$, i.e., $\pi = \sigma \cdot \tau$. When k = 0, we have

$$\operatorname{exc}(\pi) = \operatorname{exc}(\tau), \operatorname{fix}(\pi) = \operatorname{fix}(\tau) + 1, \operatorname{cyc}(\pi) = \operatorname{cyc}(\tau) + 1, \operatorname{fcyc}(\pi) = 1.$$

This provides the term $ypqA_n(x, y, q)$. When $1 \le k \le n$, there are $\binom{n}{k}$ ways to form the set $\{c_1, c_2, \ldots, c_k\}$. Moreover, we have

$$\exp(\pi) = \exp(\tau) + k$$
, fix $(\pi) =$ fix (τ) , cyc $(\pi) =$ cyc $(\tau) + 1$, fcyc $(\pi) = k + 1$.

This provides the term $\sum_{k=1}^{n} {n \choose k} x^k q p^{k+1} A_{n-k}(x, y, q)$. Therefore, we obtain

$$\widetilde{A}_{n}(x,y,q,p) = ypqA_{n}(x,y,q) + \sum_{k=1}^{n} \binom{n}{k} x^{k} qp^{k+1} A_{n-k}(x,y,q).$$
(13)

Multiplying both sides of (13) by $z^n/n!$ and summing over all nonnegative integers n, we get that

$$\begin{split} \widetilde{A}(x, y, q, p; z) &= ypqA(x, y, q; z) + pq \sum_{n=1}^{\infty} \sum_{k=1}^{n} \binom{n}{k} (xp)^{k} A_{n-k}(x, y, q) \frac{z^{n}}{n!} \\ &= ypqA(x, y, q; z) + pq \sum_{n=1}^{\infty} \sum_{k=0}^{n} \binom{n}{k} (xp)^{k} A_{n-k}(x, y, q) \frac{z^{n}}{n!} - pq \left((A(x, y, q; z) - 1) \right) \\ &= ypqA(x, y, q; z) + pq \left(e^{xpz} A(x, y, q; z) - 1 \right) - pq \left((A(x, y, q; z) - 1) \right) \\ &= (e^{xpz} + y - 1) pqA(x, y, q; z). \end{split}$$

This completes the proof.

From (12), we see that

$$\widetilde{A}(x,1,-1,-1;z) = e^{-xz}A(x,1,-1;z) = \frac{e^{-z} - xe^{-xz}}{1-x},$$
$$\widetilde{A}(x,1,-1,1;z) = -e^{xz}A(x,1,-1;z) = \frac{e^{2xz-z} - xe^{xz}}{x-1}.$$

It is routine to check that

$$\frac{e^{-z} - xe^{-xz}}{1 - x} = \sum_{n=0}^{\infty} (-1)^n \frac{1 - x^{n+1}}{1 - x} \frac{z^n}{n!},$$
$$\frac{e^{(2x-1)z} - xe^{xz}}{x - 1} = \sum_{n=0}^{\infty} \frac{(1 - 2x)^{2n} - x^{2n+1}}{x - 1} \frac{z^{2n}}{(2n)!} + \sum_{n=1}^{\infty} \frac{(1 - 2x)^{2n-1} + x^{2n}}{1 - x} \frac{z^{2n-1}}{(2n-1)!}.$$
(14)

Therefore, we get the following corollary.

Corollary 3.4. For $n \ge 0$, we have

$$\widetilde{A}_n(x,1,-1,-1) = \sum_{\sigma \in \widehat{Q}_{n+1}} x^{\operatorname{exc}(\sigma)} (-1)^{\operatorname{cyc}(\sigma) + \operatorname{fcyc}(\sigma)} = (-1)^n (1+x+x^2+\dots+x^n);$$
$$\widetilde{A}_n(x,1,-1,1) = \sum_{\sigma \in \widehat{Q}_{n+1}} x^{\operatorname{exc}(\sigma)} (-1)^{\operatorname{cyc}(\sigma)} = \sum_{k=0}^n x^{n-k} \sum_{i=k}^n (-1)^{i-1} 2^{n-i} \binom{n}{i}.$$

It would be interesting to present a combinatorial proof of Corollary 3.4. Let

$$B(n,k) = \sum_{i=k}^{n} (-1)^{k-i} 2^{n-i} \binom{n}{i}.$$

It should be noted that the numbers B(n,k) are known as the (k-2)-nd *Betti numbers* of the complement of the k-equal real hyperplane arrangement in \mathbb{R}^n (see [7, Theorem 4.1.5] for instance). The Betti number B(n,i) was first studied by Björner and Welker [2], and subsequently

studied by Green [7, 8]. The reader is referred to Green [8, page 1038] for various interpretations of the numbers B(n, i).

From Corollary 3.4, we see that

$$\sum_{\sigma \in \hat{\mathcal{Q}}_{n+1}} x^{\operatorname{exc}(\sigma)} (-1)^{\operatorname{cyc}(\sigma)} = \sum_{k=0}^{n} (-1)^{k+1} B(n,k) x^{n-k}.$$
 (15)

An anti-excedance in $\pi \in \mathfrak{S}_n$ is an index *i* such that $\pi(i) \leq i$. Let $\operatorname{aexc}(\pi)$ be the number of anti-excedances of π . Clearly, $\operatorname{exc}(\pi) + \operatorname{aexc}(\pi) = n$ for $\pi \in \mathfrak{S}_n$. For $\pi \in \widehat{\mathcal{Q}}_{n+1}$, if $\operatorname{exc}(\pi) = n-k$, then $\operatorname{aexc}(\pi) = k + 1$. Therefore, using (15), we get the following result.

Theorem 3.5. For $n \ge 0$, we have

$$B(n,k) = \sum_{\substack{\pi \in \widehat{Q}_{n+1} \\ \exp(\pi) = n-k}} (-1)^{\operatorname{cyc}(\pi) + \operatorname{aexc}(\pi)}.$$

Using Theorem (3.5), one may introduce some q-analogs of the Betti numbers B(n,k). Let $B_n(x) = \sum_{k=0}^n B(n,k)x^k$. Combining (14) and (15), we obtain the following result.

Proposition 3.6. We have

$$\sum_{n \ge 0} B_n(x) \frac{z^n}{n!} = \frac{e^z + x e^{(2+x)z}}{1+x}$$

Define

$$T_n(q) = \sum_{\sigma \in \widehat{\mathcal{Q}}_{n+1}} q^{\operatorname{cyc}(\sigma)} = \sum_{k=1}^{n+1} T(n,k) q^k.$$

Let $T(q, z) = \sum_{n \ge 0} T_n(q) \frac{z^n}{n!}$. It follows from (12) that

$$T(q,z) = qe^{z} \sum_{n\geq 0} \sum_{k=0}^{n} {n \brack k} q^{k} \frac{z^{n}}{n!} = \frac{qe^{z}}{(1-z)^{q}},$$
(16)

where $\begin{bmatrix} n \\ k \end{bmatrix}$ is the signless Stirling number of the first kind, i.e., the number of permutations of \mathfrak{S}_n with k cycles. Using (16), we immediately get the following result.

Proposition 3.7. For $n \ge 2$, we have $T_n(-1) = \sum_{\sigma \in \widehat{\mathcal{Q}}_{n+1}} (-1)^{\operatorname{cyc}(\sigma)} = n-1$.

Let $F_n(q) = \sum_{k=0}^n {n \brack k} q^k$. Combining (16) and the well known recurrence relation $F_n(q) = (n-1+q)F_{n-1}(q)$, one can easily derive that the polynomials $T_n(q)$ satisfy the recurrence relation

$$T_{n+1}(q) = (n+1+q)T_n(q) - nT_{n-1}(q),$$
(17)

with the initial conditions $T_0(q) = q$, $T_1(q) = q + q^2$. Equivalently, we have

$$T(n+1,k) = (n+1)T(n,k) + T(n,k-1) - nT(n-1,k).$$

Recall that the Charlier polynomials are defined by

$$C_n^{(a)}(x) = \sum_{k=0}^n (-a)^{n-k} \binom{n}{k} \binom{x}{k} k!, \ a \neq 0.$$

These polynomials are generated by $e^{-az}(1+z)^x = \sum_{n\geq 0} C_n^{(a)}(x) \frac{z^n}{n!}$. Hence

$$T_n(q) = (-1)^n q C_n^{(1)}(-q) = q \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{-q}{k} k!$$

It is well known that Charlier polynomials are orthogonal polynomials and have only real zeros. Hence the polynomial $T_n(q)$ has only real zeros for any $n \ge 0$.

References

- [1] C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, arXiv:1711.05983.
- [2] A. Björner and V. Welker, The homology of "k-equal" manifolds and related partition lattices, Adv. Math., 110, 277–313, 1995.
- [3] F. Brenti, A class of q-symmetric functions arising from plethysm. J. Combin. Theory Ser. A, 91, 137–170, 2000.
- [4] F. Chung, R. Graham, D. Knuth, A symmetrical Eulerian identity, J. Comb., 1, 29–38, 2010.
- [5] F. Chung and R. Graham, Generalized Eulerian sums, J. Comb., 3(3), 299–316, 2012.
- [6] D. Foata, M. Schützenberger, Théorie Géométrique des Polynômes Euleriens, *Lecture Notes in Mathematics*, vol. 138, Springer-Verlag, Berlin-New York, 1970.
- [7] R.M. Green, Homology representations arising from the half cube, Adv. Math., 222, 216–239, 2009.
- [8] R.M. Green, Homology representations arising from the half cube, II, J. Combin. Theory Ser. A, 117, 1037– 1048, 2010.
- [9] O. A. Gross, Preferential arrangements, Amer. Math. Monthly, 69, 4–8, 1962.
- [10] G.-N. Han, Z. Lin and J. Zeng, A symmetrical q-Eulerian identity, Sém. Lothar. Combin., 67, Art. B67c, 11 pp, 2011.
- [11] M. Hyatt, Recurrences for Eulerian polynomials of type B and type D, Ann. Comb., 20(4), 869–881, 2016.
- [12] G. Ksavrelof, and J. Zeng, Two involutions for signed excedance numbers. Sém. Lothar. Combin., 49 Art. B49e, 2003.
- [13] Z. Lin, On some generalized q-Eulerian polynomials, *Electron. J. Combin.*, 20(1), #P55, 2013.
- [14] R. B. Nelsen, H. Schmidt, Chains in Power Sets, Math. Magazine, 64 (1), 23–31, 1991.
- [15] J. Ma, S.-M. Ma, Y.-N. Yeh, X. Zhu, The cycle descent statistic on permutations, *Electron. J. Combin.*, 23(4), P4.20, 2016.
- [16] A. Postnikov, V. Reiner and L. Williams, Faces of generalized permutohedra, Doc. Math., 13, 207–273, 2008.
- [17] J. Shareshian, M.L. Wachs, Gamma-positivity of variations of Eulerian polynomials, arXiv:1702.06666.
- [18] N.J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- [19] A.F.Y. Zhao, Excedance numbers for the permutations of type B. Electron. J. Combin., 20(2), #P28, 2013.

DEPARTMENT OF MATHEMATICS, SHANGHAI JIAO TONG UNIVERSITY, SHANGHAI, CHINA *E-mail address*: majun904@sjtu.edu.cn(J. Ma)

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004, P.R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, TAIPEI, TAIWAN *E-mail address:* mayeh@math.sinica.edu.tw (Y.-N. Yeh)