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Abstract

The Nth linear complexity of a sequence is a measure of predictabil-
ity. Any unpredictable sequence must have large Nth linear complexity.
However, in this paper we show that for q-automatic sequences over Fq

the converse is not true.
We prove that any (not ultimately periodic) q-automatic sequence

over Fq has Nth linear complexity of order of magnitude N . For some
famous sequences including the Thue–Morse and Rudin–Shapiro sequence
we determine the exact values of their Nth linear complexities. These are
non-trivial examples of predictable sequences with Nth linear complexity
of largest possible order of magnitude.

Keywords and phrases: automatic sequences, Thue–Morse sequence, Rudin–
Shapiro sequence, pattern sequence, sum-of-digits sequence, Baum–Sweet se-
quence, paper folding sequence, linear complexity, expansion complexity, lattice
profile, continued fractions

1 Introduction

Let k ≥ 2 be an integer. A k-automatic sequence (un) over an alphabet A is
the output sequence of a finite automaton, where the input is the k-ary digital
expansion of n. Automatic sequences have gained much attention during the
last decades. For monographs and surveys about automatic sequences we refer
to [1, 2, 12, 13].

For a prime power k = q, q-automatic sequences (un) over the finite field
A = Fq of q elements can be characterized by a result of Christol, see [5] for
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prime q and [6] for prime power q as well as [2, Theorem 12.2.5]: Let

G(t) =
∞
∑

n=0

unt
n

be the generating function of the sequence (un) over Fq. Then (un) is q-
automatic over Fq if and only if G(t) is algebraic over Fq[t], that is, there is
a polynomial h(s, t) ∈ Fq[s, t] \ {0} such that h(G(t), t) = 0. (Note that for
all m = 1, 2, . . . a sequence is k-automatic if and only if it is km-automatic by
[2, Theorem 6.6.4] and even a slightly more general version of Christol’s result
holds: For a prime p and positive integers m and r, (un) is p

m-automatic over
Fpr if and only if G(t) is algebraic over Fpr .)

Diem [7] defined the N th expansion complexity EN (un) of (un) as the least
total degree of a nonzero polynomial h(s, t) ∈ Fq[s, t] with

h(G(t), t) ≡ 0 mod tN

if the first N sequence elements are not all 0 and EN (un) = 0 otherwise. Hence,
the q-automatic sequences over Fq are exactly the sequences over Fq with

E(un) = sup
N≥1

EN (un) < ∞.

Sequences (un) with small E(un) are predictable and not suitable in cryptogra-
phy.

For example, the Thue–Morse sequence over F2 is defined by

tn =

{

tn/2 if n is even,
t(n−1)/2 + 1 if n is odd,

n = 1, 2, . . .

with initial value t0 = 0. Taking

h(s, t) = s(t+ 1)2 + s2(t+ 1)3 + t

its generating function G(t) satisfies h(G(t), t) = 0 and thus E(tn) ≤ 5. More
precisely, in the proof of Corollary 1 below we will see that G(t) is not rational
and thus h(s, t) = (t+ 1)3(s+G(t))(s+G(t) + 1

t+1 ) is irreducible over F2(t)[s]
and we get

E(tn) = 5.

TheN th linear complexity L(un, N) of a sequence (un) over Fq is the length L
of a shortest linear recurrence relation satisfied by the first N elements of (un):

un+L = cL−1un+L−1 + · · ·+ c1un+1 + c0un, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ Fq. We use the convention that L(un, N) = 0 if the first
N elements of (un) are all zero and L(un, N) = N if u0 = · · · = uN−2 = 0 6=
uN−1. The sequence (L(un, N)) is called linear complexity profile of (un) and

L(un) = sup
N≥1

L(un, N)
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is the linear complexity of (un). It is well-known ([18, Lemma 1]) that L(un) <
∞ if and only if (un) is ultimately periodic, that is, its generating function
is rational: G(t) = g(t)/f(t) with polynomials g(t), f(t) ∈ Fq[t]. The Nth
linear complexity is a measure for the unpredictability of a sequence as well. A
large Nth linear complexity (up to sufficiently large N) is necessary (but not
sufficient) for cryptographic applications. Sequences of small linear complexity
are also weak in view of Monte-Carlo methods, see [8, 9, 10, 11]. For more
background on linear complexity and related measures of pseudorandomness we
refer to [16, 19, 21, 22]. In particular, for ultimately periodic sequences the
relation between linear complexity and expansion complexity was studied in
[17].

In this paper, we show that any q-automatic sequence over Fq which is
not ultimately periodic has Nth linear complexity of (best possible) order of
magnitude N . Hence, we provide many examples of sequences with high Nth
linear complexity which are still predictable (since E(un) is small). For example,
for the Thue–Morse sequence over F2 we prove, see Theorem 2 below,

L(tn, N) = 2

⌊

N + 2

4

⌋

, N = 1, 2, . . . (1)

In Section 2 we prove a bound on the Nth linear complexity of any q-
automatic sequence over Fq which is not ultimately periodic. We apply this
result to several famous automatic sequences including pattern sequences and
sum-of-digits sequences. For example, for the Thue–Morse sequence our result
implies the bound

⌈

N − 1

2

⌉

≤ L(tn, N) ≤

⌊

N

2

⌋

+ 1.

By (1) the lower bound is attained if N ≡ 0, 1 mod 4 and the upper bound if
N ≡ 2, 3 mod 4.

In Section 3 we determine the exact value of the Nth linear complexity in
the special case of binary pattern sequences with the all one pattern. The Thue–
Morse sequence and the Rudin–Shapiro sequence are the simplest examples of
such sequences.

Besides a small expansion complexity, the Thue–Morse and Rudin–Shapiro
sequences have another deficiency, a very large correlation measure of order 2,
see [15]. By a result of [4], small correlation measures of order k (up to a suffi-
ciently large k) imply large Nth linear complexities. The converse is not true.
For example, the correlation measure of order 4 of the Jacobi-sequence (jn) of
length pq with two distinct odd primes p and q is of order of magnitude pq, see
[20], which is based on the relation jn + jn+p + jn+q + jn+p+q = 0 for all n
with 1 ≤ n < pq and gcd(n, pq) = 1. However, its linear complexity profile is
quite large, see [3]. This lower bound on the linear complexity profile can be
obtained using an analog of the result of [4], see [14], for a modified correla-
tion measure with bounded lags. Examples of sequences with large correlation
measure of small order with bounded lags but large linear complexity profile
were not known before. However, the results of this paper for the Thue–Morse
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and Rudin–Shapiro sequence and the results of [15] (using lags (0, 1)) show that
both sequences are such examples.

2 Arbitrary q-automatic sequences over Fq

Ultimately periodic sequences (that is linear recurrence sequences) are auto-
matic and correspond to rational generating functions [18, Lemma 1]. If (un) is
an ultimately periodic sequence, then it has finite linear complexity. However,
we show now that if (un) is automatic but not ultimately periodic, then the
Nth linear complexity of (un) is of order of magnitude N for all N .

Theorem 1. Let q be a prime power and (un) be a q-automatic sequence over
Fq which is not ultimately periodic. Let h(s, t) = h0(t)+h1(t)s+ · · ·+hd(t)s

d ∈
Fq[s, t] be a non-zero polynomial with h(G(t), t) = 0 with no rational zero. Put

M = max
0≤i≤d

{deg hi − i}.

Then we have

N −M

d
≤ L(un, N) ≤

(d− 1)N +M + 1

d
.

Proof. Since (un) is not ultimately periodic, G(t) 6∈ Fq(t) is not rational by [18,
Lemma 1].

Let g(t)/f(t) ∈ Fq(t) be a rational zero of h(s, t) modulo tN with deg(f) ≤
L(un, N) and deg(g) < L(un, N). More precisely, put L = L(un, N). Then we
have

L
∑

ℓ=0

cℓun+ℓ = 0 for 0 ≤ n ≤ N − L− 1 (2)

for some c0, . . . , cL ∈ Fq with cL 6= 0. Take

f(t) =
L
∑

ℓ=0

cℓt
L−ℓ

and

g(t) =

L−1
∑

m=0

(

L
∑

ℓ=L−m

cℓum+ℓ−L

)

tm

and verify
f(t)G(t) ≡ g(t) mod tN :

f(t)G(t) ≡

L
∑

ℓ=0

cℓt
L−ℓ

N−1
∑

k=0

ukt
k ≡

N−1
∑

m=0

L
∑

ℓ=0

cℓum+ℓ−Lt
m ≡ g(t) mod tN ,

where we put m = L− ℓ+ k and used (2) with n = m− L in the last step.
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Then

h0(t)f
d(t) + h1(t)g(t)f

d−1(t) + · · ·+ hd(t)g(t)
d = K(t)tN .

Here K(t) 6= 0 since h(s, t) has no rational zero. Comparing the degrees of both
sides we get

dL+M ≥ N

which gives the lower bound.
The upper bound for N = 1 is trivial. For N ≥ 2 the result follows from the

well-known bound (see for example [11, Lemma 3])

L(un, N) ≤ max {L(un, N − 1), N − L(un, N − 1)}

by induction

L(un, N) ≤ max

{

(d− 1)(N − 1) +M + 1

d
,N −

N − 1−M

d

}

≤
(d− 1)N +M + 1

d
,

where we also used the lower bound on L(un, N − 1) to estimate N −L(un, N −
1).

Examples

Now we state bounds on the Nth linear complexity of some famous automatic
sequences as corollaries of Theorem 1. In the following let p be a prime.

Pattern sequences

Let P ∈ F
k
p \ {00 . . .0} be a pattern of length k. Let eP (n) be the number of

occurrences of P in the p-ary representation of n. For example if p = 2, then
e11(7) = 2, e1(9) = 2, e11(9) = 0 and e101(21) = 2.

For a pattern P of length k define the sequence (rn) by

rn ≡ eP (n) mod p, rn ∈ Fp, n = 0, 1, . . .

The sequence (rn) over Fp satisfies the following recurrence relation

rn =

{

r⌊n/p⌋ + 1 if n ≡ a mod pk,
r⌊n/p⌋ otherwise,

n = 1, 2, . . . (3)

with initial value r0 = 0, where a is the integer in the range 0 < a < pk such
that its p-ary expansion is the pattern P .

Classical examples for binary pattern sequences are the Thue–Morse se-
quence (p = 2, k = 1 and P = 1 (a = 1)) and the Rudin–Shapiro sequence
(p = 2, k = 2 and P = 11 (a = 3)).
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Corollary 1. Let p be a prime number and a, k integers with 1 ≤ a < pk. If
(rn) is the pattern sequence defined by (3), then

N − pk + 1

p
≤ L(rn, N) ≤

(p− 1)N + pk

p
.

Proof. By the recurrence relation (3) we have

G(t) = (1 + t+ · · ·+ tp−1)G(t)p +

∞
∑

i=0

tp
ki+a.

Multiplying with tp
k

− 1 = (t− 1)p
k

we have

(t− 1)p
k

G(t) = (t− 1)p
k+p−1G(t)p − ta, (4)

see also [6, Théorèm 3]. Put h(s, t) = (t−1)p
k+p−1sp−(t−1)p

k

s−ta. Then h(s, t)
has no rational zero in Fp(t). Indeed, if g(t)/f(t) is a zero (with gcd(g, f) = 1),
that is

(t− 1)p
k+p−1g(t)p − (t− 1)p

k

g(t)f(t)p−1 − taf(t)p = 0,

then (t − 1) | f(t) and so (t − 1)p
k+p−1 | f(t)p thus (t − 1)p

k−1+1 | f(t) which
means that t− 1 | g(t), a contradiction.

Finally, the result follows from Theorem 1.

The sum-of-digits sequence

Let k > 1 be an integer and σm(n) be the sum of digits of n in the k-ary repre-
sentation. Then define sn = σm(n) mod k. Clearly (sn) satisfies the following
recurrence relation

sn ≡ s⌊n

k
⌋ + n mod k, n = 1, 2, . . . (5)

with initial value s0 = 0.

Corollary 2. Let p be a prime number and (sn) be the sum-of-digit sequence
modulo p defined by (5) with k = p. Then

N − 1

p
≤ L(sn, N) ≤

(p− 1)N + 2

p
.

For p = 2 (sn) is the Thue–Morse sequence again and in this case Corollary
2 coincides with Corollary 1.

Proof. As before, by the recurrence relation (5) we have

G(t) = (1 + t+ · · ·+ tp−1)G(t)p +

∞
∑

i=0

tip ·

p−1
∑

a=1

ata

=
1− tp

1− t
G(t)p +

1

1− tp
· t(1 − t)p−2.
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Multiplying by (1− t)2 we get that G(t) is a root of

h(s, t) = (1− t)p+1sp − (1− t)2s+ t.

As in the previous proof, it can be shown that h(s, t) has no rational zero in
Fp(t), thus the result follows from Theorem 1.

Baum–Sweet sequence

The Baum–Sweet sequence (bn) is a 2-automatic sequence defined by the rule
b0 = 1 and for n ≥ 1

bn =







1 if the binary representation of n contains no block of consecutive
0’s of odd length;

0 otherwise.

Equivalently we have for n ≥ 1 of the form n = 4km with m not divisible by 4

bn =

{

0 if m is even,
b(m−1)/2 if m is odd.

Corollary 3. Let (bn) be the Baum–Sweet sequence. Then

N

3
≤ L(bn, N) ≤

2N + 1

3
.

Proof. It can be easily checked that the generating function G(t) of (bn) is the
unique root of h(s, t) = s3 + t · s + 1, see [6, p. 403]. Then the bounds follow
from Theorem 1.

Regular paperfolding sequence

The value of any given term vn ∈ F2 in the regular paperfolding sequence can
be defined as follows. If n = m · 2k where m is odd, then

vn =

{

1 if m ≡ 1 mod 4,
0 if m ≡ 3 mod 4,

n = 1, 2, . . .

and any v0 ∈ F2.

Corollary 4. Let (vn) be the regular paperfolding sequence. Then

N − 3

2
≤ L(vn, N) ≤

N

2
+ 2.

Proof. It can be checked that the generating function G(t) of (vn) is a zero of
h(s, t) = (t4 + 1) · s2 + (t4 + 1) · s+ t = (t4 + 1)(s+G)(s+G+ 1) which has no
rational zero. Then the bounds follow from Theorem 1.
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A sequence with perfect lattice profile and perfect linear complexity

profile

The generating function G(t) of the sequence (wn) over F2 defined by

w2n = 1 and w2n+1 = wn + 1, n = 0, 1, . . .

satisfies the functional equation

t(t+ 1)G(t)2 + (t+ 1)G(t) + 1 = 0.

(This sequence or its complement are sometimes called Toeplitz sequence or
period doubling sequence, see https://oeis.org/A096268.) Hence, L(wn, N) =
⌊N+1

2 ⌋. Such a linear complexity profile is called perfect. This is the only
sequence with both a perfect linear complexity profile and a perfect ’lattice
profile’, see [9] for more details. Sequences with the first are characterized by
w0 = 1 and w2n+2 = w2n+1 + wn but the choice of w2n+1 is free for n ≥ 1, see
[18]. Sequences with the latter are characterized by w2n+1 = wn + 1 but the
choice of any w2n is free, see [9].

3 Pattern sequences with the all one pattern

In this section we slightly improve Theorem 1 for the binary pattern sequences
when the pattern P is the all one string 11 . . . 1 of length k (that is a = 2k − 1).

Theorem 2. The N th linear complexity L(rn, N) of the sequence (rn) defined
by (3) with a = 2k − 1 (and p = 2) satisfies

L(rn, N) =







2(2k − 1)
⌊

N
4(2k−1)

⌋

+ 2k if 2k ≤ N mod 4(2k − 1) ≤ 3(2k − 1),

2(2k − 1)
⌊

N+2k−2
4(2k−1)

⌋

otherwise.

The proof of the theorem is based on the theory of continued fractions. Thus
first we summarize some basic facts about them (Section 3.1), then we prove
the result (Section 3.2).

3.1 Linear complexity and continued fractions

Now we describe the connection between linear complexity profile of a binary
sequence and the continued fraction expansion of its the generating function
(see for example [18]).

Let F2((x
−1)) be the ring of formal Laurent series

R =

∞
∑

i=−m

rix
−i, r−m, r−m+1, · · · ∈ F2

8



over F2 in x−1. In fact F2((x
−1)) is a field and the coefficients of the inverse of

a non-zero R can be computed recursively, namely, if r−m = 1, then

R−1 =
∞
∑

i=m

zix
−i

with coefficients

zm = 1 and zi+m = ri−m +

i−m−1
∑

j=−m+1

rjzi−j , i = 1, 2, . . . (6)

Every formal non-rational Laurent series R ∈ F2((x
−1)) has a unique con-

tinued fraction expansion

R = A0 +
1

A1 +
1

A2 +
1

.. .

,

where Aj ∈ F2[x] are polynomials for j ≥ 0 and degAj ≥ 1 for j ≥ 1.
For

R =

∞
∑

i=−m

rix
−i ∈ F2((x

−1))

we define its polynomial part by

Pol(R) =

0
∑

i=−m

rix
−i.

The polynomials Aj (j ≥ 0) are obtained recursively by

A0 = Pol(R), B0 = R− Pol(R),

Aj+1 = Pol(B−1
j ), Bj+1 = B−1

j − Pol(B−1
j ), j ≥ 0.

If the continued fraction expansion is broken off after the term Aj (j ≥ 0), we
get the rational convergent Pj/Qj . The polynomials Pj , Qj can be calculated
recursively by

P−1 = 1, P0 = A0, Pj = AjPj−1 + Pj−2, j ≥ 1,

Q−1 = 0, Q0 = 1, Qj = AjQj−1 +Qj−2, j ≥ 1.
(7)

9



The following formulas are shown by straightforward induction on j:

deg(Qj) =

j
∑

h=1

degAh for j ≥ 1, (8)

Pj−1Qj + PjQj−1 = 1 for j ≥ 1, (9)

R =
Pj +BjPj−1

Qj +BjQj−1
for j ≥ 0. (10)

With x = t−1 ∈ F2(t) we obtain that the generating function of the sequence
(rn) over F2 is

G =

∞
∑

n=0

rnx
−n.

The following lemma [18, Theorem 1] gives an explicit description of the
linear complexity profile of the sequence (rn) in terms of the polynomials Qj

that are obtained from the continued fraction expansion of

R = x−1G =

∞
∑

i=1

ri−1x
−i. (11)

Lemma 5. For any N ≥ 1 the N th linear complexity L(rn, N) is given by

L(rn, N) = degQj

where j ≥ 0 is uniquely determined by the condition

degQj−1 + degQj ≤ N < degQj + degQj+1.

We define the (exponential) valuation v on F2((x
−1)) as

v(R) = m, if R =
∞
∑

i=−m

rix
−i ∈ F2((x

−1)) and r−m 6= 0.

For R = 0 we put v(R) = −∞. We have the following properties of v. For
R,S ∈ F2((x

−1)) we have

(i) v(RS) = v(R) + v(S),

(ii) v(R+ S) ≤ max{v(R), v(S)},

(iii) v(R+ S) = max{v(R), v(S)} if v(R) 6= v(S).

The valuation v extends the degree function on F2[x]: for f ∈ F2[x] we have
v(f) = deg f and

v

(

f

g

)

= deg f − deg g for f, g ∈ F2[x], g 6= 0.

10



3.2 Proof of Theorem 2

It follows from the functional equation (4) for the generating function of the
sequence (rn) that the function R defined in (11) satisfies

(1 + x)R2 +R+ U2kx−2k = 0, (12)

where U =
∑∞

i=0 x
−i.

Lemma 6. If for a polynomial Q ∈ F2[x] we have

QU2k =

∞
∑

i=− degQ

bix
−i,

then bi = bj for i, j ≥ 0 with i ≡ j mod 2k and

Q ≡ b1x
2k−1 + b2x

2k−2 + · · ·+ b2k mod x2k + 1.

Proof. Write Q = xd + qd−1x
d−1 + · · ·+ q1x+ q0. Then for i ≥ 0 the coefficient

of QU2k of x−i is

bi =
∑

j: i+j≡0 mod 2k

qj ,

and the result follows.

Proof of Theorem 2. We prove the following assertions by induction.

(i) A1 = x2 + x+ 1 if k = 1 and A1 = x2k + x if k ≥ 2.

(ii) For j ≥ 2, Aj = x2 +1 if k = 1 and for j ≥ 1, A2j = x2k−2 +x2k−4 + · · ·+

x2 + 1, A2j+1 = x2k + 1 if k ≥ 2.

(iii) For j ≥ 0, Qj ≡ 1 mod x + 1 if k = 1 and Q2j ≡ 1 mod x2k−1

+ 1,

Q2j+1 ≡ x+ 1 mod x2k−1

+ 1 for k ≥ 2.

Then the result follows from Lemma 5, (i), (ii) and (8).
The first part follows from straightforward computation. Namely, observe

that the first 2k+1 elements of the sequence (rn) are zeros, except the elements
rn with n = 2k − 1 and n = 2k+1 − 2. Thus

R =
1

x2k
+

1

x2k+1−1
+

∞
∑

i=2k+1+1

ri−1x
−i,

whence by (6) we have

R−1 = x2k + x+ x2−2k + . . .

so

A1 = Pol(R−1) =

{

x2 + x+ 1 if k = 1,

x2k + x if k ≥ 2

11



which proves (i).
By Corollary 1, R is irrational and thus degAj ≥ 1 for all j ≥ 1. Now by

(8), (9), (10) and the properties of v it follows for l ≥ 1 that

v(Ql−1R− Pl−1) = − v(Ql) (13)

whence
v(Q2

l−1R
2 − P 2

l−1) = −2 v(Ql). (14)

Consider

T = (x+ 1)P 2
l−1 + Pl−1Ql−1 + U2kx−2kQ2

l−1 (15)

= (x+ 1)
(

Q2
l−1R

2 − P 2
l−1

)

+Ql−1(Pl−1 +Ql−1R), (16)

where the second equality follows from (12). Now we have

v(T ) = − v(Al), l ≥ 1, (17)

by (8), (13), (14), (16) and the properties of v. It follows from (7), (9) and (10),
that

Ql−1(Pl−1 +Ql−1R) = Ql−1
1

AlQl−1 +Ql−2 +BlQl−1
=

1

Al +
Ql−2

Ql−1
+Bl

(18)

where we have

v(Bl), v

(

Ql−2

Ql−1

)

< 0. (19)

On the other hand

v
(

(x+ 1)
(

Q2
l−1R

2 − P 2
l−1

))

= 1− 2 v(Ql) = −2 v(Al) + 1− 2 v(Ql−1)

≤ −2 v(Al) + 1− 2 v(A1) < −2 v(Al) (20)

for l ≥ 2.
We now prove (ii) and (iii) by induction. We remark that the assertion (iii)

for Q0 and Q1 follows from (7) and (i).
Take l ≥ 2. If k = 1 or k ≥ 2 and l = 2j + 1 is odd, then Ql−1 ≡ 1

mod x2k−1

+ 1, thus Q2
l−1 ≡ 1 mod x2k + 1. By Lemma 6, the coefficients of

x−i (i = 1, . . . , 2k − 1) in Q2
l−1U

2k are all zero but the coefficient of x−2k is one.
Since R is irrational, the degree degAl and so v(T ) cannot be zero. Thus by

(15) x−2k is the leading term of T so deg(Al) = 2k by (17).

By Lemma 6, the coefficient of x−i (i = 2k + 1, . . . , 2k+1 − 1) in Q2
l−1U

2k is
zero. Thus by (20)

Ql−1(Pl−1 +Ql−1R) = x−2k + x2k+1

+

∞
∑

i=2k+1

aix
−i.

12



It follows from (19) that

A−1
l = x−2k + x2k+1

+
∞
∑

i=2k+1

a′ix
−i,

whence Al = x2k + 1 by (6).
If k ≥ 2 and l = 2j is even, the proof of (ii) is similar. Since Ql−1 ≡ x + 1

mod x2k−1

+1, thus Q2
l−1 ≡ x2 +1 mod x2k +1. By Lemma 6, the coefficients

of x−i (i = 1, . . . , 2k − 3) in Q2
l−1U

2k are all zero but the coefficient of x−2k+2

is one. Thus by (15) x−2k+2 is the leading term of T so deg(Al) = 2k − 2 by

(17). By Lemma 6, the coefficient of x−i (i = 2k − 1, . . . , 2k+1 − 1) in Q2
l−1U

2k

are all zeros except for i = 2k+1 − 2. Thus By (20)

Ql−1(Pl−1 +Ql−1R) = x−2k+2 + x2k + x−2k+1−2 +

∞
∑

i=2k+1−1

aix
−i.

It follows from (19) that

A−1
l = x−2k+2 + x2k + x−2k+1−2 +

∞
∑

i=2k+1−1

a′ix
−i,

whence Al = x2k−2 + x2k−4 + · · ·+ x2 + 1 by (6), which proves (ii).

Since x2k + 1 | Al for l ≥ 2, we have by (7) that

Ql = AlQl−1 +Ql−2 ≡ Ql−2 mod x+ 1,

which proves (iii).
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