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Abstract. We first summarize joint work on several preliminary canonical
Lambert series factorization theorems. Within this article we establish new
analogs to these original factorization theorems which characterize two spe-
cific primary cases of the expansions of Lambert series generating functions:
factorizations for Hadamard products of Lambert series and for higher-order
derivatives of Lambert series. The series coefficients corresponding to these
two generating function cases are important enough to require the special due
attention we give to their expansions within the article, and moreover, are
significant in that they connect the characteristic expansions of Lambert se-
ries over special multiplicative functions to the explicitly additive nature of
the theory of partitions. Applications of our new results provide new exotic
sums involving multiplicative functions, new summation-based interpretations
of the coefficients of the integer-order jth derivatives of Lambert series gener-
ating functions, several new series for the Riemann zeta function, and an exact
identity for the number of distinct primes dividing n.

1. Introduction

1.1. Lambert series factorization theorems. In the references we have proved
several variants and generalized expansions of Lambert series factorization theorems
of the form [3, 5, 6, 9]

∑

n≥1

anq
n

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

sn,kak · q
n,

and of the form

∑

n≥1

ānq
n

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

s̃n,kãk · q
n,
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for ân and ān depending on an arbitrary arithmetic function an and where the
lower-triangular sequence sn,k := [qn](q; q)∞qk/(1− qk), which we typically require
to be independent of the an, is the difference of two partition functions counting
the number of k’s in their respective odd (even) distinct partitions.

In the concluding remarks to [3] we gave several specific examples of other con-
structions of related Lambert series factorization theorems. In the reference, we
also proved a few new properties of the factorizations of Lambert series generating
functions over the convolution of two arithmetic functions, f ∗ g expanded by

∑

n≥1

(f ∗ g)(n)qn

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

s̃n,k(g)f(k) · q
n,

which we cite in this article. The Lambert series factorizations of these two forms
and their variations, two to three of which we consider in this article, also imply
matrix factorizations of these expansions which are dictated by the corresponding
typically invertible matrix of sn,k or s̃n,k(g). The matrix-based interpretation of
these factorization theorems is perhaps the most intuitive way to explore how these
expansions “factor” into distinct matrices applied to vectors of special sequences.

1.2. Significance of our results. Our new results are rare and important because
they provide a mechanism that effectively translates the divisor sums of the coef-
ficients of a Lambert series generating function into ordinary sums which similarly
generate the same prescribed arithmetic function, say an. Moreover, these fac-
torization theorems connect the special functions in multiplicative number theory
which are typically tied to a particular Lambert series expansion with the additive
theory of partitions and partition functions in unusual and unexpected new ways.
We are one of the first authors to examine such relations between the additive
and multiplicative in detail (see also [4, 3, 5]). We note that we are not the first
to consider the derivatives of Lambert series generating functions [8], though our
perspective on the connections afforded by these factorizations is distinctly new.

1.3. Focus within this article. Within this article we explore the expansions
of factorization theorems for two primary additional special case variants which
are distinctive and important enough in their applications to require special atten-
tion here: Hadamard products of two Lambert series generating functions and the
higher-order integer derivatives of Lambert series generating functions. Section 2
proves several new properties of the first case, where the results proved in Section
3 consider the second case in detail. The significance of these two particular fac-
torizations is that they have a broad range of applications to expanding special
and classical arithmetic functions from multiplicative number theory. In Section 4
we tie up loose ends by offering two other related variants of the Lambert series
factorizations. Namely, we prove factorization theorems for generating function
convolutions and provide a purely matrix-based proof of a new formula for the
coefficients enumerated by a Lambert series generating function.

New results and characterizations. The Hadamard product generating function
cases lead to several forms of new so-termed “exotic” sums for classical special
functions as illustrated in the explicit corollaries given in Example 2.4 of the next
section. For example, if we form the Hadamard product of generating functions of
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the two Lambert series over Euler’s totient function, φ(n), we obtain the following
more exotic-looking sum for our multiplicative function of interest:

φ(n) =
n∑

k=1

∑

d|n

p(d− k)

d
µ(n/d)


k2 +

∑

b=±1

⌊√

24k−23−b
6

⌋

∑

j=1

(−1)j
(
k −

j(3j + b)

2

)2


 .

The importance of obtaining new formulas and identities for the derivatives of a se-
ries whose coefficients we are interested in studying should be obvious, though our
factorization results also provide new alternate characterizations of these deriva-
tives apart from typical ODEs which we can form involving the derivatives of any
sequence ordinary generating functions. Our results for the factorization theorems
for derivatives of Lambert series generating functions in Section 3 provides two
particular factorizations which characterize these expansions.

2. Factorization Theorems for Hadamard Products

2.1. Hadamard products of generating functions. The Hadamard product of
two ordinary generating functions F (q) and G(q), respectively enumerating the
sequences of {fn}n≥0 and {gn}n≥0 is defined by

(F ◦G)(q) :=
∑

n≥0

fngn · qn, for |q| < σFσG,

where σF and σG denote the radii of convergence of each respective generating
function. Analytically, we have an integral formula and corresponding coefficient
extraction formula for the Hadamard product of two generating functions when
F (q) is expandable in a fractional series respectively given by [1, §1.12(V); Ex.
1.30, p. 85] [11, §6.3]

(F ◦G)(q2) =
1

2π

∫ π

0

F (qeıt)G(qe−ıt)dt

(F ◦G)(q) = [x0]F
( q
x

)
G(x).

In the context of the factorization theorems we consider in this article and in the ref-
erences, we consider the Hadamard products of two Lambert series generating func-
tions for special arithmetic functions fn and gn which we define coefficient-wise to
enumerate the product of the divisor sums over each sequence corresponding to the
coefficients of the individual Lambert series over the two functions. This subtlety
is discussed shortly in Definition 2.1. As we prove below, it turns out that we can
formulate analogous factorization theorems for the cases of these Hadamard prod-
ucts as well. The next definition makes the expansion of the particular Hadamard
product functions we consider in this section more precise.

Definition 2.1 (Hadamard Products for Lambert Series Generating Functions).
For any fixed arithmetic functions f and g, we define the Hadamard product of
the two Lambert series over f and g to be the auxiliary Lambert series generating
function over the composite function afg(n) whose coefficients are given by

∑

d|n
afg(d) = [qn]

∑

m≥1

afg(m)qm

1− qm
:=



∑

d|n
fd





∑

d|n
gd




︸ ︷︷ ︸
:=fg(n)

,
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so that by Möbius inversion we have that

afg(n) =
∑

d|n
fg(d)µ(n/d) = (fg ∗µ)(n).

We note that this definition of our Hadamard product generating functions is al-
ready slightly different than the one given above in that we define the Hadamard
product of two Lambert series generating functions by the expansion of a third
composite Lambert series which corresponds to the particular expansion of the
factorization in (1) below.

2.2. Main results and applications. The next theorems in this section define

the key matrix sequences, sn,k(f) and s
(−1)
n,k (f), in terms of the next factorization

of the Lambert series over afg(n) from the definition above in the form of

∑

n≥1

afg(n)q
n

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

sn,k(f)gk · q
n, (1)

where sn,k(f) is independent of the function g, which is equivalent to defining the
factorization expansion by the inverse matrix sequences as

gn =

n∑

k=1

s
(−1)
n,k · [qk]


(q; q)∞ ×

∑

n≥1

afg(n)q
n

1− qn


 . (2)

We also define the following function to expand divisor sums over arithmetic func-
tions as ordinary sums for any integers 1 ≤ k ≤ n:

Tdiv(n, k) :=

{
1, if k|n;

0, otherwise.

Theorem 2.2. For all integers 1 ≤ k ≤ n, we have the following definition of the
factorization matrix sequence defining the expansion on the right-hand-side of (1)

where we adopt the notation f̃(n) :=
∑

d|n fd:

sn,k(f) = Tdiv(n, k)f̃(n)

+
∑

b=±1

⌊√
24(n−k)+1−b

6

⌋

∑

j=1

(−1)jTdiv

(
n−

j(3j + b)

2
, k

)
· f̃

(
n−

j(3j + b)

2

)
.

Proof. By the factorization in (1) and the definition of afg(n) given above, we have

that for f̃(n) =
∑

d|n fd

sn,k(f) = [gk]


∑

d|n
fd


×

n∑

d=1

gdTdiv(n, d)

= [qn](q; q)∞ ×
∑

n≥1

Tdiv(n, k)f̃(n)q
n,

which equals the stated expansion of the sequence by Euler’s pentagonal number
theorem which provides that

(q; q)∞ = 1 +
∑

j≥1

(−1)j
(
qj(3j−1)/2 + qj(3j+1)/2

)
. �
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Theorem 2.3 (Inverse Sequences). For all integers 1 ≤ k ≤ n, we have the next
definition of the inverse factorization matrix sequence which equivalently defines the
expansion on the right-hand-side of (1).

s
(−1)
n,k (f) =

∑

d|n

p(d− k)

f̃(d)
µ(n/d),

Proof. We expand the right-hand-side of the factorization in (1) for the sequence

gn := s
(−1)
n,r (f), i.e., the exact inverse sequence, for some fixed r ≥ 1 as follows1:

f̃(n) ·
∑

d|n
s
(−1)
d,r (f) =

n∑

j=0

j∑

k=1

sj,ks
(−1)
k,r · p(n− j)

=

n∑

j=0

[j = r]δ p(n− j) = p(n− r).

Then the last equation implies that
∑

d|n
s
(−1)
d,r (f) =

p(n− r)

f̃(n)
,

which by Möbius inversion implies our stated result. �

Example 2.4 (Applications of the Theorem). For the arithmetic function pairs

(f, g) := (nt, ns), (φ(n),Λ(n)), (nt, Jt(n)),

respectively, and some constants s, t ∈ C where σα(n) denotes the generalized
sum-of-divisors function, Λ(n) is von Mangoldt’s function, φ(n) is Euler’s totient
function, and Jt(n) is the Jordan totient function, we employ the equivalent expan-
sions of the factorization result in (2) to formulate the following “exotic” sums as
consequences of the theorems above:

ns =

n∑

k=1

∑

d|n

p(d− k)

σt(d)
µ(n/d)

[
σt(k)σs(k) (3)

+
∑

b=±1

⌊√

24k+1−b
6

⌋

∑

j=1

(−1)jσt

(
k −

j(3j + b)

2

)
σs

(
k −

j(3j + b)

2

)]

Λ(n) =

n∑

k=1

∑

d|n

p(d− k)

d
µ(n/d)

[
k log(k)

+
∑

b=±1

⌊√

24k−23−b
6

⌋

∑

j=1

(−1)j
(
k −

j(3j + b)

2

)
log

(
k −

j(3j + b)

2

)]

Jt(n) =

n∑

k=1

∑

d|n

p(d− k)

dt
µ(n/d)


k2t +

∑

b=±1

⌊√

24k−23−b
6

⌋

∑

j=1

(−1)j
(
k −

j(3j + b)

2

)2t


 .

1 Notation : Iverson’s convention compactly specifies boolean-valued conditions and is equiva-
lent to the Kronecker delta function, δi,j , as [n = k]δ ≡ δn,k. Similarly, [cond = True]δ ≡ δcond,True
in the remainder of the article.
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By forming a second divisor sum over the divisors of n on both sides of the first
equation above, the first more exotic-looking sum for the sum-of-divisors functions
leads to an expression for σs(n) as a sum over the paired product functions, σt(n) ·
σs(n). We do not know of another such identity relating the generalized sum-of-
divisors functions existing in the literature or in the references which we cite in
this article. However, the following relations between the multiplicative generalized
sum-of-divisors functions and special additive partition functions are known where
pk(n) denotes the number of partitions of n into at most k parts and pp(n) denotes
the number of plane, or planar, partitions of n [10, A000219] [7, §26.9, §26.12]:

n · p(n) =

n−1∑

k=0

p(k)σ1(n)

n · pk(n) =

n∑

t=1

pk(n− t)
∑

j|t
j≤k

j, k ≥ 1

n · pp(n) =

n∑

j=1

pp(n− j)σ2(j).

Corollary 2.5 (New Series for the Riemann Zeta Function). For fixed s, t ∈ C such
that ℜ(s) > 1 we have the following infinite sum representations of the Riemann zeta
function where we denote the sequence of interleaved pentagonal numbers, ω(±n),

by Gj =
1
2

⌈
j
2

⌉ ⌈
3j+1
2

⌉
for j ≥ 0 [10, A001318]:

ζ(s) =
∑

n≥1

n∑

k=1

∑

d|n

p(d− k)

σt(d)
µ(n/d)×

∑

j:Gj<k

(−1)⌈j/2⌉
σt(k −Gj)σs(k −Gj)

(k −Gj)s

ζ(s) =
∑

n≥1

n∑

k=1

∑

d|n

dt · p(d− k)

σt(d)
µ(n/d)×

∑

j:Gj<k

(−1)⌈j/2⌉
σt(k −Gj)σs(k −Gj)

(k −Gj)s+t
.

Proof. These two identities follow as special cases of the theorem in the form of
(3) above where we note the identity for the generalized sum-of-divisors functions
which provides that σ−α(n) = σα(n)/n

α for all α ∈ C. We note that the pentagonal
number theorem employed in the inner sums depending on j is equivalent to the
expansion

(q; q)∞ =
∑

j≥0

(−1)⌈j/2⌉qGj .

The convergence of these infinite series is guaranteed by our hypothesis that ℜ(s) >
1. �

We compare the results in the previous theorem to the known Dirichlet gener-
ating functions for the sum-of-divisors functions which are expanded by [2, Thm.
291] [7, §27.4]

ζ(s)ζ(s − α) =
∑

n≥1

σα(n)

ns
, ℜ(s) > 1, α+ 1

ζ(s)ζ(s − α)ζ(s − β)ζ(s − α− β)

ζ(2s− α− β)
=
∑

n≥1

σα(n)σβ(n)

ns
, ℜ(s) > 1, α+ 1, β + 1.
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In particular, we note that while the series
∑

n σs(n)/n
s, and similarly for the

second series, are divergent, our sums given in Corollary 2.5 do indeed converge for
ℜ(s) > 1.

3. Factorization Theorems for Derivatives of Lambert Series

1 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 0 0 0 0 0

0 −2 3 0 0 0 0 0 0 0 0 0

−1 2 −3 4 0 0 0 0 0 0 0 0

−2 −4 −3 −4 5 0 0 0 0 0 0 0

−2 2 6 −4 −5 6 0 0 0 0 0 0

−2 −4 −6 0 −5 −6 7 0 0 0 0 0

−1 2 −3 8 0 −6 −7 8 0 0 0 0

0 −2 9 −4 0 0 −7 −8 9 0 0 0

1 2 −6 −8 15 0 0 −8 −9 10 0 0

2 0 −3 4 −10 6 0 0 −9 −10 11 0

3 2 12 12 −5 12 7 0 0 −10 −11 12

(i) s1,n,k

1 0 0 0 0 0 0 0 0 0 0 0

−
1
2

1
2

0 0 0 0 0 0 0 0 0 0

−
1
3

1
3

1
3

0 0 0 0 0 0 0 0 0
1
4

0 1
4

1
4

0 0 0 0 0 0 0 0

0 3
5

2
5

1
5

1
5

0 0 0 0 0 0 0

1 0 1
6

1
3

1
6

1
6

0 0 0 0 0 0
4
7

1 5
7

3
7

2
7

1
7

1
7

0 0 0 0 0
9
8

7
8

5
8

3
8

3
8

1
4

1
8

1
8

0 0 0 0
16
9

4
3

8
9

7
9

5
9

1
3

2
9

1
9

1
9

0 0 0
5
2

11
10

11
10

9
10

1
2

1
2

3
10

1
5

1
10

1
10

0 0
31
11

30
11

2 15
11

1 7
11

5
11

3
11

2
11

1
11

1
11

0
13
4

8
3

7
4

5
4

13
12

3
4

7
12

5
12

1
4

1
6

1
12

1
12

(ii) s
(−1)
1,n,k

Figure 3.1. Factorization matrix sequences for the first-order deriva-

tives of an arbitrary Lambert series generating function

when 1 ≤ n, k ≤ 12

3.1. Derivatives of Lambert series generating functions. We seek analogous
factorization theorems for the higher-order tth derivatives for all integers t ≥ 1 of
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an arbitrary Lambert series in the form of

qt ·Dt



∑

n≥t

anq
n

1− qn


 =

1

(q; q)∞

∑

n≥t

n∑

k=t

st,n,kak · q
n. (4)

We note that we consider these sums over n ≥ t to produce an invertible matrix of
the factorization sequences st,n,k. At first computation, the corresponding matrix
sequences for these higher-order derivatives do not suggest any immediate intuitions

to exact formulas for st,n,k and s
(−1)
t,n,k as in the factorizations expanded above. The

listings given in Figure 3.1 provide the first several rows of these sequences in the
first-order derivative case where t := 1 for comparison with our intuition. However,
may still prove using the method invoked in the proof of Theorem 2.3 to show that
in the first-order case we have that2

s
(−1)
1,n,k =

∑

d|n

p(d− k)

d
µ(n/d),

which, in light of the construction of Corollary 2.5 and its notation, leads to the
following further convergent series infinite expansion of the Riemann zeta function
for ℜ(s) > 1:

ζ(s) =
∑

n≥1

n∑

k=1

∑

d|n

p(d− k)

d
µ(n/d)×

∑

j:Gj<k

(−1)⌈j/2⌉
σs(k −Gj)

(k −Gj)s−1
.

If we dig deeper into the expansions of the derivatives of arbitrary Lambert series,
we can prove other more natural exact formulas for both matrix sequences which are
for the most part actually just restatements of consequences of known factorization
theorems already proved in the references [3, §4]. We consider the factorizations of
these higher-order derivative cases again as a separate topic in this article due to
the significance of the interpretations and the breadth of applications which we can
give by explicitly defining the exact factorization expansions in these cases below.

3.2. Main results. We will next require the statements of the next two results
proved in [8] to state and prove the main results in this section. We refer the reader
to the proofs of these two lemmas given in the reference.

Lemma 3.1 (Modified Lambert Series Coefficients). For any fixed arithmetic func-
tion an and integers m, t ≥ 1, n, k ≥ 0, we have the following identity for the series

2 More generally, if we expand the next mixed series of jth derivatives and initial terms
annihilated by the differential operator as

qj ·Dj





∑

n≥1

anqn

1− qn



+

j−1
∑

i=1

(a ∗ 1)(i)qi =
1

(q; q)∞

∑

n≥t

n
∑

k=t

sj,n,kak · qn,

for integers j ≥ 2, we can easily prove that sj,n,k = sn,k = [qn]qk/(1 − qk)(q; q)∞ for 1 ≤ n < j
and consequently that

s
(−1)
j,n,k

=
∑

d|n

p(d− k)
(

d
j

)

· j! + δd,1 + δd,2 + · · ·+ δd,j−1

µ(n/d),

using the proof method in Theorem 2.3.
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coefficients of modified Lambert series generating function expansions:

[qn]
∑

i≥t

aiq
mi

(1− qi)k+1
=

∑

d|n
t≤d≤⌊ n

m⌋

(n
d −m+ k

k

)
ad. (5)

Lemma 3.2 (Higher-Order Derivatives of Lambert Series). For any fixed non-zero
q ∈ C, i ∈ Z

+, and prescribed integer s ≥ 0, we have the following two results3:

qsD(s)

[
qi

1− qi

]
=

s∑

m=0

m∑

k=0

[
s

m

]{
m

k

}
(−1)s−kk! · im

(1− qi)k+1
(i)

qsD(s)

[
qi

1− qi

]
=

s∑

r=0

(
s∑

m=0

m∑

k=0

[
s

m

]{
m

k

}(
s− k

r

)
(−1)s−k−rk! · im

(1− qi)k+1

)
q(r+1)i. (ii)

Proposition 3.3. For integers n, t ≥ 1, let the function At(n) be defined as follows:

At(n) :=
∑

0≤k≤m≤t
0≤r≤t

∑

d|n

[
t

m

]{
m

k

}(
t− k

r

)(n
d − 1− r + k

k

)
(−1)t−k−rk!×

× dmad ·

[
t ≤ d ≤

⌊
n

r + 1

⌋]

δ

.

Then we have the next two Lambert series expansions for the function At(n) given
by

At(n) = [qn]qt ·Dt


∑

n≥t

anq
n

1− qn


 = [qn]

∑

n≥1

(At ∗ µ)(n)q
n

1− qn
.

Proof. The first equation follows from (5) applied to Lemma 3.2 when s := t. To
prove the second form of a Lambert series generating function over some sequence
cn enumerating At(n), we require that

∑

d|n
cd = At(n),

which is true if and only if

cd =
∑

d|n
At(d)µ(n/d) = (At ∗ µ)(n),

by Möbius inversion. �

Theorem 3.4 (Higher-Order Derivatives of Lambert Series Generating Functions).
Let the notation for the function At(n) be defined as in Proposition 3.3. Then we
have the next formulas for At(n) given by

At(n) = [qn]
1

(q; q)∞

∑

n≥1

n∑

k=1

s̃n,k(µ)At(k) · q
n

3 Notation : The bracket notation of
[

n
k

]

≡ (−1)n−ks(n, k) denotes the unsigned triangle of

Stirling numbers of the first kind and
{

n
k

}

≡ S(n, k) denotes the triangle of Stirling numbers of

the second kind.
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At(n) =
n∑

k=1

s̃
(−1)
n,k (µ)


At(k) +

∑

p=±1

⌊√

24k−23−p

6

⌋

∑

j=1

(−1)jAt

(
k −

j(3j + p)

2

)

 ,

where

s̃n,k(µ) =

n∑

j=1

sn,kj · µ(j),

for sn,k := so(n, k)− se(n, k) when the sequences so(n, k) and se(n, k) respectively
denote the number of k’s in all partitions of n into an odd (even) number of distinct
parts, and where a n-fold convolution formula involving µ for the inverse matrix

sequence s̃
(−1)
n,k (µ) is proved explicitly in the references [3, §4]. Moreover, for all

n ≥ 1 we have that the full Lambert series tth derivative formula is given by

n!

(n− t)!
·
∑

d|n
ad =




t−1∑

i=1

⌊n
i ⌋∑

k=1

s̃
(−1)
n,ik (µ) ·

(ik)!ai
(ik − t)!


+At(n).

Proof. The first result follows from the factorizations of the Lambert series over
the convolution of two arithmetic functions proved in the reference [3, §4] where
our Lambert series expansion in question is provided by Proposition 3.3 above.
Similarly, the second result is a consequence of the first whose explicit expansions,
i.e., for the inverse sequence are again proved in the reference. The last equation
in the theorem follows from the proposition and adding back in the subtracted
Lambert series terms when the summation for the series considered for At(n) starts
from n ≥ t instead of from one. The multiples of ik in the last formula reflect that
the coefficients of qi/(1− qi) and its qt-scaled derivatives are always zero unless the
coefficient index is a multiple of i. �

3.3. Another related factorization.

Remark 3.5 (Another Factorization). The first factorization expansion we con-
sidered in (4) of this section is obtained by applying Lemma 3.6 in the case where

bn,i = [ai](At ∗ µ)(n)

=
∑

0≤k≤m≤t
0≤r≤t

∑

d|n

[
t

m

]{
m

k

}(
t− k

r

)(d
i − 1− r + k

k

)
(−1)t−k−rk!×

× imTdiv(d, i)µ(n/d) ·

[
t ≤ i ≤

⌊
d

r + 1

⌋]

δ

.

In this case, we can obtain a similar expansion of the middle identity in Theorem
3.4 in the form of

an =

n∑

k=1

s
(−1)
t,n,k(b)


At(k) +

∑

p=±1

⌊√

24k−23−p

6

⌋

∑

j=1

(−1)jAt

(
k −

j(3j + p)

2

)

 .
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Lemma 3.6 (A Related Factorization Result). If we expand the Lambert series
factorization

∑

n≥1

∑n
j=1 bn,jaj · q

n

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

sn,k(b)ak · q
n,

then we have the formula

sn,k(b) =

n∑

j=1

sn,j · bj,k,

where sn,k := [qn](q; q)∞qk/(1−qk) = so(n, k)−se(n, k) when the sequences so(n, k)
and se(n, k) respectively denote the number of k’s in all partitions of n into an odd
(even) number of distinct parts.

Proof. If we take the nested coefficients first of ak and then of bj,k for some j, k ≥ 1
on both sides of the factorization cited above, we obtain that

qj

1− qj
· (q; q)∞ = [bj,k]

∑

n≥1

sn,k(b) · q
n.

Then if we take the coefficients of qn on each side of the previous equation we arrive
at the identity

sn,j = [bj,k]sn,k(b),

for j = 1, 2, . . . , n. Finally, we multiply through both sides of the last equation by
bj,k and then sum over all j to conclude that the stated formula for sn,k(b) in the
lemma is correct. Equivalently, since both sequences of bn,k and sn,k(b) are lower
triangular, we could have deduced this identity by truncating the partial sums up
to n and employing a matrix argument to justify the formula above. �

4. Expansions of other special factorization theorems

4.1. A factorization theorem for convolutions of Lambert series. In what
follows we adopt the next notation for the Lambert series over a prescribed arith-
metic function h defined by

HL(q) :=
∑

n≥1

h(n)qn

1− qn
.

We seek a factorization theorem for the convolution of two Lambert series generat-
ing functions, FL(q) and GL(q), in the following form:

1

q
· FL(q)GL(q) =

1

(q; q)∞

∑

n≥1

n∑

k=1

sn,k(g)fk · q
n. (6)

Theorem 4.1 (Factorization Theorem for Convolutions). For the Lambert series
factorization defined in (6), we have the following exact expansions of the two matrix
sequences characterizing the factorization where the difference of partition functions
sn,k := [qn](q; q)∞qk/(1− qk):

sn,k(g) =

n+1∑

j=1

sj,k




∑

d|n+1−j

g(d)
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s
(−1)
n,k (g) =

∑

d|n
[qd]

(
qk+1

(q; q)∞GL(q)

)
µ(n/d).

Proof. We prove our second result along the same lines as the proof of Theorem

2.3 above. Namely, we choose FL(q) to denote the Lambert series over s
(−1)
n,k (g) for

some fixed k ≥ 1 and expand the right-hand-side of (6) as

[qn]
qk

(q; q)∞ ·GL(q)/q
=
∑

d|n
s
(−1)
d,k (g),

which by Möebius inversion implies our stated result. Then to obtain a formula for
the sequence sn,k(g) from the identity expanding the inverse sequence, we observe
a property of the product of any two inverse matrices which is that

[n = k]δ =

n∑

j=1

s
(−1)
n,j (g)sj,k(g).

We then perform a divisor sum over n in the previous equation to obtain that

[k|n]δ =
∑

d|n
s
(−1)
d,k (g)

=

n∑

j=1

[qn−j−1]
1

(q; q)∞ ·GL(q)
× sj,k(g),

which by another generating function argument implies that

sn,k(g) = [qn]



∑

n≥1

[k|n]δ q
n


 (q; q)∞ ·

GL(q)

q

=
qk

1− qk
(q; q)∞ ·

GL(q)

q

=

n+1∑

j=1

sj,k




∑

d|n+1−j

g(d)


 ,

as claimed. �

We notice that the factorization in (6) together with the theorem imply that we
have the two expansions of the following form:

[qn]FL(q) =
n∑

k=1

∑

d|n
[qd]

qk+1

(q; q)∞GL(q)
× µ(n/d) · [qk](q; q)∞FL(q)GL(q)

[qn]GL(q) =

n∑

k=1

∑

d|n
[qd]

qk+1

(q; q)∞GL(q)
× µ(n/d) · [qk](q; q)∞GL(q)

2.

The special case where FL(q) := GL(q) in the last expansion provides a curious
new relation between any Lambert series generating function GL(q), its reciprocal,
and its square. This observation can be iterated to obtain even further multiple
sum identities involving powers of GL(q).



FACTORIZATION THEOREMS FOR HADAMARD PRODUCTS AND DERIVATIVES 13

4.2. A matrix-based proof of a factorization for sequences generated by

Lambert series. As a last application of special cases of the Lambert series fac-
torization theorems we have extended in this article, we consider another method
of matrix-based proof which provides new formulas for the sequences generated by
a Lambert series over an: b(n) = (a ∗ 1)(n). This approach is unique because un-
like the factorization theorem variants we have explored so far which provide new
identities and expansions for the sequence an itself, the result in Theorem 4.2 pro-
vides useful new inverse sequence expansions exclusively for the terms b(n) whose
ordinary generating function is the Lambert series generating function at hand [9,
cf. Thm. 1.4].

The first factorization theorem expanded in the introduction implicitly provides
a matrix-multiplication-based representation of the coefficients b(n) stated in terms
of the matrix, (Tdiv(i, j))n×n ≡ (Tdiv)n, in the explicit forms of

(Tdiv)n




a1

a2
...

an



=
∑

d|n
ad and (Tdiv)

−1
n




a1

a2
...

an



=
∑

d|n
ad · µ(n/d),

where the corresponding inverse operation above is Möbius inversion. For example,
when n := 6 these matrices are given by

(Tdiv)6 =




1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 0 1 0 0

1 0 0 0 1 0

1 1 1 0 0 1




and (Tdiv)
−1
6 =




1 0 0 0 0 0

−1 1 0 0 0 0

−1 0 1 0 0 0

0 −1 0 1 0 0

−1 0 0 0 1 0

1 −1 −1 0 0 1




Operations with our new definitions of the matrices above allow us to prove the
next result.

Theorem 4.2. For all n ≥ 1 and a fixed arithmetic function an we have the identity

b(n) =

n∑

k=1

k∑

j=1

sn,kCk,jaj ,

where the inner matrix entries are given by [10, A000041]

Cn,k =
∑

d|n

d∑

i=1

p(d− ik)µ(n/d).

Proof. We first note that the theorem is equivalent to showing that we have a
desired expansion of the form

n∑

k=1

s
(−1)
n,k b(k) =

n∑

k=1

Cn,kak (i)
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The right-hand-side of (i) is equivalent to the expansion of the last row in the
matrix-vector product

(Ci,j)n×n




a1

a2
...

an



= (Tdiv)

−1
n

(
[qi]

qj

1− qj
1

(q; q)∞

)

n×n




a1

a2
...

an



,

and that the left-hand-side of (i) is expanded by

(s
(−1)
n,k )n×n(Tdiv)n




a1

a2
...

an



= (Tdiv)

−1
n (p(i− j))n×n (Tdiv)n




a1

a2
...

an



.

Then we have that the sequence b(n) is expanded by multiplying the left-hand-side
of (i) by the matrix (p(i− j))−1

n×n(Tdiv)n where

(p(i− j))−1
n×n

(
[qi]

qj

1− qj
1

(q; q)∞

)

n×n




a1

a2
...

an



=

(
[qn]

qk

1− qk

)



a1

a2
...

an




7−→ [qn]

n∑

k=1

qk

1− qk
· ak = b(n) �

Corollary 4.3 (An Exact Formula for a Prime Counting Function). For all n ≥ 1,
we have the exact formula for the function ω(n) which counts the number of distinct
primes dividing n given by [10, A001221]

ω(n) = log2




n∑

k=1

k∑

j=1



∑

d|k

d∑

i=1

p(d− ji)


 sn,k · |µ(j)|


 ,

where sn,k = so(n, k) − se(n, k) denotes the difference of the number of k’s in all
partitions of n into an odd (even) number of distinct parts as in Section 1.

Proof. We select the special case of (a, b) := (|µ|, 2ω) to arrive at the statement in
the corollary. �
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