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Abstract. We prove new variants of the Lambert series factorization theo-
rems studied by Merca and Schmidt (2017) which correspond to a more general
class of Lambert series expansions of the form La(α, β; q) :=

∑
n≥1 anq

αn−β/(1−

qαn−β) for integers α, β defined such that α ≥ 1 and 0 ≤ β < α. Applications
of the new results in the article are given to restricted divisor sums over sev-
eral classical special arithmetic functions which define the cases of well-known,
so-termed “ordinary” Lambert series expansions cited in the introduction. We
prove several new forms of factorization theorems for Lambert series over a con-
volution of two arithmetic functions which similarly lead to new applications
relating convolutions of special multiplicative functions to partition functions
and n-fold convolutions of one of the special functions.

1. Introduction

1.1. Factorizations of generalized Lambert series. For fixed α, β ∈ Z such
that α ≥ 1 and 0 ≤ β < α, and an arbitrary sequence {an}n≥1, we consider
generalized Lambert series expansions of the form

La(α, β; q) :=
∑

n≥1

anq
αn−β

1− qαn−β
=
∑

m≥1

bm · qm, |qα| < 1. (1)

The coefficients of the generalized Lambert series expansion on the left-hand-side
of the previous equation are given by

bm =
∑

αd−β|m

ad.

Several well known variants of the ordinary Lambert series expansions studied in
[4, 5, 6, 8] which generate special arithmetic functions are transformed into a series
of the form in (1) as follows where µ(n) denotes the Möbius function, φ(n) denotes
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Euler’s totient function, σα(n) denotes the generalized sum of divisors function for
a fixed α ∈ C, λ(n) denotes Liouville’s function, Λ(n) denotes von Mangoldt’s func-
tion, ω(n) defines the number of distinct primes dividing n, and Jt(n) is Jordan’s
totient function for some fixed t ∈ C [7, §27] [4, cf. §1, §3]:

∑

n≥1

µ(n)qαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

µ(d) · qm (2)

∑

n≥1

φ(n)qαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

φ(d) · qm

∑

n≥1

nxqαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

dx · qm

∑

n≥1

λ(n)qαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

λ(d) · qm

∑

n≥1

Λ(n)qαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

Λ(d) · qm

∑

n≥1

|µ(n)|qαn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

|µ(d)| · qm

∑

n≥1

Jt(n)q
αn−β

1− qαn−β
=
∑

m≥1

∑

αd−β|m

Jt(d) · q
m.

Moreover, in the special case where (α, β) := (2, 1), we have another Lambert series
expansion generating the sum of squares function, r2(n), of the form [2, §17.10]

∑

m≥1

r2(m)qm =
∑

n≥1

4 · (−1)n+1q2n−1

1− q2n−1
.

For the remainder of the article we treat the generalized series parameters α, β to be
defined by the constraints above and the sequence {an}n≥1 to be arbitrary unless
otherwise specified.

Within this article, we extend the so-termed “factorization theorems” proved in
[4, 5, 6, 8] to the generalized Lambert series cases defined in (1). In particular, we
consider factorizations of the form

La(α, β; cq) =
1

C(q)

∑

n≥1

n∑

k=1

sn,kāk(cq)
n, (3)

where ān depends only on the sn,k and on the sequence of an. In general, when
α > 1 and ān ≡ an for all n ≥ 1, we typically see that the square matrices,
An := (si,j)1≤i,j≤n, are not invertible as in the cases of the first factorization
theorems proved in the references [4, 5, 8]. However, we may still proceed to define

an inverse sequence, s
(−1)
n,k , as in the references with a corresponding non-singular

matrix representation which implicitly defines the sequence of sn,k as in [5] for
ān 6 ≡an. In these cases, we have a matrix representation of the factorization
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theorem in (3) of the form



ā1
ā2
...
ān


 = A−1

n




B0

B1

...
Bn−1


 ,

where the sequence of {Bm}m≥0 depends on the arithmetic function, bm, implicit
to the expansion of (1) and the factorization pair, (C(q), sn,k). When the matrix
An is non-singular, we have the next determinant-based recurrence relations proved

as in [4, §2] relating the two sequences, sn,k and s
(−1)
n,k .

s
(−1)
n,j = −

n−j∑

k=1

s
(−1)
n,n+1−k · sn+1−k,j + δn,j (4)

= −

n−j∑

k=1

sn,n−k · s
(−1)
n−k,j + δn,j

These identities are symmetric in that these identities still hold if one sequence is
interchanged with the other.

1.2. Significance of our new results. In this article, we prove a few variants cor-
responding to the expansions of (1) which effectively generalize the Lambert series
factorization theorems found in the first references [4, 5]. Namely, we prove the key
results in Theorem 2.5 and Theorem 3.1 and their corollaries which provide analo-
gous factorization theorems for the generalized cases of the Lambert series defined
in the first section of the introduction above. As in the similar and closely-related
factorization results found in the references, each of these factorization theorems
provide new relations between sums over an arbitrary function, an, involving the
divisors of n and more additive identities involving partition functions and the
same function an. Thus the results proved in this article continue the spirit of
[4, 5, 6, 8] by connecting the at times seemingly disparate branches of additive and
multiplicative number theory in new and interesting ways.

Central to the importance of our new results are the applications to modified
divisors sums for many classical special arithmetic functions often studied in addi-
tive and multiplicative number theory. These special functions include the Möbius
function µ(n), Euler’s totient function φ(n), the sum-of-divisors functions σα(n),
Liouville’s function λ(n), von Mangoldt’s function Λ(n), |µ(n)|, the number of
distinct primes dividing n, ω(n), Jordan’s totient function Jt(n), and the sum of
squares function r2(n). In particular, we provide a number of examples of our new
results pertaining to these classical special functions in Section 2 and Section 3.
Also discussed in this article are conjectures on the expansions of degenerate cases
of Theorem 2.5 given in terms of nested formulas involving Euler’s partition func-
tion p(n) (see Remark 2.7). These conjectured identities are interesting in form
for their own sake, and fit in with the properties we establish for the generalized
Lambert series cases in (1).

Finally, we conclude the article by stating and proving another somewhat more
general class of factorization theorems for Lambert series over a convolution of
arithmetic functions, f ∗ g. These uniquely new results lead to still more appli-
cations connecting partition functions and special functions from multiplicative
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number theory. In particular, in Section 4 of the article we prove Proposition 4.1
and Theorem 4.2 providing the more difficult to obtain corresponding forms of the
inverse sequences specifying these factorizations. Furthermore, the remarks given
in Section 5.3 offer several concluding suggestions on enumerating new, and more
general factorization theorems for the expansions of Lambert series generating func-
tions which we have so far not considered in this article or in the references. Our
continued aim in exploring these new variations of the Lambert series factorization
theorems is to branch out and provide further connections between the inherently
multiplicative structure of the Lambert series generating functions and the additive
theory of partitions and special partition functions.

2. Generalized Factorization Theorems

2.1. Special Cases. Before we state and prove the generalized factorization the-
orem results in the following subsections, we first consider the special case series
expansions identified below. These next results given in this subsection identify
several new interpretations of the factor pair sequence sn,k as well as provide gen-
eralized analogs to the expansions of several identities cited in [5].

Proposition 2.1. For |q| < 1, we have that

∞∑

n=1

an
q2n−1

1− q2n−1
=

1

(q; q2)∞

∞∑

n=1

(
n∑

k=1

sn,kak

)
(−1)n−1qn,

where sn,k denotes the number of (2k − 1)’s in all partitions of n into distinct odd
parts.

Proof. We consider the identity [6, eq. 2.1], namely

n∑

k=1

akxk

1− xk
=

(
n∏

k=1

1

1− xk

)


n∑

k=1

∑

1≤i1<...<ik≤n

(−1)k−1(ai1 + · · ·+ aik)xi1 · · ·xik


 .

By this relation with xk replaced by q2k−1, we get

n∑

k=1

akq
2k−1

1− q2k−1

=
1

(q; q2)n




n∑

k=1

∑

1≤i1<...<ik≤n

(−1)k−1(ai1 + · · ·+ aik)q
(2i1−1)+···+(2ik−1)


 .

The result follows directly from this identity considering the limiting case as n →
∞. �

Example 2.2 (Consequences of the Proposition). The result in Proposition 2.1
allows us to derive many special case identities involving Euler’s partition function
and various arithmetic functions. More precisely, by the well-known famous special
cases Lambert series identities expanded in the introduction to [4], for n ≥ 1 we
have that

n∑

k=1

∑

2d−1|k

dx · q̃(n− k) =

n∑

k=1

(−1)n−1kxsn,k,
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n∑

k=1

∑

2d−1|k

µ(d) · q̃(n− k) =

n∑

k=1

(−1)n−1µ(k)sn,k,

n∑

k=1

∑

2d−1|k

φ(d) · q̃(n− k) =
n∑

k=1

(−1)n−1φ(k)sn,k,

n∑

k=1

∑

2d−1|k

λ(d) · q̃(n− k) =

n∑

k=1

(−1)n−1λ(k)sn,k,

n∑

k=1

∑

2d−1|k

log(d) · q̃(n− k) =

n∑

k=1

(−1)n−1 log(k)sn,k,

n∑

k=1

∑

2d−1|k

|µ(d)| · q̃(n− k) =

n∑

k=1

(−1)n−1|µ(k)|sn,k,

n∑

k=1

∑

2d−1|k

Jt(d) · q̃(n− k) =
n∑

k=1

(−1)n−1Jt(k)sn,k,

where sn,k is the number of (2k − 1)’s in all partitions of n into distinct odd parts
and q̃(n) := se(n) − so(n) where se(n) and so(n) respectively denote the numbers
of partitions of n into even (odd) parts. We can also similarly express the relations
in the previous equations for any special arithmetic function an in the form of

∑

2d−1|n

ad =

n∑

k=0

k∑

j=1

(−1)k−1q(n− k)sk,jaj ,

where the partition function q(n) denotes the number partitions of n into (distinct)
odd parts. Moreover, since we have a direct factorization of the Lambert series
generating function for the sum of squares function in the form of the proposition,
we may write

n∑

k=1

r2(k)q̃(n− k) =

n∑

k=1

4 · (−1)k+1sn,k,

using the same notation as above. Similarly, we expand r2(n) as the multiple sum

r2(n) =

n∑

k=0

k∑

j=1

4 · q(n− k)(−1)j+1sk,j ,

for all n ≥ 1.

Proposition 2.3. For |q| < 1, 0 ≤ β < α,

∞∑

n=1

an
qαn−β

1− qαn−β
=

1

(qα−β ; qα)∞

∞∑

n=1

(
n∑

k=1

(so(n, k)− se(n, k))ak

)
qn,

where so(n, k) and se(n, k) denotes the number of (αk − β)’s in all partition of n
into odd (even) number of distinct parts of the form αk − β.

Proof. The proof follows from [6, eq. 2.1], replacing xk by qαk−β . �
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Proposition 2.4. For |q| < 1, 0 ≤ β < α,

∞∑

n=1

an
qαn−β

1− qαn−β
= (qα−β ; qα)∞

∞∑

n=1

(
n∑

k=1

s(n, k)ak

)
qn,

where s(n, k) denotes the number of (αk − β)’s in all partition of n into parts of
the form αk − β.

Proof. We take into account the fact that

qαn−β

1− qαn−β
·

1

(qα−β ; qα)∞

is the generating function for the number of (αk − β)’s in all partitions of n into
parts of the form αk − β. This generating function implies our result. �

2.2. The first generalized factorization theorem.

Theorem 2.5 (A General Formula for sn,k). For fixed α, β, γ, δ ∈ Z such that
α, γ ≥ 1, 1 ≤ β < α, and 1 ≤ δ < γ, the factorization pair (C(q), sn,k) in the
generalized Lambert series factorization expanded by

La(α, β, γ, δ; q) :=
∑

n≥1

anq
αn+β

1− qγn+δ
=

1

C(q)

∑

n≥1

n∑

k=1

sn,kak · q
n, (i)

satisfies

sn,k = [qn]
qαn+β

1− qγn+δ
C(q).

Specific interpretations of the sequence sn,k are given as special cases of the previous
expansions as in the results proved in the last subsection.

Proof. We begin by rewriting (i) in the form of

C(q)
∑

k≥1

akq
αk+β

1− qγk+δ
=
∑

k≥1


∑

n≥1

sn,kq
n


 ak.

Then if we equate the coefficients of ak in the previous equation, we see that

C(q)
qαk+β

1− qγk+δ
=
∑

n≥1

sn,kq
n,

which implies our stated result. �

Corollary 2.6. Let α ≥ 1 and 0 ≤ β < α be integers and suppose that δ ∈ Z.
Suppose that

∑

n≥1

anq
n

1− qn
=

1

C(q)

∑

n≥0

n∑

k=1

sn,kak · q
n.

and that
∑

n≥1

anq
αn−β+δ

1− qαn−β
=

1

C(q)

∑

n≥0

n∑

k=1

sn,k(α, β; δ)ak · qn.

Then we have that

sn,k(α, β; δ) = sn−δ,αk−β .
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0
1 2 0 0 −1 −1 1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 −1 1 0 0 0 0 0 0 0
1 0 2 0 1 0 0 −1 −1 1 0 0 0 0 0 0
0 0 −1 1 0 1 0 0 −1 −1 1 0 0 0 0 0
0 2 −1 0 1 0 1 0 0 −1 −1 1 0 0 0 0
0 −1 0 1 0 1 0 1 0 0 −1 −1 1 0 0 0
0 −1 0 −1 0 0 1 0 1 0 0 −1 −1 1 0 0
0 0 0 −1 0 0 0 1 0 1 0 0 −1 −1 1 0
−1 0 0 −1 1 0 0 0 1 0 1 0 0 −1 −1 1

(i) sn,k

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0
7 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0
9 6 5 3 2 1 1 0 0 0 0 0 0 0 0 0
15 11 7 5 3 2 1 1 0 0 0 0 0 0 0 0
22 15 11 7 5 3 2 1 1 0 0 0 0 0 0 0
27 21 14 11 7 5 3 2 1 1 0 0 0 0 0 0
42 30 22 15 11 7 5 3 2 1 1 0 0 0 0 0
55 41 30 22 15 11 7 5 3 2 1 1 0 0 0 0
74 54 41 29 22 15 11 7 5 3 2 1 1 0 0 0
101 77 56 42 30 22 15 11 7 5 3 2 1 1 0 0
135 101 77 56 42 30 22 15 11 7 5 3 2 1 1 0
170 132 99 76 55 42 30 22 15 11 7 5 3 2 1 1

(ii) s
(−1)
n,k

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0
0 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0
−2 6 5 3 2 1 1 0 0 0 0 0 0 0 0 0
1 7 6 4 3 2 1 1 0 0 0 0 0 0 0 0
0 13 9 7 5 3 2 1 1 0 0 0 0 0 0 0
−3 13 12 10 6 5 3 2 1 1 0 0 0 0 0 0
0 30 22 15 11 7 5 3 2 1 1 0 0 0 0 0
1 27 23 18 14 10 7 5 3 2 1 1 0 0 0 0
−3 54 41 29 22 15 11 7 5 3 2 1 1 0 0 0
2 60 51 39 28 21 14 11 7 5 3 2 1 1 0 0
0 90 68 54 40 30 22 15 11 7 5 3 2 1 1 0
−4 107 90 69 52 40 29 21 15 11 7 5 3 2 1 1

(iii) γk(n)

Figure 2.1. A generalized factorization for La(1, 0, 2, 1; q)

In particular, when C(q) ≡ (q; q)∞ we have that the result in the equation above
holds for sn,k = so(n, k) − se(n, k) where so(n, k) and se(n, k) are respectively the
number of k’s in all partitions of n into an odd (even) number of distinct parts.

Proof. The proof follows from the second statement in the theorem which provides
a generating function for sn,k for all n, k ≥ 1. �

Remark 2.7 (Conjectures on Degenerate Cases of the Theorem). One distinction
to be made between the factorization result in the theorem and the results in [4, 5]
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1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0
d −1 −1 1 0 0 0 0 0 0
−d 0 −1 −1 1 0 0 0 0 0

1 − d 0 0 −1 −1 1 0 0 0 0

d2 d + 1 0 0 −1 −1 1 0 0 0

1 − d2 −d 1 0 0 −1 −1 1 0 0

d − d2 1 − d 0 1 0 0 −1 −1 1 0

d3 0 d + 1 0 1 0 0 −1 −1 1

(i) sn,k

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0

3 − d 2 1 1 0 0 0 0 0 0
5 3 2 1 1 0 0 0 0 0
7 5 3 2 1 1 0 0 0 0

−d2 − d + 11 7 − d 5 3 2 1 1 0 0 0
15 11 7 5 3 2 1 1 0 0
22 15 11 7 5 3 2 1 1 0

−d3 − 2d + 30 22 − d 15 − d 11 7 5 3 2 1 1

(ii) s
(−1)
n,k

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
−d 1 1 1 0 0 0 0 0 0
0 3 2 1 1 0 0 0 0 0
0 2 2 2 1 1 0 0 0 0

−d2 − d 7 − d 5 3 2 1 1 0 0 0
d 7 6 4 3 2 1 1 0 0
0 13 9 7 5 3 2 1 1 0

−d3 − 2d 14 − d 13 − d 10 6 5 3 2 1 1

(iii) γk(n)

Figure 2.2. A generalized factorization for La(1, 0, 2, 1; d, q)

is that for α = γ and β = δ as in the generalized expansion of (1) from the
introduction, the square matrix, An := (si,j)1≤i,j≤n, tends to not be invertible
for α > 1. The statement in Theorem 2.5 does however allow us to formulate
generalized analogs to the results in the references for some special cases of the
parameters in (i) of the theorem. For example, if we consider the factorizations of
the Lambert series expansions of the form

La(1, 0, 2, 1; q) =
∑

n≥1

anq
n

1− q2n+1
,

with C(q) := (q; q)∞, we obtain non-singular matrices, An, as we have come to
expect in the results from [4, 5] whose properties are summarized by Figure 2.1
where we define the corresponding inverse matrix entries to be of the form

s
(−1)
n,k :=

∑

d|n

p(d− k) · γk(n/d),

for some fixed sequence of arithmetic functions γk. We notice by experimentation
with the integer sequences database [9] that for k > γ + δ in the expansion of
L(1, 0, γ, δ; q) we appear to have that γk(n) is related to partition functions with
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special generating functions of some underspecified sort. Experimentally, we also
conjecture that1

s
(−1)
n,k = p(n− k)−

n∑

i=1

p

(
n− i

2i+ 1
− k

)
[n ≡ i mod 2i+ 1]δ (5)

+

n∑

m=2

n∑

i=1

p

(
n− p(m+ 1)i− p(m− 1)

p(m+ 1)(2i+ 1)
− k

)
×

× [n ≡ p(m+ 1)i+ p(m− 1) mod p(m+ 1)(2i+ 1)]δ .

We can similarly define the analogous related expansions for the class of generalized
Lambert series of the form

La(1, 0, 2, 1; d, q) =
∑

n≥1

anq
n

1− d · q2n+1
,

so that the corresponding matrices of sn,k are also invertible. Figure 2.2 summarizes
the characteristic expansions of the factorization when C(q) := (q; q)∞. From our
computational experimentation with the form of this series, we see that each of the
entries in the tables listed in the figure are polynomials in d. Moreover, as in the
first degenerate series case, we conjecture a related result that

s
(−1)
n,k = p(n− k)−

n∑

i=1

di · p

(
n− i

2i+ 1
− k

)
[n ≡ i mod 2i+ 1]δ

+
n∑

m=2

n∑

i=1

di · p

(
n− p(m+ 1)i− p(m− 1)

p(m+ 1)(2i+ 1)
− k

)
×

× [n ≡ p(m+ 1)i+ p(m− 1) mod p(m+ 1)(2i+ 1)]δ

+ pn,k(d),

where each pn,k(d) is a small polynomial in d and is only non-zero in the rows n
indexed by the sequence {13, 22, 31, 37, 40, 49, 52, 58, 62, 67, 73, . . .}.

We can generalized the result for the first degenerate case in (5) somewhat to
state that if

La(1, 0, α, 1; q) =
∑

n≥1

anq
n

1− qαn+1
=

1

C(q)

∑

n≥0

n∑

k=1

sn,k(α, 1)ak · qn,

for some α ≥ 2, then we have that

s
(−1)
n,k (α, 1) := p(n− k)−

n∑

i=1

p

(
n− i

αi+ 1
− k

)
[n ≡ i mod αi+ 1]δ + pn,k(α, 1),

where the sequence of pn,k(α, 1) is integer-valued, mostly zero, and for the rows
n where pn,k(α, 1) is non-zero this function is only non-zero for small cases of
the columns k with k ≪ n. For example, when α := 3 we have that the func-
tions pn,k(3, 1) are non-zero only for the small column cases in the rows n ∈
{21, 37, 53, 65, 69, 85, 93, 101, 117, 121, 133, 149, . . .}, when α := 4 the functions pn,k(4, 1)
are non-zero only for the rows n ∈ {31, 56, 81, 101, 106, 131, 146, . . .}, and when α :=

1 Notation : Iverson’s convention compactly specifies boolean-valued conditions and is equiva-
lent to the Kronecker delta function, δi,j , as [n = k]δ ≡ δn,k. Similarly, [cond = True]δ ≡ δcond,True
in the remainder of the article.
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5 the functions pn,k(5, 1) are non-zero only for the rows n ∈ {43, 79, 115, 145, . . .}.
The in-order non-zero indexed rows appear to have the same values for all α ≥ 3,
i.e., p21,k(3, 1) = p31,k(4, 1) = p43,k(5, 1), and so on.

3. Variants of the Generalized Factorization Theorems

The results in this section avoid the typically singular behavior of the matrices
corresponding to the factorizations of (1) by construction and redefining the se-
quence ān implicit to the more general factorization statement in (3). The next
theorem provides the generalized analog to the variant of the ordinary factorization
theorems proved in [5, §3].

Theorem 3.1 (Another Generalized Factorization Theorem). If we define the fac-
torization pair (C(q), sn,k) in (3) implicitly through (4) by

s
(−1)
n,k :=

∑

d|n

[qd−k]
1

C(q)
· γ(n/d),

for some fixed arithmetic functions γ(n) and γ̃(n) :=
∑

d|n γ(d), then we have that

the sequence of ān is given by the following formula for all n ≥ 1:

ān =
∑

d|n
d≡β mod α

a d−β
α

γ̃(n/d).

Proof. The proof of this result is similar to the proof given in [5, Thm. 3.3]. In
particular, we begin by noticing that

ān =
n∑

k=1

s
(−1)
n,k [qk]

(
k∑

d=1

adq
αd+β

1− qαd+β

)
.

Then if we let cn := [qn]1/C(q) and let

tk,d(α, β) := [qk]
qαd+β

1− qαd+β
C(q),

where ti,d(α, β) = 0 whenever i < αd+ β, we have that for each 1 ≤ d ≤ n

[ad]ān =
n∑

k=1

s
(−1)
n,k tk,d(α, β)

=

n∑

k=d


∑

r|n

cr−kγ(n/r)


 tk,d(α, β)

=
∑

r|n

(
r∑

i=d

cr−iti,d(α, β)

)
γ(n/r)

=
∑

r|n

(
r∑

i=0

cr−iti,d(α, β)

)
γ(n/r),

where the inner sum is generated by

[qr]
1

✟
✟✟C(q)

qαd+β

1− qαd+β✟
✟✟C(q) = [αd+ β|r]δ .
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Thus we have that

[ad]ān =
∑

r|n
αd+β|r

γ(n/d),

and then that

ān =
∑

d|n
d≡β mod α

a d−β
α

∑

r|n
d|r

γ(n/r)

=
∑

d|n
d≡β mod α

a d−β

α

∑

r|n
d

γ
( n

dr

)
. �

We choose to phrase the next few results cited in Example 3.2 in terms of the
special case function C(q) ≡ (q; q)∞ whose reciprocal generates Euler’s partition
function as p(n) := [qn](q; q)−1

∞ in the first form of the factorization assumed by
Theorem 3.1. We note that these identities could just as well be expanded in terms
of other reciprocal generating functions for special partition functions are defined
through the choice of C(q), such as the partition function q(n) corresponding to
C(q) ≡ (−q; q)−1

∞ .

Example 3.2 (Applications of the Theorem). We begin by noticing that for a
fixed function C(q), the general expansions of the factorization result stated in (3)
implies that we have

ān =

n∑

k=1

s
(−1)
n,k Bk−1,

where Bk depends implicitly only on the selection of an according to the next sums
over the paired function bm in (1) for k ≥ 1:

Bk−1 =
n∑

k=1

sn,kak

= bk +

n∑

k=1

[qn]
1

C(q)
· bn−k

=
∑

αd−β|n

ad +

n∑

k=1

[qn]
1

C(q)
·


 ∑

αd−β|n−k

ad


 .

For example, when we take (an, γ(n)) := (1, nt) for some t ∈ C in Theorem 3.1, we
obtain the result

∑

d|n
d≡β mod α

σt

(n
d

)

=

n∑

k=1


∑

d|n

p(d− k)(n/d)t





bk(1;α, β) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2

(1;α, β)


 ,
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where we define the notation for bk(1;α, β) to be the special case of the restricted
divisor sums over an given by

bk(an;α, β) :=
∑

αd−β|k

ad.

If we next define (an, γ(n)) := (ns, nt), (ns, φ(n)), respectively, we similarly obtain
the following identities as corollaries of the theorem above:

∑

d|n
d≡β mod α

(
d− β

α

)s

· σt(n/d)

=

n∑

k=1


∑

d|n

p(d− k)(n/d)t





bk(ns;α, β) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2
(ns;α, β)




n×
∑

d|n
d≡β mod α

1

d
·

(
d− β

α

)t

=

n∑

k=1


∑

d|n

p(d− k)φ(n/d)





bk(nt;α, β) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2
(nt;α, β)


 .

The generalized expansions of the well-known classical Lambert series stated in (2)
also imply the next corollaries of the theorem for some fixed s, t ∈ C.
∑

d|n
d≡β mod α

log(d)

=
n∑

k=1


∑

d|n

p(d− k)Λ(n/d)





bk(1;α, β) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2

(1;α, β)




∑

d|n
d≡β mod α

(
d− β

α

)s

·
(n
d

)t

=

n∑

k=1


∑

d|n

p(d− k)Jt(n/d)





bk(ns;α, β) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2
(ns;α, β))


 .

We also have expansions of related identities involving the sum of squares function,
r2(n) = [qn]ϑ3(q)

2, in the special case where (α, β, an) := (2, 1, 4 · (−1)n+1). In
particular, for any prescribed arithmetic functions an and γ(n) such that γ̃(n) :=∑

d|n γ(d), we have expansions involving r2(n) given by

∑

d|n
d odd

a d−1
2
r2(n/d) =

n∑

k=1

∑

d|n

4 · (−1)n/d+1p(d− k)

[
bk(an; 2, 1)
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+
∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

b
k− j(3j+s)

2

(an; 2, 1)

]

and expanded by
∑

d|n
d odd

4 · (−1)(d+1)/2γ̃(n/d)

=

n∑

k=1

∑

d|n

p(d− k)γ(n/d) · [qk](q; q)∞ϑ3(q)
2

∑

d|n
d odd

(−1)(d+1)/2
(
r2

(n
d

)
− 4 · d

( n

2d

) [n
d

even
]
δ

)

=

n∑

k=1

∑

d|n

p(d− k)(−1)n/d+1 · [qk](q; q)∞ϑ3(q)
2,

where d(n) ≡ σ0(n) denotes the divisor function and where the powers of the Jacobi

theta function, ϑ3(q) := 1+2
∑

n≥1 q
n2

, generate the more general sums of the sums

of k squares functions, rk(n) := [qn]ϑ3(q)
k.

4. Factorization theorems for Lambert series over convolutions of

arithmetic functions

4.1. Overview and definitions. Given two prescribed arithmetic functions f and
g we define their convolution, or Dirichlet convolution, denoted by h = f ∗ g, to be
the function

(f ∗ g)(n) :=
∑

d|n

f(d)g(n/d),

for all natural numbers n ≥ 1 [1, §2.6]. The usual Möbius inversion result is stated
in terms of convolutions as follows where µ is the Möbius function: h = f ∗ 1 if
and only if f = h ∗ µ. There is a natural connection between the coefficients of
the Lambert series of an arithmetic function an and its corresponding Dirichlet
generating function, DGF(an; s) :=

∑
n≥1 an/n

s. Namely, we have that for any

s ∈ C such that ℜ(s) > 1

bn = [qn]
∑

n≥1

anq
n

1− qn
if and only if DGF(bn; s) = DGF(an; s)ζ(s),

where ζ(s) is the Riemann zeta function. Moreover, we can further connect the
coefficients of the Lambert series over a convolution of arithmetic functions to its
associated Dirichlet series by noting that DGF(f ∗ g; s) = DGF(f ; s) ·DGF(g; s).

In this section, we consider the generalized Lambert series factorization theorems
in the context of (1) where the function an is defined to be a convolution of two
arithmetic functions. Since we have not yet explored factorization theorems of this
type in the references (cf. [4, 5]), we first state a few factorization results for Lambert
series over these convolution functions in the “ordinary” case of (1) where (α, β) :=
(1, 0). More precisely, we give the statements and proofs of Proposition 4.1 and a
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closely-related theorem next and then proceed to evaluate several consequences and
special case formulations following from these results below.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 15 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 10 10 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 8 19 18 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 15 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 12 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 9 26 34 21 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.1. The functions dsj,1(n) for columns 1 ≤ j ≤ 21 and 1 ≤ n ≤ 50

4.2. Main results.

Proposition 4.1 (One Possible Factorization). Let f and g denote non-identically-
zero arithmetic functions. Suppose that we have an ordinary Lambert series factor-
ization for any prescribed arithmetic function an of the form

∑

n≥1

anq
n

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

sn,kak · q
n, (i)

so that, for example, when C(q) := (q; q)∞ we have that sn,k = so(n, k)− se(n, k)
where so(n, k) and se(n, k) respectively denote the number of k’s in all partitions of
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n into an odd (even) number of distinct parts. Then we have one possible formula-
tion of a factorization theorem for the Lambert series over the convolution function
h = f ∗ g expanded as

∑

n≥1

(f ∗ g)(n)qn

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

s̃n,k(g)f(k) · q
n, (ii)

where

s̃n,k(g) =

n∑

j=1

sn,kj · g(j). (iii)

Proof. It is apparent by the expansions on the left-hand-side of (ii) that there is
some sequence of s̃n,k(g) depending on the function g that satisfies the factorization
of the form in (i) when an 7→ (f ∗ g)(n). For a fixed k ≥ 1, we begin by evaluating
the coefficients of f(k) on the right-hand-side of (ii) as follows:

[f(k)]


∑

n≥1

n∑

i=1

sn,i(f ∗ g)(i) · qn


 =

∑

n≥1

n∑

i=1

[f(k)]sn,i
∑

d|i

f(d)g(i/d) · qn

=
∑

n≥1

n∑

i=1

sn,ig(i/k) [k|i]δ · q
n

=
∑

n≥1




n∑

j=1

sn,kj · g(j)


 qn.

Thus we have that the formula for s̃n,k(g) given in (iii) is correct as claimed. �

By Corollary 2.6 we can easily generalize this result to the analogous series
expansions of (1). However, in these cases the matrix of sn,k is typically singular so
that we are unable to formulate an analog to the following theorem for the inverse
sequences which implies many useful and interesting new results discussed in the
following examples.
Notation: For a fixed arithmetic function g with g(1) := 1, let the functions
dsj,g(n) be defined recursively for natural numbers j ≥ 1 as

dsj,g(n) :=





g±(n), if j = 1;∑
d|n
d>1

g(d) dsj−1,g(n/d), if j > 1,

where g±(n) := g(n) [n > 1]δ − δn,1 and let the notation for the k-shifted partition

function be defined as pk(n) := p(n − k) for k ≥ 1. If we let the function d̃sj,g(n)
denote the j-fold convolution of g with itself, i.e., that

d̃sj,g(n) = (g± ∗ g ∗ · · · ∗ g)︸ ︷︷ ︸
n times

(n),

then we can prove easily by induction that for all m,n ≥ 1 we have the expansion

dsm,g(n) =

m−1∑

i=0

(
m− 1

i

)
(−1)m−1−i · d̃si+1,g(n).
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We then define the following notation for the sums of the variant convolution func-
tions for use in the theorem below when n ≥ 1:

Dn,g(n) :=

n∑

j=1

ds2j,g(n) =

⌊n/2⌋∑

m=1

2m−1∑

i=0

(
2m− 1

i

)
(−1)i+1d̃si+1,g(n).

A listing of the values of the functions dsj,g(n) in the special form when g(n) ≡ 1
is tabulated in Table 4.1. The sum

n∑

i=1

ds2i,1(n) 7→ {0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, . . .},

and its Möbius transform appear in the integer sequences database as the number
of perfect partitions of n [9, A002033, A174726]. The next result provides the

form of the inverse sequences, s
(−1)
n,k , in the expansions proved in the proposition

immediately above.

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 −1 −1 −1 1 0 0 0 0 0
0 1 1 −1 −1 1 0 0 0 0
0 −1 −1 0 −1 −1 1 0 0 0
0 1 0 1 0 −1 −1 1 0 0
0 −1 2 0 0 0 −1 −1 1 0
0 2 −1 −1 2 0 0 −1 −1 1
0 −2 −1 1 −1 1 0 0 −1 −1
0 2 3 2 0 1 1 0 0 −1
0 −2 −2 −1 0 0 0 1 0 0
0 3 −1 −2 0 −1 2 0 1 0
0 −3 4 1 3 0 −1 1 0 1
0 3 −3 2 −2 0 −1 1 1 0
0 −4 −2 −1 −2 1 0 −1 0 1
0 5 5 −3 0 1 0 −1 1 0
0 −5 −4 1 0 −1 0 0 −1 0
0 5 −2 4 4 −2 0 −1 −1 1
0 −6 8 −2 −3 −1 3 1 −1 −1

Table 4.2. The sequences ρ
(i)
n,1 for the first rows 1 ≤ n ≤ 21 and

columns 1 ≤ i ≤ 10

.

Theorem 4.2 (Inverse Sequences). When C(q) := (q; q)∞, the inverse sequences
from Proposition 4.1 satisfy

∑

d|n

s
(−1)
n,k (g) = pk(n) +

Ω(n)∑

j=1

(pk ∗ ds2j,g)(n)

= pk(n) + (pk ∗Dn,g)(n),
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which by Möbius inversion is equivalent to

s
(−1)
n,k (g) = (pk ∗ µ)(n) +

Ω(n)∑

j=1

(pk ∗ ds2j,g ∗µ)(n)

= (pk ∗ µ)(n) + (pk ∗Dn,g ∗ µ)(n),

where Dn,g(n) is defined as in the remarks given above. We note that strictly
speaking replacing the upper bound on the first sum above with n in place of Ω(n)
has no effect on the value of the sum.

Proof of the Claim. Let the proposed inverse sequence function be defined in the
following notation which we denote in shorthand by ŝk ≡ ŝk(n):

ŝ
(−1)
n,k (g) := (pk ∗ µ)(n) + (pk ∗Dn,g ∗ µ)(n).

We begin as in the proof of Theorem 3.2 in [4] and consider the ordinary, non-
convolved Lambert series over the function ŝk. More precisely, by the expansion in
(i) of the proposition we must show that

∑

d|n

ŝ
(−1)
d,k := pk(n) + (pk ∗Dn,g)(n)

=

n∑

m=0

n−m∑

j=1

s̃n−m,j(g) · ŝ
(−1)
j,k · p(m).

For n, k, i ≥ 1 with k, i ≤ n, let the coefficient functions, ρ
(i)
n,k be defined as

ρ
(i)
n,k :=

n∑

j=1

sn,ij · s̃
(−1)
j,k .

Then for any fixed arithmetic function h we can prove (by considering the related
expansions of the factorizations in (ii) of the proposition for ŝk ∗ g) that

tn,k(h) :=

n∑

j=1

sn,j · (s̃
(−1)
n,k ∗ h)(j) =

n∑

i=1

ρ
(i)
n,k · h(i). (i)

It remains to show that
n∑

m=0

tn−m,k(h) · p(m) = (pk ∗ h)(n). (ii)

Since we can expand the left-hand-side of the previous sum as

n∑

m=0

n−m∑

i=1

ρ
(i)
n−m,k · h(i) · p(m) =

n∑

i=1

h(i)

(
n∑

m=0

ρ
(i)
n−m,k · p(m)

)

︸ ︷︷ ︸
:=u

(i)
n,k

,

to complete the proof of (ii) we need to prove a subclaim that (I) u
(i)
n,k = 0 if i 6 |n;

and (II) if i|n then u
(i)
n,k = p

(
n
i − k

)
.

Proof of Subclaim: For i := 1, this is clearly the case since ρ
(i)
n−m,k = [n−m = k]δ.

For subsequent cases of i ≥ 2, it is apparent that

ρ
(i)
n,k = ρn−(k−1)i,1
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much as in the cases of the tables for the inverse sequences, s
(−1)
n,k = (pk ∗ µ)(n),

given in the reference [4, §3] (see Table 4.2). Finally, we claim that generating

functions for the sequences of u
(i)
n,k for each i ≥ 2 are expanded in the form of

∑

n≥0

u
(i)
n,k · q

n =

i−1∏

j=1

(qj ; qi)∞ ×
qik

(q; q)∞
= qik ·

∑

n≥0

p(n)qin,

which we see by comparing coefficients on the right-hand-side of the previous equa-
tion implies our claim.
Completing the Proof of the Inverse Formula: What we have shown by proving (ii)
above is an inverse formula for an ordinary Lambert series factorization over the

sequence of aj := (s̃
(−1)
n,k ∗ g)(j). In particular, by Möbius inversion (ii) shows that

we have

(f ∗ g)(n) = (s
(−1)
n,k ∗ g)(n) ⇐⇒ (f − s

(−1)
n,k ) ∗ g ≡ 0

=⇒ fn = s
(−1)
n,k , when g 6 ≡0.

More to the point, when we define fn := s̃
(−1)
n,k (g) where by convenience and exper-

imental suggestion we let

s̃
(−1)
n,k (g) = s

(−1)
n,k ∗ t

(−1)
n,k (g),

for some convolution-wise factorization of this inverse sequence, we can now prove
the exact formula for the inverse sequence claimed in the theorem statement. In
the forward direction, we suppose that

t
(−1)
n,k (g) = Dn,g(n) + ε(n),

where ε(n) = δn,1 is the multiplicative identity and then see from the formulas for
Dn,g(n) discussed before the claim that g ∗ (Dn,g + ε) = ε, which proves that our
inverse formula is correct in this case. Conversely, if we require that

s
(−1)
n,k ∗ t

(−1)
n,k (g) ∗ g = s

(−1)
n,k

for all n and choices of the function g, we must have that t
(−1)
n,k ∗ g = ε, and so we

see that t
(−1)
n,k = Dn,g + ε as required. That is to say, we have proved our result

using the implicit statement that t ∗ g = ε if and only if t = Dn,g + ε, i.e., that
t = Dn,g + ε is the unique function such that t ∗ g = ε for all n ≥ 1, a result which
we do not prove here and only mention for the sake of brevity. �

4.3. Corollaries and applications. We have several immediate consequences of
the theorem, which in some respects follows naturally as a corollary of the expan-
sions of the proposition above. Some of these applications are discussed in the next
example.

Example 4.3 (Applications). To ease the notation in the applications that follow,
for integers n ≥ 0 we define the functions Bn(f ∗ g) in the shorthand of

Bn(f ∗ g) := [qn+1]


∑

m≥1

(f ∗ g)(n)qn × (q; q)∞
1− qn



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= bn+1(f ∗ g) +
∑

s=±1

⌊√

24k+25−s
6

⌋

∑

j=1

(−1)jb
n+1− j(3j+s)

2

(f ∗ g),

where bk(f ∗g) =
∑

d|n(f ∗g)(d) is as on the left-hand-side of (1) for (α, β) := (1, 0).

Then using the notation in Proposition 4.1 and in the claim immediately above, we
see that our new expansions imply that

f(n) =

n∑

k=1

s
(−1)
n,k (g) · Bk−1(f, g).

We will employ several well-known Dirichlet convolution results which provide ap-
plications of the previous expansions. For example, given any fixed t ∈ C we have
the known identity that Idt = σt ∗ µ where Idt(n) = nt is the tth power function.
In particular, this identity implies each of the following identities:

µ(n) =

n∑

k=1

s
(−1)
n,k (σt) · Bk−1(σt)

σt(n) =

n∑

k=1

s
(−1)
n,k (µ) ·Bk−1(σt).

Similarly, since Id1 = φ ∗ 1, σ1 = φ ∗ Id1, and Λ = log ∗µ, we have the following
related expansions:

φ(n) =
n∑

k=1

s
(−1)
n,k (Id0) ·Bk−1(σ1)

1 =

n∑

k=1

s
(−1)
n,k (φ) · Bk−1(σ1) (†)

φ(n) =

n∑

k=1

s
(−1)
n,k (Id1) ·Bk−1(σ1 ∗ 1)

n =

n∑

k=1

s
(−1)
n,k (φ) · Bk−1(σ1 ∗ 1)

log(n) =

n∑

k=1

s
(−1)
n,k (µ) ·Bk−1(log)

µ(n) =

n∑

k=1

s
(−1)
n,k (log) ·Bk−1(log).

We emphasize that the formulas listed above are special in nature due to the un-

conventional dependence of the inverse sequences, s
(−1)
n,k (g) on multiple j-fold con-

volutions of the function g for 1 ≤ j ≤ n. The next explicit computation illustrates
this property for the identity tagged in (†) above when n := 4:

1 = [(φ± ∗ φ ∗ φ ∗ φ)(4) − 3 · (φ± ∗ φ ∗ φ)(4) + 4 · (φ± ∗ φ)(4)− 2 · φ(4) + 2]σ(1)

− [(φ± ∗ φ)(2)− φ(2) + 1] (σ(1) − σ(2))− (σ(1) + σ(2)− σ(3))

− (σ(2) + σ(3)− σ(4)).
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Many other examples of known convolution results to which we can apply our new
expansions are found in the references [1, 3].

Corollary 4.4 (Formulas for the Dirichlet Inverse). For any prescribed arithmetic
function f defined such that f(1) = 1, we have a formula for its Dirichlet inverse
function given by

f−1(n) =

n∑

k=1

((pk ∗ µ)(n) + (pk ∗Dn,f ∗ µ)(n)) · [qk−1]
(q; q)∞
1− q

.

Proof. The proof follows from Theorem 4.2 applied in the form of Proposition 4.1.
In particular, since f−1 ∗ f = δn,1 by definition, the right-hand-side of our Lambert
series expansion over the convolved function an := f−1 ∗f is given by q/(1−q). �

We compare this formula for the Dirichlet inverse of an arithmetic function to
the other primary known recursive divisor sum formula defining the inverse function
of f given by [1, §2.7]

f−1(1) =
1

f(1)
, f−1(n) = −

1

f(1)

∑

d|n
d<n

f(n/d)f−1(d) for n > 1,

for f(1) 6= 0 and where it is known that (f ∗ g)−1 = f−1 ∗ g−1 if f(1), g(1) 6= 0.
The Dirichlet inverse of a function f exists precisely when f(1) 6= 0, and by scaling
our result in the corollary matches these cases as well.

We also note that given any prescribed sequence of b(n) we can generate b(n)
by the Lambert series over b ∗µ. This implies that we have recurrence relations for
any arithmetic function b defined such that b(n) = 0 for all n < 0 expanded in the
following two forms where sn,k := [qn](q; q)∞qk/(1− qk):

b(n) =

n∑

k=1

(pk ∗ µ+ pk ∗Dn,µ ∗ µ) (n)


b(k) +

∑

s=±1

k∑

j=1

(−1)jb

(
k −

j(3j + s)

2

)


b(n) =

n∑

j=1

j∑

k=1




⌊j/k⌋∑

i=1

sj,ki · µ(i)


 b(k)p(n− j).

Corollary 4.5 (Convolution Formulas for Arithmetic Functions). Suppose that we
have two prescribed arithmetic functions f and h and we seek the form of a third
g satisfying f ∗ g = h ∗ µ for all n ≥ 1. Then we have a formula for the function g
expanded in the form of

g(n) =

n∑

k=1

((pk ∗ µ)(n) + (pk ∗Dn,f ∗ µ)(n))×

×


h(k) +

∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

(−1)jh

(
k −

j(3j + s)

2

)

 .

Proof. This result is an immediate consequence of Proposition 4.1 and the formula
for the inverse sequences defined by Theorem 4.2. �
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5. Conclusions

5.1. Summary. In Section 2 and Section 3 we proved two key new variations
of the Lambert series factorization theorems studied in the references [4, 5, 6, 8]
each of which effectively generalize the expansions of these initial model results
to the more general cases of the Lambert series expansions defined by (1) in the
introduction. The propositions for special cases and the examples discussed in
Section 2.1 motivate the formulation of Theorem 2.5 which provides generating
functions for the factorization parameters, sn,k, in the most general cases and which
motivate its immediate consequence stated in Corollary 2.6 providing the connection
between our new generalized factorization theorems and the known ordinary cases
established by the references.

We have similarly proved a variation of the generalized factorization theorem
stated by Theorem 3.1 in Section 3 along the lines of the same motivations for the
corresponding “ordinary” case result in [5]. That is, instead of starting with the

right-hand-side factorizations in (3), we define the form of s
(−1)
n,k which determines

the entries of the matrix of sn,k and then proceed to explore the form of the resulting
factorizations based on our definition. It turns out that the formulas in this case
provide a natural analog to the corresponding result for the Lambert series cases
expanded in the reference.

The truly new results unique to this article are stated and proved in Section
4 where we provide a variant of the Lambert series factorization theorems given
in the previous sections and in the references for a convolution of two arithmetic
functions. These new results lead to applications for several well-known Dirichlet
convolutions of classical arithmetic functions which are expanded by multiple j-fold
convolutions of one of these classical functions with itself.

5.2. A note on further generalizations. It is possible to consider even more
general factorization theorem results for Lambert series expansions of the form

La(α, β; c, d; q) :=
∑

n≥1

anc
nqαn−β

1− d · qαn−β
,

for α, β defined in the conventions stated in the introduction and for some fixed
constants c, d ∈ C defined such that the series in the previous equation converges
when |qα| < 1, though for the most part we do not consider such expansions here.
We do however motivate these expansions when c := 1 in the second degenerate
case of Theorem 2.5 discussed in Remark 2.7 by demonstrating the similarities and
relations to the corresponding ordinary degenerate case of this series where d ≡ ±1.

Except in a few rare cases of Lambert series expansions related to special func-
tions where d := −1, the consideration of the additional parameters c, d does not
seem to add much utility to phrasing our notable new identities for the classical
special functions. We also note that in this particular case we have a transformation
identity for the ordinary cases of the Lambert series expansions in (1) of the form
[5]

∞∑

n=1

anq
n

1 + qn
=

∞∑

n=1

anq
n

1− qn
− 2

∞∑

n=1

anq
2n

1− q2n

=

∞∑

n=1

bnq
n

1− qn
,
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where

bn =

{
an, for n odd,

an − 2an/2 for n even.

We therefore leave such generalizations as a topic suggested for future work separate
from the results we have established within this article.

5.3. Other Variants of the Factorization Theorems. There are many other
variations of the Lambert series factorization theorems we have proved in Proposi-
tion 4.1 and in the previous sections whose properties we have still left yet unex-
plored. As an example of what other useful factorizations are possible, for any fixed
arithmetic function an let A(x) :=

∑
n≤x an. Then we may consider the properties,

i.e., inverses, etc., of the factorizations of the following forms, among several other
possibilities:

∑

n≥1

A(n)qn

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

s1,n,k · ak · qn

∑

n≥1

anq
n

1− qn
=

1

(q; q)∞

∑

n≥1

n∑

k=1

s2,n,k ·A(k) · q
n.

The factorization expanded in the second of the previous equations has the benefit
that to analyze the average order A(x) of the prescribed arithmetic function it is

only necessary to examine the properties of the sequence of inverses, s
(−1)
2,n,k, and the

form of the function an ∗ 1. Then using the method of proof in Theorem 2.5, we
can show that

s1,n,k = d(n) +
∑

s=±1

⌊√

24k+1−s
6

⌋

∑

j=1

(−1)jd

(
n−

j(3j + s)

2

)
−

k−1∑

i=1

sn,i,

and that

sn,k =

n−k∑

i=0

s2,n,n−i and s2,n,k = sn,k − sn,k+1,

where sn,k = [qn]qk/(1− qk) · (q; q)∞ denotes the difference of the number of k’s in
all partitions of n into an odd number of distinct parts and into an even number of
parts. These identities also imply that

(A ∗ 1)(n) =

n∑

k=1

s1,n,k · ak and (a ∗ 1)(n) =

n∑

k=1

s2,n,k · A(k),

for any prescribed arithmetic function an. Additionally, we can show that

s
(−1)
1,n,k = sn,k − sn−1,k [n > 1]δ

=
∑

d|n

p(d− k)µ(n/d)−
∑

d|n−1

p(d− k)µ((n− 1)/d) [n > 1]δ

s
(−1)
2,n,k =

n∑

j=1

sj,k =

n∑

j=1

∑

d|j

p(d− k)µ(j/d),
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which then implies new exact identities such as the following expansions involving
an for n ≥ 2:

an =

n∑

k=1

∑

s∈{0,1}

∑

d|n−s

(−1)sp(d− k)µ

(
n− s

d

)
· [qk]


∑

m≥1

(A ∗ 1)(m)qm × (q; q)∞




A(n) =

n∑

k=1

n∑

j=1

∑

d|j

p(d− k)µ(j/d) · [qk]


∑

m≥1

(a ∗ 1)(m)qm × (q; q)∞


 .

Some properties of the generalized cases of these factorization theorems are appar-
ent by inspection of the examples cited above. In particular, suppose that we have
factorizations of the form

∑

n≥1

anq
n

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

sn,k · ak · q
n

∑

n≥1

anq
n

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

s̃n,k

(
k∑

i=1

biai

)
· qn,

for some sequence bi of non-zero functions. Then it is not difficult to prove that

s̃n,k =
sn,k
bk

−
sn,k+1

bk+1
and s̃

(−1)
n,k =

n∑

i=1

bi · s
(−1)
i,k .

To give some additional possibilities for factorization theorems to consider based
on the results in this article and in the references, we note that we may expand

∑

n≥1

anq
n

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

sn,k(a) · a
−1
k · qn

∑

n≥1

A(n)qn

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

sn,k(a)

(
k∑

i=1

ai
i

)
· qn

where a−1
n is the Dirichlet inverse of an, and that we may expand

∑

n≥1

ãnq
n

1− qn
=

1

C(q)

∑

n≥1

n∑

k=1

sn,k(γ) · A(k) · q
n

where we define sn,k(γ) implicitly by s
(−1)
n,k :=

∑
d|n[q

d−k] 1
C(q) ·γ(n/d) and where we

conjecture that the function ãn is defined explicitly as the following sum involving
the A(k) and the j-fold convolution functions Dn,γ(k) from Section 4:

ãn =
∑

d|n

∑

r|d
r>1

A(n/d)Dn,γ(r)µ(d/r) +
∑

d|n

A(d)µ(n/d).

For the most part, except for the remarks given above in this subsection, we leave
these and other expansions of analogous factorization theorems as a topic of future
research based on the work in this article and in the references [4, 5, 6, 8].

Acknowledgments. The authors thank the referees for their helpful insights and
comments on preparing the manuscript.



24 MIRCEA MERCA AND MAXIE D. SCHMIDT

References

[1] T. M. Apostol, Introduction to analytic number theory, Springer, 1976.
[2] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University

Press, 2008.
[3] R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions, 2012,

https://arxiv.org/abs/1106.4038.
[4] M. Merca and M. D. Schmidt, Generating special arithmetic functions by Lambert series

factorizations, 2017, https://arxiv.org/abs/1706.00393, submitted.
[5] M. Merca and M. D. Schmidt, New Factor Pairs for Factorizations of Lambert Series Gener-

ating Functions, 2017, https://arxiv.org/abs/1706.02359, submitted.
[6] M. Merca, The Lambert series factorization theorem, Ramanujan J., pp. 1–19 (2017).
[7] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of Mathe-

matical Functions. Cambridge University Press, 2010.
[8] M. D. Schmidt, New recurrence relations and matrix equations for arithmetic functions gen-

erated by Lambert series, 2017, https://arxiv.org/abs/1701.06257. Tentatively accepted
for publication in Acta Arith..

[9] N. J. A. Sloane, The Online Encyclopedia of Integer Sequences, 2017, https://oeis.org/.

https://arxiv.org/abs/1106.4038
https://arxiv.org/abs/1706.00393
https://arxiv.org/abs/1706.02359
https://arxiv.org/abs/1701.06257
https://oeis.org/

	1. Introduction
	1.1. Factorizations of generalized Lambert series
	1.2. Significance of our new results

	2. Generalized Factorization Theorems
	2.1. Special Cases
	2.2. The first generalized factorization theorem

	3. Variants of the Generalized Factorization Theorems
	4. Factorization theorems for Lambert series over convolutions of arithmetic functions
	4.1. Overview and definitions
	4.2. Main results
	4.3. Corollaries and applications

	5. Conclusions
	5.1. Summary
	5.2. A note on further generalizations
	5.3. Other Variants of the Factorization Theorems
	Acknowledgments

	References

