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Abstract

In the paper, I consider appearance of unit’s digits in minor totals of a few inte-
ger sequences. The sequences include the sequence of even integers, sequence of odd
integers and Faulhaber polynomial at p = 2. Application of difference tables allows
predicting of which digits can appear as unit’s digits in minor totals of the sequences.
Absence of some digits (“gaps” in frequency distributions) depends often on numbering
system applied. However, in case of odd numbers’ integers the gaps are found under
all numbering systems with bases from 3 to 10.

1 Introduction

Infinite natural sequence 1, 2, 3, . . . has correspondent minor totals 1, 3, 6, 10, . . . the
values of which are given by the well known formula:

Sn =
n(n+ 1)

2
, (1)

where Sn is the minor total of the first n members of the sequence. The minor totals
possess some interesting properties. In particular, they coincide with binomial coefficients
at quadratic terms of the polynomial decomposition of the binomial theorem (1+x)r, x and
r being a real variable and an integer exponent, respectively. One can see the coincidence
directly from the famous Pascal’s triangle (Fig. 1) in which the sequences in diagonals
represent coefficients at linear, quadratic, cubic etc. terms of the theorem.

Binomial coefficients have been extensively studied, the focus being often on divisibility
of the coefficients by primes [1, 3, 4, 5, 6]. Recently Gavrikov [2] showed the binomial
coefficients at quadratic terms (that is, minor totals of the natural sequence) to possess
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Figure 1: Pascal’s triangle. Minor totals of natural sequence (binomial coefficients at the
quadratic term) are given in bold face.

some other properties. The frequencies with which the unit’s digits appear in the minor
totals may be in part predicted—some digits never appear as unit’s digits in the minor
totals, i.e., they have zero frequencies. For example, in base-ten numbering system, the
minor totals never end with 2, 4, 7, 9 as unit’s digits, which can be strictly proven. On the
other hand, in base-eight system, every digit from 0 to 7 may appear as unit’s digit in the
values of the minor totals.

In terms of modular arithmetic, the last propositions may be presented as Sn 6≡ A

(mod 10),A ∈ {2, 4, 7, 9} and Sn ≡ B (mod 8),B ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Gavrikov
[2] studied the presence or absence of zero frequencies (gaps) in frequency distribution of
unit’s digits of minor totals for numbering systems with bases 7 and 8, with an approach
of “difference tables” being suggested. The approach theoretically allows one to predict the
gaps in unit’s digits for any numbering system.

While the natural sequence is presumably the most general nonnegative integer sequence
other integer sub-sequences present interest within the topic. In this study, I consider a
number of nonnegative integer sequences with the aim to find out whether the distributions
of unit’s digits in their minor totals contain gaps. The list of sequences includes sequence of
even numbers, sequence of odd numbers, sequences of integer powers of natural numbers.

The basic equation of the analysis looks like

SLk+i = L ·m+ j, (2)

where the term on the left is a notation of an integer sequence minor total in base-L number-
ing system. The term on the right is a representation of the value of the minor total in the
same base-L system. Letters i, j denote unit’s digits, obviously 0 ≤ i, j ≤ (L− 1). Values of
k and m are nonnegative integers.

In the following, to avoid a confusion the letter S in Eq. (2) is substituted by other letters
(T, V,W, . . . ) to denote other integer sequences.

The task of the analysis is to find out if the solution of Eq. (2) can be found in nonnegative
integers. That is, if L is given and k and m remain nonnegative integers. Those j values
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Figure 2: Empirical appearance of unit’s digits in minor totals of the sequence of even inte-
gers. a – base-ten numbering system; b – base-eight system. The frequencies are computed
for first hundred minor totals.

for which the solutions in Eq. (2) is found are possible unit’s digits in the minor totals of a
given integer sequence.

For minor totals of the natural sequence (Eq. 1), it can be empirically shown that the
gaps appear in numbering systems with bases 5, 6, 7, 9, 10 while there are no gaps in systems
with bases 4, 8, 16. Consequently, in the following analyses the ten-base numbering system is
taken as a representative of system where the gaps were observed and eight-base numbering
system as a representative of systems where the gaps may be not observed.

2 Sequence of even integers

Getting of an expression for minor totals for the sequence of even integers 2, 4, 6, 8, . . . is
quite easy. It is enough to take 2 out of the brackets, which gives an expression 2(1 + 2 +
3 + . . . ), i.e. the minor total is double of the minor total for the natural sequence (Eq. 1).
Thus,

Tn = n(n+ 1), (3)

T being the minor total of the sequence of first n even integers.
Obviously, sums of even integers can have in unit’s digits only those from {0, 2, 4, 6, 8}.

It can be observed that some base-ten digits do not empirically appear as unit’s digits in
minor totals of the sequence of even integers (Fig. 2a). More precisely, the minor totals may
not to end with 4 or 8. On the other hand, eight-based minor totals contain any base-eight
even digits as unit’s digits (fig. 2b).

To get conditions determining the appearance of the unit’s digits, let us analyze the basic
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equation in the form
TLk+i = L ·m+ j. (4)

Taking into account Eq. (3) gives

TLk+i = L2k2 + L · k(2i+ 1) + i(i+ 1) = L ·m+ j. (5)

For further analysis, m may be expressed from Eq. (5) as

m = L · k2 + k(2i+ 1) +
i(i+ 1)− j

L
. (6)

Provided i, j, k, L all are integers, the question is whether m is also a nonnegative
integer. Obviously, L · k2 + k(2i + 1) is always an integer while (i(i + 1) − j)/L may be
fractional.

Because i and j vary freely between 0 and L − 1 the expression (i(i + 1) − j) is a sort
of two-dimensional table containing all the possible differences between i(i + 1) and j, a
difference table that has dimensions L× L.

Thus, considering all the differences and finding those that are divisible by L without a
remainder helps to find the j values that ensure that the Eq. (4) can be solved in nonnegative
integers. Those js are therefore the unit’s digits that can appear in minor totals of the
sequence of even numbers.

Proposition 1. In base-ten numbering system, among the minor totals of the sequence of
even numbers there are no such than have 4 and 8 as unit’s digits, i.e., Tn 6≡ 4 (mod 10)
and Tn 6≡ 8 (mod 10).

Proof. A 10×10 difference table should be considered. Because j cannot be odd it is enough
to consider only even j values.

j i(i+ 1)
0 2 6 12 20 30 42 56 72 90

0 0 2 6 12 20 30 42 56 72 90
2 -2 0 4 10 18 28 40 54 70 88
4 -4 -2 2 8 16 26 38 52 68 86
6 -6 -4 0 6 14 24 36 50 66 84
8 -8 -6 -2 4 12 22 34 48 64 82

Table 1: A 10×10 difference table. Values of differences divisible by 10 without a remainder
are given on gray background. Values of j satisfying the condition “m is a nonnegative
integer” are given in bold face.

Table 1 shows that js satisfying the divisibility of the differences by 10 without a remain-
der are 0, 2 and 6. No such differences are found for j equal to 4 or 8. Thus, the solution of
Eq. (4) cannot contain 4 and 8 and Tn 6≡ 4 (mod 10) and Tn 6≡ 8 (mod 10).
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Proposition 2. In base-eight numbering system, all digits of the system appear as unit’s
digits of the minor totals, i.e., Tn ≡ C (mod 10),C ∈ {0, 2, 4, 6}.

Proof. A 8 × 8 difference table should be considered. Table 2 shows that for every j ∈
{0, 2, 4, 6} at least one difference value can be found that is divisible by 8 without a
remainder. It means that all digits of the base-eight numbering system may appear as unit’s
digits in base-eight minor totals of the sequence of even integers.

j i(i+ 1)
0 2 6 12 20 30 42 56

0 0 2 6 12 20 30 42 56
2 -2 0 4 10 18 28 40 54
4 -4 -2 2 8 16 26 38 52
6 -6 -4 0 6 14 24 36 50

Table 2: A 8×8 difference table. Values of differences divisible by 8 without a remainder are
given on gray background. Values if j satisfying the condition “m is a nonnegative integer”
are given in bold face.

Remark 3. Interestingly, Table 1 predicts that odd digits do can appear as unit’s digits in
minor totals of the sequence of even integers, at least in some peculiar cases. For example,
let us consider sequence of even integers in base-five numbering system. For the system, the
row of the difference table for j = 1 contains −1, 1, 5, 11, 19, which means that unity
should appear as unit’s digit in the minor totals (because 5 is divided by L = 5 without a
remainder). In fact, 25 + 45 = 115 (because 610 = 115).

3 Sequence of odd integers

The sequence of odd integers 1 + 3 + 5 + 7 + . . . has a well known expression for the minor
totals of the first n members as

Un = n2, (7)

U being the minor total of the sequence.
Empirical observations show that some digits do not appear as unit’s digits in minor

totals of the sequence not only for base-ten numbering system but for all bases from 3 to
10. Figure 3 demonstrates that gaps in the empirical frequency distributions appear both in
base-ten and base-eight systems.

Proposition 4. In all numbering systems from base-three to base-ten, there are gaps in
frequency distributions (zero frequencies) of unit’s digits of minor totals of the sequence of
odd integers.
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Figure 3: Empirical appearance of unit’s digits in minor totals of the sequence of odd num-
bers. a – base-ten numbering system; b – base-eight system. The frequencies are computed
for first hundred minor totals.

Proof. It is necessary to consider the difference tables from 3×3 to 10×10 and to check the
differences for the divisibility by 3 to 10, correspondingly. Technically, the tables are nested
one into each other, the table 10× 10 containing all others (Table 3).

The inspection of the tables shows that:

- Un 6≡ D10 (mod 10),D10 ∈ {2, 3, 7, 8} (there are no differences divisible by 10 without
a remainder in rows of j ∈ {2, 3, 7, 8})

- Un 6≡ D9 (mod 9),D9 ∈ {2, 3, 5, 6, 8}

- Un 6≡ D8 (mod 8),D8 ∈ {2, 3, 5, 6, 7}

- Un 6≡ D7 (mod 7),D7 ∈ {3, 5, 6}

- Un 6≡ D6 (mod 6),D6 ∈ {2, 5}

- Un 6≡ D5 (mod 5),D5 ∈ {2, 3}

- Un 6≡ D4 (mod 4),D4 ∈ {2, 3}

- Un 6≡ 2 (mod 3)

Therefore, in minor totals of odd integer sequence under all numbering systems from
bases 3 to 10 there are values of j that do not appear as unit’s digits of the minor totals.

Remark 5. Obviously, zero values of the differences in tables ensure that the correspondent
j value appear as unit’s digits in minor totals of an integer sequence. As for the odd integer

6



j i2

0 1 4 9 16 25 36 49 64 81
0 0 1 4 9 16 25 36 49 64 81
1 -1 0 3 8 15 24 35 48 63 80
2 -2 -1 2 7 14 23 34 47 62 79
3 -3 -2 1 6 13 22 33 46 61 78
4 -4 -3 0 5 12 21 32 45 60 77
5 -5 -4 -1 4 11 20 31 44 59 76
6 -6 -5 -2 3 10 19 30 43 58 75
7 -7 -6 -3 2 9 18 29 42 57 74
8 -8 -7 -4 1 8 17 28 41 56 73
9 -9 -8 -5 0 7 16 27 40 55 72

Table 3: A 10 × 10 difference table. Short vertical and horizontal lines delimit all other
difference tables (bases from 2 to 9) nested in to the 10 × 10 table. Zero values of the
differences are highlighted in bold face.

sequence, it may hypothesized that all digits appear as unit’s digits in the only case of base-
two numbering system. So, hypothetically, ∀L > 2 ∃j ∀i (i2 − j) ≡ D,D 6= 0 (mod L), L
being the base of numbering system and j, i being nonnegative integers, 0 ≤ j, i ≤ L− 1.

4 A case of Faulhaber polynomials

Natural sequence 1, 2, 3, 4, . . . is a particular case of sequence of powers like 1p, 2p,
3p, 4p, . . . , p being a nonnegative integer. Minor totals of the latter is known to be Faulhaber
polynomials:

1p + 2p + 3p + 4p, . . . (8)

For definite p in Exp. (8), formulas for the minor totals are known. Let us consider a case
of p = 2 with known minor total Vn:

Vn = 12 + 22 + 32 + 42 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
. (9)

Application of the basic Eq. (2) to Eq. (9) gives

VLk+i =
(Lk + i)(Lk + (i+ 1))(2Lk + (2i+ 1))

6
= L ·m+ j. (10)
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Extracting of m from Eq. (10) gives

m =
(

2L2k3 + 3Lk2(2i+ 1) + k
(

2(i+ 1)(2i+ 1) +

+ i(2i+ 1) + 2i(i+ 1)
)

)

/6 + (11)

+

i(i+ 1)(2i+ 1)

6
− j

L
. (12)

The term (11) may be an integer or it may have remainders from division by 6. The re-
mainders obviously belong to {1/6, 2/6, 3/6, 4/6, 5/6}. The term (12) represents results of

divisions of the difference table values i(i+1)(2i+1)
6

−j by L. Because m must be a nonnegative
integer the remainders in (12) must be either zero or a multiple of 1/6 complementary to
the remainders in term (11), i.e., producing the unity after summation.

Proposition 6. Under base-ten numbering system, digits 2, 3, 7, 8 do not appear as unit’s
digits in the minor totals Vn of Faulhaber polynomial with p = 2, i.e., Vn 6≡ E (mod 10),E ∈
{2, 3, 7, 8}.

Under base-eight numbering system, all the digits of the system appear as unit’s digits
in the minor totals Vn of Faulhaber polynomial with p = 2, i.e., Vn ≡ E (mod 8),E ∈
{0, 1, 2, 3, 4, 5, 6, 7}.

Proof. It is necessary to consider a 10×10 difference table and the correspondent 8×8 table.
Table 4 gives the idea of remainders from divisions of i(i + 1)(2i + 1)/6 − j by L. Those
j-rows are sought in which the differences are located that are divisible by 10 either with
zero remainder or with 3/6 (that is, 1/2) remainder. These j-rows are 0, 1, 4, 5, 6, 9 (the
differences are given on gray background). Consequently, j cannot take values 2, 3, 7, 8
without violating of the condition “m is a non-negative integer”. Thus, under base-ten
system, integers 2, 3, 7, 8 do not appear as unit’s digits in minor totals of Faulhaber
polynomial with p = 2.

On the other hand, in all j-rows of the 8 × 8 table, there are differences (given in bold
face in Table 4) that while divided by 8 give remainders of either 0 or 3/6. Therefore, all
digits of base-eighth system appear as unit’s digits in minor totals of Faulhaber polynomial
with p = 2.

Remark 7. Empirical observations (Fig. 4) support the inferences.
Obviously, base-six numbering system is a special case in the context of Eq. (11-12)

because any division by 6 will produce remainders of either 0 or multiples of 1/6. Thus, all
the digits from 0 to 5 will appear as unit’s digits in the minor totals of Faulhaber polynomial
with p = 2 under base-six system.

Also, it may be noted that the frequency distributions of unit’s digits in squared integers
(Fig. 3) and in the sums of squared integers (Fig. 4) have the same gaps – {2, 3, 7, 8}.
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j i(i+ 1)(2i+ 1)/6
0 1 5 14 30 55 91 140 204 285

0 0 1 5 14 30 55 91 140 204 285
1 -1 0 4 13 29 54 90 139 203 284
2 -2 -1 3 12 28 53 89 138 202 283
3 -3 -2 2 11 27 52 88 137 201 282
4 -4 -3 1 10 26 51 87 136 200 281
5 -5 -4 0 9 25 50 86 135 199 280
6 -6 -5 -1 8 24 49 85 134 198 279
7 -7 -6 -2 7 23 48 84 133 197 278
8 -8 -7 -3 6 22 47 83 132 196 277
9 -9 -8 -4 5 21 46 82 131 195 276

Table 4: A 10 × 10 difference table. Vertical and horizontal lines delimit a 8 × 8 difference
table nested in the 10 × 10 table. Values divisible by 10 with the remainders 0 and 3/6
are given on gray background. Values divisible by 8 with the remainders 0 and 3/6 are
highlighted in bold face.

5 Conclusion

The approach of difference tables allows one to make predictions regarding appearance of
unit’s digits of minor totals of a number of integer sequences. In this study, I considered a
question as to whether all digits of a numbering system can appear as unit’s digits in minor
totals of i) the sequence of even integers, ii) sequence of odd integers, and in iii) Faulhaber
polynomials with p = 2.

Many integer sequences [2] have gappy frequency distributions of unit’s digits in their
minor totals. This means that some digits never appear as unit’s digits in the minor totals.
This property varies however dependently on numbering system applied and the difference
tables can show why the gaps happen. Particularly, it has been shown that minor totals of
odd numbers (i.e., squared integers) have gaps in frequencies of unit’s digits under all the
numbering systems from bases 3 to 10.

A limitation is that the approach works only if a formula for minor totals is known. For
example, no minor total formula is known for the sequence of primes. It is empirically easy
to show that all the digits appear as unit’s digits in the minor totals of primes independently
of numbering system base (from 2 to 10) but no analytical method can be applied to prove
it.
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Figure 4: Empirical appearance of unit’s digits in Faulhaber polynomials. a – base-ten
numbering system; b – base-eight system. The frequencies are computed for first hundred
minor totals.
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(Concerned with sequences A005843, A005408, A000290.)
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