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THREE-DIMENSIONAL MAPS AND SUBGROUP GROWTH

LAURA CIOBANU & ALEXANDER KOLPAKOV

Abstract. Firstly, we derive a generating series for the number of free subgroups of finite
index in ∆+ = Z2 ∗ Z2 ∗ Z2 by using a connection between free subgroups of ∆+ and
certain three dimensional maps known as pavings, and show that this generating series is
non-holonomic. We also provide a non-linear recurrence relation for its coefficients.

Secondly, we study the generating series for conjugacy classes of free subgroups of finite
index in ∆+, which correspond to isomorphism classes of pavings. Asymptotic formulas are
provided for the numbers of free subgroups of given finite index, conjugacy classes of such
subgroups, and the equivalent types of pavings and their isomorphism classes.
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1. Introduction

In this note we explore the connections between free subgroups of given index n in the free
product ∆+ = Z2 ∗Z2 ∗Z2 and the number of rooted three-dimensional maps, or pavings, on
n darts, as introduced in [2, 15, 29]. For any surface or higher-dimensional manifold that has
been triangulated or otherwise subdivided into cells (not necessarily simplices), combinatorial
maps are a way of recording the neighbouring relations between cells (vertices, edges, faces,
etc), such as incidence or adjacency. The number of darts (defined in Sections 2.1 and 2.2),
which are essentially edges or half-edges, is for us the key parameter in quantifying the
number of maps, and can be seen as an “elementary particle” from which the combinatorial
objects in this paper are assembled.

The connection we establish is between a free subgroupH of index n in ∆+ (more precisely,
its embedding in ∆+) and the complexity of a paving associated to H . Thus we obtain the
means of classifying both kinds of objects, the geometric ones and the algebraic ones, with
respect to some natural measure of their intrinsic complexity. We also count the conjugacy
classes of free subgroups of index n in ∆+, and investigate the link between these and
isomorphism classes of pavings; the connections between free subgroups (and their conjugacy
classes) of finite index in certain Fuchsian triangle groups and two-dimensional maps have
been previously exploited by a number of authors (c.f. [5, 12, 18, 20, 21, 26, 32] and more).

General subgroup growth is the subject of the book [16], and further information on
counting the number of subgroups in free products of cyclic groups of prime orders can
be found in the papers [22, 23, 24]. There the general theory of subgroup structure in
free products of (finite and infinite) cyclic groups is enhanced by using the methods of
representation theory, analytic number theory and probability theory, among other tools.
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In this note we use the species theory initiated by Joyal [13] (c.f. the monographs [4, 9]) as
our main computational tool, which allows us to derive the generating series for the number
of rooted pavings in Theorem 4.1 (or free subgroups of finite index in Theorem 4.3) and
the number of isomorphism classes of hypermaps in Theorem 5.1 (or conjugacy classes of
said subgroups in Theorem 5.3) in a relatively simple form suitable for routine calculation
and computer experiments. We are able to associate the generating series for the number
of rooted pavings to solutions of the classical Riccati equations, which shows they are non-
holonomic by a result of [14]. C.f. [1] for other connections between map enumeration and
the Riccati equation.

Throughout the paper we give several concrete and illustrative examples, as well as a
sample of our SAGE code Monty (see Appendix) which supports our computations.
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2. Preliminaries

2.1. Two-dimensional maps. A two-dimensional orientable combinatorial map or, simply,
a combinatorial map, is a triple H = 〈D;α, σ〉, where D = {1, 2, . . . , n} is a finite set of
n ≥ 0 darts (to be defined below), α, σ ∈ Sn are permutations of D, and α is an involution.
A map H is connected if the group GH = 〈α, σ〉 acts transitively on D.

Any combinatorial map has a topological realisation ΓH as a family of graphs, each em-
bedded into a connected orientable surface. In order to construct ΓH , one may proceed as
follows. Let φ = σ−1α, and for each cycle of φ consider a polygon, called a face of ΓH , whose
edges are oriented anticlockwise.

Then two edges i and j of the newly produced faces are identified in accordance with the
transpositions of α, that is, if α(i) = j then i is identified with j, and each new edge becomes
the union of the now two half-edges or darts i and j, pointing in opposite directions. This
ensures that the resulting topological space ΓH is orientable. The ordered sequence of darts
pointing towards a vertex of ΓH is now described by a suitable cycle of σ. Thus the vertices
of ΓH correspond to the disjoint cycles of σ.

By construction, the topological space that we obtain after performing the procedure
above is an orientable surface without boundary, which is connected if GH acts transitively
on D. However, we do not always assume connectivity/transitivity.

The above argument establishes a bijection between combinatorial maps and topological
maps, i.e. graphs embedded into orientable (possible disconnected) surfaces, where for each
connected component 〈Σg; Γ, ι〉 with Σg a genus g surface, and Γ embedded in Σg via the
map ι, the complement Σg \ ι(Γ) is a union of topological discs. Each edge of such a Γ is split
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into a pair of labelled half-edges pointing in opposite directions. The darts D are exactly
those oriented half-edges.

The permutations α, σ and φ = σ−1α defining H can be read off the labelled topological
map ΓH as follows:

1) the cycles of α correspond to the darts forming entire edges of ΓH ,
2) the cycles of σ correspond to the sequences of darts around vertices read in an anti-

clockwise direction,
3) the cycles of φ correspond to the sequences of darts obtained by moving around faces

in an anticlockwise direction.

Two combinatorial maps H1 = 〈α1, σ1〉 and H2 = 〈α2, σ2〉 are isomorphic if there exists
π ∈ Sn such that π α1 = α2 π and π σ1 = σ2 π, which for the associated topological maps
translates into the existence of an orientation-preserving homeomorphism between ΓH1

and
ΓH2

that respects dart adjacencies.
For permutations πi ∈ Sn, i = 1, . . . , l, let ζ(π1, . . . , πl) be the number of orbits of

the group 〈π1, . . . , πl〉 acting on D = {1, 2, . . . , n}. Then the connected components of
H = 〈D;α, σ〉 are represented by the orbits of 〈α, σ〉, the faces of H are the orbits of
〈σ−1α〉, and its edges and vertices are the orbits of 〈α〉 and 〈σ〉, respectively. Thus the Euler
characteristic of H can be defined as χ(H) = ζ(σ−1α)− ζ(α) + ζ(σ).

2.2. Three-dimensional maps. A three-dimensional orientable combinatorial map or, sim-
ply, a (combinatorial) paving is a quadruple P = 〈D;α, σ, ϕ〉, where D is an n-element set
(n ≥ 0) and α, σ, ϕ ∈ Sn are permutations of D such that H = 〈D;α, σ〉 is a map (not
necessarily connected), and they satisfy:

(I-1) the product αϕ is an involution,
(I-2) the product ϕσ−1 is an involution,
(FP) neither of the above involutions has fixed points.

A paving P is connected if GP = 〈α, σ, ϕ〉 acts transitively on D. Given a paving P =
〈D;α, σ, ϕ〉, the map H = 〈D;α, σ〉 is called the underlying map of P .

We may also think of P as a quadruple P = 〈D;α, β, γ〉 where D is an n-element set
(n ≥ 0) and α, β, γ ∈ Sn are involutions without fixed points. In this case it is easy to see
that letting ϕ = αβ and σ = γαβ produces the initial definition.

As in the case of two-dimensional maps, a combinatorial paving P has a topological
realisationMP which, however, is not always a three-dimensional manifold. Such an example
can be delivered by Thurston’s figure-eight glueing from [30, Ch. 1, p. 4], described below.

Example 2.1. Let D = {1, 2, . . . , 12} be a set. Let α and σ be permutations of D such that
α = (1, 2)(3, 4)(5, 6) . . . (9, 10)(11, 12) and σ = (1, 5, 3)(2, 9, 8)(4, 11, 10)(6, 7, 12). We define
D′ = {−1,−2, . . . ,−12}, and α′(i) = −α(−i), σ′(i) = −σ(−i) for all i ∈ D′. Also, let ϕ =
(1,−3)(2,−11)(3,−12)(4,−2)(5,−7)(6,−5)(7,−9)(8,−6)(9,−10)(10,−8)(11,−4)(12,−1).

Consider a paving P = 〈D ∪D′;αα′, σσ′, ϕ〉, whose underlying map consists of two tetra-
hedra depicted in Figure 2.1. After glueing their faces with respect to ϕ we obtain a cellular
space with Euler characteristic +1, which has two 3-cells, four 2-cells, two 1-cells, and a
single 0-cell. The link of the 0-cell is a torus and not a sphere; therefore one does not obtain
a manifold.



4 LAURA CIOBANU & ALEXANDER KOLPAKOV

Figure 1. Two tetrahedra used in Thurston’s figure-eight glueing. Here, they
do not need to be geometrically realisable.

Let H = 〈D;α, σ〉 be the underlying map for a paving P = 〈D;α, σ, ϕ〉, and let us realise
each connected component of H as a topological map, i.e. as a surface Σi with an embedded
graph Γi, i = 1, 2, . . . , m, having labelled half-edges as described in Section 2.1. Each surface
Σi represents the boundary of a handle-body Bi, and then the handle-bodies Bi become
identified along their boundaries in order to produce a labelled orientable cellular complex
representing P topologically. Indeed, the faces of Σi’s defined by the permutation σ−1α are
identified in accordance with the permutation ϕ, and the conditions I-1, I-2, FP ensure that
one face cannot be identified to multiple disjoint counterparts (implied by conditions I-1
and I-2), and edges or faces cannot bend onto themselves (implied by condition FP). Also,
conditions I-1 and I-2 ensure that the faces of two disjoint handle-bodies come together with
coherent orientations, thus resulting in an orientable topological space MP .

The definitions of isomorphism for combinatorial and topological pavings are absolutely
analogous to those for combinatorial and topological maps.

The approach to pavings described above is largely due to Spehner, c.f. [29]. Another,
dual, approach is due to Arquès and Koch [2], and these two approaches to pavings are
shown to be equivalent in [15].

Arquès and Koch’s approach is as follows. Let P = 〈D;α, σ, ϕ〉 be a combinatorial paving.
Then we assemble an orientable cellular complex MP in such a way that the underlying map
HP = 〈D;α, σ〉 produces (possibly disjoint) links of vertices in MP . Each link is a map
whose edges are intersections of the two-dimensional angular segments (or, simply, labelled
corners of its two-faces [2, Définition 2.2, 1) & 2)], c.f. discussion in [15, p. 71]) representing
the darts D and emanating from each vertex, with the respective link surface. In this case,
the latter should be thought of as the boundary of a sufficiently small neighbourhood of said
vertex. Then ϕ brings angular segments belonging to the same two-cell ofMP together, which
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finalises the construction. We may also think of taking H∗
P = 〈D;α, ϕ〉 as the underlying

map and performing Spehner’s construction as previously described (with the only difference
that the rôles of σ and ϕ are interchanged). Finally, MP is a topological presentation for P .

If each component of HP is planar, that is, a connected map on the two-sphere S2, then
all the vertex links in MP are homeomorphic to S2, and MP is a three-dimensional manifold.

Given a pavingMP with labelled angular segments, we can easily read off the corresponding
combinatorial data. Thus, we can compose the permutations α, σ and ϕ that constitute its
combinatorial presentation P .

For a paving P = 〈D;α, σ, ϕ〉, the number of connected components of its underlying
map H = 〈D;α, σ〉 is f3 = ζ(α, σ), which is also the number of connected three-dimensional
handlebodies constituting MP , or the number of “pieces” as described in [29, Definition 1.5].
The number of two-dimensional faces of P equals f2 = ζ(σ−1α, ϕ−1σ). The number of edges
and vertices of P is f1 = ζ(α, ϕ), resp. f0 = ζ(σ, ϕ).

The f-vector of P is f(P ) = (f0, f1, f2, f3). The complexity of P equals c(P ) = f3 − f2 +
f1− f0. In general, this quantity does not coincide with the Euler characteristic of P , unless
the underlying map H is planar (i.e. all the connected components of H are spheres).

2.3. Formal power series. Here we follow [6]. A hypergeometric sequence (ck)k≥0 has
c0 = 1 and enjoys the property that the ratio of its any two consecutive terms is a rational
function in k, i.e. there exist monic polynomials P (k) and Q(k) such that

ck+1

ck
=
P (k)

Q(k)
.

Moreover, if P and Q are factored as

P (k)

Q(k)
=

(k + a1)(k + a2) . . . (k + ap)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
,

then we use the notation

pFq

[
a1 . . . ap
b1 . . . bq

; z

]

for the formal series F (z) =
∑

k≥0 ckz
k, c.f. [27, §3.2]. Here, the factor (k + 1) belongs to

the denominator for historical reasons. Such a hypergeometric series satisfies the differential
equation

(1)
(
ϑ(ϑ+ b1 − 1) · · · (ϑ+ bq − 1)− z(ϑ + a1) · · · (ϑ+ ap)

)
pFq(z) = 0,

where ϑ = z d
dz
, c.f. [7, §16.8(ii)]. Among numerous differential equations related to (1)

is the classical Riccati equation, which plays an important rôle later on. It is a first order
non-linear equation with variable coefficients fi(x), of the form

(2)
dy

dx
= f1(x) + f2(x)y + f3(x)y

2.

The Pocchammer symbol is connected to hypergeometric series and defined as

(a)n = a(a+ 1) . . . (a+ n− 1).
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As n→ ∞, it has the following asymptotic expansion

(3) (a)n ∝
√
2π

Γ(a)
e−n na+n− 1

2 ,

where Γ(a) is the Gamma function of a, defined as Γ(a) = (a− 1)! for a a positive integer,
and Γ(a) =

∫∞

0
xa−1e−xdx for all the non-integer real positive numbers.

A formal power series y = f(x) is called D-finite, or differentiably finite, or holonomic,
if there exist polynomials p0, . . . , pm (not all zero) such that pm(x)y

(m) + · · · + p0(x)y = 0,
where y(m) denotes the m-th derivative of y with respect to x. All algebraic power series are
holonomic, but not vice versa, c.f. [9, Appendix B.4].

Finally, we recall that the Hadamard product of two formal single-variable series A(z) =∑
n≥0 an

zn

n!
and B(z) =

∑
n≥0 bn

zn

n!
is denoted (A ⊙ B)(z) and given by (A ⊙ B)(z) :=∑

n≥0 anbn
zn

n!
.

Let λ = (n1, . . . , nm) be a partition of a natural number n ≥ 0, i.e. n =
∑

i≥1 ini. We

write λ ⊢ n and define λ! := 1n1n1!2
n2n2! . . .m

nmnm!. Let zλ := zn1

1 z
n2

2 . . . znm

m for some

collection of variables z1, z2, . . . . Then for two multi-variable series A(z) =
∑

n≥0

∑
λ⊢n aλ

z
λ

λ!

and B(z) =
∑

n≥0

∑
λ⊢n bλ

z
λ

λ!
we have (A⊙B)(z) :=

∑
n≥0

∑
λ⊢n aλbλ

z
λ

λ!
.

Also, for a multiple Hadamard product of a series A(z) with itself, i.e. B(z) = (A⊙ · · · ⊙
A)(z), we shall write B(z) = A⊙n(z), with a suitable n ≥ 0.

2.4. Species theory. Species theory (théorie des espèces) is initially due to A. Joyal [13]
and is a powerful way to describe and count labelled discrete structures. Since it requires a
lengthy and formal setup, we give here only the basic ideas and refer the reader to [4, 9] for
further details.

A species of structures is a rule (or functor) F which produces

i) for each finite set U (of labels), a finite set F [U ] of structures on U ,
ii) for each bijection σ : U → V , a function F [σ] : F [U ] → F [V ].

The functions F [σ] should further satisfy the following functorial properties:

i) for all bijections σ : U → V and τ : V →W , F [τ ◦ σ] = F [τ ] ◦ F [σ],
ii) for the identity map IdU : U → U , F [IdU ] = IdF [U ].

Let [n] = {1, 2, . . . , n} be an n-element set, and assume that [0] = ∅. A species F of
labelled structures has a generating function F (z) =

∑
n≥0 cardF [n]

zn

n!
.

For a species of unlabelled structures (i.e. structures up to isomorphism) we write F̃ ,
and its generating function is a specialisation of the cycle index series, in the sense that

F̃ (z) = ZF (z, z
2, z3 . . . ), where the cycle index series (see [4, §1.2.3]) is defined as:

ZF (z1, z2, . . . ) =
∑

n≥0

1

n!

∑

σ∈Sn

cardFix(F [σ]) zσ.

Here Fix(F [σ]) is the set of elements of F [n] having F [σ] as automorphism, and zσ =
zc11 z

c2
2 . . . zcmm if the cycle type of σ is c(σ) = (c1, c2, . . . , cm) (i.e. ck is the number of cycles

of length k in the decomposition of σ into disjoint cycles).
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3. Maps and subgroups

We will assume that all pavings are connected and, if rooted, have root 1. Let P =
〈D;α, β, γ〉 be a rooted paving from Pr(n). Then there is an epimorphism ψ from ∆+ =
Z2 ∗ Z2 ∗ Z2

∼= 〈a|a2 = ε〉 ∗ 〈b|b2 = ε〉 ∗ 〈c|c2 = ε〉 onto the group GP = 〈α, β, γ〉 ⊂ Sn given
by ψ : a 7→ α, b 7→ β, c 7→ γ. Moreover, ∆+ acts transitively on D via this epimorphism. By
taking Γ = Stab(1) with respect to this action, we observe that the action of ∆+ on D is
isomorphic to the action of ∆+ on the set of cosets ∆+�Γ.

If we consider the isomorphism class of P or, equivalently, consider P ∈ Pr(n) as a
representative from P(n), a change of root in P from 1 to i corresponds to conjugation of Γ
by an element w ∈ ∆+ such that ω = ψ(w) has the property ω(1) = i.

By an argument analogous to that of [6, Lemmas 3.1-3.2], we can prove the following.

Lemma 3.1. There exists a bijection between the set Pr(n) of rooted connected pavings with
n darts and the set of free subgroups of index n in ∆+ = Z2 ∗ Z2 ∗ Z2.

Lemma 3.2. There exists a bijection between the set P(n) of isomorphisms classes of con-
nected pavings with n darts and the set of conjugacy classes of free subgroups of index n in
∆+ = Z2 ∗ Z2 ∗ Z2.

4. Counting subgroups of free products

In this section we shall count the number of transitive triples 〈α, β, γ〉 ⊂ Sn such that
α, β and γ are fixed point free involutions. Let S2 be the species of such fixed point free
involutions in Sn. Then since pavings correspond to triples of such involutions, for the
species P ∗ of labelled pavings (not necessarily connected) on n darts we have

(4) P ∗ = S2 × S2 × S2,

while the species P of labelled connected pavings on n darts is related to P ∗ by the Hurwitz
equation

(5) P ∗ = E(P ).

The species P ◦ of rooted connected pavings on n darts can be expressed in terms of the
derivative of P as

(6) P ◦ = Z · P ′,

where Z is the singleton species with exponential generating function Z(z) = z.
The above relations between species can be translated into relations between the corre-

sponding exponential and ordinary generating functions.
The exponential generating functions for S2, P

∗ and P are given by

(7) S2(z) =
∞∑

k=0

z2k

2kk!
,

(8) P ∗(z) = S2(z)⊙ S2(z)⊙ S2(z) =

∞∑

k=0

((2k)!)2

23k(k!)3
z2k,
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(9) P (z) = logP ∗(z) = log

(
∞∑

k=0

((2k)!)2

23k(k!)3
z2k

)
.

The ordinary generating function for the number of rooted connected pavings with n darts
coincides with P ◦(z) since the species P ◦ is rigid and every root assignment corresponds to
(n− 1)! non-isomorphic labellings of the remaining darts:

(10) P ◦(z) = z
d

dz
logP ∗(z) = z

d

dz
log

(
∞∑

k=0

((2k)!)2

23k(k!)3
z2k

)
.

Now let us write P ∗(z) = f(2z2), where f(ξ) =
∑∞

k=0
fk
k!
ξk and fk =

1
24k

(
(2k)!
k!

)2
. Then

(11)
fk+1

fk
=

(
k +

1

2

)2

.

Combining equality (11) with the fact that f(0) = P ∗(0) = 1, we obtain that the function
f(ξ) is hypergeometric, can be written as

(12) f(ξ) = 2F0

(
1
2
, 1

2
· · · ; ξ

)
,

and is represented by an everywhere divergent (i.e. convergent only at z = 0) series. As a
formal series, f(ξ) satisfies

(13) ϑf(ξ) = ξ

(
ϑ+

1

2

)2

f(ξ),

where ϑ = ξ d
dξ
. c.f. [7, Section 16.8(ii)]. From equality (10) we get that

(14) P ◦(z) = 2ξ
f ′(ξ)

f(ξ)
= 2w(ξ),

and by combining (13) and (14) we see that w(ξ) satisfies a Riccati type equation:

(15) w′(ξ) =
(1− ξ)w(ξ)− ξw2(ξ)− 1

4
ξ

ξ2
.

By [14, Theorem 5.2] the function w(ξ) is not holonomic, and therefore neither is P ◦(z).

Theorem 4.1. The generating series P ◦(z) =
∑∞

n=0 pavr(n) z
n for the number pavr(n) of

connected orientable rooted pavings with n darts is non-holonomic. Its general term pavr(n)
vanishes for odd values of n and its asymptotic behaviour for even values of n is:

pavr(2k) ∼ 2

√
2

π

(
2

e

)k

kk+1/2.

Proof. The above discussion contains the proof of non-holonomy. It remains to deduce the
asymptotic value of pavr(2k) as k → ∞. We recall that

(16) pavr(2k) = [z2k]P ◦(z) = [z2k]

(
z
d

dz
logP ∗(z)

)
=
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(17) = [z2k]

(
z
d

dz
log f(2z2)

)
,

where

(18) f(ξ) =

∞∑

k=0

1

k!

(
1

2

)2

k

,

according to equality (12).
Let f(ξ) =

∑∞

k=0
fk
k!
ξk (necessarily with f0 = 1) and let log f(ξ) =

∑∞

k=1 gkξ
k. Then by [8,

Theorem 4.1] (also c.f. [3] and [25, Theorem 7.2]), we get that gk ∼ fk
k!
, as k → ∞.

Thus, according to the above computation

(19) pavr(2k) = 2k · 2k · gk ∼
2k+1

(k − 1)!

(
1

2

)2

k

.

Recalling the asymptotic behaviour of the Pocchammer symbol (a)k from (3) and Stir-

ling’s asymptotic formula k! ∼
√
2πk e−k kk we obtain the desired asymptotic expression for

pavr(2k) as k → ∞. �

Example 4.2. Since the generating series P ◦(z) (up to a multiple of 2) satisfies the Riccati
equation (15), we obtain a recurrence relation by substituting P ◦(z) =

∑∞

n=0 pavr(n) z
n in

it and equating the general term to zero:

(20) pav2n+2 = 2(n+ 1) pavn +
n∑

i=0

pav2i pav2n−2i, for n ≥ 2,

with initial conditions pav0 = 0, pav2 = 1 and pavd = 0 for all odd numbers d ≥ 1. By using
Monty, we compute P ◦(z) = z2 + 4z4 + 25z6 + 208z8 + 2146z10 + 26368z12 + 375733z14 +
6092032z16+110769550z18+2232792064z20+49426061818z22+1192151302144z24+ . . . . The
coefficient sequence of P ◦(z) has number A005411 in the OEIS [31]. The relation (20) also
identifies it as the S(2,−4, 1) self-convolutive sequence from [17].

By Lemma 3.1, the above theorem can be reformulated in group-theoretic language:

Theorem 4.3. The growth series Sf (z) =
∑∞

n=0 sf(n) z
n for the number sf(n) of free sub-

groups of index n in ∆+ = Z2 ∗ Z2 ∗ Z2 coincides with the series P ◦(z) from Theorem 4.1.

5. Counting conjugacy classes of subgroups

In order to compute the generating series P̃ (z) =
∑∞

n=0 pav(n) z
n for the number pav(n) of

non-isomorphic connected pavings with n darts, we shall employ again the species equations
(4)–(6), while replacing generating functions for the respective species with their cycle index
series.

Let C2 be the species of transpositions from Sn, n ≥ 1. Its cycle index series can be easily
expressed as ZC2

(z1, z2, . . . ) =
1
2
z21+

1
2
z2. The species S2 of fixed points free involutions in Sn

can be expressed as S2 = E(C2), since every involution is formed by a set of transpositions.
It’s also known that ZE(z1, z2, . . . ) = exp

(∑∞

n=1
zn
n

)
.
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Therefore, by using [4, §1.4, Théorème 2 (c)], the cycle index series for S2 is

(21) ZS2
(z1, z2, z3, . . . ) = ZE(ZC2

(z1, z2, . . . ),ZC2
(z2, z4, . . . ),ZC2

(z3, z6, . . . ), . . . ) =

(22) = exp

(
z21
2

)
· exp

(
z22
4

+
z2

2

)
· exp

(
z23
6

)
· · · · =

∞∏

n=1

Tn(zn),

where

(23) Tn(zn) = exp

(
z2n
2n

+
zn

n

)
for even n, and Tn(zn) = exp

(
z2n
2n

)
for odd n.

Thus the cycle index ZS2
is separable, and the cycle index ZP ∗ can be expressed as

(24) ZP ∗(z1, z2, . . . ) =
∞∏

n=1

(Tn ⊙ Tn ⊙ Tn)(zn),

given that P ∗ = S2 × S2 × S2 by equation (4).
By employing [4, §1.4, Exercice 9 (c)] together with equation (5), we obtain the cycle

index for the species of pavings:

(25) ZP (z1, z2, . . . ) =
∞∑

n=1

µ(n)

n
logZP ∗(z1, z2, . . . ).

It follows from [4, §1.2, Théorème 8 (b)] and equations (24)–(25) that the generating series

P̃ (z) is

(26) P̃ (z) = ZP (z, z
2, z3, . . . ) =

∞∑

n=1

µ(n)

n
logZP ∗(z, z2, z3, . . . ) =

(27) =
∞∑

n=1

µ(n)

n

∞∑

k=1

log(Tn ⊙ Tn ⊙ Tn)(zn)|zn=znk .

Theorem 5.1. The generating series P̃ (z) =
∑∞

n=0 pav(n) z
n for the number pav(n) of

connected orientable pavings with n darts is given by formulas (26) - (27). Its general term
pav(n) vanishes for odd values of n and has the following asymptotic behaviour for even
values of n:

pav(2k) ∼
√

2

π

(
2

e

)k

kk−1/2.

Proof. By an argument analogous to that of [8, Section 7.1], we obtain pav(2k) ∼ pavr(2k)
2k

as
k → ∞. Now the claim follows from Theorem 4.1. �

Example 5.2. By using Monty, we compute the initial sequence of coefficients for P̃ (z) and

obtain that P̃ (z) = z2 + 4z4 + 11z6 + 60z8 + 318z10 + 2806z12 + 29359z14 + 396196z16 +

6231794z18 + 112137138z20 + . . . . The coefficient sequence of P̃ (z) has number A002831 in
the OEIS [31], which represents the number of edge-3-coloured trivalent multi-graphs1 on 2n

1i.e. with multiple edges
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vertices, n ≥ 0, without loops. Let this number be tri(n) and let G̃(z) =
∑

n≥0 tri(n)z
2n.

Thus the number of isomorphism classes of transitive triples of fixed-point-free involutions
from S2n equals both pav(n) (as shown above) and tri(n).

Indeed, in order to create a labelled (not necessarily connected) edge-3-coloured trivalent
multigraph without loops, we need to choose three matchings in the set of 2n vertices, which
we may think of as a set V = [2n]. Each matching will consist of edges of same colour, say
red (R), green (G) or blue (B). A matching of some colour c ∈ {R,G,B} is then described
as a product σ of disjoint transpositions (i, j) corresponding to the two vertices i and j from
V joined by an edge. Since there are no loops, each matching has exactly n edges, and σc
has no fixed points. See [28] for a general approach to enumeration of graphs with “local
restrictions”.

LetG∗ be the species of vertex-labelled edge-3-coloured trivalent multigraph without loops,
and let G be its connected counterpart. Then G∗ can be described as a species of triples of
fixed-point-free involutions 〈σR, σG, σB〉, and thus G∗ ∼= P ∗ and, subsequently, G ∼= P , as

species. From this isomorphism, we get that, in particular, G̃(z) = P̃ (z) and the coefficient

sequence of P̃ (z) coincides with A002831.

Theorem 5.3. The growth series Cf(z) =
∑∞

n=0 cf(n) z
n for the number cf(n) of conjugacy

classes of free subgroups of index n in ∆+ = Z2 ∗Z2 ∗Z2 coincides with the series P̃ (z) from
Theorem 5.1.

Example 5.4. Below we present the non-isomorphic pavings with n ≤ 4 darts, which
provide a classification for all conjugacy classes of free subgroups of index ≤ 4 in ∆+ in
view of Lemma 3.2 and the preceding discussion. The corresponding pavings can easily be
classified by hand.

The conjugacy growth series for ∆+ is given in Example 5.2. An independent computation
with GAP [11] by issuing LowIndexSubgroupsFPGroup command gives matching results.
We may also use FactorCosetAction command to observe the action of a conjugacy class
representative on its cosets.

Figure 2. Paving P2 with 4 darts produced by face-glueing. The face iden-
tification (x, y, z) 7→ (x, y,−z) is depicted by arrows.
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Let P = 〈D;α, β, γ〉 be a paving. For the case of two darts D = {1, 2} we obtain only one
paving P1 with

(28) (α, β, γ) 7−→ ((1, 2), (1, 2), (1, 2)).

Figure 3. Paving P1 with 2 darts produced by face-glueing. The face iden-
tification (x, y, z) 7→ (x, y,−z) is depicted by arrows.

This paving is glued from a single 3-ball B1 with a map H1 on it, as shown in Figure 3. If
we suppose that B1 is a unit ball centred at the origin of R3, then the identification of the
faces of H1 can be described by the transformation (x, y, z) 7→ (x, y,−z). This paving has
f-vector (1, 1, 1, 1).

For the case of four darts, that is, D = {1, 2, 3, 4}, we get four more pavings.
The first one is P2 with

(29) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 2)(3, 4), (1, 3)(2, 4)).

Here, P2 is topologically represented by glueing the boundary of a 3-ball B2 with a map H2

on it, as depicted in Figure 2. Again, such a glueing can be described by the transformation
(x, y, z) 7→ (x, y,−z). This paving has f-vector (2, 2, 1, 1)

The next paving P3 has

(30) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(3, 4)).

Figure 4. Paving P3 with 4 darts produced by face-glueing. The face iden-
tification (x, y, z) 7→ (−x,−y,−z) is depicted by arrows.
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It is depicted in Figure 4, and topologically is a single 3-ball B3 with a map H3 on it, whose
faces are identified accordingly. The glueing transformation in this case can be described as
(x, y, z) 7→ (−x,−y,−z). This paving has f-vector (1, 1, 1, 1).

An easy computation yields that each of Pi, i = 1, 2, 3, has Euler characteristic χ(Pi) = 0,
as any three-dimensional manifold [10, Theorem 4.3], and it can be readily seen that in each
case the resulting manifold is homeomorphic to the three-sphere S3.

As for the remaining two pavings P4 and P5, both of them correspond topologically to
glueing two disjoint balls along their boundaries, and the Euler characteristic for both is 0;
thus each is a manifold by [10, Theorem 4.3]. Moreover, each is an orientable manifold of
Heegaard genus zero, and thus again homeomorphic to S3 [10, Ch. 5, §1].

Figure 5. Paving P4 with 4 darts produced by face-glueing. The face iden-
tification is depicted by arrows.

For P4 we have

(31) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 3)(2, 4)),

which is a combinatorial description for the two 3-balls B4,1 and B4,2 shown in Figure 5, each
with a connected map H4,1, respectively H4,2, on it. The faces of those maps are identified
by an orientation-reversing transformation on ∂B4,1

∼= S2 ∼= ∂B4,2. This paving has f-vector
(1, 1, 2, 2).

Figure 6. Paving P5 with 4 darts produced by face-glueing. The face iden-
tification is depicted by arrows.
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Finally, for P5 we obtain

(32) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)).

In this case two 3-balls B5,1 and B5,2 shown in Figure 6 are identified along their boundaries.
The identification is described by the glueing of the faces of the corresponding maps H5,1

and H5,2 on their boundaries. The f-vector of this paving is (2, 1, 1, 2).

6. Counting pavings of the three-sphere

Let us consider a Heegaard splitting H ∪ H ′ = S3 of the three-sphere S3, where the
handlebodies H and H ′ are glued along their common boundary Σ = H ∩H ′. If we suppose
that Σ has a map on it, then such a splitting H∪H ′ turns into a paving. Indeed, we can split
each edge on Σ into two darts, and then double each dart, such that we have two maps Σ and
Σ′ corresponding to the boundaries of H and H ′; then we can write down the permutation
representation for each of them. Finally we write down a permutation that pairs the darts
of Σ with the darts of Σ′: whichever map we choose for Σ will determine the map on Σ′.

We can also think of S3 as E3 ∪ ∞ and then delete from E3 a genus g handlebody H .
Then the closure H ′ of the complement S3 \ H will be a genus g handlebody H ′, and the
surfaces of H and H ′ will have opposite orientations. Thus, if we choose a map Σ on a
genus g surface of a handlebody H , we automatically imprint its chiral (i.e. having inverse
orientation) counterpart Σ′ on the surface of H ′.

More precisely, let us choose a map C on Σ = ∂H with a set of darts D = {1, 2, . . . , n},
and let its chiral map on Σ′ = ∂H ′ be C ′, with set of darts D′ = {−1,−2, . . . ,−n}, such that
D∩D′ = ∅. We assume that C = 〈D;α, σ〉 and C ′ = 〈D′;α′, σ′〉. Thus, α′(i) = −α(−i), and
σ′(i) = −σ−1(−i) for all i ∈ D′. The glueing ofH and H ′ along their respective boundaries Σ
and Σ′ provides an involution ϕ identifying the darts from D to those in D′ in pairs. Namely
ϕ(i) = −i for all i ∈ D ∪D′. Thus, we have created a paving P = 〈D ∪D′;αα′, σσ′, ϕ〉 that
topologically represents the three-sphere S3.

If two pavings are isomorphic, then their underlying maps are necessarily isomorphic. By
the above construction, we have at least as many non-isomorphic orientable pavings P on 2n
darts representing S3 as the total number of non-isomorphic orientable maps H on n darts.
Thus, the number of pavings representing S3 grows super-exponentially with respect to n.

We remark that the complexity of our paving P can be easily computed. If f(P ) =
(f0, f1, f2, f3) then χ(H) = f2−f1+f0 = 2−2g, where g is the genus of the surface carrying
the map H , and f3 = 2. Thus c(P ) = f3 − f2 + f1 − f0 = 2 − (2 − 2g) = 2g, and its value
will vary over the set of maps on n darts. This fact motivates the following question.

Question 6.1. Let Pc(n) be the set of pavings with n darts, all of fixed complexity c. Is it
true that cardPc(n) ∼ C1 exp(C2n) for some C1, C2 > 0, if n is great enough?

Monty (a sample SAGE session)

Here we work out Example 4.2. We begin by defining the recurrence relation from (20) in
order to produce a list of values pavr(2n), for n = 0, . . . , 20.
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from sympy.core.cache import cacheit

#define pav_r(n) which computes

#the number of rooted pavings on 2*n darts

@cacheit

def pav_r(n):

return n if n<2 \

else \

2*n*pav_r(n - 1) + sum([pav_r(k)*pav_r(n - k - 1) for k in xrange(1, n-1)]);

print map(pav_r, xrange(20))

Thus we obtain the coefficients sequence of P ◦(z).

[0, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064,

49426061818, 1192151302144, 31123028996164, 874428204384256,

26308967412122125, 843984969276915712, 28757604639850111894,

1037239628039528906752, 39481325230750749160462],

which has number A005411 in the OEIS [31]. Then we define the auxiliary function Tn(zn),

and its triple Hadamard product with itself.

#defining n, which has to be an even natural number

n = 22;

#defining power series ring over \mathbb{Q}

R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

#defining T_m(z_m)

def T(m):

sum = 0;

if (m%2 == 0):

sum = z^2/(2*m) + z/m;

else:

sum = z^2/(2*m);

return sum.exp(2*n);

#defining the triple Hadamard product of T_m(z_m) with itself

def h_prod_T(m):

prod = 0;

T_coeff = T(m).dict();

for k in T_coeff.keys():

prod = prod + \

power(z,k)*power(T_coeff[k], 3)*power(factorial(k), 2)*power(m,2*k);

return prod;
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Next, we define the logarithmic term in the expression for P̃ (z) given by (26) - (27).

def log_h_prod_T(m,k):

return log(h_prod_T(m)).substitute(z=power(z,m*k));

@parallel

def term(m,k):

return moebius(k)/k*log_h_prod_T(m,k);

Finally, we define the series P̃ (z).

def P_tilde(n):

return sum([t[1] for t in list(term([(m,k) for m in range(1,n) \

for k in range(1,n)]))]).truncate(n);

The computation produces the following output (for n = 22).

P_tilde(n);

> 112137138*z^20 + 6231794*z^18 + 396196*z^16 + 29359*z^14 + 2806*z^12 +

318*z^10 + 60*z^8 + 11*z^6 + 4*z^4 + z^2

The coefficient sequence of the series above has number A002831 in the OEIS [31].
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Publications du LaCIM, Université du Québec à Montréal, 1994.
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