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COMBINATORIAL INTERPRETATIONS OF THE

KREWERAS TRIANGLE IN TERMS OF SUBSET

TUPLES

ANGE BIGENI

Abstract. We show how the combinatorial interpretation of the
normalized median Genocchi numbers in terms of multiset tuples,
defined by Hetyei in his study of the alternation acyclic tourna-
ments, is bijectively equivalent to previous models like the normal-
ized Dumont permutations or the Dellac configurations, and we
extend the interpretation to the Kreweras triangle.

Notations

For all pair of integers n < m, the set {n, n + 1, . . . , m} is denoted
by [n,m], and the set [1, n] by [n]. The set of the permutations of [n]
is denoted by Sn.

1. Introduction

1.1. Genocchi numbers, Kreweras triangle, Dumont permuta-

tions. The Genocchi numbers (G2n)n≥1 = (1, 1, 3, 17, 155, 2073, . . .) [9]
and median Genocchi numbers (H2n+1)n≥0 = (1, 2, 8, 56, 608, . . .) [10]
can be defined as the positive integers G2n = g2n−1,n and H2n+1 =
g2n+2,1 [5] where (gi,j)1≤j≤i is the Seidel triangle defined by

g2p−1,j = g2p−1,j−1 + g2p−2,j,

g2p,j = g2p−1,j + g2p,j+1,

with g1,1 = 1 and gi,j = 0 if i < j. It is well known that H2n+1 is
divisible by 2n for all n ≥ 0 [1]. The normalized median Genocchi
numbers (hn)n≥0 = (1, 1, 2, 7, 38, 295, . . .) [11] are the positive integers
defined by

hn = H2n+1/2
n.

Dumont [4] gave the first combinatorial models of the (median) Genoc-
chi numbers. In particular, the set PD2n of the Dumont permutations
of the second kind, that is, the permutations σ ∈ S2n+2 such that
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2 ANGE BIGENI

σ(2i− 1) > 2i− 1 and σ(2i) < 2i for all i ∈ [n + 1], whose cardinality
#PD2n equals H2n+1 for all n ≥ 0. In [12], Kreweras introduced the
subset PD2Nn ⊂ PD2n of the normalized such permutations, i.e., the
permutations σ ∈ PD2n such that σ−1(2i) < σ−1(2i+1) for all i ∈ [n],
whose number is #PD2Nn = hn.

Remark 1. For all (k, l) ∈ [n]2, let PD2Nn,k (respectively PD2N ′
n,l)

be the subset of the σ ∈ PD2Nn such that σ(1) = 2k (respectively
σ(2n + 2) = 2l + 1). It is easy to see that {PD2Nn,k : k ∈ [n]} and
{PD2N ′

n,l : l ∈ [n]} are partitions of PD2Nn.

In [13], by introducing the model of the alternating diagrams and
connecting them bijectively to the normalized Dumont permutations,
Kreweras and Barraud proved that

#PD2Nn,k = #PD2N ′
n,k = hn,k

where the Kreweras triangle (hn,k)n≥1,k∈[n] [12] (see Figure 1) is defined
by h1,1 = 1 and, for all n ≥ 2 and k ∈ [3, n],

hn,1 = hn−1,1 + hn−1,2 + . . .+ hn−1,n−1,

hn,2 = 2hn,1 − hn−1,1,(1)

hn,k = 2hn,k−1 − hn,k−2 − hn−1,k−1 − hn−1,k−2.

1
1 1

2 3 2
7 12 12 7

38 69 81 69 38
295 552 702 702 552 295

. .
. . . .

Figure 1. The Kreweras triangle.

For example, we depict in Figure 2 how are partitionned the h3 =
2 + 3 + 2 elements of PD2N3.

For all n ≥ 1 and k ∈ [n], the Kreweras triangle has the visible two
properties

hn,n = hn−1,(2)

hn,k = hn,n−k+1,(3)
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21637485 21436587

41627583 41627385 41526387

61427583 61427385

PD2N3,1

PD2N3,2

PD2N3,3

PD2N ′
3,1 PD2N ′

3,2 PD2N ′
3,3

Figure 2. The partition of PD2N3.

of which [13] implies interpretations in terms of PD2Nn. Formula (2)
follows from the bijection σ ∈ PD2N ′

n,n 7→ σ|[2n] ∈ PD2Nn−1. Af-
terwards, let σ ∈ PD2Nn and (k, l) ∈ [n]2 such that σ(1) = 2k and
σ(2n+ 2) = 2l + 1, we define two permutations σt and σr as follows.

— If k = l, we define σt as σ, otherwise it is defined as the com-
position

Ä

2k 2l 2l + 1 2k + 1
ä

◦ σ.

— We define σr by σr(i) = 2n+3−σ(2n+3−i) for all i ∈ [2n+2].

The maps σ 7→ σt and σ 7→ σr are involutions of PD2Nn which induce
bijections

PD2Nn,k ∩ PD2N ′
n,l ←→ PD2Nn,l ∩ PD2N ′

n,k,

PD2Nn,l ∩ PD2N ′
n,k ←→ PD2Nn,n−k+1 ∩ PD2N ′

n,n+1−l,

from which follows Formula (3). One can also obtain it by induction
from System (1) through the easy equality

hn,k − hn,k−1 =
n−1∑

i=k

hn−1,i −
k−2∑

i=1

hn−1,i

for all n ≥ 1 and k ∈ [n] (where hn,0 is defined as 0).
There are several other bijectively equivalent models of the Kreweras

triangle [3, ?, 7, ?, 2].

1.2. The Dellac configurations. The Dellac configurations [3] form
the earliest combinatorial model of the Kreweras triangle and provide
a geometrical analogous of the previous results. Recall that a Dellac
configuration of size n is a tableau D, made of n columns and 2n rows,
that contains 2n dots such that :

— every row contains exactly one dot;

— every column contains exactly two dots;
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— if there is a dot in the box (j, i) of D (i.e., in the intersection of
its j-th column from left to right and its i-th row from bottom
to top), then j ≤ i ≤ j + n.

The set of the Dellac configurations of size n is denoted by DCn.
It can be partitionned into {DCn,k : k ∈ [n]} or {DC ′

n,l : l ∈ [n]}
where DCn,k (respectively DC ′

n,l) is the subset of the tableaux D ∈
DCn whose box (k, n + 1) (respectively (l, n)) contains a dot, for all
(k, l) ∈ [n]2. In [6, Proposition 3.3], Feigin constructs a bijection
f1 : PD2Nn → DCn such that f1(PD2Nn,k) = DCn,k, hence hn,k =
#DCn,k, for all k ∈ [n]. One can also check that f1(PD2N ′

n,k) = DC ′
n,k,

so hn,k = #DC ′
n,k. For example, the h3 = 2 + 3 + 2 elements of DC3

are partitionned as depicted in Figure 3.

DC3,1

DC3,2

DC3,3

DC ′
3,1 DC ′

3,2 DC ′
3,3

Figure 3. The partition of DC3.

The combinatorial interpretations of Formulas (2) and (3) in terms
of Dellac configurations are simple. Every element of DCn−1 can be
obtained by deleting the n-th colomn (from left to right) and the (n+1)-
th and 2n-th rows (from bottom to top) of a unique element of DC ′

n,n,
which gives Formula (2). Afterwards, for all D ∈ DCn,k ∩DC ′

n,l,
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— let Dt ∈ DCn,l ∩DC ′
n,k be obtained by deleting the dots of the

boxes (k, n + 1) and (l, n) of D and placing dots in the boxes
(l, n+ 1) and (k, n),

— let Dr ∈ DCn,n+1−l ∩ DC ′
n,n−k+1 be obtained by rotating D

through 180◦,

the maps D 7→ Dt and D 7→ Dr are involutions of DCn that induce
bijections

DCn,k ∩DC ′
n,l ←→ DCn,l ∩DC ′

n,k,

DCn,l ∩DC ′
n,k ←→ DCn,n−k+1 ∩DC ′

n,n+1−l,

from which follows Formula (3).

1.3. Hetyei’s model. In his study of the alternation acyclic tourna-
ments [8], Hetyei proved that the median Genocchi number H2n+1 is
the number of pairs

((a1, . . . , an), (b1, . . . , bn)) ∈ Z
n × Z

n

such that (ai, bi) ∈ [0, n]× [n] for all i ∈ [n], and the set [n] is contained
in the multiset {a1, b1, . . . , an, bn}. He then defined a free group action
of (Z\2Z)n on the set of these pairs, whose orbits are indexed by the
n-tuples ({ul, vl})l∈[n] such that (ul, vl) ∈ [l]2 for all l ∈ [n] and the
multiset {u1, v1, . . . , un, vn} contains [n], which raises a new proof of
H2n+1 being a multiple of 2n, and a new combinatorial model of hn

through the set Mn of these tuples ({ul, vl})l∈[n]. For example, the
h3 = 7 elements of M3 are

{1, 1}, {2, 2}, {3, 3}

{1, 1}, {1, 2}, {3, 3}

{1, 1}, {2, 2}, {2, 3}

{1, 1}, {1, 2}, {2, 3}

{1, 1}, {1, 1}, {2, 3}

{1, 1}, {2, 2}, {1, 3}

{1, 1}, {1, 2}, {1, 3}.

It remains to connect Mn bijectively to the previous models of hn.
In Section 2, we describe a model introduced by Feigin is his study
of the degenerate flag varieties [6], and whose construction fits Mn in
the best way. Incidentally, we define a slight adjustment of this model
in a way that describes its inner construction. In Section 3, we con-
struct a bijection between Feigin’s and Hetyei’s model, which provides
a combinatorial interpretation of the Kreweras triangle in terms ofMn.
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2. Feigin’s model

In order to label the torus fixed points of the degenerate flag variety
Fa

n , Feigin [6] introduced the set In of the tuples (I0, . . . , In) where
Ii ⊂ [n] has the conditions

#Ii = i,(4)

Ii−1\{i} ⊂ Ii,(5)

In [6, Proposition 3.1], Feigin constructs a bijection f2 : In → DCn,
thus #In = hn. The set In can be partitionned into {In,k : k ∈ [n]}
or {I ′n,l : l ∈ [n]} where In,k (respectively I ′n,l) is the subset of the
elements (I0, . . . , In) ∈ In such that k = min{i : 1 ∈ Ii} (respec-
tively l = min{i : n ∈ Ii}). One can check that f2(In,k) = DCn,k

and f2(I
′
n,l) = DC ′

n,l, so #In,k = #I ′n,k = hn,k. For example, the
h3 = 2+ 3+ 2 elements of I3 are partitionned as depicted in Figure 4.

∅, {1}, {1, 3}, [3] ∅, {1}, {1, 2}, [3]

∅, {3}, {1, 3}, [3] ∅, {2}, {1, 3}, [3] ∅, {2}, {1, 2}, [3]

∅, {3}, {2, 3}, [3] ∅, {2}, {2, 3}, [3]

I3,1

I3,2

I3,3

I ′3,1 I ′3,2 I ′3,3

Figure 4. The partition of I3.

In the following, we define a tweaking of this model.

Notation. For all n-tuple (S1, . . . , Sn) of subsets of [n] and for all
i ∈ [n], the set {j ∈ [n] : i ∈ Sj} is denoted by S−1

i .

Definition 2. For all n ≥ 1, let Sn be the set of the tuples (S1, . . . , Sn)
of subsets of [n] with the conditions

— #Si = #S−1
i = 1 or 2,

— if #Si = 2, then S−1
i = {i1, i2} for some i1 < i < i2.

Remark 3. We can partition Sn into {Sn,k : k ∈ [n]} and {S ′
n,l : l ∈ [n]}

where Sn,k (respectively S ′
n,k) is the set of the (S1, . . . , Sn) such that

S−1
1 = {k} (respectively S−1

n = {l}).

Proposition 4. The map (Ii)i∈[0,n] 7→ (Ii\Ii−1)i∈[n] is a bijection be-

tween In and Sn, which sends In,k and I ′n,l to Sn,k and S ′
n,l respectively.

In particular hn,k = #Sn,k = #S ′
n,k.
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Proof. For all i ∈ [n], let Si = Ii\Ii−1. There are two situations.

(1) If i ∈ Ii−1 ∩ Ii or i 6∈ Ii−1, then Ii = Ij ⊔ {j} for some j 6∈ [n],
and #Si = 1.

(2) Else i ∈ Ii−1 and i 6∈ Ii, in which case Ii = (Ii−1\{i}) ⊔ {j1, j2}
for some (j1, j2) ∈ [n]2, and #Si = 2. Also, let

i1 = min{j ∈ [n] : i ∈ Ij} < i,

i2 = min{j ∈ [i, n] : i ∈ Ij} > i,

then S−1
i = {i1, i2}.

So (Si)i∈[n] ∈ Sn. The inverse map is obtained as follows. Let
(Si)i∈[n] ∈ Sn and I0 = ∅. For all i ∈ [n], suppose that we have
defined I0, . . . , Ii−1 with the conditions (4) and (5), and the additional
condition for all j ∈ [n] :

(6) min{k ∈ [i− 1] : j ∈ Ik} = minS−1
j .

If #Si = 1, then Ii is defined as Ii−1 ⊔ Si. Otherwise S−1
i = {i1, i2}

with i1 < i < i2, and i ∈ Ii1 in view of condition (6), hence i ∈ Ii−1,
and Ii is defined as (Ii−1\{i}) ⊔ Si. In both cases I0, . . . , Ii have the
conditions (4),(5) and (6), and (Ii)i∈[0,n] ∈ In. The rest of the lemma
is straightforward. �

Remark 5. For all (Si)i∈[n] ∈ Sn, the inverse image (Ii)i∈[0,n] is also

given by Ii =
Ä⋃i

j=1 Sj

ä

\{j ∈ [i] : minS−1
j < i < maxS−1

j }.

For example, the h3 = 2 + 3 + 2 elements of S3 are partitionned as
depicted in Figure 5.

{1}, {3}, {2} {1}, {2}, {3}

{3}, {1}, {2} {2}, {1, 3}, {2} {2}, {1}, {3}

{3}, {2}, {1} {2}, {3}, {1}

S3,1

S3,2

S3,3

S ′
3,1 S ′

3,2 S ′
3,3

Figure 5. The partition of S3.

Remark 6. There is a natural injection Sn →֒ Sn : σ 7→ ({σ(i)})i∈[n],
which is the analogous of the elements (Ii)i∈[0,n] with the conditions

#Ii = i,

Ii−1 ⊂ Ii
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forming a subset of In and labelling the torus fixed points of the flag
variety Fn [6].

The bijection S ′
n,n → Sn−1, from which arises Formula (2), is the

plain map (S1, . . . , Sn) 7→ (S1, . . . , Sn−1). The involution (S1, . . . , Sn) ∈
Sn 7→ (St

1, . . . , S
t
n), defined by replacing every occurrence of 1 (re-

spectively n) by n (respectively 1) in all St
i , induces the bijection

Sn,k ∩ S
′
n,l → Sn,l ∩ S

′
n,k. The involution (S1, . . . , Sn)n → (Sr

1 , . . . , S
r
n),

defined by Sr
i = {n + 1 − j : j ∈ Sn+1−i}, induces the bijection

Sn,k ∩ S
′
n,l → Sn,n+1−l ∩ S

′
n,n−k+1, from which follows Formula (3).

3. Bijective equivalence with Hetyei’s model

Definition 7 (map ϕ : In → Mn). Let I = (I0, . . . , In) ∈ In and
L0 = (n, . . . , 1). Consider k ∈ [n] and suppose that we have defined :

— a multiset {un−k+2, vn−k+2, . . . , un, vn}, such that (ul, vl) ∈ [l]2

for all l ∈ [n− k + 2, n], which contains the set [n− k + 2, n];

— a tuple Lk−1 = (jk−1
1 , jk−1

2 , . . . , jk−1
n−k+1) such that

{jk−1
1 , . . . , jk−1

n−k+1} = [n]\Ik−1.

We now define (un−k+1, vn−k+1) ∈ [n− k + 1]2 and Lk as follows.

1. If Ik−1 ⊂ Ik, let p ∈ [n− k + 1] such that Ik = Ik−1 ⊔ {j
k−1
p }.

a) If k ∈ Ik−1, we define {un−k+1, vn−k+1} as {p, p}.

b) Otherwise, we define {un−k+1, vn−k+1} as {p, n− k + 1}.

In either case, let

Lk = (jk−1
1 , . . . , jk−1

p−1 , j
k−1
n−k+1, j

k−1
p+1 , . . . , j

k−1
n−k).

2. Otherwise k ∈ Ik−1 and k 6∈ Ik, hence Ik = (Ik−1\{k}) ⊔
{jk−1

p , jk−1
q } for some 1 ≤ p < q ≤ n − k + 1. We define

{un−k+1, vn−k+1} as {p, q}, and

Lk = (jk−1
1 , . . . , jk−1

p−1 , j
k−1
n−k+1, j

k−1
p+1 , . . . , j

k−1
q−1 , k, j

k−1
q+1 , . . . , j

k−1
n−k).

For the algorithm to move to k + 1, we just need to show that
n−k+1 ∈ {un−k+1, vn−k+1, . . . , un, vn}. It is obvious if {un−k+1, vn−k+1}
is defined by Rule 1.b). Otherwise, by hypothesis, we have k ∈ Ik−1.
Let i0 = min{i ∈ [n] : k ∈ Ii} ∈ [k − 1]. By construction of
L1, . . . , Lk−1, it is easy to see that ji0−1

n−k+1 = k, hence n − k + 1 ∈
{un+1−i0, vn+1−i0} by either Rule 1.a) or Rule 2.

This algorithm provides a tuple ({ul, vl})l∈[n] ∈Mn, that we denote
by ϕ(I).
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For example, let I = (∅, {3}, {1, 3}, {1, 3, 4}, {1, 2, 3, 5}, [5]) ∈ I5 and
L0 = 54321. We obtain ϕ(I) = ({ul, vl})l∈[5] where

{u5, v5} = {3, 5}, L1 = 5412 (rule 1.b)),

{u4, v4} = {3, 4}, L2 = 542 (rule 1.b)),

{u3, v3} = {2, 2}, L3 = 52 (rule 1.a)),

{u2, v2} = {1, 2}, L4 = 4 (rule 2.),

{u1, v1} = {1, 1}, L5 = ∅ (rule 1.a)).

Proposition 8. The map ϕ : In →Mn is bijective.

Proof. We construct the inverse map of ϕ. Let M = ({ul, vl})l∈[n] ∈
Mn, L0 = (n, . . . , 1) and I0 = ∅. Suppose that, for some k ∈ [n], we
defined subsets I0, . . . , Ik−1 of [n] with conditions (4) and (5), and a
tuple Lk−1 = (jk−1

1 , . . . , jk−1
n−k+1) with {jk1 , . . . , j

k−1
n−k+1} = [n]\Ik−1. We

define Ik and Lk as follows.

I. If un−k+1 = vn−k+1 or n− k + 1 6∈ {un−k+2, vn−k+2, . . . , un, vn},
there exists p ∈ [n− k + 1] such that {un−k+1, vn−k+1} = {p, p}
or {p, n − k + 1}. We define Ik as Ik−1 ⊔ {j

k−1
p }, and Lk as in

Rule 1.

II. Otherwise {un−k, vn−k} = {p, q} for some 1 ≤ p < q ≤ n−k+1.
We define Ik as (Ik−1\{k}) ⊔ {j

k−1
p , jk−1

q }, and Lk as in Rule 2.

For the algorithm to iterate, we only need to prove that #Ik = k if
it is defined by Rule II. In this context, let n− i0 + 1 = max{l ∈ [n] :
n − k + 1 ∈ {ul, vl}}, by hypothesis i0 ∈ [k − 1]. By construction of
L1, . . . , Lk−1, we have ji0−1

n−1+k = k, hence k ∈ Ii0 , which implies that
k ∈ Ik−1 in view of condition (5).

So this algorithm provides an element (I0, . . . , In) ∈ In that we
denote by φ(M), and it is straightforward that ϕ and φ are inverse
maps. �

Definition 9. Let M = ({ul, vl})l∈[n] ∈Mn, we define a tuple n = l1 >
l2 > . . . > lm ≥ 1 as follows : if uli = vli = li, then m is defined as i,
otherwise we define li+1 as min{uli, vli} < li. This tuple is well-defined
because u1 = v1 = 1 in general.

Afterwards, for all integer l ∈ [lm, n], let i ∈ [m] such that l ∈
[li, li−1− 1] (where l0 is defined as n+1), we say that l is M-redundant

if li ∈ {ul, vl}. Note that the set of such integers is not empty because
it contains lm.

We now define two partitions of Mn, namely {Mn,k : k ∈ [n]} and
{M′

n,l : l ∈ [n]}, as follows.
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Definition 10. For all n ≥ 1 and k ∈ [n], we defineMn,k (respectively
M′

n,l) as the set of the tuples M ∈Mn such that

max{i ∈ [n] : i is M-redundant} = n− k + 1

(respectively

max{i ∈ [n] : 1 ∈ {ui, vi}} = n− l + 1).

One can check that ϕ(In,k) =Mn,k and ϕ(I ′n,l) =M
′
n,l, hence

#Mn,k = #M′
n,k = hn,k.

For example, consider the tuple

I = (∅, {3}, {1, 3}, {1, 3, 4}, {1, 2, 3, 5}, [5]) ∈ I5,2 ∩ I
′
5,4

studied earlier, and its image M = ϕ(I) = ({ul, vl})l∈[5]. We can see in
Picture 6 that M ∈M5,2 ∩M

′
5,4.

{1, 1}, {1, 2}, {2, 2},{3, 4}, {3, 5}

Figure 6. The tuple ϕ(M) ∈M5.

The h3 = 2 + 3 + 2 elements of M3 are partitionned as depicted in
Figure 7, which is the image of the partition of Figure 4 by ϕ.

{1, 1}, {1, 2}, {3, 3} {1, 1}, {2, 2}, {3, 3}

{1, 1}, {1, 2}, {1, 3} {1, 1}, {1, 2}, {2, 3} {1, 1}, {2, 2}, {2, 3}

{1, 1}, {2, 2}, {1, 3} {1, 1}, {1, 1}, {2, 3}

M3,1

M3,2

M3,3

M′
3,1 M′

3,2 M′
3,3

Figure 7. The partition ofM3.
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