
THE REPRESENTATION THEORY OF

2-SYLOW SUBGROUPS OF SYMMETRIC GROUPS

S NARAYANAN

Abstract. In this paper we develop a quick recursive algorithm to
calculate the characters of the 2-Sylow subgroups of the Sn. The al-
gorithm exploits the construction of these subgroups as automorphism
groups of certain sets of binary trees. Such a construction reduces the
problem to the case where n is a power of 2. The Sylow subgroups in
this case are built recursively from lower powers of 2. This leads to a
recursive characterisation and enumeration of the conjugacy classes and
the irreducible representations, and thus allows us to compute charac-
ter values from those of the lower subgroups. Finally we describe the
Bratteli diagram of this family, and its one dimensional representations,
which by McKay’s correspondence are in bijection with odd-dimensional
representations of the symmetric group.

1. Introduction

The 2-Sylow subgroups of a symmetric group arise as automorphism
groups of binary trees with appropriate labellings on the external vertices.

Definition 1.1. A complete binary tree is defined recursively [7] as either:

• A single vertex (called the trivial tree).

• A graph formed by taking two complete binary trees, adding a vertex,
and adding an edge directed from the new vertex to the root of each
binary tree.

We differentiate the branches of a nontrivial binary tree by designating
one the left and the other the right subtree. Vertices are internal if they have
a nontrivial left and right subtree, and external otherwise. Given vertices x
and y, x ≤ y if x occurs in one of the subtrees associated to y. This is a
partial order, and the Hasse diagram of the poset is the familiar depiction of
a binary tree as in Figure 1. The tree admits an obvious rank function(where
the root has rank 0) and the rank of a vertex is the number of edges on the
unique path connecting it to the root vertex. A complete binary tree is of
height k if the rank of every external vertex is k.
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Figure 1. A complete binary tree of height 2.

Let Hk denote the automorphism group of the complete binary tree of
height k. An automorphism of a binary tree acts on each internal vertex
as automorphisms of its left and right subtree, followed by either fixing
or exchanging their designations as right and left subtree. Given such an
automorphism, a labelling, L is a bijection between external vertices and the
set {1, 2, . . . , 2k}. L can be extended to internal vertices by concatenating
the labels of its children, left to right if the automorphism fixes the subtrees
under this vertex, and right to left otherwise. At the completion of this
process, as in Figure 2, the label of the root node is a permutation of S2k .
Fixing a particular labelling L of the external vertices, this process defines
an embedding θL : Hk → S2k . Henceforth the labelling will be 1, 2, . . . , 2k

from left to right, as in Figure 2.
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Figure 2. Automorphisms as (a) weights on a binary tree,
and (b) permtuations.
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Proposition 1.1. Hk is the 2-Sylow subgroup of S2k .

Proof. Let v2(n) be the highest exponent of 2 that divides n. Then by
Legendre’s formula, v2(n!) = bn/2c+ bn/4c+ · · ·+ 1. In particular:

v2(2k!) =
⌊
2k/2

⌋
+
⌊
2k/4

⌋
+ · · ·+ 1

= 2k−1 + 2k−2 + · · ·+ 1

= 2k − 1
Each automorphism of a binary tree of height k can be represented as weights
on the internal vertices, as in Figure 2 : −1 if the automorphism flips the
subtrees under the vertex and 1 otherwise. This is immediate by induction
and the preceding discussion on the action of an automorphism on internal
vertices of the binary tree. There are 2k − 1 internal vertices. Thus, there

are 22k−1 automorphisms of the binary tree of height k.
�

Definition 1.2. The binary digits of an integer n is the set of distinct
nonnegative integers {k1, k2, . . . , kl} such that n = 2k1 + 2k2 + · · ·+ 2kl.

Let {k1, . . . , kl} be the binary digits of an n. Then v2(n!) = v2(2k1 !) +
v2(2k2 !)+· · ·+v2(2kr !). This is the cardinality of Hk1×Hk2×· · ·×Hkr . Thus,
this Cartesian product must be a 2-Sylow subgroup of Sn, which embeds in
S2k1 ×S2k2 × · · · ×S2kr ⊂ Sn. We denote by Pn the 2-Sylow subgroup of Sn
and note that P2k = Hk.

Proposition 1.2. Hk = Hk−1 o C2.

Proof. C2 has an obvious action on the set {1, 2}. So we can form the group
Hk−1 o C2. We prove that this group is Hk.

Consider ψ ∈ Hk. ψ is an automoprhism of the complete binary tree
of height k. Let φ1 and φ2 be its restriction to the left and right subtrees.
Further let ε be the weight on the root vertex(see Figure 2). Then (φ1, φ2)ε ∈
Hk−1 o C2. It is a routine calculation to verify that under this designation,
the product in the wreath product corresponds to left multiplication in the
group as a subgroup of S2k .

Now consider (φ1, φ2)ε ∈ Hk−1 o C2. The element φ2 ∈ S2k−1 acts on the

labels {2k−1 + 1, . . . , 2k}, while φ1 acts on {1, . . . , 2k−1}. By concatenating
these strings, φ1 first unless ε = −1, we obtain a permutation of {1, . . . , 2k}.
This operation again is consistent with multiplication in Hk.

�

An element of Hk is expressed as (σ1, σ2)ε, where ε = ±1, with ε = −1
representing the non-trivial action of C2 and (σ1, σ2) is a tuple of elements
from Hk−1 ×Hk−1.

Since Pn is the direct product of of the set of groups Hki where ki ranges
over the binary digits of n. This reduces the study of these groups to the
case where n is a power of 2. Our aim in the next sections is to construct
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the character table of Hk. The character table of a group Pn is the tensored
product, as matrices, of the character tables for the Hki .

2. Conjugacy classes of Hk

We begin building the character table of Hk by characterising the con-
jugacy classes of the group. Let σ := (σ1, σ2)ε ∈ Hk. Then σ is conjugate
to τ := (τ1, τ2)κ (denoted σ ∼ τ) if there exists a conjugating element
φ = (φ1, φ2)δ.This yields immediately that κ = ε, and:

(1) (τ1, τ2) =

{
(φ−1

1 σ1φ1, φ
−1
2 σ2φ2) if δ = 1

(φ−1
1 σ2φ1, φ

−1
2 σ1φ2) if δ = −1

when ε = 1, and

(2) (τ1, τ2) =

{
(φ−1

1 σ1φ2, φ
−1
2 σ2φ1) if δ = 1

(φ−1
2 σ2φ1, φ

−1
1 σ1φ2) if δ = −1

if ε = −1
Equation (1) reveals two types of classes with ε = 1:

• If σ1 and σ2 are not conjugate in Hk−1, the conjugacy class of
(σ1, σ2)1 comprises (τ1, τ2)1 where either τ1 ∼ σ1 and τ2 ∼ σ2 or
τ1 ∼ σ2 and τ2 ∼ σ1. This is the first type of conjugacy class, and
there are

(Ck−1
2

)
such classes (where Ck is the number of conjugacy

classes in Hk) for a choice of distinct classes in Hk−1.
• If σ1 ∼Hk−1

σ2, then σ1 ∼ τ1 ∼ τ2. This is the second type of
conjugacy class, and there are Ck−1 of this type.

Evaluating equation (2) for σ1 = Id:

• For a choice of conjugacy class τ1, τ2 = φ−1
1 σ where σ is any element

conjugate to σ2 in Hk−1. This gives the final type of conjugacy class,
represented by (Id, σ2)−1. There are Ck−1 such classes.

We summarise these results in the table below.

Representative # classes Size of class

1 [(σ1, σ2)1]
(Ck−1

2

)
2ck−1([σ1])ck−1([σ2])

2 [(σ1, σ1)1] Ck−1 ck−1([σ1])2

3 [(Id, σ1)−1] Ck−1 |Hk−1|ck−1([σ1])

Table 1. Conjugacy classes of Hk

where ck([σ]) is the size of the class [σ].

There are
(Ck−1

2

)
classes of the first, and Ck−1 classes each of the second

and third type in Hk. Thus we have a recursion relation for Ck:

(3)
Ck =

(
Ck−1

2

)
+ 2Ck−1

C0 = 1
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Theorem 2.1. Let b
(k)
m denote the number of conjugacy classes of Hk of

cardinality 2m and fk(t) =
∑
b
(k)
m tm. Then fk(t) satisfies the recurrence

relation:

(4) fk(t) =
t

2
[fk−1(t)2 − fk−1(t2)] + fk−1(t2) + t2

k−1−1fk−1(t)

Proof. The proof uses operations on classes of combinatorial objects from
the Symbolic method. A suitable reference is [6].

The class of conjugacy classes of Hk is denoted Conjk. From Table 1 we
know that Conjk is the disjoint union of three distinct types of conjugacy
classes; we denote these Conj1

k , Conj2
k and Conj3

k . The generating function

for Conjk is
∑

σ t
ck([σ]) = fk(t), where σ ranges over the representatives of

conjugacy classes of Hk.
Conj2

k consists of classes of type (σ, σ)1, which corresponds to the diagonal
of the cartesian product Conjk−1 × Conjk−1, denoted D(Conjk−1). The
generating function for Conj2

k is thus fk−1(t2).
Conj1

k consists of classes of type (σ1, σ2)1, corresponding to unordered
pairs of representations fromHk−1. The class Conjk−1×Conjk−1\D(Conjk−1)
is the set of ordered partitions. Its generating function is fk−1(t)2−fk−1(t2).
The identification of a tuple (σ1, σ2) and (σ2, σ1) in this class gives the class
of unordered pairs; its generating function is 1

2(fk−1(t)2 − fk−1(t2)). Since
the cardinality is twice the product of cardinalities of the classes σ1 and σ2,
we multiply this expression by t in the final summation.
Conj3

k comprises classes of type (Id, σ)−1 and is isomorphic to Conjk−1.
The generating function for this class is thus fk−1(t). The constant |Hk−1|
multiplies the cardinality of all such classes, since our choice for σ1 = Id in
evaluating Equation 2 was arbitrary.

The terms in a distinct union add to give fk(t) = t
2(fk−1(t)2−fk−1(t2))+

fk−1(t2) + t2
k−1−1fk−1(t).

�

3. Irreducible representations of Hk

This section enumerates and characterises the irreducible representations
of Hk. We will find that these representations all occur as summands in
representations induced from the normal subgroup Hk−1×Hk−1. Irreducible
representations of Hk−1 × Hk−1 are of the form φ1 × φ2, for irreducible
representations φ1 and φ2 of Hk−1. We adopt the notation γ = φ1× φ2 and
Γ is the representation of Hk induced from γ.

Proposition 3.1. Γ is irreducible if γ is of type φ1 ⊗ φ2, for inequivalent
irreducible representations φ1 and φ2 of Hk−1, and is the sum of two irre-
ducible representations otherwise.

With γ and Γ as above, and using the formula for induced characters
from [5, Chapter 5, pg 64] for the case G = Hk and H = Hk−1 ×Hk−1 and
substituting values from table 1:
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Table 2. Centralisers of conjugacy classes

Type of class |CHk
| {xi} |CHk−1

(xi)|

[(σ1, σ2)1] |CHk−1
(σ1)||CHk−1

(σ2)| (σ1, σ2)
(σ2, σ1)

|CHk−1
(σ1)||CHk−1

(σ2)|
|CHk−1

(σ1)||CHk−1
(σ2)|

[(σ1, σ1)1] 2|CHk−1
(σ1)|2 (σ, σ) |CHk−1

(σ1)|2

(5) Γ((σ1, σ2)ε) =

{
φ1(σ1)φ2(σ2) + φ1(σ2)φ2(σ1) if ε = 1,

0 otherwise.

We are ready to present the proof of Proposition 3.1:

Proof. For an irreducible representation γ of Hk−1 × Hk−1, let γδ be the
conjugate representation for δ = (Id, Id)−1. The corollary to [8, Chapter
5, Proposition 23] posits that a necessary and sufficient condition for the
irreducibility of Γ is that γ and γδ be non-isomorphic as Hk−1 ×Hk−1 rep-
resentations.

First let γ = φ1×φ2, so γδ = φ2×φ2. These are nonisomorphic irreducible
Hk−1 × Hk−1 representations since their characters are distinct. Thus the
induced representation Γ is irreducible.

When γ = φ × φ, γδ = γ = φ × φ. Thus the induced representation
is reducible. The number of irreducible components of Γ is given by the
inner product on characters, 〈Γ,Γ〉. From Frobenius reciprocity we have

〈Γ,Γ〉 = 〈ResHk
Hk−1×Hk−1

(Γ), γ〉. From Equation 5, 〈ResHk
Hk−1×Hk−1

(Γ), γ〉 = 2.

Thus the induced representation of γ has two irreducible components.
�

Let Irr(Hk) denote the set of irreducible representations of Hk. If all
the induced representations occuring in Proposition 3.1 were distinct, there
would be

(Hk−1
2

)
+2Hk−1 of them. This, in addition to the condition H0 = 1

follows equation 3 for the number of conjugacy classes. Thus all irreducible
representations of Hk would be obtained by inducing irreducible represen-
tations from Hk−1×Hk−1, if the induced representations were distinct. We
use a theorem of Clifford on representations induced from normal subgroups
to show that this is in fact the case.

Theorem 3.1. [5, Theorem 1] Given an irreducible representation Γ of a
group G, and a normal subgroup H of G over any field P , the representation
ResGH(Γ) is either itself irreducible or is fully reducible into irreducible com-
ponents, all of the same degree. If γ is an irreducible component of ResGH(Γ)
then all the other irreducible components of ResGH(Γ) are G-conjugates of γ,
and all conjugate occur, and with the same multiplicity.

Consider an irreducible representation Γ of Hk, occuring in the induction
of an irreducible representation γ of Hk−1 × Hk−1. Let Id = (Id, Id)1 and
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δ = (Id, Id)−1 be the coset representatives of Hk−1 × Hk−1 in Hk, and let

γδ be the conjugate by δ of γ. Then by Theorem 3.1, ResHk
Hk−1×Hk−1

(Γ) =

m(γ + γδ), where m is the multiplicity. Now clearly,

γδ =

{
φ⊗ φ if γ = φ⊗ φ
φ2 ⊗ φ1 if γ = φ1 ⊗ φ2

(6)

So,

ResHk
Hk−1×Hk−1

(Γ) =

{
m1(φ⊗ φ) if γ = φ⊗ φ
m2(φ1 ⊗ φ2 + φ2 ⊗ φ1) if γ = φ1 ⊗ φ2

(7)

where, by Frobenius reciprocity, m1 = m2 = 1.
It is clear from this condition on the restrictions that the induced charac-

ters described in Proposition 3.1 are completely parametrised by the choice
of two representations of Hk−1. Thus they are all distinct.

Table 3. Irreducible characters of Hk

Notation Description Action on (σ1, σ2)1 Dimension
Ind(φ1, φ2) Induced from φ1 ⊗ φ2 φ1(σ1)φ2(σ2) + φ1(σ2)φ2(σ1) 2dim(φ1)dim(φ2)

Ext+(φ) Positive extension of φ⊗ φ φ(σ1)φ(σ2) dim(φ)dim(φ)
Ext−(φ) Negative extension of φ⊗ φ φ(σ1)φ(σ2) dim(φ)dim(φ)

Now we restrict our attention to irreducible Hk−1 × Hk−1 characters of
the type γ = φ ⊗ φ. We have seen that the representation induced from
γ consists of two irreducible representations of Hk. We call these charac-
ters Ext+(γ) and Ext−(γ) the positive and negative extensions of γ, for
reasons explored below. From Equation 6 and Equation 7 we know that

ResHk
Hk−1×Hk−1

(Ext±(γ)) = γ.

It remains to find the value of Ext±(γ) on classes of type (Id, σ)−1. We
denote the representation corresponding to a character by the same name,
and investigate the matrix of this representation with respect to an arbitrary
basis of the representation space of γ. First note that Ext±(γ)(Id, σ1)−1) =
Ext±(γ)((Id, σ)1)Ext±(γ)((Id, Id)−1), and so we must find the matrix of the
representation for the element δ = (Id, Id)−1 to determine the character of
the representation over all of Hk. Let A± = Ext±(γ)((Id, Id)−1). Note that
A2
± = 1.

A±γ(σ1, σ2)A± = Ext±(γ)(((Id, Id),−1)Ext±(γ)((σ1, σ2), 1)Ext±(γ)((Id, Id),−1)

(8)

= Ext±(γ)(((σ2, σ1), 1))

= γ(σ2, σ1)
So

A±γ = γA±



8 S NARAYANAN

where γ(σ1, σ2) = γ(σ2, σ1).
Thus A± is an intertwiner on the space V � V , where V is the rep-

resentation space of φ; by Schur’s lemma, A± = λT for some scalar λ
and T be the intertwiner that takes the element v � w to w � v. Since
I = A2

± = λ2T 2 = λ2I, since T 2 = I, and so λ = ±1.

Ext±(γ)((1, σ)−1) = Ext±(γ)((Id, σ)1)Ext±(γ)((Id, Id)−1)

= φ(Id)⊗ φ(σ)(± ◦ T )

= ±Id⊗ φ(σ) ◦ T
It now becomes clear why the extensions of φ⊗ φ are called the positive

and negative extensions. They can be distinguished by their value on the
conjugacy class (Id, Id)−1. The extension whose value is positive on this
conjugacy class is denoted Ext+(φ), and the other Ext−(φ) as in table 3.

Theorem 3.2. Let a
(k)
m denote the number of irreducible representations of

Hk of dimension 2m and gk(t) =
∑
a

(k)
m tk. Then gk(t) satisfies the recur-

rence relation:

(9) gk(t) =
t

2
[gk−1(t)2 − gk−1(t2)] + 2gk−1(t2).

Proof. Consider the class of irreducible representations Gk with generating
function

∑
Γ∈Irr(Hk) t

log2(dim(Γ)) = gk(t). From Table 3 we know that Gk is

the disjoint union of three types of representations. We denote these classes
by GIndk , G+

k and G−k .

G−k and G+
k are each D(Gk)- the diagonal of the Cartesian product Gk−1×

Gk−1. By the symbolic method, the generating function for each of G+
k and

G−k is gk−1(t2).

GIndk is obtained by taking an unordered pair of distinct irreducible rep-
resentations of Hk−1. The class Gk−1×Gk−1 \D(Gk−1) is the set of ordered
pairs of distinct representations. The corresponding generating function for
ordered pairs of distinct representations is thus (gk−1(t)2 − gk−1(t2)). By
identifying the tuples (φ1, φ2) and (φ2, φ1) in this class, one obtains the class
of unordered pairs; its generating function is 1

2(gk−1(t)2−gk−1(t2)). Finally,
in inducing the tensored representation so formed, the dimension is twice
the product of representations, so we multiply the generating function by t.

Adding the generating functions for the three classes in the disjoint union
gives gk(t) = t

2(gk−1(t)2 − gk−1(t2)) + 2gk−1(t2). �

4. A recursive method for the character table

In this section we fill in the last gaps of the character table of Hk. It
remains to find the character values for Ext+(φ) and Ext−(φ) on classes of
the type (Id, σ)−1.

Recall that Ext±(φ)((δ)) = ±Id⊗φ(σ)◦T , and so we must find the action
of T on the matrix Id⊗ φ(σ).
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Theorem 4.1. Tr(Ext±(φ)((Id, σ)−1))) = ±Tr(φ).

Proof. Consider a choice of basis {v1, v2, . . . , vl} for the representation space
V of φ. Then the matrix for Id⊗ φ(σ) has the structure:

φ(σ) 0 . . . . . . 0
0 φ(σ) 0 . . . 0

0 0
. . . . . . 0

0 0 . . . φ(σ)


each of the blocks is an l × l size matrix. T acts on the space V � V

by extending the action T (vi � vj) = vj � vi. Thus, the matrix for T is
(Eij)1≤i,j≤l, where Eij is an l × l block that is 1 in the (j, i) position and 0
otherwise.

Thus

Tr(Ext±(φ)((Id, σ)−1)) = ±
l∑

i=1

Tr(φ(σ)Eii)

= ±Tr(φ(σ)

l∑
i=1

Tr(Eii))

= ±Tr(φ(σ)I)

= ±Tr(φ(σ))
�

This is a complete description of the character table of Hk.
The recursive method simplifies the calculation of character values of Hk.

A lexicographic order on the conjugacy classes of Hk−1 with the rule 1 < −1
extends to a total order onHk by identifying the class (σ1, σ2)ε with the tuple
(ε, σ1, σ2), for ε = ±1. the columns arranged by this order resembles Table 4.
A lexicographic ordering on irreducible representations of Hk−1 along with
the identifications Ext+(φ) → (1, φ, φ), Ext−(φ) → (2, φ, φ), Ind(φ1, φ2) →
(3, φ1, φ2) similarly gives a grouping on rows that resembles Table 4. Under
such an arrangement, only the values marked with an asterisk in Table 4
need to be calculated anew.

We populate the tables for the values k = 0, 1, 2, 3, to demonstrate the
recursive method.

Table 4. Template for the character table for Hk

(σ1, σ2)1 (Id, σ1)−1

Positive Summands from φ⊗ φ φ(σ1)φ(σ2)∗ character table for Hk−1

Negative Summands from φ⊗ φ φ(σ1)φ(σ2) -character table for Hk−1

Induced Irrep from φ1 ⊗ φ2 φ1(σ1)φ2(σ2) + φ1(σ2)φ2(σ1)∗ 0
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Table 5. Character table for H0:

Id
Id 1

Table 6. Character table for H1:

C1 := (Id, Id)1 C2 := (Id, Id)−1

φ1 := Id+ 1 1
φ2 := Id− 1 −1

Table 7. Character table for H2:

(C1, C1)1 (C2, C2)1 (C1, C2)1 (Id, C1)−1 (Id, C2)−1

φ+
1 1 1 1 1 1
φ+

2 1 1 −1 1 −1
φ−1 1 1 1 −1 −1
φ−2 1 1 −1 −1 1

Ind(φ1, φ2) 2 -2 0 0 0

Table 8. Character table for H3:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 1 −1
1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
4 4 4 0 0 −4 0 0 0 0 0 0 0 0 0 2 -2 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1
1 1 1 1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 −1 −1 1 −1 1
1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 −1 −1 −1 1 1
1 1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 −1 −1 1 1 −1
4 4 4 0 0 -4 0 0 0 0 0 0 0 0 0 -2 2 0 0 0
2 2 -2 2 -2 2 0 2 0 0 2 0 0 -2 0 0 0 0 0 0
2 2 2 -2 -2 2 2 0 0 2 0 0 0 0 -2 0 0 0 0 0
2 2 -2 -2 2 2 0 0 2 0 0 2 -2 0 0 0 0 0 0 0
-4 -4 0 0 0 0 2 2 2 2 -2 -2 0 0 0 0 0 0 0 0
2 2 -2 -2 2 2 0 0 -2 0 0 -2 2 0 0 0 0 0 0 0
2 2 2 -2 -2 2 -2 0 0 -2 0 0 0 0 2 0 0 0 0 0
4 -4 0 0 0 0 -2 2 -2 2 -2 2 0 0 0 0 0 0 0 0
2 2 -2 -2 -2 2 0 -2 0 0 -2 0 0 2 0 0 0 0 0 0
4 -4 0 0 0 0 2 -2 -2 -2 2 2 0 0 0 0 0 0 0 0
4 -4 0 0 0 0 -2 -2 2 2 2 -2 0 0 0 0 0 0 0 0

5. The Bratteli diagram of Pn:

We now turn to the branching graph for the family {Pn} . In this section
we introduce a bijection between irreducible representations of Pn and forests
of binary trees. We use these objects to develop a description of the Bratteli
diagram that is recursive and self-similar. Of particular interest are one-
dimensional irreducible characters due to their bijective correspondence with
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odd dimensional representations of Sn. Bijections have been developed in [4].
Here we compare the subgraph of odd-dimensional representations of Sn to
the subgraph of one-dimensional representations of Pn.

Theorem 5.1. The restriction of an irreducible representation of Hk to
P2k−1 is multiplicity free.

Proof. Consider Hk ⊃ Hk−1×Hk−1 ⊃ Hk−1×Hk−2 · · · ×H0×H0
∼= P2k−1.

Thus ResHk
P
2k−1

= Res
Hk−1×Hk−1

P
2k−1

(ResHk
Hk−1×Hk−1

). For an irreducible represen-

tation φ1⊗φ2 of Hk−1×Hk−1, Res
Hk−1×Hk−1

P
2k−1

(φ1⊗φ2) = φ1⊗Res
Hk−1

P
2k−1−1

(φ2).

This combined with

ResHk
Hk−1×Hk−1

(Γ) =

{
φ⊗ φ Γ = Ext±(γ)

φ1 ⊗ φ2 + φ2 ⊗ φ1 Γ = Ind(φ1, φ2)

proves that each summand occuring in the restriction is distinct. �

Definition 5.1. The up-set of an irreducible representation Γ of Pn, de-
noted Γ+, is the set of irreducible representations of Pn+1 that occur in the
induction of Γ to Pn+1.

Definition 5.2. The down-set of an irreducible representation Γ of Pn,
denoted Γ−, is the set of irreducible representations of Pn−1 that occur in
the restriction of Γ to Pn−1.

We now introduce 1-2 binary trees as the combinatorial object used to
describe the Bratteli diagram. The motivation comes from [1], which uses
the generating function from Equation 3 to count these objects.

Definition 5.3. A 1-2 binary tree is defined recursively as either the trivial
tree- ∅, or a tuple (r, S), where r is called the root vertex, and S is a multiset
of either one or two 1-2 binary trees of the same height.

The definition of the subtrees as a set is to indicate that we ‘forget’ their
positions as left or right subtrees. Since S comprises trees of the same
height, we may define the height of the tree recursively as one more than
the common height of trees in S(the trivial tree is said to have height 0).
This notion of height is equivalent to that defined for complete binary trees
in Section 1. Set S may comprise two distinct trees, two identical trees or a
single tree. We define a bijection that maps these to representations of the
type Ind(φ1, φ2), Ext+(φ) and Ext−(φ) respectively.

θk(Γ) =


(r, {θk−1(φ1), θk−1(φ2)}), Γ = Ind(φ1, φ2)

(r, {θk−1(φ), θk−1(φ)}), Γ = Ext+(φ)

(r, {θk−1(φ)}), Γ = Ext−(φ)

(10)

In fact we have defined a recursive family of bijections. Trees inherit
the notion ot type from the representation they denote. Hence we may
extend the notation Ind, Ext+ and Ext− from irreducible characters to trees
Since irreducible characters of Pn are tensored products of representations



12 S NARAYANAN

of certain Hki , the bijection is naturally extended to such representations
by introducing tuples of binary trees, which we call forests.

Definition 5.4. A forest of n is a tuple of r 1-2 binary trees of heights
(kr, . . . , k1), where kr > · · · > k1 are the binary digits of n.

The bijection is now extended componentwise, as under:
With Γ = φ1 × φ2 × . . . φl, where φj is an irreducible representation of

Hkj :
θ[n](Γ) = (θkl(φl), θkl−1

(φl−1), . . . , θk0(φ0))(11)

Given a tree T or a forest F , the up-set T+( or F+) and down-set T−(or
F−) are defined as the images of the up-sets and down-sets(Definition 5.1
and Definition 5.2) of the representations corresponding to these trees(or
forests).

Proposition 5.1. With T = (r, S) of height k:

T− =


T1 × (T2)− t T2 × (T1)− S = {T1, T2}
T × T− S = {T, T}
T × T− S = {T}

Proof. We describe T− through the effect on trees of the restriction defined
in the proof of Theorem 5.1. In restricting a representation Γ of Hk to the
subgroup Hk−1 ×Hk−1 we obtain the set S × S, where each tuple (T1, T2)
is understood to denote the representation θ−1

k−1(T1)⊗ θ−1
k−1(T2). This is the

set of images of the summands occuring in the restriction of Γ.
The restriction to P2k−1 then proceeds on each summand by restricting

to P2k−1−1 along the second component of the tensor. It acts on a tuple of
trees (T1, T2) by leaving unchanged the first component and replacing T2 by
a tuple in its downset. �

Definitions 5.1 and 5.2 are equivalent, in that if we have representations
Γ and γ of Hk and P2k−1 respectively, γ ∈ Γ− iff Γ ∈ γ+. Thus we have:

Corollary 5.1.1. With F = T1 × F a forest of 2k − 1:

F+ =

{
{(r, {T1, T2})|T2 ∈ F

+} ∪ {(r, {T1})} if T1 ∈ (F )+

{(r, {T1, T2})|T ∈ F
+} otherwise

We now have a complete characterisation of the branching between the
levels 2k and 2k−1, recursively from the levels 2k−1 and 2k−1. We now prove
that the tree is self-similar at every level, and so that Proposition 5.1 and
Corollary 5.1.1 provide sufficient information to construct the entire Bratteli
diagram.

Proposition 5.2. With k and n integers such that n < 2k. Given a repre-
sentation F = T1 × F of 2k + n, where T1 is a tree of height k, and F is a

forest of n. Then F− = T1 ⊗ F
−

.

Proof. The restriction Pn → Pn−1 induces the restriction Hk × Pn → Hk ×
Pn−1, such that its restriction to Hk is the identity map. A forest F is
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the image of an irreducible representation of P2k+n, where T1 is the image

of an irreducible Hk and F is the image of an irreducible representation
of Pn. Under the specified restriction, the Hk representation is fixed while
the representation of Pn is restricted to Pn−1. Thus the image set F− =

{(T1, f)|f ∈ F−} and the result follows.
�

The analogous condition for the up-set follows:

Corollary 5.1.2. With k and n integers such that n < 2k. Given a repre-
sentation f = T1 × f of 2k + n− 1, where T1 is a tree of height k, and f is

a forest of n− 1. Then f+ = T1 ⊗ f
+

.

Proposition 5.2 and Corollary 5.1.2 may be applied repeatedly on an
integer n to strip away powers of 2 from the binary digits of n to reduce the
branching to that between Hk0 to P2k0−1, where k0 is the least significant
binary digit of n.

For example consider the branching between P12 and P11. The binary
digits of n are 3, 2. Thus P12 = H3×H2 and P11 = H3×H1×H0. Applying
Proposition 5.1 for k = 3, n = 4 gives that the branching between P12 and
P11 looks ‘locally’ like the branching between H2 and P3. What is meant by
locally is that for a given tree T of H3, if all trees with T are collected at
the levels 12 and 11, then the branching between these forests is a copy of
the subgraph consisting of the 4th and 3rd levels of the diagram.

McKay’s conjecture, proved true for p = 2 for symmetric groups in [3],
says that the one-dimensional representations of Pn are equinumerous with
odd dimensional representations of Sn. The subgraph of odd-dimensional
representations is called the MacDonald tree in [2]. We describe the sub-
graph of one dimensional representations in the Bratteli diagram.

From 3, the dimension of the representation induced from φ1 ⊗ φ2 is
2dim(φ1)dim(φ2); the dimension of the positive and negative extension of φ⊗
φ is dim(φ)2. Clearly the one dimensional irreducible representations of Hk

are the positive and negative extensions of the one dimensional irreducible
representations of Hk−1. The dimension of a forest of trees is the product
of dimensions of the trees in this forest. Thus one dimensional forests are
tuples of one dimensional trees.

As a consequence of this, there are 2k one-dimensional representations of
Hk, and 2k0+···+kl one-dimensional representations of Pn, where {kl, . . . , k0}
are the binary digits of n. This indicates a way to represent such trees by
strings of binary digits. First denote the unique one-dimensional represen-
tation of H0 by the digit 1. Now given a one-dimensional representation of
Hk−1 represented by a binary string b of length k − 1, the binary strings
for the positive and negative extensions are obtained by appending 1 and
0 respectively to the start of b. Henceforth the binary string for T is used
interchangeably with the tree T .
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With Bk being the set of binary strings of length k, let L : Bk → Bk−1

truncate the leftmost bit from a binary string. Then the binary string of
the unique subtree of a one-dimensional tree with binary string B is given
by L(B). Given such a tree T , T− = (L(B), L2(B), . . . , 1) from 5.1. Thus
each one-dimensional tree has a unique ancestor. Applying Corollary 5.1.1
to a forest F = T1 × F of 2k − 1, an extension is possible if and only if
F = (L(B), L2(B), . . . , 1), where B is the binary string for T1. In this case
there are two extensions, 0B and 1B.

This discussion leads to a recursive description of the subgraph. Let Ok
represent the subgraph of one-dimensional representations upto the level
2k − 1. At the highest level, each node is a one-dimensional forest of 2k − 1.
For a one-dimensional tree T of height k−1, there is a unique forest of 2k−1
with T as its first element that yields successors at the 2k level, and such
a node yields two successors. For each of these trees, its branching to the
2k − 1 level is a copy of Ok, by Proposition 5.2. Thus, to obtain Ok+1 from
Ok,

• Begin with a single copy of Ok.

• Choose 2k−1 nodes at the level 2k − 1 level of Ok, such that the
unique path from these nodes downwards pairwise do not intersect
at the 2k−1 level. This corresponds to a choice of distinct trees of
height k − 1.

• To each such node attach two copies of Ok.

An example of this is provided in Figure 3. Here, O3 is constructed from
O2.

From this description it is clear that this tree is non-isomorphic to the
MacDonald tree in [2]. For example, the subgraph considered here has
infinitely many infinite rays, since each representation can be extended re-
peatedly in a canonical way. This means in particular that there cannot
exist a bijection between odd-dimensional representations of Sn and one-
dimensional representations of Pn that preserves the subgraph structure.

We refer to [2] the recursive description of the MacDonald tree. A portion
of this tree has been reproduced in Figure 4.

A Sage implementation of the bijection between forests and irreducible
representations( also conjugacy classes) can be found at https://github.com/sridharpn/2-
Sylow.
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O2

O3

Figure 3. O3 is built recursively by attaching two copies of
O2 to appropriate nodes on the maximal level of O2. Nodes
on the highest level of O3 that further propagate are labelled
A-D
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Figure 4. The MacDonald tree till n = 15

Figure 5. The subgraph of one-dimensional representations
of Pn till n=15.
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Figure 6. Branching of irreducible representations till n =
8. Green edges represent Ext+ type representations, with red
edges for Ext− and blue for Ind type representations.
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