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HOW THE KREWERAS TRIANGLE APPEARS IN

THE UNIVERSAL sl2 WEIGHT SYSTEM

ANGE BIGENI

Abstract. The theory of finite order knot invariants applied to
the Lie algebra sl2 provides a weight system which maps the chord
diagrams to polynomials in a single variable with integer coeffi-
cients. In this paper, we show that the Kreweras triangle, known
to refine the normalized median Genocchi numbers, appears natu-
rally in this weight system.

Notations

For all pair of integers n < m, the set {n, n + 1, . . . , m} is denoted
by [n,m], and the set [1, n] by [n]. The set of the permutations of [n]
is denoted by Sn. If two polynomials A and B of the ring Z[x] have

the same congruence modulo C ∈ Z[x], then we write A
C
≡ B.

1. Introduction

1.1. About the chord diagrams and the universal sl2 weight

system. Let n be a positive integer. In the theory of finite order knot
invariants (see [3, 14]), a chord diagram of order n, or n-chord diagram,
is an oriented circle with 2n distinct points paired into n disjoint pairs
named chords, considered up to orientation-preserving diffeomorphisms
of the circle. It can be assimilated into a tuple ((pi, p

∗
i ) : i ∈ [n])

such that {p1, p
∗
1, p2, p

∗
2, . . .} = [2n] with p1 < p2 < . . . < pn and

pi < p∗i for all i : for such a tuple, the corresponding chord diagram is
obtained by labelling 2n points on a circle with the consecutive labels
1, 2, . . . , 2n (following the counterclockwise direction), and pairing the
points labelled with pi and p∗i for all i ∈ [n]. For example, the tuples
((1, 3), (2, 5), (4, 6)) and ((1, 5), (2, 4), (3, 6)) are two representations of
the 3-chord diagram depicted in Figure 1.

A weight system is a function f on the chord diagrams that satisfies
the 4-term relations depicted in Figure 2.
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Figure 1. Two distinct labellings of a 3-chord diagram.

f( )−f( ) = f( )− f( )

Figure 2. The 4-term relations.

The theory provides the construction of nontrivial weight systems
from semisimple Lie algebras, among which the Lie algebra sl2 of the
2 × 2 matrices whose trace is zero, which raises a weight system ϕsl2

mapping the n-chord diagrams to elements of Z[x] with degree n. With
precisions, it gives birth to a family of weight systems (ϕsl2,λ)λ∈R related
by the following equation for all λ ∈ R and for all n-chord diagram D :

(1) λnϕsl2,λ(D)(x/λ) = ϕsl2
(D)(x).

In the rest of this paper, we consider the weight system

ϕ = ϕsl2,2.

The following is a combinatorial definition of ϕ from [4].

Definition 1. Let D be an n-chord diagram. The weight ϕ(D) is
defined as x if D is the unique 1-chord diagram D1 = ((1, 2)), otherwise
n ≥ 2 and ϕ(D) is defined by the following inductive formula :

(2) ϕ(D) = (x− k)ϕ(Da) +
∑

{i,j}⊂Ia

∆i,j(Da)

where, if D = ((pi, p
∗
i ) : i ∈ [n]) :

— a is any given chord (pi, p
∗
i ) of D (it is then a nontrivial result

that this definition does not depend on the choice of a);

— Da is the (n − 1)-chord diagram obtained from D by deleting
the chord a;

— k = #Ia where Ia is the set of the integers i ∈ [n] such that the
point pi is located in the left half-plane defined by the support
of a, and such that the chord (pi, p

∗
i ) intersects a;

— for all {i, j} ⊂ Ia, ∆i,j(Da) = ϕ(D1
i,j) − ϕ(D2

i,j) where D1
i,j

(respectively D2
i,j) is the (n − 1)-chord diagram obtained from
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Da by replacing the chords (pi, p
∗
i ) and (pj, p

∗
j) by (pi, pj) and

(p∗i , p
∗
j ) (respectively by (pi, p

∗
j) and (pj , p

∗
i )).

Remark 2. For all n-chord diagram D, it is straightforward, by in-
duction on n, that ϕ(D) is a polynomial with degree n and integer
coefficients, and is divisible by x.

For example, there are two 2-chord diagrams :

and ,

and their respective weights are x2 and (x−1)x. To compute the weight
of the 3-chord diagram D depicted hereafter

p1
p2

p3
p∗1

p∗3

p∗2,

one can consider the chord a = (p1, p
∗
1) to obtain

ϕ(D) = (x− 2)ϕ(
p2

p3 p∗3

p∗2
) + ϕ(

p2

p3 p∗3

p∗2
)− ϕ(

p2

p3 p∗3

p∗2
)

= (x− 2)x2 + x2 − (x− 1)x = (x− 1)2x,

though the choice of a = (p2, p
∗
2) or a = (p3, p

∗
3) provides a quicker

computation :

ϕ(D) = (x− 1)ϕ(

p1

p3
p∗1

p∗3

)

= (x− 1)2x.

Definition 3. For all n ≥ 1, let Dn be the n-chord diagram where
every chord intersects all the other chords, i.e.,

Dn = ((i, n+ i) : i ∈ [n]) = .

p∗n−1
p∗np1

p2

pn−1 pn p∗1

p∗2

We set Dn = ϕ(Dn) ∈ Z[x].
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The first elements of (Dn)n≥1 :

D1 = x,

D2 = (x− 1)x
x2

≡ −x,

D3 = (x− 2)(x− 1)x
x2

≡ 2x,

D4 = (x− 3)(x− 2)(x− 1)x+ x3 − (x− 1)2x
x2

≡ −7x.

Conjecture 4 (Lando,2016). For all n ≥ 1,

Dn

x2

≡ (−1)n−1hn−1x

where (hn)n≥0 = (1, 1, 2, 7, 38, 295, . . .) is the sequence of the normalized
median Genocchi numbers [17], of which we give a reminder hereafter.

1.2. About the Genocchi numbers. The Seidel triangle (gi,j)1≤j≤i [6]
(see Figure 3) is defined by

g2p−1,j = g2p−1,j−1 + g2p−2,j,

g2p,j = g2p−1,j + g2p,j+1,

with g1,1 = 1 and gi,j = 0 if i < j.

... . .
.

5 155 . . .
4 17 17 155 . . .
3 3 3 17 34 138 . . .
2 1 1 3 6 14 48 104 . . .
1 1 1 1 2 2 8 8 56 56 . . .
j/i 1 2 3 4 5 6 7 8 9 . . .

Figure 3. The Seidel triangle.

The Genocchi numbers (G2n)n≥1 = (1, 1, 3, 17, 155, 2073, . . .) [15] and
the median Genocchi numbers (H2n+1)n≥0 = (1, 2, 8, 56, 608, . . .) [16]
can be defined as the positive integers G2n = g2n−1,n and H2n+1 =
g2n+2,1 [6]. It is well known that H2n+1 is divisible by 2n for all
n ≥ 0 [1]. The normalized median Genocchi numbers (hn)n≥0 =
(1, 1, 2, 7, 38, 295, . . .) are the positive integers defined by

hn = H2n+1/2
n.

Remark 5. In view of Formula (1) with λ = 2, Conjecture 4 is equiva-
lent to

ϕsl2
(Dn)

x2

≡ (−1)n−1H2n−1x
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for all n ≥ 1.

There exist many combinatorial models of the different kinds of
Genocchi numbers. Here, for all n ≥ 0, we consider :

— the set PD2n of the Dumont permutations of the second kind,
that is, the permutations σ ∈ S2n+2 such that σ(2i−1) > 2i−1
and σ(2i) < 2i for all i ∈ [n+ 1];

— the subset PD2Nn ⊂ PD2n of the normalized such permuta-
tions, defined as the σ ∈ PD2n such that σ−1(2i) < σ−1(2i+1)
for all i ∈ [n].

It is known that H2n+1 = #PD2n [5] and hn = #PD2Nn [12, 8].
Kreweras [12] refined the integers hn through the Kreweras triangle

(hn,k)n≥1,k∈[n] (see Figure 4) defined by h1,1 = 1 and, for all n ≥ 2 and
k ∈ [3, n],

hn,1 = hn−1,1 + hn−1,2 + . . .+ hn−1,n−1,

hn,2 = 2hn,1 − hn−1,1,(3)

hn,k = 2hn,k−1 − hn,k−2 − hn−1,k−1 − hn−1,k−2.

1
1 1

2 3 2
7 12 12 7

38 69 81 69 38
295 552 702 702 552 295

Figure 4. The six first lines of the Kreweras triangle.

It is easy to see that for all n ≥ 0, the set PD2Nn has the partition
{PD2Nn,k}k∈[n] where PD2Nn,k is the set of the σ ∈ PD2Nn such that
σ(1) = 2k. Kreweras and Barraud [13] proved that for all n ≥ 1 and
k ∈ [n], the integer hn,k is the cardinality of PD2Nn,k. In particular,
for all n ≥ 1,

(4) hn,1 =
n−1
∑

i=1

hn−1,i = hn−1.

A visible property of the Kreweras triangle is the symmetry

(5) hn,k = hn,n−k+1

for all n ≥ 1 and k ∈ [n]. We can prove it combinatorially [13, 2], or
directly from System (3), by first establishing the following easy result.
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Proposition 6. For all n ≥ 1 and k ∈ [n], we have

hn,k − hn,k−1 =
n−1
∑

i=k

hn−1,i −
k−2
∑

i=1

hn−1,i

(where hn,0 is defined as 0).

1.3. The Kreweras triangle in the universal sl2 weight system.

Definition 7. Let n ≥ 1 and k ∈ [0, n − 1]. We define two n-chords
diagrams An,k and Bn,k as follows.

An,k = Bn,k =

p∗n−1
p1

p2

pk+1

p∗1
pk+2 pn−1

p∗2

p∗k+1

p∗k+2

pn

p∗n
p∗n

p1

p2

pk+1

p∗1
pk+2 pn

p∗2

p∗k+1

p∗k+2

We then define two polynomials An,k = ϕ(An,k) and Bn,k = ϕ(Bn,k).
Note that :

— the chord (p1, p
∗
1) of An,k or Bn,k (and the chord (pn, p

∗
n) of Bn,k)

intersects exactly k chords;

— for all n ≥ 1, An,0 = xDn−1 (where D0 is defined as the poly-
nomial 1), and Bn,0 = x2Dn−2 for all n ≥ 2, in particular their
congruence modulo x2 is 0 in view of Remark 2;

— An,n−1 = Bn,n−1 = Dn for all n ≥ 1.

We also set An,−1 = Bn,−1 = 0.

Remark 8. For all 1 ≤ i < j ≤ n, it is straightforward that

∆i,j(Dn) = Bn,j−i−1 −Bn,n−1−(j−i).

Theorem 9. For all n ≥ 1 and k ∈ [0, n− 1], we have

An,k

x2

≡ (−1)n−1

(

k
∑

i=1

hn−1,i

)

x,(6n,k)

Bn,n−k−1 − Bn,k−1
x2

≡ (−1)n−1(hn,k+1 − hn,k)x(7n,k)

where hn,0 and h0,1 are defined as 0.

In particular, either Formula (6n,k) or Formula (7n,k) proves Conjec-
ture 4 in view of Dn = An,n−1 = Bn,n−1 − Bn,−1 and Equality (4).

Section 2 is dedicated to the proof of Theorem 9.
In Section 3, we discuss open problems related to it, among which a

more general conjecture from Lando.
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2. Proof of Theorem 9

We already know that Theorem 9 is true if n = 1 and k = 0. Assume
that it is true for some n ≥ 1 and for all k ∈ [0, n− 1].

Lemma 10. For all k ∈ [n− 1],

An,k−1 + An,n−k

x2

≡ An,n−1 = Dn.

Proof. By hypothesis,

An,k−1 + An,n−k

x2

≡ (−1)n
(

k−1
∑

i=1

hn−1,i +
n−k
∑

i=1

hn−1,i

)

x,

An,n−1
x2

≡ (−1)n
(

n−1
∑

i=1

hn−1,i

)

x,

so the lemma follows from Formula (5). �

Lemma 11. For all k ∈ [0, n],

An+1,k − An+1,k−1
x2

≡
k
∑

i=1

Bn,i−2 − Bn,n−i.

Proof. For all k ∈ [0, n], from Definition 1 (with D = An+1,k and
a = (p1, p

∗
1)) and Remark 8, we have the congruence

An+1,k
x2

≡ −kDn +
∑

2≤i<j≤k+1

Bn,j−i−1 − Bn,n−1−(j−i)

from which the lemma follows in view of −Dn = Bn,−1 −Bn,n−1. �

Lemma 11 and the assumption that Formula (7n,k) is true for all
k ∈ [0, n − 1] imply Formula (6n+1,k) for all k ∈ [0, n], and also For-
mula (7n+1,0) in view of Bn+1,n−Bn+1,−1 = An+1,n. It remains to prove
Formula (7n+1,k) for all k ∈ [n].

Definition 12. For all n-chord diagram D and for all quadruplet of
integers (a, b, c, d) such that 1 ≤ a ≤ b < c ≤ d ≤ n, we define two
polynomials

Ta,b(D) =
∑

a≤s<t≤b

∆s,t(D),

Ra,b,c,d(D) =
b
∑

s=a

d
∑

t=c

∆s,t(D).

They are related by the equality

(8) Ta,c(D) = Ta,b(D) + Tb+1,c(D) +Ra,b,b+1,c(D).
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Lemma 13. For all l ∈ [0, n− 1],

Bn+1,l
x2

≡ −lAn,l + T2,l+1(An,l),(9)

An+1,l
x2

≡ −(n− 1)An,l + T2,n(An,l),(10)

An+1,l
x2

≡ −lDn +
∑

2≤i<j≤l+1

Bn,j−i−1 − Bn,n−1−(j−i).(11)

Proof. By applying Definition 1 on D = Bn+1,k with a = (p1, p
∗
1) or

a = (pn+1, p
∗
n+1), we obtain Formula (9). By applying it on D = An+1,k

with a = (pn+1, p
∗
n+1) (respectively a = (p1, p

∗
1)), we obtain Formula

(10) (respectively Formula (11) in view of Remark 8). �

Lemma 14. For all k ∈ [n],

An+1,n−k − Bn+1,n−k

x2

≡ −(k − 1)An,n−k +
n
∑

j=n−k+2

j−1
∑

i=2

∆i,j(An,n−k).

Proof. It is an application of Formula (9) and Formula (10) with l =
n− k. �

Lemma 15. For all k ∈ [n],

An+1,k−1 − Bn+1,k−1
x2

≡− (k − 1)An,n−k

+
∑

2≤i<j≤k

Bn,j−i−1 −Bn,n−1−(j−i) −∆i,j(An,k−1).

Proof. It is an application of Formula (9) and Formula (11) with l =
k − 1, in view of Lemma 10. �

As we will see at the end of this section, the rest of the proof is to
show that the polynomials in Lemma 14 and Lemma 15 are congruent
modulo x2, in other words, to obtain
(12)

n
∑

j=n−k+2

j−1
∑

i=2

∆i,j(An,n−k)
x2

≡
∑

2≤i<j≤k

Bn,j−i−1−Bn,n−1−(j−i)−∆i,j(An,k−1).

Lemma 16. For all k ∈ [n], j ∈ [n− k + 2, n] and i ∈ [2, n− k + 1],

∆i,j(An,n−k) + ∆n−k+3−i,2n−k+2−j(An,n−k) = 0.

Proof. ∆i,j(An,n−k) = ϕ(D1
n,i,j)− ϕ(D2

n,i,j) where
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D1
n,i,j = D2

n,i,j =

p∗n
p1

p2

pi

pn−k+1

p∗1
pn−k+2 pj pn

p∗2

p∗n−k+1

p∗n−k+2

p∗i

p∗jp∗n
p1

p2

pi

pn−k+1

p∗1
pn−k+2 pj pn

p∗2

p∗n−k+1

p∗n−k+2

p∗i

p∗j

Now, if Σ is the axial symmetry that maps p1 to p∗1, it is easy to
check that

Σ(D1
n,i,j) = D2

n,n−k+3−i,2n−k+2−j.

Moreover, from Definition 1, it is straightforward by induction on the
order n of any chord diagram D that ϕ(Σ(D)) = ϕ(D), thence the
lemma. �

In view of Lemma 16, Formula (12) that we need to prove becomes
(13)

∑

n−k+2≤i<j≤n

∆i,j(An,n−k)
x2

≡
∑

2≤i<j≤k

Bn,j−i−1−Bn,n−1−(j−i)−∆i,j(An,k−1).

Lemma 17. For all 2 ≤ i < j ≤ k ≤ n,

Bn,j−i−1
x2

≡− (n− 3)Bn−1,j−i−1

+ T2,n−2(Bn−1,j−i−1)

− 2R2,k−i,k−i+1,n−2(Bn−1,j−i−1)

Bn,n−1−(j−i)
x2

≡− (n− 1)Bn−1,n−2−(j−i)

+ T1,n−1(Bn−1,n−2−(j−i))

− 2R1,k−j+1,k−j+2,n−1(Bn−1,n−2−(j−i)).

Incidentally, the families of polynomials R2,k−i,k−i+1,n−2(Bn−1,j−i−1) and
R1,k−j+1,k−j+2,n−1(Bn−1,n−2−(j−i)) do not depend on k.

Proof. By applying Definition 1 on D = Bn,j−i−1 and a = (pk−i+1, p
∗
k−i+1)

(respectively on D = Bn,n−1−(j−i) and a = (pk−j+2, p
∗
k−j+2)), we obtain
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the two respective formulas

Bn,j−i−1
x2

≡− (n− 3)Bn−1,j−i−1

+ T2,k−i(Bn−1,j−i−1) + Tk−i+1,n−2(Bn−1,j−i−1)

−R2,k−i,n−2(Bn−1,j−i−1),

Bn,n−1−(j−i)
x2

≡− (n− 1)Bn−1,n−2−(j−i)

+ T1,k−j+1(Bn−1,n−2−(j−i)) + Tk−j+2,n−1(Bn−1,n−2−(j−i))

−R1,k−j+1,n−1(Bn−1,n−2−(j−i)),

and the equations of the lemma then follow from Formula (8). �

Lemma 18. For all k ∈ [n] and 2 ≤ i < j ≤ k,

∆n−k+i,n−k+j(An,n−k) = Bn,j−i−1 − Bn,n−1−(j−i) −∆i,j(An,k−1).

Proof. Let (I, J) = (n− k + i, n− k + j). We have

∆i,j(An,k−1) = ϕ(D1
n,i,j)− ϕ(D2

n,i,j),

∆I,J(An,n−k) = ϕ(D3
n,I,J)− ϕ(D4

n,I,J)

where

D1
n,i,j = D2

n,i,j =

D3
n,i,j = D4

n,i,j =

pn−k+1

p∗1
pn−k+2 pn

p∗2

p∗n−k+1

p∗n−k+2
p∗np1

p2

pI pJ

p∗Ip∗J

pn−k+1

p∗1
pn−k+2 pn

p∗2

p∗n−k+1

p∗n−k+2
p∗np1

p2

pI pJ

p∗Ip∗J

p∗np1
p2

pk
p∗1pk+1 pn

p∗2

p∗k

p∗k+1

pi

pj p∗i

p∗j

p∗np1
p2

pk
p∗1pk+1 pn

p∗2

p∗k

p∗k+1

pi

pj p∗i

p∗j
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By applying Definition 1 with a = (p1, p
∗
1), we obtain

ϕ(D1
n,i,j)

x2

≡− (k − 3)Bn−1,j−i−1

+ T2,k−i(Bn−1,j−i−1) + Tn−i+1,n−2(Bn−1,j−i−1)

−R2,k−i,n−i+1,n−2(Bn−1,j−i−1),

ϕ(D2
n,i,j)

x2

≡− (k − 1)Bn−1,n−2−(j−i)

+ T1,k−j+1(Bn−1,n−2−(j−i)) + Tn−j+2,n−1(Bn−1,n−2−(j−i))

−R1,k−j+1,n−j+2,n−1(Bn−1,n−2−(j−i)),

ϕ(D3
n,i,j)

x2

≡− (n− k)Bn−1,j−i−1 + Tk−i+1,n−i(Bn−1,j−i−1),

ϕ(D4
n,i,j)

x2

≡− (n− k)Bn−1,n−2−(j−i) + Tk−j+2,n−j+1(Bn−1,n−2−(j−i)).

It is then a consquence of Formula (8) and Lemma 17 that

ϕ(D1
n,i,j) + ϕ(D3

n,i,j) = Bn,j−i−1,

ϕ(D2
n,i,j) + ϕ(D4

n,i,j) = Bn,n−1−(j−i),

in view of

R2,k−i,k−i+1,n−i +R2,k−i,n−i+1,n−2 = R2,k−i,k−i+1,n−2,

R1,k−j+1,k−j+2,n−j+1 +R1,k−j+1,n−j+2,n−1 = R1,k−j+1,k−j+2,n−1.

This proves the lemma. �

Lemma 18 proves Formula 13. In other words, the results from
Lemma 14 to Lemma 18 imply that

(14) Bn+1,n−k − Bn+1,k−1
x2

≡ An+1,n−k −An+1,k−1

for all k ∈ [n]. Now, at this step we know that Formula (6n+1,k) is true,
so Formula 14 gives

Bn+1,n−k −Bn+1,k−1
x2

≡ (−1)n
(

n−k
∑

i=1

hn,i −
k−1
∑

i=1

hn,i

)

x,

which, in view of Formula 5 and Proposition 6, proves Formula (7n+1,k)
for all k ∈ [n], and ends the proof of Theorem 9.

3. Open problems

Conjecture 4 proved by Theorem 9 is a particular case of the following
conjecture, as we explain afterwards.
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Conjecture 19 (Lando,2016). The generating function
∑

t≥0Dn(x)t
n

has the continued fraction expansion

1

1− b0(x)t−
λ1(x)t

2

1− b1(x)t−
λ2(x)t

2

. . .

where bk(x) = x− k(k + 1) and λk(x) = −k2x+
Ä

k

2

äÄ

k+1
2

ä

.

Following Flajolet’s theory of continued fractions [10], recall that a
Motzkin path of length n ≥ 0 is a tuple (p0, . . . , pn) ∈ ([0, n]× [0, n])n

such that p0 = (0, 0), pn = (n, 0) and −−−→pi−1pi equals either (1, 1) (we
then say it is an up step), or (1, 0) (an horizontal step), or (1,−1) (a
down step), for all i ∈ [n]. Conjecture (19) is equivalent to

Dn(x) =
∑

γ∈Mn

ωb•(x),λ•(x)(γ)

for all n ≥ 0, where ωb•(x),λ•(x)(γ) is the product of the weigths of the
steps of γ ∈ Mn, where an up step is weighted by 1, an horizontal
step from (x, y) to (x+ 1, y) by by(x), and a down step from (x, y) to
(x+ 1, y − 1) by λy(x).

Now, for all n ≥ 2, if M ′
n is the subset of the paths γ = (p0, . . . , pn) ∈

Mn whose only points pi = (xi, yi) such that yi > 0 are p0 and pn, then
it is clear that

∑

γ∈Mn

ωb•(x),λ•(x)(γ)
x
≡

∑

γ∈M ′

n

ωb•(x),λ•(x)(γ),

= −x
∑

γ∈Mn−2

ωb′
•
(x),λ′

•
(x)(γ),

x
≡ −x

∑

γ∈Mn−2

ωβ•,Λ•
(γ)

where

b′k(x) = bk+1(x)
x
≡ βk = −(k + 1)(k + 2),

λ′
k(x) = λk+1(x)

x
≡ Λk =

(

k + 1

2

)(

k + 2

2

)

.

Conjecture 4 is then a particular case of Conjecture 19 in that

∑

n≥0

(−1)nhn+1t
n =

1

1− β0t−
Λ1t

2

1− β1t−
Λ2t

2

. . .

,
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which we can obtain by applying Lemma 20 hereafter on the following
formula (see [11, 9]) :

∑

n≥0

(−1)nhnt
n =

1

1−
−
Ä

2
2

ä

t

1−
−
Ä

2
2

ä

t

1−
−
Ä

3
2

ä

t

1−
−
Ä

3
2

ä

t

1−
−
Ä

4
2

ä

t

. . .

.

Lemma 20 (Dumont and Zeng [7]). Let (cn)n≥0 be a sequence of com-
plex numbers, then

c0

1−
c1t

1−
c2t

. . .

= c0 +
c0c1t

1− (c1 + c2)t−
c2c3t

2

1− (c3 + c4)t−
c4c5t

2

. . .

.

Another ambitious problem would be to extend the combinatorial
interpretations provided by Theorem 9 to any chord diagram.
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