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Abstract

We enumerate the state diagrams of the twist knot shadow which consist of the

disjoint union of two trivial knots. The result coincides with the maximal number

of regions into which the plane is divided by a given number of circles. We then

establish a bijection between the state enumeration and this particular partition of

the plane by means of binary words.

Keywords: twist knot, knot shadow, state diagram, planar arrangement of circles.

1 Introduction

Knot theory defines a mathematical knot as a closed curve in three-dimensional space that
does not intersect itself. We usually describe knots by drawing the so-called knot diagram,
a generic projection of the knot to the plane or the sphere with finitely many double points
called crossings. It is indicated at each such point which strand crosses over and which
one crosses under usually by erasing part of the lower strand. Additionally, we might also
continuously deform a knot diagram such that we obtain another representation which
is planar isotopic to the former diagram, and the crossings remaining unaltered, i.e., no
introduction of new crossings and no removal of the existing ones [1, p. 12]. The shadow

diagram, or shortly the shadow of the knot is the regular projection onto the plane that
omits the crossing information [5]. If we let S denote a shadow, then we call a component
of R2 \ S a region of S. We say that two regions are adjacent if the contours of the two
regions have at least an arc in common, and we say that two regions are opposite if their
contour have exactly a double point in common. A checkerboard coloring [7] of a shadow
is a coloring of every region of S to be black or white so that black regions are only
adjacent to white regions, and conversely, white regions are only adjacent to black ones.
Once colored, we label each region: the unbounded one is labeled as a A and so are the
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Figure 1: The diagram of the figure-eight knot and its shadow diagram as well as the
corresponding labels and checkerboard coloring.

Figure 2: The A-split and the B-split.

regions of the same color. The adjacent regions to an A-region are then labeled as B (see
Figure 1).

A common operation to perform on a shadows crossing is to split it in one way or the
other: we remove the crossing and glue the arcs so that either of the two opposite regions
are merged into one [10, p. 27]. The A-split joins the A-regions while the B-split joins
the B-regions as illustrated in Figure 2.

Thus, any n-crossing knot diagram can be decomposed into 2n final descendants with-
out crossing, which are called states of the diagram [13, p. 71]. A state is a collection of
separated component called trivial knot. We also call such knot unknot whose diagram is
a simple closed loop. We shall refer to k-state a state which consists of k components.

Example 1. We repeat the operation we performed to the previous figure-eight knot,
and we obtain a complete family of state diagrams of trivial knots (see Figure 3).

Figure 3: The state diagrams of the figure-eight knot.
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Throughout this paper, we only consider shadow diagrams, and for the sake of simplic-
ity, we abusively refer to the shadow diagram by either of the terms knot, knot diagram,
or diagram.

Definition 2. Let S denote a state of a n-crossing diagram D, and let |S| denote the
number of components of the state S. Also, let dn,k enumerates the k-state diagrams. We
define the generating polynomial by the formula

D(x) :=
∑

S

x|S| =
∑

k>0

dn,kx
k,

where the summation is taken over all states for D.

Hence, the generating polynomial of the figure-eight diagram is given by

D(x) = 3x3 + 8x2 + 5x.

Associating a knot operation with a polynomial is one of the most usual ways of
classifying and enumerating knots. The so-called knot polynomials [8, 11] are invariant
polynomials which help to decide whether two different looking pictures in fact represent
the same knot. In this paper, we follow the combinatoric approach of Kauffman by using
a simplified version of the bracket polynomial [11]. We express our polynomial only by
means of the number components of the states without including any further topological
information. This makes sense since we only focus on the shadow diagrams.

The rest of this paper is organized as follows. In section 2, we establish the generating
polynomial of the twist knot of n crossings as well as some related knots. We pay a
particular attention to the cardinality of the class of the 2-states as it turns out to be
the maximal number of regions into which the plane is divided by n+1 circles in general
arrangement. In section 3, we establish an arrangement of circles that meets the previ-
ously mentioned criterion. The regions of the corresponding partition of the plane are
next encoded with binary words in section 4. We also this encoding scheme to the states
of the twist knot in section 5. Finally we establish a bijection between the partition of
the plane and the class of the 2-states in section 6.

2 Twist knot

First of all, let us focus on the following three family of knots.

Definition 3. Let n be a natural number. A twist loop is a knot obtained by repeatedly
twisting a closed loop. We call a twist loop of n half-twists a n-twist loop, and we refer
to such knot as Tn. For instance, the 0-twist loop and the 6-twist loop are illustrated in
Figure 4.

Figure 4: The 0-twist loop (unknot) and the 6-twist loop.
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We introduce the second simplest family of knot by applying a slight surgery to the
twist loop.

Definition 4. We construct a foil knot or shortly a foil [14] of n half-twists by removing
a little arc from the right-end and the left-end of the n-wist loop, then connecting the
ends in pairs by arcs that do not cross each other as in Figure 5. We call a knot of such
kind a n-foil and we refer to it as Fn.

Figure 5: Constructing a 6-foil knot from a 6-twist loop

In the same idea, we define the twist knot as follows.

Definition 5. We let τn denote a twist knot [9] of n half-twists which is a knot obtained
by linking the ends of a n-twist loop together. Therefore, we may consider the twist knot
as two-parts knot: the twist part and the link part. The former consists of n half-twists
and the latter consists of two crossings (see Figure 6).

Figure 6: The two parts of the twist knot: the twist part and the link part.

Remark 6. Following the construction of the foil knot and the twist knot, we have the
corresponding representation of the 0-foil F0 and the 0-twist knot τ0 in Figure 7. Notice
that the representation of the 0-twist knot always has 2 crossings in the link part.

Figure 7: Construction of the 0-foil and the 0-twist knot from the 0-twist loop.
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We have the following immediate result.

Corollary 7. The generating polynomials of the 0-twist loop and the 0-foil knot are re-

spectively given by

T0(x) = x

and

F0(x) = x2.

In order to compute the generating polynomial τn(x) of the n-twist knot, let us first
focus on how the split operation affects the link part. The results are four intermediate
state diagrams as illustrated in Figure 8.

Figure 8: The states of the link part.

The words AA, AB, BA and BB represent the splits sequence we have applied to the
link part. As an immediate application, we give the generating polynomial of the 0-twist
knot.

Corollary 8. The generating polynomial of the 0-twist knot is

τ0(x) = x3 + 2x2 + x.

Proof. The states of the 0-twist knot are illustrated in Figure 9. The associated generating
polynomial is then given by τ0(x) = x+ x2 + x2 + x3.

Figure 9: The states of the 0-twist knot

Proposition 9. The generating polynomial of the n-twist knot is given by

τn(x) = Tn(x) + (x+ 2)Fn(x), n > 1, (1)

where Tn(x) and Fn(x) respectively denote the generating polynomial of the n-twist loop

and the n-foil knot.
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Proof. Given a n-twist knot, we split the link part and we obtain four diagrams: a n-twist
loop, two n-foil knots and the disjoint union of the unknot and a n-foil knot (Figure 10).

Figure 10: The four intermediate states of the the twist knot.

Hence we write
τn(x) = Tn(x) + 2Fn(x) + xFn(x).

We can solve the expression of τn(x) for the closed form following Tn(x) and Fn(x).

Proposition 10. The generating polynomial of the n-twist loop is given by

Tn(x) = x(x+ 1)n, n > 0. (2)

Proof. When n = 0, we recover T0(x) = x. Let n > 1, we split the leftmost crossing so
that the resulting diagram is either a disjoint union of the unknot and a (n − 1)-twist
loop, or uniquely a (n− 1)-twist loop (see Figure 11).

Figure 11: The states of one crossing of the n-twist loop.

The corresponding generating polynomial is therefore

Tn(x) = xTn(x) + Tn−1(x). (3)

Taking into consideration the expression T0(x) = x, we obtain

Tn(x) = x(x+ 1)n.
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Writing Tn(x) :=
∑

k>0

tn,kx
k and identifying the coefficients of the generating polyno-

mial, formulas (2) and (3) allow us to define the following recurrence:
{
tn,0 = 0, tn,1 = tn,n+1 = 1, n > 0;

tn,k = tn−1,k + tn−1,k−1, 1 < k 6 n + 1;
(4)

which gives Table 1 for 0 6 n 6 6 and 0 6 k 6 7.

n \ k 0 1 2 3 4 5 6 7

0 0 1
1 0 1 1
2 0 1 2 1
3 0 1 3 3 1
4 0 1 4 6 4 1
5 0 1 5 10 10 5 1
6 0 1 6 15 20 15 6 1

Table 1: Values of tn,k for 0 6 n 6 6 and 0 6 k 6 7.

We notice that the values in Table 1 represent a horizontal-shifted binomial coefficients

table with tn,k =

(
n

k − 1

)
, 1 6 k 6 n+1. Besides, we should mention that the constraint

tn,0 = 0, n > 0, actually holds for any knot since a state is at least composed by one
component.

Proposition 11. The n-foil knot has the following generating polynomial:

Fn(x) = (x+ 1)n + x2 − 1, n > 0. (5)

Proof. When n = 0, we verify F0(x) = x2. Let n > 1, we split a crossing of the n-foil as
illustrated in Figure 12, and we obtain either a (n− 1)-twist loop or a (n− 1)-foil knot.

Figure 12: The states of one crossing of the n-foil.

We then write
Fn(x) = Tn−1(x) + Fn−1(x). (6)
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Since Tn(x) = x(x+ 1)n and F0(x) = x2, we get

Fn(x) =

n−1∑

k=0

Tk(x) + F0(x)

= (x+ 1)n − 1 + x2.

As previously, if we write Fn(x) :=
∑

k>0

fn,kx
k, then we obtain the following relation

by combining (5) and (6):





f0,1 = 0, f0,2 = f1,2 = 1;

fn,0 = 0, n > 0;

fn,k = fn−1,k + tn−1,k, 0 < k 6 n.

(7)

The values of fn,k are then arranged in Table 2 for 0 6 n 6 k 6 12.

n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 1
1 0 1 1
2 0 2 2
3 0 3 4 1
4 0 4 7 4 1
5 0 5 11 10 5 1
6 0 6 16 20 15 6 1
7 0 7 22 35 35 21 7 1
8 0 8 29 56 70 56 28 8 1
9 0 9 37 84 126 126 84 36 9 1
10 0 10 46 120 210 252 210 120 45 10 1
11 0 11 56 165 330 462 462 330 165 55 11 1
12 0 12 67 220 495 792 924 792 465 220 66 12 1

Table 2: Values of fn,k for 0 6 n 6 k 6 12.

We browse the columns in Table 2 and identify the corresponding OEIS [16] entries.

• We recognize the common constraint fn,0 = 0, n > 0.

• We have fn,1 = A001477(n) = n, n > 0. It represents the number of 1-states that
is obtained by applying an A-split at a chosen crossing, and applying a B-split at
the remaining n− 1 crossings. We justify the value f0,1 = 0 since the 0-foil already
consists of two components.

8
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• In the third column we have fn,0 = 1 and fn,2 = A000124(n) =

(
n

2

)
+ 1, n > 1.

Here, (fn,2)n>1 is the lazy caterer’s sequence [6, p. 5] which describes the maximum
number of pieces of a disk that can be made with a given number of straight cuts.

• Finally, when k > 3, the remaining columns represent the usual binomial coefficients,

i.e., fn,k =

(
n

k

)
, n > k.

We can now give the closed form of the generating polynomial of the twist knot.

Corollary 12. The n-twist knot has the following generating polynomial

τn(x) = 2(1 + x)n+1 + x3 + 2x2 − x− 2, n > 0. (8)

By formulas (1) and (8), we deduce the recurrence that defines the coefficients of the

polynomial τn(x) =
∑

k>0

τn,kx
k, namely

{
τn,0 = 0, τ0,3 = τ1,3 = 1, n > 0;

τn,k = fn,k−1 + 2fn,k + tn,k, 0 < k 6 n + 1.
(9)

Next, let us arrange the coefficients in (9) in Table 3 for 0 6 n 6 k 6 12, and identify the
corresponding columns.

n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 2 1
1 0 3 4 1
2 0 5 8 3
3 0 7 14 9 2
4 0 9 22 21 10 2
5 0 11 32 41 30 12 2
6 0 13 44 71 70 42 14 2
7 0 15 58 113 140 112 56 16 2
8 0 17 74 169 252 252 168 72 18 2
90 0 19 92 241 420 504 420 240 90 20 2
10 0 21 112 331 660 924 924 660 330 110 22 2
11 0 23 134 441 990 1584 1848 1584 990 440 132 24 2

Table 3: Array value of the coefficients of τn(x), 0 6 n 6 k 6 11.

• Again, τn,0 = 0, n > 0, which is the common constraint.

• We have τn,1 = A005408(n) = 2n+ 1, n > 0.

• For n > 0, we find τn,2 = A014206(n) = n2 + n + 2, which is the maximal number
of regions into which the plane is divided by n + 1 circles in general arrangement.
We give further details in the next section.
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Figure 13: Denton–Doyle type 0 move on the sphere.

• When k = 3, the corresponding column is defined by the initial value τ0,3 = 1 and

the n-th term τn,3 = A064999(n) =
1

3

(
n3 − n+ 3

)
, n > 1.

• Finally, when k > 4, we have τn,k = 2

(
n + 1

k

)
, n > k−1. This is the usual binomial

coefficients, horizontally shifted and doubled.

Remark 13. From Table 1 and Table 2, we read

T1(x) = F1(x) = x2 + x, (10)

and from Table 1 and Table 3,

T2(x) = τ0(x) = x3 + 2x2 + x (11)

Also, checking Table 2 and Table 3, we have

F3(x) = τ1(x) = x3 + 4x2 + 3x. (12)

We can explain these equalities by introducing the following definition.

Definition 14 (Denton and Doyle [5]). Let us draw the shadow diagram on a sphere.
When we have a loop on the outside edge of the diagram, we can redraw this loop around
the other side of the diagram by pulling the entire loop around the far side of the sphere
without affecting the constraints on any of the already existing crossings (see Figure 13).
We call the move a type 0 move on the sphere, denoted 0S2.

Since this particular move does not remove nor create a crossing, the number of region
remains intact. Knots which are planar isotopic or related by a sequence of 0S2 moves
then have the same state diagrams (modulo some rearrangements), and thus, the same
generating polynomial. The equalities (10), (11) and (12) result from this property (see
Figure 14).

Figure 14: Knots T1 ≡ F1, T2 ≡ τ0 and T3 ≡ τ1 under 0S2 move.
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3 A particular arrangement of circles

Let U denote an oriented unit circle of center O in the Euclidean space. We shall refer to
this circle as reference circle. Throughout this paper, we let C denote a finite family of
circles with radius r > 1 and centered at the border of U. We additionally impose that
circles in C are congruent and non-concentric. We let Cn, n > 0, denote a circle in C, of
center Cn, and we refer to the interior of that circle as Dn, i.e., the closed disk bounded
by that circle.

Let n > 0, we say that n circles are in general arrangement when

• they intersect pairwise, that is, if no two of them are tangent and none of them lies
entirely within or outside of another one;

• no three of them share a common point.

Circles in general arrangement divide the plane into a maximum number of regions
that is given by

P (n) = n2 − n + 2. (13)

For n = 1, 2, 3, . . . formula (13) gives 2, 4, 8, 14, 22, 32, 44, 58, . . . (sequence A0142016).
The aim of the present section is to show that the circles in C are in general arrange-

ment. We begin with the following classic result.

Theorem 15 ([4, p. 96]). The perpendicular bisector of a chord passes through the center

of the circle.

Proof. An elegant proof is to consider the chord of the circle to be the side of an arbitrary
inscribed triangle whose three perpendicular bisectors must intersect in one point, the
center of the circle.

Proposition 16. Given three circles in C, exactly one of the intersection points of the

two circles lies at the interior of the third circle.

Proof. Let C1 and C2 denote the two circles, and let I and I ′ be their intersection points.
The circles are the mirror-image symmetry of each other and whose line of symmetry is
(II ′). At this stage, the points I, O, I ′ are, in this order, collinear since the line (II ′)
is also the perpendicular bisector of the chord [C1C2] (see Figure 15). The same scheme
applies when we add a third circle C3. Let (∆) denote the line of symmetry of the circles
C1 and C3. The line (∆) passes through O so that the points I and I ′ are in either side
of (∆). Now, owning to the property of the reflection with respect to the line (∆), only
one of I or I ′ is contained in C3.

Proposition 17. Given three circles in C, an intersection point lies at the interior of the

circle centered at the same region that is bounded by the secant which joins the centers of

the other two circles.
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Figure 15: The circle C3 contains one of the intersection points of the circles C1 an C2.

Figure 16: Circle centered at C3 only contains the nearest intersection point of the circle
C1 and C2.

Proof. Without loss of generality, we assume that we have the arrangement of circles as
illustrated in Figure 16. Let the secant (C1C2) which joins the center of the circles C1 and
C2 divides the reference circle into two oriented arcs, and let I, I ′ be the corresponding
intersections. This secant also divides the plane into two regions such that each of them
contains one intersection point of these two circles. Let the third circle C3 be centered at
>

C2C1. We clearly see that C3I > r. Since an intersection point has to lie in the interior
of C3, then the only candidate must be I ′ which is located at the same region as

>

C2C1.

Notice that the result remains valid when the centers of the two circles are antipodal.

Theorem 18. No three circles in C share a common point.

Proof. If three circles in C share a common point, then their centers are respectively
equidistant to this same point. Necessarily we have r = 1, which is a contradiction.

Definition 19. Let Cn := {C1,C2,C3, . . . ,Cn}, n > 1, with the circles being arranged in
counter-clockwise ascending order with respect to their index. A lune [2] is the region –
the crescent-shaped slice – delimited by Di \Di−1, i.e., the region inside one but outside
the other. There are n lunes in this arrangement, namely Di \ Di−1 for i = 2, . . . n and

12



Figure 17: A rosette of 6 circles

D1 \ Dn. The condition we impose on the arrangement of circles is to ensure no circles

are centered along the arc
>

CiCi−1.

Proposition 20. No arc of circles meet inside a lune.

Proof. Let k and ℓ be two nonnegative integers such that k < ℓ, and assume in the
contrary that there exist a lune Di \Di−1 that contains one of the intersection points of
Ck and Cℓ. Then the opposite intersection lies inside the circle Ci−1 by Proposition 16.
Now, Ck ∈ Di \Di−1 means that Ck ∈ Di, i.e., by Proposition 17, the circle Ci is either

centered at the arc
>

CkCℓ or
>

CℓCk. In any of these cases, one of the circle Ck or Cℓ is
located along the arc

>

CiCi−1, which is not conform to the definition of a lune.

Corollary 21. Let n > 2. Then each lune are divided into n− 1 region.

Proof. The border of a lune contains the two intersection points of its two circles. There-
fore, there are n−2 circles that must contain one of these intersection points, and leaving
at the same time n − 2 non-crossing arcs through the lune. Consequently, the lune is
divided into n− 1 regions.

Corollary 22. Let n > 1. The circles in Cn divide the plane into n2 − n+ 2 regions.

Proof. There are n lunes on the plane, each of which consists of n− 1 regions. Then, the
total regions is n(n− 1) plus the outer region – the plane itself – and the central “hole”,
i.e., the intersection of the interiors of all the circles in Cn. Therefore, there are in sum
n(n− 1) + 2 regions.

We conclude that the circles in Cn are in general arrangement. If the centers describe a
regular polygon, then we call the motif defined by Cn a circular rosette. Rosin [15] defines
the circular rosette as a geometrical figure formed by taking copies of a circle and rotating
them about a point – the rosette’s center. For example, we draw a circular rosette made
up from 6 circles in Figure 17. The number of regions defined by these 6 circles is then
P (6) = 32.
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Figure 18: The encodings of the partition of the plane defined by n circles, n = 1, 2, 3.

4 Encoding the partition of the plane

We consider the binary alphabet {0, 1}, and we let Pn define the set of words of length n

defined over the alphabet {0, 1} such that a word π ∈ Pn encodes a region of the plane
described by the rosette of n circles. The usual operation of words is the concatenation,
that is, writing words as a compound. If we write a word as π = σ1σ2 · · ·σn, then the bit
σi = 1 (resp. σi = 0) indicates that the concerned region lies inside (resp. outside) the
i-th circle. Moreover, we associate the plane without circles with the empty word ε. For
n = 1, 2, 3 we encode the regions of the plane as in Figure 18.

Proposition 23. Let Li denote the set of words associated with the regions of the lune

Di \Di−1. Then a word πi,j in the set Li is of the form

πi,j = σ1σ2 · · ·σi−1σi · · ·σn, 0 6 j 6 n− 2

where





σi = σi+1 = · · · = σi+j = 1, if i+ j 6 n,

σi = σi+1 = · · · = σn = σ1 = σ2 = · · · = σi+j−n = 1, if n < i+ j 6 n+ i− 2,

σℓ = 0, elsewhere.

Proof. Since there are n−2 arcs which pass through a lune, they are arranged with respect
to the order of their center and divide the lune into n−1 regions (see Figure 19). A region
belongs to the interior of the circle Cj for each j = i, i+1, . . . , n−1, n, 1, 2, . . . , i−2.

Lemma 24. Given the family Cn, by adding a new circle Cn+1 centered along the arc
>

CnC1, we add a new lune D1 \Dn+1, and create a new region inside each already existing

lune.
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Figure 19: The encodings of the regions of the lune Di \Di−1.

Proof. The new circle is centered at the arc
>

CnC1, therefore, the new lune C1 \ Cn+1 is
created (see Figure 20). Since an arc of this circle does not intersect any other arc inside
a lune, and since the interior of this circle has to contain an intersection point of each pair
of the other circles, necessarily a new region is created inside each existing lune.

This lemma is the key ingredient in the following encoding formula.

Theorem 25. Let Pn be the set of words encoding the regions of the rosette of n circles.

The set Pn+1 can be constructed with the help of the encodings of the previous region as

well as those of the new regions that is obtained from the insertion of the new circle Cn+1.

The set Pn+1 is constructed according as follows for π = σ1σ2 · · ·σn ∈ Pn.

1. If σ1 = 0 then π′ = π0 ∈ Pn+1.

Figure 20: The insertion of a new circle creates a new lune and introduce one new region
inside each of the previous lunes.
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2. If σ1 = 1 then π′ = π1 ∈ Pn+1.

3. The additional regions are encoded by





0111 · · ·111
0011 · · ·111
0001 · · ·111

...

0000 · · ·011
0000 · · ·001

and





1000 · · ·000
1100 · · ·000
1110 · · ·000

...

1111 · · ·100
1111 · · ·110

Proof. First, note that the rules applies for the inner region 1 . . . 111 and the outer region
0 . . . 000. Now, adding a new circle introduced the new lune D1 \Dn+1 which is crossed
by n− 1 arcs. The corresponding regions are therefore encoded by





1000 · · ·000
1100 · · ·000
1110 · · ·000

...
1111 · · ·100
1111 · · ·110

The (n + 1)-th circle also crosses all the previous lunes. Since Cn+1 ∈
>

CnC1 and by
Lemma 24, some of the regions of these lunes lie inside the disk Dn+1, and some are
outside. Moreover, by the same Lemma, one additional region appears inside each lune.
So excluding the lune D1\Dn+1, the encodings of regions of the current lunes are obtained
by the following formula for each i = 2, 3, . . . , n+ 1:

σ1 σ2 σ3 · · · σi−2 σi−1 σi σi+1 σi+2 · · · σn−1 σn σn+1

0 0 0 · · · 0 0 1 0 0 · · · 0 0 0

0 0 0 · · · 0 0 1 1 0 · · · 0 0 0

0 0 0 · · · 0 0 1 1 1 · · · 0 0 0

...
...

...
...

...
...

...
...

...
. . .

...
...

...

0 0 0 · · · 0 0 1 1 1 · · · 1 0 0

0 0 0 · · · 0 0 1 1 1 · · · 1 1 0

0 0 0 · · · 0 0 1 1 1 · · · 1 1 1

1 0 0 · · · 0 0 1 1 1 · · · 1 1 1

1 1 0 · · · 0 0 1 1 1 · · · 1 1 1

1 1 1 · · · 0 0 1 1 1 · · · 1 1 1
...

...
...

. . .
...

...
...

...
...

...
...

...
...

1 1 1 · · · 1 0 1 1 1 · · · 1 1 1
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Thus, letting i = 2 . . . n + 1, we identify the new regions inside each lune Di \ Di−1 ,
namely 




0111 · · ·1111
0011 · · ·1111
0001 · · ·1111

...
0000 · · ·0011
0000 · · ·0001.

We point out that in the previous calculation we do not consider the lune Dn+1 \ Dn

as “new”, but rather as an “extension” of the previously lune D1 \Dn as formulated by
Lemma 24.

In order to handle a more explicit encoding formula, we should introduce the following
notation.

Notation 26. Define the nth concatenation of a word w as

wn = ww · · ·w︸ ︷︷ ︸
n copies

,

with w1 = w and w0 = ε.

We shall make extensive use of these operations throughout the rest of this paper.
The next corollary now directly follows from Theorem 25.

Corollary 27. The partition of the plane divided by n circles is encoded as

P1 = {0, 1}, P2 = {00, 01, 10, 11}, Pn := {0n, 1n} ∪ P
01

n ∪ P
10

n ∪ P
00

n ∪ P
11

n , n > 3 (14)

where

P
00

n =
{
0k1n−k | 1 6 k 6 n− 1

}
;

P
11

n =
{
1k0n−k | 1 6 k 6 n− 1

}
;

P
01

n =
{
0k1n−p−k0p | 1 6 p 6 n− 2 and 1 6 k 6 n− p− 1

}
;

P
10

n =
{
1k0n−p−k1p | 1 6 p 6 n− 2 and 1 6 k 6 n− p− 1

}
.

Proof. For n = 1, 2, we have the corresponding encodings as illustrated in Figure 18,
namely P1 = {0, 1} and P2 = {00, 01, 10, 11}. For n = 3, we obtain P

00

3 = {011, 001},
P
11

3 = {110, 100}, P
01

3 = {010}, P
01

3 = {101} and the inner plus the outer region
{000, 111}. These results also match the encodings in Figure 18.

Assume that the formula (14) holds when n = ℓ > 3 and let us show that it still holds
when n = ℓ+ 1. By Theorem 25 and the induction hypothesis, we have

Pℓ+1 =
(
P
01

ℓ ∪ P
00

ℓ ∪
{
0ℓ
})

0 ∪
(
P
10

ℓ ∪ P
11

ℓ ∪
{
1ℓ
})

1 ∪ P
00

ℓ+1 ∪ P
11

ℓ+1,
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where

P
01

ℓ 0 =
{
0k1ℓ−p−k0p+1 | 1 6 p 6 ℓ− 2 and 1 6 k 6 ℓ− p− 1

}

=
{
0k1ℓ−p̂+1−k0p̂ | 2 6 p̂ 6 ℓ− 1 and 1 6 k 6 ℓ− p̂

}

and

P
00

ℓ 0 =
{
0k1ℓ−k0 | 1 6 k 6 ℓ− 1

}
.

We deduce that

P
00

ℓ 0 ∪ P
01

ℓ 0 =
{
0k1ℓ−p̂+1−k0p̂ | 1 6 p̂ 6 ℓ− 1 and 1 6 k 6 ℓ− p̂

}

= P
01

ℓ+1.

Correspondingly, we have

P
11

ℓ 1 ∪ P
10

ℓ 1 =
{
1k0ℓ−p̂+1−k1p̂ | 1 6 p̂ 6 ℓ− 1 and 1 6 k 6 ℓ− p̂

}

= P
10

ℓ+1.

Since
{
0ℓ
}
0 =

{
0ℓ+1

}
and

{
1ℓ
}
1 =

{
1ℓ+1

}
, we finally have

Pℓ+1 = P
01

ℓ+1 ∪ P
10

ℓ+1 ∪ P
00

ℓ+1 ∪ P
11

ℓ+1 ∪
{
0ℓ+1, 1ℓ+1

}
.

Corollary 28. For n > 1, we recursively define Pn+1 as follows.

Pn+1 =
{
0n+1, 1n+1

}
∪

(
n−1⋃

p=0

P
00

n−p+10
p

)
∪

(
n−1⋃

p=0

P
11

n−p+11
p

)
. (15)

Proof. When n = 1, we have

P2 =
{
02, 12

}
∪

(
0⋃

p=0

P
00

1−p+10
p

)
∪

(
1−1⋃

p=0

P
11

n−p+11
p

)

= {00, 11, 01, 10}.

Now let n > 2. By Corollary 27, we may combine the pairs P00

n+1, P
01

n+1 and P
10

n+1, P
11

n+1 as

P
00

n+1 ∪ P
01

n+1 =
{
0k1n−p−k+10p | 0 6 p 6 n− 1 and 1 6 k 6 n− p

}

=

n−1⋃

p=0

P
00

n−p+10
p

and

P
10

n+1 ∪ P
11

n+1 =
{
1k0n−p−k+11p | 0 6 p 6 n− 1 and 1 6 k 6 n− p

}

=

n−1⋃

p=0

P
11

n−p+11
p.
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We conclude by writing

Pn+1 =
{
0n+1, 1n+1

}
∪
(
P
00

n+1 ∪ P
01

n+1

)
∪
(
P
10

n+1 ∪ P
11

n+1

)
.

Remark 29 (Lang [12]). A sequence a = a0, a1, . . . , an−1 with ai ∈ {0, 1}, i = 0, . . . , n− 1
is called a 0-1-sequence. A 0-1-sequence is called bitonic [3], if it contains at most two
changes between 0 and 1, i.e., if there exist subsequence lengths k,m ∈ {1, . . . , n} such
that

a0, . . . , ak−1 = 0, ak, . . . , am−1 = 1, am, . . . , an−1 = 0 or

a0, . . . , ak−1 = 1, ak, . . . , am−1 = 0, am, . . . , an−1 = 1.

It follows that the set Pn+1 as defined in formulas (14) and (15) is exactly the set of
binary bitonic sequences of length n + 1. The cardinal of such set is known in the OEIS
as A014206(n) = n2 + n + 2. Indeed, since

{
0ℓ, 1n

}
∩ P

01

ℓ ∩ P
10

ℓ ∩ P
00

ℓ ∩ P
11

ℓ = ∅ for any
nonnegative number ℓ, then from formula (15) we verify that

#Pn+1 = #
{
0n+1, 1n+1

}
+

n−1∑

p=0

#P
00

n−p+10
p +

n−1∑

p=0

#P
11

n−p+11
p

= 2 + 2

n−1∑

p=0

(n− p)

= n2 + n+ 2, n > 1.

This formula is actually still valid for n = 0 since #P1 = 2. The value #Pn+1 describes
the maximal number of regions into which the plane is divided by n+1 circles in general
arrangement. But recall on the other hand that it is also the number of 2-states that is
obtained by splitting the crossings of the n-twist knot. The following section is motivated
with this enumeration.

5 Encoding the states of the twist knot

In the present section, we associate as well a state of a n-crossing knot with a length n

binary word. If we initially fix the order of splits, then the word ωn = σ1σ2 · · ·σn relates
the split we have applied at each crossing. The bit σi = 0 corresponds to an A-split at
the i-th crossing, while σi = 1 corresponds to a B-split. As an illustration, we consider
the states of the trefoil τ1 (3 crossings) in Figure 21.

We impose from here that the first two splits are always those of the link part for the
twist knot. The order of these splits does not matter since the results are 00, 01, 10 and
11. Besides, we always proceed by splitting the leftmost crossing for the twist loop, and
for the foil knot, the split would start with an arbitrary crossing and followed with the
first-nearest clockwise one.

Let Tn denote the set of encodings of the n-twist knot. Thus, Tn actually consists of
a set of words of length n + 2. It would cause no confusion if we take into account that
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Figure 21: The states of the trefoil knot and the associated encodings.

the n-twist knot is, recall it, associated with the number of its half-twists (here n). For
instance, the corresponding set associated with the trefoil τ1 in Figure 21 is given by

T1 = {000, 001, 010, 011, 100, 101, 110, 111}.

Let on the other hand Fn and Tn respectively denote the set of encodings of the n-foil
and the n-twist loop. The split of the link part suggests the following formula

Tn := 00Tn ∪ 01Fn ∪ 10Fn ∪ 11Fn, n > 0

with obviously
01Fn ∩ 10Fn ∩ 00Tn ∩ 11Tn = ∅.

Referring back to Figure 8, it is immediate to notice that for n = 0, we have

T0 := {00, 01, 10, 11},

so that T0 = F0 = {ε}.

Remark 30. If we let Tn,k, Fn,k and Tn,k respectively denote the subset of Tn, Fn and Tn

which represent the encodings of a k-state, then we have

Tn,k := 00Tn,k ∪ 01Fn,k ∪ 10Fn,k ∪ 11Fn,k−1, n > 0. (16)

The last factor in the right side is expressed with the 1-state because it coincides with
the states of the disjoint union of a resulting unknot – now counted as one component –
and the n-foil. Moreover

⋂

i>0

Tn,i =
⋂

j>0

Fn,j =
⋂

k>0

Tn,k = ∅, (17)

since the states are obtained form a full binary tree. The index i, j and k in (17)
are respectively supposed to follow the range defined in (4), (7) and (9). Consequently,
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Figure 22: The states of the n-twist loop, n = 1, 2.

depending on the context, we refer to the empty word when we denote a state of a specified
number of components. For instance, we write F0,1 = ∅ whereas F0,2 = {ε} because the
knot F0 consists of two components.

Since we are particularly interested in the class of the 2-state, then by Figure 9 and
formula (16) we write

T0,2 := {01, 10}, Tn,2 := 00Tn,2 ∪ 01Fn,2 ∪ 10Fn,2 ∪ 11Fn,1, n > 1

Here we have necessarily T0,2 = F0,1 = ∅ as mentioned in Remark 30.

Lemma 31. For n > 1, we have

Fn,1 = Tn,2.

Proof. First of all, notice that they have the same cardinality. Referring back to formulas

(4) and (7), we have #Fn,1 = #Tn,2 =

(
n

1

)
. For both knots, we have to choose one

crossing at which we perform an A-split. We then have perform a B-split at the remaining
crossings. So the encodings must be the same.

Henceforth, let us adopt the following notation: Tn,2 = Tn, Tn,2 = Tn and Fn,2 = Fn.
Taking into consideration Lemma 31, we now write

T0 := {01, 10}, Tn := 01Fn ∪ 10Fn ∪ 00Tn ∪ 11Tn, n > 1. (18)

Proposition 32. The set of 2-states of the n-twist loop is

T0 := ∅, T1 := {0}, Tn :=
{
1k01n−k−1 | 0 6 k 6 n− 1

}
, n > 2. (19)

Proof. When n = 1, there is only one possibility to obtain a 2-state for the knot T1,
namely an A-split. Thus T1 := {0}. When n = 2, we have T2 := {01, 10} (see Figure 22).

Assume that formula (19) holds when n = ℓ > 2 and let us show that it still holds when
n = ℓ+ 1. When we split the leftmost crossing of the (ℓ+ 1)-twist loop, we obtain either
a disjoint union of the unknot and a ℓ-twist loop, or simply a ℓ-twist loop (see Figure 11).
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Figure 23: The states of the n-foil, n = 1, 2.

The first case corresponds to an A-split, and in order to end up to two components, we
must apply a B-split a each of the crossings of the ℓ-twist loop part. Therefore we have

Tℓ+1 = 0
{
1ℓ
}
∪ 1Tℓ.

From the induction hypothesis we write

Tℓ+1 =
{
01ℓ
}
∪
{
11k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}

=
{
01ℓ
}
∪
{
1k̂01ℓ−k̂ | 1 6 k̂ 6 ℓ

}

=
{
1k̂01ℓ−k̂ | 0 6 k̂ 6 ℓ

}
.

.

Proposition 33. The encodings of 2-states associated with the n-foil is recursively given

by

F0 = {ε} , F1 = {1} , Fn = 0Tn−1 ∪ 1Fn−1, n > 2. (20)

Moreover, for n > 2, we define the set Fn by

Fn :=
{
1p01k01n−p−k−2 | 0 6 p 6 n− 2 and 0 6 k 6 n− p− 2

}
∪ {1n} . (21)

Proof. When n = 1, an A-split produces one 1-state whereas a B-split produces one
2-state. Accordingly, we have F1 = {1} (see Figure 23).

When n > 2, recall that the generating polynomial of the n-foil is given by

Fn(x) = Tn−1(x) + Fn−1(x).

The first term in the right side is associated with an A-split and the second term with a
B-split. Expressing such polynomial in terms of the class of the 2-state, we have

Fn = 0Tn−1 ∪ 1Fn−1.
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Let us now use induction to prove that formula (21) holds. When n = 2, the boundaries
0 6 p 6 2− 2 and 0 6 k 6 2− p− 2 imply

F2 = {00, 11}.

By Figure 23, we have F3 = {00, 01, 10, 11} where the subset {00, 11} corresponds to
two consecutive A-splits and two consecutive B-splits.

Let ℓ ∈ N be given, and assume that the formula (21) holds for n = ℓ. From the
recurrence (20), we write

Fℓ+1 = 1Fℓ ∪ 0Tℓ.

By the induction hypothesis, we have

0Tℓ :=
{
01k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}
(22)

and

1Fℓ :=
{
1p+101k01ℓ−p−k−2 | 0 6 p 6 ℓ− 2 and 6 k 6 ℓ− p− 2

}
∪
{
11ℓ
}

=
{
1p̂01k01ℓ−p̂−k−1 | 1 6 p̂ 6 ℓ− 1 and 0 6 k 6 ℓ− p̂− 1

}
∪
{
1ℓ+1

}
. (23)

Combining (22) and (23) we get

Fℓ+1 =
{
1p̂01k01ℓ−p̂−k−1 | 0 6 p̂ 6 ℓ− 1 and 0 6 k 6 ℓ− p̂− 1

}
∪
{
1ℓ+1

}
.

Lemma 34. When n > 1, we have

Tn+1 =
(
011Fn ∪ 101Fn ∪ 010Tn ∪ 100Tn

)
∪ 00Tn+1 ∪ 11Tn+1.

Proof. Taking into consideration formula (20), we have

Tn+1 = 01Fn+1 ∪ 10Fn+1 ∪ 00Tn+1 ∪ 11Tn+1

= 01
(
0Tn ∪ 1Fn

)
∪ 10

(
0Tn ∪ 1Fn

)
∪ 00Tn+1 ∪ 11Tn+1

=
(
011Fn ∪ 101Fn ∪ 010Tn ∪ 100Tn

)
∪ 00Tn+1 ∪ 11Tn+1.

Corollary 35. Let ω ∈ Tn such that ω is a compound of a prefix α ∈ {00, 01, 10, 11} and

a factor β from either Fn or Tn. Let p be a transformation defined as follows.

p(01) = 011, p(10) = 101, p(00) = 010 and p(11) = 100.

We also define a map ψ which operates on the suffix of a word in Tn,

ψ : Tn −→ {0, 1}n+1 :=
{
σ1σ2 · · ·σnσn+1 | σi ∈ {0, 1}

}

ω = αβ 7−→ ψ(ω) = p(α)β, with α ∈ {00, 01, 10, 11}.

Then we have

Tn+1 = ψ(Tn) ∪
(
00Tn+1 ∪ 11Tn+1

)
. (24)
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Proof. Notice that the map ψ is injective. Indeed, for ω and ω′ in Tn the equality
ψ(ω) = ψ(ω′) is word equality, i.e., both side are considered equal only if they are made
up of the same number of letter and the same letters at identical positions. It follows that
ω = ω′. Now consider the restriction of the set Tn+1 to 011Fn ∪ 101Fn ∪ 010Tn ∪ 100Tn.
It is clear that the map λ defined as follows is a bijection.

λ : 01Fn × 10Fn × 00Tn × 11Tn −→ 011Fn × 101Fn × 010Tn × 100Tn

(01β1, 10β2, 00β3, 11β4) 7−→ (011β1, 101β2, 010β3, 100β4) .

Since 01Fn ∩ 10Fn ∩ 00Tn ∩ 11Tn = ∅, it follows immediately that

ψ(Tn) = 011Fn ∪ 101Fn ∪ 010Tn ∪ 100Tn,

and we conclude by Lemma 34.

Example 36. Consider the set T1 = {000, 011, 101, 110}. We have

ψ(T1) = {0100, 0111, 1011, 1000}

and
T2 = {01, 10}.

Then applying formula (24), we have

T2 = {0100, 0111, 1011, 1000, 0001, 0010, 1101, 1110}.

Proposition 37. When n > 1, the set Tn is obtained by the formula

Tn = ψn
(
{01, 10}

)
∪

(
n−1⋃

p=0

ψp(00)Tn−p

)
∪

(
n−1⋃

p=0

ψp(11)Tn−p

)
, (25)

where ψn = ψ ◦ψ ◦ · · · ◦ψ and ψ0 = Id.

Proof. Let us use induction to prove that formula (25) holds for any n > 1.
When n = 1, we have

T1 = ψ
1
(
{01, 10}

)
∪

(
0⋃

p=0

ψp(00)T1−p

)
∪

(
0⋃

p=0

ψp(11)T1−p

)

= {011, 101, 000, 110}.

Assume that the identity holds until n = ℓ > 1 and let us show that it still holds when
n = ℓ + 1. Formula (24) allows us to write Tℓ+1 as follows.

Tℓ+1 = ψ(Tℓ) ∪ 00Tℓ+1 ∪ 11Tℓ+1

= ψ(Tℓ) ∪ ψ
0(00)Tℓ+1 ∪ ψ

0(11)Tℓ+1,
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where Tℓ is given by the induction hypothesis, i.e.,

ψ(Tℓ) = ψ

(
ψℓ
(
{01, 10}

)
∪

(
ℓ−1⋃

p=0

ψp(00)Tℓ−p

)
∪

(
ℓ−1⋃

p=0

ψp(11)Tℓ−p

))

= ψℓ+1
(
{01, 10}

)
∪

(
ℓ−1⋃

p=0

ψp+1(00)Tℓ−p

)
∪

(
ℓ−1⋃

p=0

ψp+1(11)Tℓ−p

)
.

Thus

Tℓ+1 = ψ
ℓ+1
(
{01, 10}

)
∪

(
ℓ−1⋃

p=0

ψp+1(00)Tℓ−p

)
∪ψ0(00)Tℓ+1 ∪

(
ℓ⋃

p=0

ψp+1(11)Tℓ−p

)

∪ψ0(11)Tℓ+1

= ψℓ+1
(
{01, 10}

)
∪

(
ℓ⋃

p=0

ψp(00)Tℓ−p+1

)
∪

(
ℓ⋃

p=0

ψp(11)Tℓ−p+1

)
.

We might also take advantage of the definition of the map ψ as follows.

Alternative proof of Proposition 37. For p ∈ N
∗, the map ψ have the following properties:

ψp(01) = 011p, ψp(01) = 101p, ψp(00) = 011p−10 and ψp(11) = 101p−10. (26)

Now recall the recurrence which link Fn with Tn−1

F0 = {ε} , F1 = {1} , Fn = 0Tn−1 ∪ 1Fn−1, n > 2.

We can unfold this recurrence and rewrite Fn as belows

Fn = {1n} ∪

(
n−2⋃

p=0

1p0Tn−p−1

)
, n > 2.

Now, back to the decomposition of Tn, we have

Tn = 01Fn ∪ 10Fn ∪ 00Tn ∪ 11Tn

= 01

(
{1n} ∪

(
n−2⋃

p=0

1p0Tn−p−1

))
∪ 10

(
{1n} ∪

(
n−2⋃

p=0

1p0Tn−p−1

))
∪ 00Tn ∪ 11Tn

= {011n, 101n} ∪

(
n−2⋃

p=0

011p0Tn−p−1

)
∪ 00Tn ∪

(
n−2⋃

p=0

101p0Tn−p−1

)
∪ 11Tn.

We conclude by (26).
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As similar as the previous section, we have a recurrence formula, namely (25), which
allows us to verify that

#Tn = #ψn
(
{01, 10}

)
+

n−1∑

p=0

#ψp(00)Tn−p +

n−1∑

p=0

#ψp(11)Tn−p

= 2 + 2

n−1∑

p=0

(n− p)

= A014206(n).

We confirm that the set Pn+1 and Tn have the same cardinality. The following section is
then devoted to finding a bijection between these sets.

6 The bijection

Recall that
T0 := {01, 10}, Tn := 01Fn ∪ 10Fn ∪ 00Tn ∪ 11Tn, n > 1

and

P1 = {0, 1}, P2 = {00, 01, 10, 11}, Pn := {0n, 1n} ∪ P
01

n ∪ P
10

n ∪ P
00

n ∪ P
11

n , n > 3.

• When n = 0, we define an obvious one-to-one map ϕ defined by

ϕ : P1 = {0, 1} −→ T0 = {01, 10}

such that ϕ(0) = 01 and ϕ(1) = 10.

• When n = 1, we also define an obvious one-to-one map ϕ defined by

ϕ : P2 = {00, 01, 10, 11} −→ T1 = {000, 011, 101, 110}

such that ϕ(00) = 000, ϕ(01) = 011, ϕ(10) = 101 and ϕ(11) = 110.

In order to give an intuitive construction for the bijection ϕ between Pn+1 and Tn, we
also recall the following formulas:

Pn+1 =
{
0n+1, 1n+1

}
∪

(
n−1⋃

p=0

P
00

n−p+10
p

)
∪

(
n−1⋃

p=0

P
11

n−p+11
p

)
, n > 2,

and

Tn = {011n, 101n} ∪

(
n−1⋃

p=0

ψp(00)Tn−p

)
∪

(
n−1⋃

p=0

ψp(11)Tn−p

)
, n > 2.

Since the set Pn+1 and Tn have the same cardinality, then it actually suffices to construct
an injective map. Let ℓ, r be nonnegative integers, and let us introduce the following
notations:
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• πℓ,r = 0r1ℓ−r ∈ P
00

ℓ and πℓ,r = 1r0ℓ−r ∈ P
11

ℓ where 1 6 r 6 ℓ− 1;

• ωℓ,r = 1r01ℓ−r−1 ∈ Tℓ where 0 6 r 6 ℓ− 1.

Lemma 38. Let the map φ and φ be defined as

φ :
{
πℓ+1,k = 0k1ℓ+1−k | 1 6 k 6 ℓ

}
−→

{
ωℓ,k = 1k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}

πℓ+1,r 7−→ ωℓ,r−1

and

φ :
{
πℓ+1,k = 1k0ℓ+1−k | 1 6 k 6 ℓ

}
−→

{
ωℓ,k = 1k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}

πℓ+1,r 7−→ ωℓ,r−1.

Then φp and φp are bijective maps.

Proof. We have 1 6 r 6 ℓ, and it suffices to browse the index r from the domain of each
map to the corresponding target set.

The map φ can be interpreted as follows. A word in P
00

n is a compound of one block
of 0’s and one block of 1’s. In the block of 1’s, replace the 0’s by 1’s except the rightmost
bit, and in the block of 1’s, rightmost bit. For instance

φ(0111111111) = 011111111;

φ(0000011111) = 111101111;

φ(0000000001) = 111111110.

On the other hand, we interpret the map φ as follows. A word in P
11

n is a compound of
one block of 1’s and one block of 0’s. In the block of 1’s, remove the leftmost bit, and in
the block of 0’s, replace the 0’s by 1’s except the leftmost bit. For instance

φ(1000000000) = 011111111;

φ(1111100000) = 111101111;

φ(1111111110) = 111111110.

Now, a word in Tn is a compound of one block of 1’s, one block of 0 and another block of
1’s. Only one of the block of 1’s might eventually be empty. Therefore, the inverse maps

φ−1 and φ
−1

are respectively described as follows.

(i) Replace the leftmost block of 1’s into a block of 0’s of the same length, then append
1 at the end of the rightmost block of 1’s. The map φ−1 is defined as

φ−1 :
{
ωℓ,k = 1k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}
−→

{
πℓ+1,k = 0k1ℓ+1−k | 1 6 k 6 ℓ

}

ωℓ,r 7−→ πℓ+1,r+1.
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(ii) Replace the rightmost block of 1’s into a block of 0’s of the same length, then append

1 at the beginning of the leftmost block of 1’s. The map φ
−1

is in turn defined as

φ
−1

:
{
ωℓ,k = 1k01ℓ−k−1 | 0 6 k 6 ℓ− 1

}
−→

{
πℓ+1,k = 1k0ℓ+1−k | 1 6 k 6 ℓ

}

ωr 7−→ πℓ+1,r+1.

Corollary 39. Let p be a nonnegative integer with p ∈ {1, 2, . . . , ℓ− 2}, and let the map

φp and φp be defined as

φp : {πℓ−p+1,k | 1 6 k 6 ℓ− p} 0p −→ ψp(00) {ωℓ−p,k | 0 6 k 6 ℓ− p− 1}

πℓ−p+1,r0
p 7−→ ψp(00)ωℓ−p,r−1

and

φp : {πℓ−p+1,k | 1 6 k 6 ℓ− p} 1p −→ ψp(11) {ωℓ−p,k | 0 6 k 6 ℓ− p− 1}

πℓ−p+1,r1
p 7−→ ψp(11)ωℓ−p,r−1.

Then φp and φp are bijective maps.

We complete the bijection by imposing ϕ(0n+1) = 011n and ϕ(1n+1) = 101n. In
practice, it is more convenient to decompose the map ϕ into the following restrictions.
First of all, the “new regions” mapping:

ϕ00 : P
00

n+1 −→ 00Tn

π 7−→ 00φ(π)
and

ϕ11 : P
11

n+1 −→ 11Tn

π 7−→ 11φ(π).

Then, let π ∈ P
01

n+1 (resp. π ∈ P
10

n+1), and let p be the largest nonnegative integer, with
p < n − 1, such that we can write π as the compound π = π10

p (resp. π = π11
p). The

associated maps are

ϕ01 : P̂
01

n+1 := P
01

n+1 ∪ {0n+1} −→ 01Fn

π 7−→

{
011n, if π = 0n+1;

011p−10φ(π1), if π = π10
p

and

ϕ10 : P̂
10

n+1 := P
10

n+1 ∪ {1n+1} −→ 10Fn

π 7−→

{
101n, if π = 1n+1;

101p−10φ(π1), if π = π11
p.

The inverse image ϕ−1 can be constructed as belows.

• If ω = 00ω1 ∈ 00Tn then ϕ−1
00 (ω) = φ

−1(ω1);

28



• if ω = 11ω1 ∈ 11Tn then ϕ−1
00 (ω) = φ

−1
(ω1);

• if ω = ω0ω1 ∈ 01Fn where ω1 ∈ Tℓ for some nonnegative integer ℓ, then

ϕ−1
01 (ω) = φ

−1(ω1)0
n−ℓ;

• if ω = ω0ω1 ∈ 10Fn where ω1 ∈ Tℓ for some nonnegative integer ℓ, then

ϕ−1
10 (ω) = φ

−1
(ω1)1

n−ℓ.

Note that the key ingredient of the bijection is to identify a prefix for the one, and then
transform it into a suffix for the other. Same scheme for the inverse. The following
examples aims at illustrating these formulas.

1. Let 0001111111 ∈ P10. Then

ϕ00(0001111111) = 00φ(0001111111)

= 00110111111 ∈ 00T9.

2. Let 1110111111 ∈ T8. Since 1110111111 ∈ 11T8, we have

ϕ−1
11 (1110111111) = φ

−1
(10111111)

= 110000000 ∈ P
11

9 .

3. Let 111100011111 ∈ P12. We identify the suffix 11111, whose associated prefix
is 1011110, and the factor 1111000 which is a word in P

11

7 . Therefore we have
φ(1111000) = 111011. Finally we obtain the word 1011110111011 ∈ 10F11.

4. Let 011111110111011111 ∈ T16. The prefix and the corresponding suffix are respec-
tively 011111110 and 0000000, i.e, the remaining factor has to be mapped to P

01

10.
Now, since the factor 111011111 is a word in T9, the associated transformation is
φ(111011111) = 0000111111. So, the final encoding is 00001111110000000 ∈ P17.

Finally, we perform the bijection entrywise in Table 4 for n = 0, 1, 2, 3, 4, 5. For
instance, we read ϕ00(0011) = 0010, ϕ11(11100) = 111101, ϕ01(011110) = 0100111 and
ϕ10(101) = 1000.

When n > 0, then the entries in

• 01Fn and 10Fn are obtained by respectively applying ψ to the entries of the previous
top cell, i.e,

01Fn := ψ (01Fn−1 ∪ 00Tn−1) and 10Fn := ψ (10Fn−1 ∪ 11Tn−1) ;

• P̂
01

n+1 and P̂
10

n+1 are obtained by respectively appending 0 and 1 at the right-end of
the entries of the previous top cell, i.e.,

P̂
01

n :=
(
P̂
01

n−1 ∪ P
00

n−1

)
0 and P̂

10

n :=
(
P̂
10

n−1 ∪ P
11

n−1

)
1.
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For example, consider the case n = 5.

n P̂
01

n+1 P
00

n+1 01Fn 00Tn P̂
10

n+1 P
11

n+1 10Fn 11Tn

0 0 01 1 10

1 00 01 011 000 11 10 101 110

2
000 011 0111 0001 111 100 1011 1101

010 001 0100 0010 101 110 1000 1110

3

0000 0111 01111 00011 1111 1000 10111 11011

0100 0011 01100 00101 1011 1100 10100 11101

0110 0001 01001 00110 1001 1110 10001 11110

0010 01010 1101 10010

4

00000 01111 011111 000111 11111 10000 101111 110111

01000 00111 011100 001011 10111 11000 101100 111011

01100 00011 011001 001101 10011 11100 101001 111101

00100 00001 011010 001110 11011 11110 101010 111110

01110 010011 10001 100011

00110 010101 11001 100101

00010 010110 11101 100110

5

000000 011111 0111111 0001111 111111 100000 1011111 1101111

010000 001111 0111100 0010111 101111 110000 1011100 1110111

011000 000111 0111001 0011011 100111 111000 1011001 1111011

001000 000011 0111010 0011101 110111 111100 1011010 1111101

011100 000001 0110011 0011110 100011 111110 1010011 1111110

001100 0110101 110011 1010101

000100 0110110 111011 1010110

011110 0100111 100001 1000111

001110 0101011 110001 1001011

000110 0101101 111001 1001101

000010 0101110 111101 1001110

Table 4: The sets Tn and Pn+1, n = 0, 1, 2, 3, 4, 5.
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