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BISYMMETRIC AND QUASITRIVIAL OPERATIONS:

CHARACTERIZATIONS AND ENUMERATIONS

JIMMY DEVILLET

Abstract. We investigate the class of bisymmetric and quasitrivial binary
operations on a given set X and provide various characterizations of this class
as well as the subclass of bisymmetric, quasitrivial, and order-preserving binary
operations. We also determine explicitly the sizes of these classes when the set
X is finite.

1. Introduction

Let X be an arbitrary nonempty set. We use the symbol Xn if X is finite of size
n ≥ 1, in which case we assume w.l.o.g. that Xn = {1, . . . , n}.

Recall that a binary operation F ∶X2
→X is bisymmetric if it satisfies the func-

tional equation

F (F (x, y), F (u, v)) = F (F (x,u), F (y, v))

for all x, y, u, v ∈ X . The bisymmetry property for binary real operations has first
been studied by Aczél [2, 3]. Since then, it has been investigated in the theory of
functional equations, especially in characterizations of mean functions (see, e.g.,
[4, 11, 12]). This property has also been extensively investigated in algebra where
it is called mediality. For instance, a groupoid (X,F ) where F is a bisymmetric
binary operation on X is called a medial groupoid (see, e.g., [13–17]).

In this paper, which is a continuation of [8], we investigate the class of binary
operations F ∶X2

→ X that are bisymmetric and quasitrivial, where quasitriviality
means that F always outputs one of its input values. It is known that any bisym-
metric and quasitrivial operation is associative (see Kepka [17, Corollary 10.3]).
This observation is of interest since it shows that the class of bisymmetric and
quasitrivial operations is a subclass of the class of associative and quasitrivial op-
erations. The latter class was characterized independently by several authors (see,
e.g., Kepka [17, Corollary 1.6] and Länger [20, Theorem 1]) and a recent and el-
ementary proof of this characterization is available in [8, Theorem 2.1]. We also
investigate certain subclasses of bisymmetric and quasitrivial operations by adding
properties such as order-preservation and existence of neutral and/or annihilator
elements. In the finite case (i.e., X = Xn for any integer n ≥ 1), we enumerate the
class of bisymmetric and quasitrivial operations as well as the latter subclasses.

The outline of this paper is as follows. After presenting some definitions and
preliminary results (including the above-mentioned characterization of the class of
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2 JIMMY DEVILLET

associative and quasitrivial operations, see Theorem 2.14) in Section 2, we introduce
in Section 3 the concept of “quasilinear weak ordering” and show how it can be
used to characterize the class of bisymmetric and quasitrivial operations F ∶X2

→X

(see Theorem 3.6). We also provide an alternative characterization of the latter class
when X = Xn for some integer n ≥ 1 (see Theorem 3.6). In particular, the latter
characterizations give answers to open questions asked in [7, Section 5, Question
(b)] and [8, Section 6]. We then recall the weak single-peakedness property (see
Definition 3.7) as a generalization of single-peakedness to arbitrary weakly ordered
sets and we use it to characterize the class of bisymmetric, quasitrivial, and order-
preserving operations (see Theorem 3.14). In Section 4, we restrict ourselves to
the finite case where X = Xn and compute the size of the class of bisymmetric
and quasitrivial operations as well as the sizes of some subclasses discussed in this
paper. By doing so, we point out some known integer sequences and introduce
new ones. In particular, the search for the number of bisymmetric and quasitrivial
binary operations on Xn for any integer n ≥ 1 (see Proposition 4.2) gives rise to
a sequence that was previously unknown in the Sloane’s On-Line Encyclopedia of
Integer Sequences (OEIS, see [24]). All the (old and new) sequences that we consider
are given in explicit forms and through their generating functions or exponential
generating functions (see Propositions 4.1, 4.2, 4.4, and 4.5). Finally, in Section 5
we further investigate the quasilinearity property of the weak orderings on X that
are weakly single-peaked w.r.t. a fixed linear ordering on X .

2. Preliminaries

In this section we recall and introduce some basic definitions and provide some
preliminary results.

Recall that a binary relation R on X is said to be

● total if ∀x, y: xRy or yRx;
● transitive if ∀x, y, z: xRy and yRz implies xRz;
● antisymmetric if ∀x, y: xRy and yRx implies x = y.

A binary relation ≤ on X is said to be a linear ordering on X if it is total,
transitive, and antisymmetric. In that case the pair (X,≤) is called a linearly
ordered set. For any integer n ≥ 1, we can assume w.l.o.g. that the pair (Xn,≤n)
represents the set Xn = {1, . . . , n} endowed with the linear ordering relation ≤n
defined by 1 <n ⋯ <n n.

A binary relation ≲ on X is said to be a weak ordering on X if it is total and
transitive. In that case the pair (X,≲) is called a weakly ordered set. We denote
the symmetric and asymmetric parts of ≲ by ∼ and <, respectively. Recall that
∼ is an equivalence relation on X and that < induces a linear ordering on the
quotient set X/ ∼. For any u ∈ X we denote the equivalence class of u by [u]∼, i.e.,[u]∼ = {x ∈X ∶ x ∼ u}.

For any linear ordering ⪯ and any weak ordering ≲ on X , we say that ⪯ is
subordinated to ≲ if for any x, y ∈X , we have that x < y implies x ≺ y.

For a weak ordering ≲ on X , an element u ∈ X is said to be maximal (resp.
minimal) for ≲ if x ≲ u (resp. u ≲ x) for all x ∈ X . We denote the set of maximal
(resp. minimal) elements of X for ≲ by max≲X (resp. min≲X).

Definition 2.1. An operation F ∶X2
→X is said to be

● idempotent if F (x,x) = x for all x ∈ X .
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● quasitrivial (or conservative) if F (x, y) ∈ {x, y} for all x, y ∈X .
● commutative if F (x, y) = F (y, x) for all x, y ∈X .
● associative if F (F (x, y), z) = F (x,F (y, z)) for all x, y, z ∈ X .
● bisymmetric if F (F (x, y), F (u, v)) = F (F (x,u), F (y, v)) for all x, y, u, v ∈
X .
● ≤-preserving for some linear ordering ≤ on X if for any x, y, x′, y′ ∈ X such
that x ≤ x′ and y ≤ y′ we have F (x, y) ≤ F (x′, y′).

Definition 2.2. Let F ∶X2
→X be an operation.

● An element e ∈ X is said to be a neutral element of F if F (e, x) = F (x, e) = x
for all x ∈ X . In this case we can easily show by contradiction that the
neutral element is unique.
● An element a ∈ X is said to be an annihilator of F if F (x, a) = F (a,x) = a
for all x ∈ X . In this case we can easily show by contradiction that the
annihilator is unique.
● The points (x, y) and (u, v) of X2 are said to be F -connected if F (x, y) =
F (u, v). The point (x, y) of X2 is said to be F -isolated if it is not F -
connected to another point of X2.

WhenXn is endowed with ≤n, the operations F ∶X
2

n →Xn can be easily visualized
by showing their contour plots, where we connect by edges or paths all the points of
X2

n having the same values by F . For instance, the operation F ∶X2

3
→ X3 defined

by F (2,2) = F (2,3) = 2, F (1, x) = 1, and F (3, x) = F (2,1) = 3 for x = 1,2,3, is
idempotent. Its contour plot is shown in Figure 1.

✲

✻

1 2 3
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2

3
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Figure 1. An idempotent operation on X3 (contour plot)

Definition 2.3. Let ≤ be a linear ordering on X . We say that an operation
F ∶X2

→X has

● a ≤-disconnected level set if there exist x, y, u, v, s, t ∈ X , with (x, y) <(u, v) < (s, t), such that F (x, y) = F (s, t) ≠ F (u, v).
● a horizontal (resp. vertical) ≤-disconnected level set if there exist x, y, z, u ∈
X , with x < y < z, such that F (x,u) = F (z, u) ≠ F (y, u) (resp. F (u,x) =
F (u, z) ≠ F (u, y)).

Fact 2.4. Let ≤ be a linear ordering on X. If F ∶X2
→ X has a horizontal or

vertical ≤-disconnected level set then it has a ≤-disconnected level set.
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Remark 1. We observe that, for any linear ordering ≤ on X , an operation F ∶X2
→

X having a ≤-disconnected level set need not have a horizontal or vertical ≤-
disconnected level set. Indeed, the operation F ∶X2

3
→ X3 whose contour plot is

depicted in Figure 2 has a ≤3-disconnected level set since F (1,1) = F (2,3) = 1 ≠ 2 =
F (2,2) but it has no horizontal or vertical ≤3-disconnected level set.

s s s

s s s

s s s

✁
✁
✁
✁
✁

1

2

3

Figure 2. An idempotent operation on X3

Lemma 2.5. Let ≤ be a linear ordering on X. If F ∶X2
→X is quasitrivial, then it

has a ≤-disconnected level set iff it has a horizontal or vertical ≤-disconnected level
set.

Proof. (Necessity) Suppose that F has a ≤-disconnected level set and let us show
that it has a horizontal or vertical ≤-disconnected level set. By assumption, there
exist x, y, u, v, s, t ∈ X , with (x, y) < (u, v) < (s, t), such that F (x, y) = F (s, t) ≠
F (u, v). Since F is quasitrivial, we have F (x, y) ∈ {x, y}. Suppose that F (x, y) = x
(the other case is similar). Also, since F is quasitrivial, we have s = x or t = x. If s =
x, then u = x and thus F has a vertical ≤-disconnected level set. Otherwise, if t = x
and s ≠ x, then y ≤ x. If y = x, then v = x and thus F has a horizontal ≤-disconnected
level set. Otherwise, if y < x, then considering the point (s, y) ∈ X2, we get (x, y) <(s, y) < (s, x) and F (x, y) = F (s, x) = x ≠ F (s, y) ∈ {s, y} = {F (s, s), F (y, y)}, which
shows that F has either a horizontal or a vertical ≤-disconnected level set.

(Sufficiency) This follows from Fact 2.4. �

We define the strict convex hull of x, y ∈X w.r.t. ≤ by conv≤(x, y) = {z ∈X ∣ x <
z < y}, if x < y, and conv≤(x, y) = {z ∈X ∣ y < z < x}, if y < x.

Recall that for any linear ordering ≤ on X , a subset C of X is said to be convex
w.r.t. ≤ if for any x, y, z ∈X such that y ∈ conv≤(x, z), we have that x, z ∈ C implies
y ∈ C.

Remark 2. (a) For any quasitrivial operation F ∶X2
→ X and any x ∈ X , con-

sider the sets

Lh
x(F ) = {y ∈X ∣ F (y, x) = x} and Lv

x(F ) = {y ∈X ∣ F (x, y) = x}.
Clearly, for any linear ordering ≤ on X , a quasitrivial operation F ∶X2

→X

has no ≤-disconnected level set iff for any x ∈X , the sets Lh
x(F ) and Lv

x(F )
are convex w.r.t. ≤. Indeed, if Lh

x(F ) or Lv
x(F ) is not convex w.r.t. ≤, then

F has a horizontal or vertical ≤-disconnected level set and thus by Fact 2.4
it has a ≤-disconnected level set. Conversely, if F has a ≤-disconnected level
set, then by Lemma 2.5 it has a horizontal or vertical ≤-disconnected level
set. Suppose that it has a horizontal ≤-disconnected level set (the other
case is similar). By assumption, there exist x, y, z, u ∈ X , with x < y < z,
such that F (x,u) = F (z, u) ≠ F (y, u). Since F is quasitrivial, we have
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F (x,u) = F (z, u) = u and F (y, u) = y which shows that the set Lh
u(F ) is

not convex w.r.t. ≤.
(b) Recall that the kernel of an operation F ∶X2

→X is the set

ker(F ) = {((a, b), (c, d)) ∈ X2 ×X2 ∣ F (a, b) = F (c, d)}.
Clearly, ker(F ) is an equivalence relation on X2. It is not difficult to see
that for any linear ordering ≤ on X , a quasitrivial operation F ∶X2

→ X

has no ≤-disconnected level set iff for any x ∈ X , the class of (x,x) w.r.t.
ker(F ) is convex w.r.t. ≤.

Fact 2.6. Let ≤ be a linear ordering on X. If F ∶X2
→ X is ≤-preserving then it

has no ≤-disconnected level set.

Proposition 2.7. Let ≤ be a linear ordering on X. If F ∶X2
→ X is quasitrivial,

then it is ≤-preserving iff it has no ≤-disconnected level set.

Proof. (Necessity) This follows from Fact 2.6.
(Sufficiency) Suppose that F has no ≤-disconnected level set and let us show

by contradiction that F is ≤-preserving. Suppose for instance that there exist
x, y, z ∈ X , y < z, such that F (x, y) > F (x, z). By quasitriviality we see that
x ∉ {y, z}. Suppose for instance that x < y < z (the other cases are similar). By
quasitriviality we have F (x, y) = y and F (x, z) = x = F (x,x), and hence by Lemma
2.5 F has a ≤-disconnected level set, a contradiction. �

Remark 3. We cannot relax quasitriviality into idempotency in Proposition 2.7.
Indeed, the operation F ∶X2

3 → X3 whose contour plot is depicted in Figure 1 is
idempotent and has no ≤3-disconnected level set. However it is not ≤3-preserving.

Certain links between associativity and bisymmetry were investigated by several
authors (see, e.g., [7, 17, 21, 23, 25]). We gather them in the following lemma.

Lemma 2.8 (see, [7, Lemma 22]). (i) If F ∶X2
→X is bisymmetric and has a

neutral element, then it is associative and commutative.
(ii) If F ∶X2

→X is associative and commutative, then it is bisymmetric.
(iii) If F ∶X2

→X is quasitrivial and bisymmetric, then it is associative.

Corollary 2.9. (i) If F ∶X2
→ X is commutative and quasitrivial, then it is

associative iff it is bisymmetric.
(ii) If F ∶X2

→X has a neutral element, then it is associative and commutative
iff it is bisymmetric.

Remark 4. In [8, Theorem 3.3], the class of associative, commutative, and quasitriv-
ial operations was characterized. In particular, it was shown that there are exactly
n! associative, commutative, and quasitrivial operations on Xn. Using Corollary
2.9(i) we can replace associativity with bisymmetry in [8, Theorem 3.3].

Lemma 2.10 (see [7, Proposition 4]). Let F ∶X2
→ X be a quasitrivial operation

and let e ∈X. Then e is a neutral element of F iff (e, e) is F -isolated.

For any integer n ≥ 1, any F ∶X2

n → Xn, and any z ∈ Xn, the F-degree of z,
denoted degF (z), is the number of points (x, y) ∈X2

n ∖ {(z, z)} such that F (x, y) =
F (z, z). Also, the degree sequence of F , denoted degF , is the nondecreasing n-
element sequence of the degrees degF (x), x ∈Xn. For instance, the degree sequence
of the operation F ∶X2

3 →X3 defined in Figure 1 is degF = (1,2,3).
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Remark 5. If F ∶X2

n →Xn is a quasitrivial operation, then there exists at most one
element x ∈ Xn such that degF (x) = 0. Indeed, otherwise by Lemma 2.10, F would
have at least two distinct neutral elements, a contradiction.

Lemma 2.11. If F ∶X2

n →Xn is quasitrivial, then for all x ∈ Xn, we have degF (x) ≤
2(n − 1).
Proof. Let x ∈ Xn. Since F ∶X2

n → Xn is quasitrivial, the point (x,x) can only be
F -connected to points of the form (x, y) or (y, x) for some y ∈ Xn ∖ {x}. �

The following result was mentioned in [8] without proof.

Proposition 2.12. Let F ∶X2

n → Xn be a quasitrivial operation and let a ∈ Xn.
Then a is an annihilator of F iff degF (a) = 2(n − 1).
Proof. (Necessity) By definition of an annihilator, we have F (x, a) = F (a,x) = a =
F (a, a) for all x ∈ Xn∖{a}. Thus, we have degF (a) ≥ 2(n−1) and hence by Lemma
2.11 we conclude that degF (a) = 2(n − 1).

(Sufficiency) By quasitriviality, the point (a, a) cannot be F -connected to a
point (u, v) where u ≠ a and v ≠ a. Thus, since degF (a) = 2(n − 1), we have
a = F (a, a) = F (x, a) = F (a,x) for all x ∈Xn ∖ {a}. �

Remark 6. We observe that Proposition 2.12 no longer holds if we relax quasitriv-
iality into idempotency. Indeed, the operation F ∶X2

3
→ X3 whose contour plot is

depicted in Figure 3 is idempotent and the element a = 1 is the annihilator of F .
However, degF (1) = 6 > 4.

s s s

s s s

s s s

1

2

3

Figure 3. An idempotent operation with an annihilator on X3

Corollary 2.13. Let F ∶X2

n → Xn be a quasitrivial operation. Any element a ∈ X
such that degF (a) = 2(n − 1) is unique and is of maximal F -degree.

The projection operations π1∶X
2
→ X and π2∶X

2
→ X are respectively defined

as π1(x, y) = x and π2(x, y) = y for all x, y ∈X .
Given a weak ordering ≲ on X , the maximum (resp. minimum) operation on X

w.r.t. ≲ is the commutative operation max≲ (resp. min≲) defined on X2 ∖ {(x, y) ∈
X2 ∶ x ∼ y, x ≠ y} as max≲(x, y) = y (resp. min≲(x, y) = x) whenever x ≲ y. We also
note that if ≲ reduces to a linear ordering, then the operation max≲ (resp. min≲) is
defined everywhere on X2.

The following theorem provides a characterization of the class of associative and
quasitrivial operations on X . In [1, Section 1.2], it was observed that this result is a
simple consequence of two papers on idempotent semigroups (see [18] and [22]). It
was also independently discovered by various authors (see, e.g., [17, Corollary 1.6]
and [20, Theorem 1]). A short and elementary proof has also been given in [8,
Theorem 2.1].
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1 < 2 < 3
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✞ ☎

2

1
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2 ≺ 1 ∼ 3

Figure 4. An associative and quasitrivial operation on X3 that
is not bisymmetric

Theorem 2.14. An operation F ∶X2
→ X is associative and quasitrivial iff there

exists a weak ordering ≾ on X such that

(1) F ∣A×B =
⎧⎪⎪⎨⎪⎪⎩
max≾ ∣A×B , if A ≠ B,

π1∣A×B or π2∣A×B, if A = B,
∀A,B ∈X/ ∼.

Remark 7. As observed in [8], for any associative and quasitrivial operation F ∶X2
→

X , there is exactly one weak ordering ≾ on X for which F is of the form (1). This
weak ordering is defined by: x ≾ y iff F (x, y) = y or F (y, x) = y. Moreover, ifX =Xn

for some integer n ≥ 1, then ≾ can be defined as follows: x ≾ y iff degF (x) ≤ degF (y).
The latter observation follows from [8, Proposition 2.2] which states that for any
x ∈Xn we have

(2) degF (x) = 2 × ∣{z ∈ Xn ∶ z ≺ x}∣ + ∣{z ∈Xn ∶ z ∼ x, z ≠ x}∣.
Some associative and quasitrivial operations are bisymmetric. For instance, so

are the projection operations π1 and π2. However, some other operations are not
bisymmetric. Indeed, the operation F ∶X2

3
→ X3 whose contour plot is depicted

in Figure 4 is associative and quasitrivial since it is of the form (1) for the weak
ordering ≾ on X3 defined by 2 ≺ 1 ∼ 3. However, this operation is not bisymmetric
since F (F (2,3), F (1,2)) = F (3,1) = 3 ≠ 1 = F (1,3) = F (F (2,1), F (3,2)). In
the next section, we provide a characterization of the subclass of bisymmetric and
quasitrivial operations (see Theorem 3.6).

3. Characterizations of bisymmetric and quasitrivial operations

In this section we provide characterizations of the class of bisymmetric and qua-
sitrivial operations F ∶X2

→X as well as the subclass of bisymmetric, quasitrivial,
and ≤-preserving operations F ∶X2

→X for some fixed linear ordering ≤ on X .

Definition 3.1. We say that a weak ordering ≾ on X is quasilinear if there exist
no pairwise distinct a, b, c ∈ X such that a ≺ b ∼ c.

Hence, a weak ordering ≾ on X is quasilinear iff for every x, y ∈ X , x ≠ y, we
have that x ∼ y implies x, y ∈min≾X .

Remark 8. For any integer n ≥ 1, the weak orderings ≾ on Xn that are quasilinear
are known in social choice theory as top orders (see, e.g., [10, Section 2]).

Fact 3.2. Let ≾ be a quasilinear weak ordering on X.

● If ∣min≾X ∣ = 1 then it is a linear ordering.
● If max≾X ≠ ∅, then max≾X =X or ∣max≾X ∣ = 1.
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Proposition 3.3. Let F ∶X2
→X be of the form (1) for some weak ordering ≾ on

X. Then, ≾ is quasilinear iff for any linear ordering ⪯′ on X subordinated to ≾, F
is ⪯′-preserving.

Proof. (Necessity) By the form (1) of F and by quasilinearity of ≾, F is ⪯′-preserving
for any linear ordering ⪯′ on X subordinated to ≾.

(Sufficiency) We proceed by contradiction. Suppose that F is ⪯′-preserving for
any linear ordering ⪯′ on X subordinated to ≾. Suppose also that there exist
pairwise distinct a, b, c ∈ X , such that a ≺ b ∼ c. Fix a linear ordering ⪯′ on
X subordinated to ≾. Suppose that a ≺′ b ≺′ c (the other case is similar). If
F ∣[b]2

∼
= π1∣[b]2

∼
, then

F (b, c) = b ≺′ c = F (a, c),
a contradiction. The case where F ∣[b]2

∼
= π2∣[b]2

∼
is similar. �

Proposition 3.4. Let F ∶X2
→X be of the form (1) for some weak ordering ≾ on

X. Then, F is bisymmetric iff ≾ is quasilinear.

Proof. (Necessity) We proceed by contradiction. Suppose that F is bisymmetric
and suppose also that there exist pairwise distinct a, b, c ∈X such that a ≺ b ∼ c. If
F ∣[b]2

∼
= π1∣[b]2

∼
then

F (F (a, c), F (b, a)) = F (c, b) = c ≠ b = F (b, c) = F (F (a, b), F (c, a)),
a contradiction. The case where F ∣[b]2

∼
= π2∣[b]2

∼
is similar.

(Sufficiency) Let x, y, u, v ∈X , not all equal, and let us show that

F (F (x, y), F (u, v)) = F (F (x,u), F (y, v)).
By applying Fact 3.2 to the subset {x, y, u, v} of X we have two cases to consider.

● If x ∼ y ∼ u ∼ v then F ∣{x,y,u,v} = πi∣{x,y,u,v}, i ∈ {1,2}, and hence F ∣{x,y,u,v}
is bisymmetric.
● Otherwise, if ∣max≾ {x, y, u, v}∣ = 1 then we can assume w.l.o.g. that x ≾ y ≾
u ≺ v. By the form (1) of F it is clear that v is the annihilator of F ∣{x,y,u,v}.
Hence, we have

F (F (x, y), F (u, v)) = v = F (F (x,u), F (y, v)).
Therefore, F is bisymmetric. �

The following proposition provides an additional characterization of the class of
bisymmetric and quasitrivial operations when X =Xn for some integer n ≥ 1.

Proposition 3.5. Let F ∶X2

n → Xn be quasitrivial. Then, F is bisymmetric iff it
is associative and satisfies

(3) degF = (k − 1, . . . , k − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

,2k,2k + 2, . . . ,2n − 2)

for some k ∈ {1, . . . , n}.
Proof. (Necessity) By Lemma 2.8(iii), F is associative. By Proposition 3.4, there
exists a quasilinear weak ordering ≾ on Xn such that F is of the form (1). By
Remark 7, we see that (2) holds for any x ∈ Xn. Therefore, we obtain the claimed
form of the degree sequence of F .

(Sufficiency) By Theorem 2.14, there exists a weak ordering ≾ on Xn such that
F is of the form (1). By Remark 7, we have that x ≾ y iff degF (x) ≤ degF (y).
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Thus, according to our assumptions on the degree sequence of F , we have that ≾ is
quasilinear. Finally, using Proposition 3.4, F is bisymmetric. �

The following theorem, which is an immediate consequence of Lemma 2.8(iii),
Theorem 2.14, and Propositions 2.7, 3.3, 3.4, and 3.5, provides characterizations of
the class of bisymmetric and quasitrivial operations.

Theorem 3.6. Let F ∶X2
→ X be an operation. The following assertions are

equivalent.

(i) F is bisymmetric and quasitrivial.
(ii) F is of the form (1) for some quasilinear weak ordering ≾ on X.
(iii) F is of the form (1) for some weak ordering ≾ on X and for any linear

ordering ⪯′ subordinated to ≾, F is ⪯′-preserving.
(iv) F is of the form (1) for some weak ordering ≾ on X and for any linear

ordering ⪯′ subordinated to ≾, F has no ⪯′-disconnected level set.

If X = Xn for some integer n ≥ 1, then any of the assertions (i)-(iv) is equivalent
to the following one.

(v) F is associative, quasitrivial, and satisfies (3) for some k ∈ {1, . . . , n}.
Remark 9. We observe that in [8, Theorem 3.3] the authors proved that an operation
F ∶X2

n → Xn is associative, commutative, and quasitrivial iff it is quasitrivial and
satisfies

degF = (0,2, . . . ,2(n − 1)).
Surprisingly, in Theorem 3.6(v), we have obtained a similar result by relaxing com-
mutativity into bisymmetry. Moreover, it provides an easy test to check whether an
associative and quasitrivial operation on Xn is bisymmetric. Indeed, the associative
and quasitrivial operation F ∶X2

3 → X3 whose contour plot is depicted in Figure 4
is not bisymmetric since degF = (0,3,3) is not of the form given in Theorem 3.6(v).

The rest of this section is devoted to the subclass of bisymmetric, quasitrivial,
and ≤-preserving operations F ∶X2

→X for a fixed linear ordering ≤ on X . In order
to characterize this subclass, we first need to recall the concept of weak single-
peakedness.

Definition 3.7. (see [8, Definition 4.3]) Let ≤ be a linear ordering on X and let ≾
be a weak ordering on X . The weak ordering ≾ is said to be weakly single-peaked
with respect to ≤ if for all x, y, z ∈ X such that x < y < z we have y ≺ x or y ≺ z or
x ∼ y ∼ z.
Remark 10. (a) If the weak ordering mentioned in Definition 3.7 is a linear

ordering, then we simply say that it is single-peaked with respect to ≤ (see
[9, Definition 3.8]). Note that single-peakedness was first introduced by
Black [6] for linear orderings on finite sets. It is also easy to show by
induction that there are exactly 2n−1 single-peaked linear orderings on Xn

w.r.t. ≤n (see, e.g., [5]).
(b) In [8, Theorem 5.6] the authors proved that the weak orderings on Xn that

are weakly single-peaked w.r.t. ≤n are exactly the weak orderings on Xn

that are single-plateaued w.r.t. ≤n (see, [10, Definition 4 and Lemma 17]).

Fact 3.8. Let ≤ be a linear ordering on X and let ≾ be a quasilinear weak ordering
on X that is weakly single-peaked w.r.t. ≤. If ∣min≾X ∣ = 1, then ≾ is a linear
ordering that is single-peaked w.r.t. ≤.
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The next proposition provides a characterization of the class of associative, qu-
asitrivial, and ≤-preserving operations F ∶X2

→ X for a fixed linear ordering ≤ on
X .

Proposition 3.9. (see [8, Theorem 4.5]) Let ≤ be a linear ordering on X. An
operation F ∶X2

→ X is associative, quasitrivial, and ≤-preserving iff F is of the
form (1) for some weak ordering ≾ on X that is weakly single-peaked w.r.t. ≤.

Remark 11. In [8, Theorem 3.7], the class of associative, commutative, quasitriv-
ial, and order-preserving operations has been characterized. In particular, it was
shown that there are exactly 2n−1 associative, commutative, quasitrivial, and ≤n-
preserving operations on Xn. Using Corollary 2.9(i) we can replace associativity
with bisymmetry in [8, Theorem 3.7].

Using Lemma 2.8(iii), Theorem 3.6, and Proposition 3.9 we can easily derive the
following result.

Proposition 3.10. Let ≤ be a linear ordering on X. An operation F ∶X2
→ X

is bisymmetric, quasitrivial, and ≤-preserving iff F is of the form (1) for some
quasilinear weak ordering ≾ on X that is weakly single-peaked with respect to ≤.

When X = Xn for some integer n ≥ 1, we provide in Proposition 3.13 an addi-
tional characterization of the class of bisymmetric, quasitrivial, and ≤n-preserving
operations. We first consider two preliminary results.

Proposition 3.11. An operation F ∶X2

n → Xn is quasitrivial, ≤n-preserving, and
satisfies degF = (n − 1, . . . , n − 1) iff F = π1 or F = π2.

Proof. (Necessity) Since F is quasitrivial we know that F (1, n) ∈ {1, n}. Suppose
that F (1, n) = n = F (n,n) (the other case is similar). Since F is ≤n-preserving, we
have F (x,n) = n for all x ∈ Xn. Since degF (n) = n − 1, it follows that F (n, y) = y
for all y ∈ Xn. In particular, we have F (n,1) = 1 = F (1,1), and by ≤n-preservation
we obtain F (x,1) = 1 for all x ∈ Xn. Finally, since degF (1) = n − 1, it follows that
F (1, y) = y for all y ∈Xn. Thus, since F is ≤n-preserving, we have

y = F (1, y) ≤n F (x, y) ≤n F (n, y) = y, x, y ∈Xn

which shows that F = π2.
(Sufficiency) Obvious. �

Remark 12. We observe that Proposition 3.11 no longer holds if quasitriviality is
relaxed into idempotency. Indeed, the operation F ∶X2

3 → X3 whose contour plot
is depicted in Figure 5 is idempotent, ≤3-preserving, and satisfies degF = (2,2,2)
but it is neither π1 nor π2. We also observe that Proposition 3.11 no longer holds
if we omit ≤n-preservation. Indeed, the operation F ∶X2

3 → X3 whose contour plot
is depicted in Figure 6 is quasitrivial and satisfies degF = (2,2,2) but it is neither
π1 nor π2.

Lemma 3.12. Let F ∶X2

n → Xn be a quasitrivial and ≤n-preserving operation and
let a ∈Xn. If a is an annihilator of F , then a ∈ {1, n}.
Proof. We proceed by contradiction. Suppose that a ∈ Xn ∖ {1, n}. Since F is
quasitrivial, we have F (1, n) ∈ {1, n}. Suppose that F (1, n) = 1 = F (1,1) (the other
case is similar). Then

1 = F (1,1) ≤n F (1, a) ≤n F (1, n) = 1,
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and hence F (1, a) = 1 a contradiction. �

Proposition 3.13. Let F ∶X2

n → Xn be quasitrivial and ≤n-preserving. Then F is
bisymmetric iff it satisfies (3) for some k ∈ {1, . . . , n}.
Proof. (Necessity) This follows from Proposition 3.5.

(Sufficiency) We proceed by induction on n. The result clearly holds for n = 1.
Suppose that it holds for some n ≥ 1 and let us show that it still holds for n + 1.
Assume that F ∶X2

n+1 →Xn+1 is quasitrivial, ≤n+1-preserving, and satisfies

degF = (k − 1, . . . , k − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

,2k,2k + 2, . . . ,2n)

for some k ∈ {1, . . . , n + 1}. If k = n + 1 then by Proposition 3.11 we have that
F = π1 or F = π2 and hence F is clearly bisymmetric. Otherwise, if k ∈ {1, . . . , n}
then, by the form of the degree sequence of F , there exists an element a ∈ Xn+1

such that degF (a) = 2n. Using Proposition 2.12 we have that a is an annihilator of
F . Moreover, by Lemma 3.12, we have a ∈ {1, n + 1}. Suppose that a = n + 1 (the
other case is similar). Then, F ′ = F ∣X2

n

is clearly quasitrivial, ≤n-preserving, and
satisfies (3). Thus, by induction hypothesis, F ′ is bisymmetric. Since a = n + 1 is
the annihilator of F , we necessarily have that F is bisymmetric. �

The following theorem, which is an immediate consequence of Theorem 3.6 and
Propositions 3.10 and 3.13, provides characterizations of the class of bisymmetric,
quasitrivial, and order-preserving operations.

Theorem 3.14. Let ≤ be a linear ordering on X and let F ∶X2
→X be an operation.

The following assertions are equivalent.

(i) F is bisymmetric, quasitrivial, and ≤-preserving.
(ii) F is of the form (1) for some quasilinear weak ordering ≾ on X that is

weakly single-peaked w.r.t. ≤.
(iii) F is of the form (1) for some weak ordering ≾ on X that is weakly single-

peaked w.r.t. ≤ and for any linear ordering ⪯′ subordinated to ≾, F is ⪯′-
preserving.

(iv) F is of the form (1) for some weak ordering ≾ on X that is weakly single-
peaked w.r.t. ≤ and for any linear ordering ⪯′ subordinated to ≾, F has no
⪯′-disconnected level set.

If (X,≤) = (Xn,≤n) for some integer n ≥ 1, then any of the assertions (i)-(iv) is
equivalent to the following one.

(v) F is quasitrivial, ≤n-preserving, and satisfies (3) for some k ∈ {1, . . . , n}.
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Remark 13. We observe that in [8, Theorem 3.3] the authors proved that an oper-
ation F ∶X2

n →Xn is associative, quasitrivial, commutative, and ≤n-preserving iff it
is quasitrivial, ≤n-preserving, and satisfies

degF = (0,2, . . . ,2(n − 1)).
Surprisingly, in Theorem 3.14(v), we have obtained a similar result by relaxing com-
mutativity into bisymmetry. Moreover, it provides an easy test to check whether
a quasitrivial and ≤n-preserving operation on Xn is bisymmetric. Indeed, the qu-
asitrivial and ≤3-preserving operation F ∶X2

3
→ X3 whose contour plot is depicted

in Figure 4 (left) is not bisymmetric since degF = (0,3,3) is not of the form given
in Theorem 3.14(v). It is important to note that in this test, associativity of the
given operation need not be checked.

4. Enumerations of bisymmetric and quasitrivial operations

In [8, Section 4], the authors computed the size of the class of associative and
quasitrivial operations F ∶X2

n →Xn as well as the sizes of some subclasses obtained
by considering commutativity and order-preservation. Some of these computations
gave rise to previously unknown integer sequences, which were then posted in OEIS
(for instance A292932 and A293005). In the same spirit, this section is devoted to
the enumeration of the class of bisymmetric and quasitrivial operations F ∶X2

n →Xn

as well as some of its subclasses. The integer sequences that emerge from our
investigation are also now posted in OEIS (see, e.g., Axxxxxx).

We also consider either the (ordinary) generating function (GF) or the exponen-
tial generating function (EGF) of a given sequence (sn)n≥0. Recall that when these
functions exist, they are respectively defined by the power series

S(z) = ∑
n≥0

sn z
n and Ŝ(z) = ∑

n≥0

sn
zn

n!
.

For any integer n ≥ 0 we denote by p(n) the number of weak orderings on Xn

that are quasilinear. We also denote by pe(n) (resp. pa(n)) the number of weak
orderings ≾ on Xn that are quasilinear and for which Xn has exactly one minimal
element (resp. one maximal element) for ≾. Clearly, pe(n) is the number of linear
orderings on Xn, namely pe(n) = n! for n ≥ 1. Proposition 4.1 below provides
explicit formulas for p(n) and pa(n). The first few values of these sequences are
shown in Table 1.1

Proposition 4.1. The sequence (p(n))n≥0 satisfies the linear recurrence equation

p(n + 1) − (n + 1)p(n) = 1, n ≥ 0,

with p(0) = 0, and we have the closed-form expression

p(n) = n! n∑
k=1

1

k!
, n ≥ 1.

Moreover, its EGF is given by P̂(z) = (ez −1)/(1−z). Furthermore, for any integer
n ≥ 2 we have pa(n) = p(n)− 1, with pa(0) = 0 and pa(1) = 1.

1Note that the sequence A000142 differs from (pe(n))n≥0 only at n = 0.
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Proof. We clearly have

p(n) = n∑
k=1

( n

k,1, . . . ,1
), n ≥ 1,

where the multinomial coefficient ( n

k,1,...,1
) provides the number of ways to put the

elements 1, . . . , n into (n − k + 1) classes of sizes k,1, . . . ,1. The claimed linear
recurrence equation and the EGF of (p(n))n≥1 follow straightforwardly. Regarding
the sequence (pa(n))n≥0 we observe that max≾Xn ≠ Xn whenever n ≥ 2 (see Fact
3.2). �

n p(n) pe(n) pa(n)
0 0 0 0
1 1 1 1
2 3 2 2
3 10 6 9
4 41 24 40
5 206 120 205
6 1237 720 1236

OEIS A002627 A000142 Axxxxxx

Table 1. First few values of p(n), pe(n), and pa(n)

For any integer n ≥ 0 we denote by q(n) the number of bisymmetric and qua-
sitrivial operations F ∶X2

n →Xn. We also denote by qe(n) (resp. qa(n)) the number
of bisymmetric and quasitrivial operations F ∶X2

n →Xn that have neutral elements
(resp. annihilator elements). Proposition 4.2 provides explicit formulas for these
sequences. The first few values of these sequences are shown in Table 2.2

Proposition 4.2. The sequence (q(n))n≥0 satisfies the linear recurrence equation

q(n + 1) − (n + 1)q(n) = 2, n ≥ 1,

with q(0) = 0 and q(1) = 1, and we have the closed-form expression

q(n) = 2p(n)− n! = n!(2 n∑
i=1

1

i!
− 1) , n ≥ 1.

Moreover, its EGF is given by Q̂(z) = (2ez − 3)/(1 − z). Furthermore, for any
integer n ≥ 1 we have qe(n) = n!, with qe(0) = 0. Also, for any integer n ≥ 2 we
have qa(n) = q(n) − 2, with qa(0) = 0 and qa(1) = 1.
Proof. It is not difficult to see that the number of bisymmetric and quasitrivial
operations on Xn is given by

q(n) = 2p(n)− n! = n!(2 n∑
i=1

1

i!
− 1) , n ≥ 1.

Indeed, since F ∶X2

n → Xn is bisymmetric and quasitrivial, we have by Theorem
3.6 that F is of the form (1) for some quasilinear weak ordering ≾ on Xn. Since
F ∣min≾Xn

= π1 or π2, we have to count twice the number of k-element subsets of Xn,

2Note that the sequence A000142 differs from (qe(n))n≥0 only at n = 0.
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for every k ∈ {1, . . . , n}. However, the number of linear orderings on Xn should be
counted only once (indeed, by Remark 4 there is a one-to-one correspondence be-
tween linear orderings and bisymmetric, commutative, and quasitrivial operations
on Xn). Hence, q(n) = 2p(n) − n!. The claimed linear recurrence equation and
the EGF of (q(n))n≥1 follow straightforwardly. Using Corollary 2.9(ii) and Remark
4, we observe that the sequence (qe(n))n≥0, with qe(0) = 0, gives the number of
linear orderings on Xn. Finally, regarding the sequence (qa(n))n≥0, we observe that
max⪯Xn ≠Xn whenever n ≥ 2 (see Fact 3.2). �

n q(n) qe(n) qa(n)
0 0 0 0
1 1 1 1
2 4 2 2
3 14 6 12
4 58 24 56
5 292 120 290
6 1754 720 1752

OEIS Axxxxxx A000142 Axxxxxx

Table 2. First few values of q(n), qe(n), and qa(n)

We are now interested in computing the size of the class of bisymmetric, qua-
sitrivial, and ≤n-preserving operations F ∶X

2

n →Xn. To this extent, we first consider
a preliminary result.

Lemma 4.3. Let ≾ be a quasilinear weak ordering on Xn that is weakly single-
peaked w.r.t. ≤n. If max≾Xn ≠Xn, then max≾X ⊆ {1, n} and ∣max≾X ∣ = 1.
Proof. We proceed by contradiction. By Fact 3.2, the set max≾Xn contains exactly
one element. Suppose that max≾Xn = {x}, where, x ∈ X ∖ {1, n}. Then the triplet(1, x, n) violates weak single-peakedness of ≾. �

For any integer n ≥ 0 we denote by u(n) the number of quasilinear weak order-
ings ≾ on Xn that are weakly single-peaked w.r.t. ≤n. We also denote by ue(n)
(resp. ua(n)) the number of quasilinear weak orderings ≾ on Xn that are weakly
single-peaked w.r.t. ≤n and for which Xn has exactly one minimal element (resp.
one maximal element) for ≾. Proposition 4.4 provides explicit formulas for these
sequences. The first few values of these sequences are shown in Table 3.3

Proposition 4.4. The sequence (u(n))n≥0 satisfies the linear recurrence equation

u(n + 1) = 2u(n) + 1, n ≥ 0,

with u(0) = 0, and we have the closed-form expression

u(n) = 2n − 1, n ≥ 0.

Moreover, its GF is given by U(z) = z/(2z2 − 3z + 1). Furthermore, for any integer
n ≥ 1 we have ue(n) = 2n−1 with ue(0) = 0. Also, for any integer n ≥ 2 we have
ua(n) = u(n) − 1 with ua(0) = 0 and ua(1) = 1.

3Note that the sequence A131577 differs from (ue(n))n≥0 only at n = 0.
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Proof. We clearly have u(0) = 0 and u(1) = 1. So let us assume that n ≥ 2. If ≾ is
a quasilinear weak ordering on Xn that is weakly single-peaked w.r.t. ≤n, then by
Lemma 4.3, either max≾Xn = Xn or max≾Xn = {1} or max≾Xn = {n}. In the two
latter cases, it is clear that the restriction of ≾ to Xn ∖max≾Xn is quasilinear and
weakly single-peaked w.r.t. the restriction of ≤n to Xn ∖max≾Xn. It follows that
the number u(n) of quasilinear weak orderings on Xn that are weakly single-peaked
w.r.t. ≤n satisfies the first order linear equation

u(n) = 1 + u(n − 1) + u(n − 1), n ≥ 2.

The stated expression of u(n) and the GF of (u(n))n≥2 follow straightforwardly.
Using Fact 3.8 and Remark 10(a), we observe that the sequence (ue(n))n≥0, with
ue(0) = 0, gives the number of linear orderings on Xn that are single-peaked w.r.t.
≤n. Finally, regarding the sequence (ua(n))n≥0, we observe that max≾Xn ≠ Xn

whenever n ≥ 2 (see Fact 3.2). �

n u(n) ue(n) ua(n)
0 0 0 0
1 1 1 1
2 3 2 2
3 7 4 6
4 15 8 14
5 31 16 30
6 63 32 62

OEIS A000225 A131577 Axxxxxx

Table 3. First few values of u(n), ue(n), and ua(n)

For any integer n ≥ 0 we denote by v(n) the number of bisymmetric, quasitrivial,
and ≤n-preserving operations F ∶X2

n → Xn. We also denote by ve(n) (resp. va(n))
the number of bisymmetric, quasitrivial, and ≤n-preserving operations F ∶X2

n →Xn

that have neutral elements (resp. annihilator elements). Proposition 4.5 provides
explicit formulas for these sequences. The first few values of these sequences are
shown in Table 4.4

Proposition 4.5. The sequence (v(n))n≥2 satisfies the linear recurrence equation

v(n + 1) = 2v(n) + 2, n ≥ 1,

with v(0) = 0 and v(1) = 1, and we have the closed-form expression

v(n) = 3 ⋅ 2n−1 − 2, n ≥ 1.

Moreover, its GF is given by V (z) = (5z − 1)/(4z2 − 6z + 2). Furthermore, for any
integer n ≥ 1 we have ve(n) = 2n−1 with ve(0) = 0. Also, for any integer n ≥ 2 we
have va(n) = v(n) − 2 with va(0) = 0 and va(1) = 1.
Proof. We clearly have v(0) = 0 and v(1) = 1. So let us assume that n ≥ 2. If
F ∶X2

n → Xn is a bisymmetric, quasitrivial, and ≤n-preserving operation, then by
Theorem 3.14 it is of the form (1) for some quasilinear weak ordering ≾ onXn that is

4Note that the sequence A131577 differs from (ve(n))n≥0 only at n = 0.
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weakly single-peaked w.r.t. ≤n. By Lemma 4.3, either max≾Xn =Xn or max≾Xn ={1} or max≾Xn = {n}. In the first case we have to consider the two projections
F = π1 and F = π2. In the two latter cases, it is clear that the restriction of F
to (Xn ∖max≾Xn)2 is still bisymmetric, quasitrivial, and ≤n-preserving. It follows
that the number v(n) of quasitrivial, bisymmetric, and ≤n-preserving operations
F ∶X2

n →Xn satisfies the first order linear equation

v(n) = 2 + v(n − 1) + v(n − 1), n ≥ 2.

The stated expression of v(n) and the GF of (v(n))n≥2 follow straightforwardly.
Using Corollary 2.9(ii) and Remark 11, we observe that the sequence (ve(n))n≥0,
with ve(0) = 0, gives the number of linear orderings on Xn that are single-peaked
w.r.t. ≤n. Finally, regarding the sequence (va(n))n≥0, we observe that max≾Xn ≠
Xn whenever n ≥ 2 (see Fact 3.2). �

Remark 14. We observe that an alternative characterization of bisymmetric, qua-
sitrivial, and ≤n-preserving operations F ∶X2

n →Xn was obtained in [19, Section 5].
Also, the explicit expression of v(n) as stated in Proposition 4.5 was independently
obtained in [19, Section 6] by means of a totally different approach.

n v(n) ve(n) va(n)
0 0 0 0
1 1 1 1
2 4 2 2
3 10 4 8
4 22 8 20
5 46 16 44
6 94 32 92

OEIS Axxxxxx A131577 Axxxxxx

Table 4. First few values of v(n), ve(n), and va(n)

Example 4.6. We show in Figure 7 the q(3) = 14 bisymmetric and quasitrivial
operations onX3. Among these operations, qe(3) = 6 have neutral elements, qa(3) =
12 have annihilator elements, and v(3) = 10 are ≤3-preserving.

5. Quasilinearity and weak single-peakedness

In this section we investigate some properties of the quasilinear weak orderings
on X that are weakly single-peaked w.r.t. a fixed linear ordering ≤ on X .

The following lemma provides a characterization of quasilinearity under weak
single-peakedness.

Lemma 5.1. Let ≤ be a linear ordering on X and let ≾ be a weak ordering on
X that is weakly single-peaked w.r.t. ≤. Then ≾ is quasilinear iff there exist no
a, b, c ∈ X, with a < b < c, such that b ≺ a ∼ c.
Proof. (Necessity) Obvious.

(Sufficiency) We proceed by contradiction. Suppose that there exist pairwise
distinct a, b, c ∈ X , such that a ≺ b ∼ c. By weak single-peakedness we must have
b < a < c or c < a < b, a contradiction. �
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Figure 7. The 14 bisymmetric and quasitrivial operations on X3

The following lemma provides a characterization of weak single-peakedness under
quasilinearity.

Lemma 5.2. Let ≤ be a linear ordering on X and let ≾ be a weak ordering on X

that is quasilinear. Then ≾ is weakly single-peaked w.r.t. ≤ iff for any a, b, c ∈ X
such that a < b < c we have b ≾ a or b ≾ c.
Proof. (Necessity) Obvious.

(Sufficiency) We proceed by contradiction. Suppose that there exist a, b, c ∈ X
satisfying a < b < c such that b ≻ a and b ≿ c ( the case b ≿ a and b ≻ c is similar). We
only have two cases to consider. If b ∼ c, then quasilinearity is violated. Otherwise,
if b ≻ c, we also arrive at a contradiction. �

Remark 15. In Theorems 3.6 and 3.14 we can replace quasilinearity with its equiv-
alent condition stated in Lemma 5.1. Similarly, in Theorems 3.6 and 3.14 we can
replace weak single-peakedness with its equivalent condition stated in Lemma 5.2.

From Lemmas 5.1 and 5.2 we obtain the following characterization.

Proposition 5.3. Let ≤ be a linear ordering on X and let ≾ be a weak ordering on
X. Let us also consider the following assertions

(i) ≾ is weakly single-peaked w.r.t. ≤.
(ii) There exist no a, b, c ∈X, with a < b < c, such that b ≺ a ∼ c.
(iii) For all a, b, c ∈X such that a < b < c we have b ≾ a or b ≾ c.
(iv) ≾ is quasilinear.

Then the conjunction of assertions (i) and (ii) holds iff the conjunction of assertions
(iii) and (iv) holds.

The following result can be easily derived from the previous Proposition 5.3.

Corollary 5.4. Let ≤ be a linear ordering on X and let ≾ be a weak ordering on
X that satisfies assertions (i) and (ii) of Proposition 5.3. If ∣min≾X ∣ = 1, then ≾
is a linear ordering on X that is single-peaked w.r.t. ≤.

Let us recall the following notion which was first introduced in [8, Definition 5.4].
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Definition 5.5. Let ≤ be a linear ordering on X and let ≾ be a weak ordering
on X . A subset P ⊆ X , ∣P ∣ ≥ 2, is called a plateau with respect to (≤,≾) if P is
convex with respect to ≤ and if there exists x ∈ X such that P ⊆ [x]∼. Moreover,
the plateau P is said to be ≾-minimal if for all a ∈ X verifying a ≾ P there exists
z ∈ P such that a ∼ z.
Proposition 5.6. Let ≤ be a linear ordering on X and let ≾ be a weak ordering on
X. Consider the assertions (iii) and (iv) of Proposition 5.3 as well as the following
one.

(iv’) If there exist a, b ∈ X, a ≠ b, such that a ∼ b then conv≤(a, b) is a plateau
with respect to (≤,≾) and it is ≾-minimal.

Then we have ((iii) and (iv)) ⇒ (iv’), and (iv’) ⇒ (iv).

Proof. ((iii) and (iv))⇒ (iv′). We proceed by contradiction. Let a, b ∈ X , a ≠ b,
such that a ∼ b and suppose that conv≤(a, b) is not a plateau. But then there exists
u ∈ conv≤(a, b) such that either u ≺ a ∼ b, which contradicts (iv), or u ≻ a ∼ b which
contradicts (iii). Thus, conv≤(a, b) is a plateau and it is ≾-minimal by (iv).(iv′) ⇒ (iv). We proceed by contradiction. Suppose that there exist pairwise
distinct a, b, c ∈ X such that a ≺ b ∼ c. But then conv≤(b, c) is a plateau which is
not ≾-minimal, a contradiction to (iv’). �

6. Conclusion

This paper is based on two known results : (1) a characterization of the class of
associative and quasitrivial operations on X (see Theorem 2.14) and (2) the fact
that the class of bisymmetric and quasitrivial operations on X is a subclass of the
latter one (see Lemma 2.8(iii)). By introducing the concept of quasilinearity for
weak orderings on X (see Definition 3.1) we provided a characterization of the class
of bisymmetric and quasitrivial operations on X (see Theorem 3.6). To characterize
those operations that are ≤-preserving (see Theorem 3.14), we considered the con-
cepts of weak single-peakedness (see Definition 3.7) and quasilinearity. Surprisingly,
when X = Xn, we also provided a characterization of the latter classes (see Theo-
rems 3.6 and 3.14) in terms of the degree sequences, which provides an easy test to
check whether a quasitrivial operation is bisymmetric. The latter characterizations
give an answer to an open question asked in [7, Section 5, Question (b)]. Moreover,
we computed the size of the class of bisymmetric and quasitrivial operations. All
the new sequences that arose from our results were posted in OEIS.

In view of these results, some questions arose and we list some of them below.

● We gave a partial answer to an open question asked in [8]. Namely, we were
able to generalize [8, Theorems 3.3 and 3.7] by relaxing commutativity into
bisymmetry (see Theorems 3.6 and 3.14). It would be interesting to search
for a generalization of Theorems 3.6 and 3.14 by removing bisymmetry in
assertion (i).
● Generalize Theorems 3.6 and 3.14 by relaxing quasitriviality into idempo-
tency.
● Generalize Theorems 3.6 and 3.14 for n-variable operations, n ≥ 3.
● The integer sequences A000142, A002627, A000225, and A131577 were pre-
viously known in OEIS to solve enumeration issues neither related to quasi-
linearity nor weak single-peakedness. It would be interesting to search for
possible one-to-one correspondences between those problems and ours.
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