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Abstract. We study three finite-dimensional quotient vector spaces constructed from the linear
span of the set of characteristic functions of permutohedral cones by imposing two kinds of
constraints: (1) neglect characteristic functions of higher codimension permutohedral cones, and
(2) neglect characteristic functions of permutohedral cones which contain doubly infinite lines.
We construct an ordered basis which is canonical, in the sense that it has subsets which map
onto ordered bases for the quotients.
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1. Introduction

The purpose of this paper is two-fold: it contains general combinatorial and geometric results
about generalized permutohedra, but from our perspective it is motivated by surprising connec-
tions to physics, in particular to the study of scattering amplitudes in quantum field theory and
string theory.

This paper is devoted to the combinatorial analysis of the vector space of characteristic func-
tions of generalized permutohedra, studied as plates by Ocneanu [14], and by the author in [7, 8].
We derive a certain canonical basis of the space which is spanned linearly by characteristic func-
tions of permutohedral cones; these cones are dual to the faces of the arrangement of reflection
hyperplanes, defined by equations xi − xj = 0.

The basis is called canonical because of its compatibility with quotient maps to three other
spaces: subsets of the canonical plate basis descend to bases for the quotients. These maps
are constructed from one or both of two geometrically-motivated conditions, according to which
characteristic functions of (1) higher codimension faces, or (2) non-pointed cones, are sent to
the zero element.

The author was partially supported by RTG grant NSF/DMS-1148634,
University of Minnesota, email: earlnick@gmail.com.
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2 NICK EARLY

Plates are permutohedral cones: the edges extend along the root directions ei− ej. Plates are
labeled by ordered set partitions; when the blocks of an ordered partition are all singlets, then
the corresponding plate is encoded by a directed tree of the form {(i1, i2), (i2, i3), . . . , (in−1, in)}
and correspondingly have edge directions the roots eij − eij+1 .

We begin in Section 2 by introducing notation and collecting basic results about polyhedral
cones. In Section 3 we give linear relations which express the characteristic function of any
product of mutually orthogonal plates as a signed sum of plates which have the ambient dimen-
sion n − 1. We come to our main result, the construction of canonical plate basis, in Section
4 and give two graded dimension formulas. In Section 5 we give formulas which express the
characteristic function of a permutohedral cone encoded by a directed tree as a signed sum
of characteristic functions of plates. In Section 6 we present the formula which expands the
characteristic function of any plate in the canonical basis.

For results more directly related to physics, readers may want to look toward the identities in
Theorem 32 and Corollary 36; looking forward, it turns out that, using the theory of polyhedral
geometry [3], specifically Theorem 3.1, these can be specialized to interpret the shuffle relations
in [11], as well as the loop analogs of the Parke-Taylor factors [9, 10], using permutohedral cones.

2. Landscape: basic properties of cones and plates

Throughout this paper we shall assume n ≥ 1.
The all-subset hyperplane arrangement lives inside the linear hyperplane V n

0 ⊂ Rn defined
by x1 + · · · + xn = 0, and consists of the special hyperplanes ∑i∈I xi = 0, as I runs through
the proper nonempty subsets of {1, . . . , n}. This paper deals with the subspace of functions
supported on V n

0 lying in the span of characteristic functions [U ] of subsets U which are closed
cones in the all-subset arrangement. Certain subsets U play a special role in this theory.
Definition 1. An ordered set partition of {1, . . . , n} is a sequence of blocks (S1, . . . , Sk), where
∅ 6= Si ⊆ {1, . . . , n} with Si ∩ Sj = ∅ for i 6= j, and with ∪ki=1Si = {1, . . . , n}. For each such
ordered set partition, the associated plate π = [S1, . . . , Sk] is the cone defined by the system of
inequalities

xS1 ≥ 0
xS1∪S2 ≥ 0

...
xS1∪···∪Sk−1 ≥ 0
xS1∪···∪Sk = 0,

where xS = ∑
i∈S xi for each S ⊆ {1, . . . , n}. When the Si’s are singlets we write simply

π = [i1, . . . , in], where ia stands for the unique element of Sa. We denote by [π] = [[S1, . . . , Sk]]
the characteristic function of the plate π.

Denote by len(π) the number of blocks in the ordered set partition which labels π.
This paper studies the four spaces P̂n,Pn, P̂n1 ,Pn1 , as related by a diagram of linear surjections:

P̂n −−−→ P̂n1y y
Pn −−−→ Pn1

(1)

The horizontal (respectively vertical) maps mod out by characteristic functions of cones which
are not pointed (respectively not full-dimensional). In particular, the upper left space P̂n is the
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linear span of characteristic functions of all plates. The upper right space P̂n1 is the quotient
of P̂n by the span of the characteristic functions of plates which are not pointed: they contain
doubly infinite lines. The lower left space Pn requires somewhat more care to define: it is the
quotient of P̂n by the span of those linear combinations of characteristic functions of plates
which vanish outside a set of measure zero in V n

0 . The lower right space Pn1 is the quotient of
P̂n by the span of both characteristic functions of non-pointed plates and linear combinations
which vanish outside sets of measure zero in V n

0 .
The subscript 1 on P̂n1 and Pn1 is intended to remind that only characteristic functions of

plates labeled by ordered set partitions having all blocks of size 1 are nonzero.
Our main result, Theorem 27, constructs a new basis which is unitriangularly related to

the given basis of characteristic functions [π], with the virtue that it contains subsets which
will descend to bases for the other three spaces. In particular, this will show that they have
dimensions given as follows:

dim
(
P̂n
)

= ∑n
k=1 k!S(n, k) (Ordered Bell #’s) dim

(
P̂n1
)

= ∑n
k=1 s(n, k) = n!

dim (Pn) = ∑n
k=1(k − 1)!S(n, k) (Cyclic Bell #’s) dim (Pn1 ) = s(n, 1) = (n− 1)!

.

Here S(n, k) is the kth Stirling number of the second kind, which counts the set partitions of
{1, . . . , n} into k parts, and s(n, k) is the (unsigned) Stirling number of the first kind which counts
the number of permutations which have k cycles (including singlets) in their decompositions into
disjoint cycles.

The canonical basis of P̂n is naturally graded, and the corresponding dimensions are given
below. The first six rows are given below; note that the rows sum to the ordered Bell numbers
(1, 3, 13, 75, 541, 4683).

1
2 1
6 6 1
26 36 12 1
150 250 120 20 1
1082 2040 1230 300 30 1

In Corollary 30 we observe that the rows are given by the equation

Tn,k =
n∑
i=k

S(n, i)s(i, k),

where S(n, i) is the Stirling number of the second kind which counts the number of set partitions
of {1, . . . , n} into i blocks, and s(i, k) is the Stirling number of the first kind which count the
number of ways to order cyclically those blocks. This is given in O.E.I.S. A079641.

Further, as the canonical basis of P̂n passes to one for P̂n1 , with graded dimensions the (un-
signed) Stirling numbers of the first kind.

1
1 1
2 3 1
6 11 6 1
24 50 35 10 1
120 274 225 85 15 1

2.1. Notation and conventions. Recall that a chain of inequalities xi1 ≥ xi2 ≥ · · · ≥ xin
with ∑xi = 0 cuts out a simplicial cone called a Weyl chamber in the arrangement of reflection
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hyperplanes, defined by equations xi − xj = 0, of type An−1. Weyl chambers are thus labeled
by permutations (i1, . . . , in) in one-line notation.

A polyhedral cone is an intersection of finitely many half spaces ∑n
j=1 ai,jxj ≥ 0 in Rn, for

some integer constants ai,j. For example, the chain of inequalities which define a Weyl chamber
can be reorganized as

xi1 − xi2 ≥ 0, . . . , xin−1 − xin ≥ 0, with
∑

xi = 0,

so it is a polyhedral cone. Letting e1, . . . , en denote the standard basis for Rn, if I is a proper
subset of {1, . . . , n}, set eI = ∑

i∈I ei and let ēI = |Ic|
n
eI − |I|n eIc be the projection of eI onto V n

0 ,
along the vector (1, . . . , 1). A polyhedral cone is pointed if it does not contain any lines which
extend to infinity in both directions.

Given {v1, . . . , vk} ⊂ Rn, denote by 〈v1, . . . , vk〉+ := {c1v1 + · · ·+ ckvk : ci ≥ 0} their conical
hull. For example, a Weyl chamber is a conical hull, since it can also be obtained as the set of
all linear combinations of a set of vectors with nonnegative coefficients,〈

ēi1 , ē{i1,i2}, . . . , ē{i1,i2,...,in−1}
〉

+
= {c1ēi1 + c2ē{i1,i2} + · · ·+ cn−1ē{i1,...,in−1} : ci ≥ 0}.

Further, the conical hull of the roots of type An−1, 〈ei1−ei2 , . . . , ein−1−ein〉+ is called a root cone,
and it is easy to check that it coincides with the plate [i1, . . . , in]. We leave it as an exercise for
the reader to check that, if (S1, . . . , Sk) is an ordered set partition of {1, . . . , n}, then we have

[S1, . . . , Sk]
= 〈ea − eb : either a, b ∈ Sj for j = 1, . . . , k, or (a, b) ∈ Si × Si+1 for i = 1, . . . , k − 1〉+ .(2)

Definition 2. The Minkowski sum of two polyhedral cones C1, C2 is given by C1 + C2 =
{u+ v : u ∈ C1, v ∈ C2}. Denote by [C1] · [C2] = [C1 ∩ C2] the pointwise product of their
characteristic functions, and denote by

[C1] • [C2] = [C1 + C2] = [{u+ v : u ∈ C1, v ∈ C2}]

their convolution, which is the characteristic function of the Minkowski sum C1 + C2.

Remark 3. See [3] for details on the constructions of · and • as bi-linear maps on the Q-vector
space of characteristic functions of cones. Note however that we extend the coefficient field to
C.

There is a notion of duality for polyhedral cones.

Definition 4. Let C be a polyhedral cone in V n
0 . The dual cone to C, denoted C?, is defined

by the equation
C? = {y ∈ V n

0 : y · x ≥ 0 for all x ∈ C}.

Remark 5. Dual cones are known to satisfy the following properties.
(1) The dual C? of a cone C with nonempty interior is pointed.
(2) The dual C? of a pointed cone C has nonempty interior.
(3) If a cone C is convex and topologically closed, then (C?)? = C.

See for example [5] for details.

Remark 6. We shall need the following results from [3], Theorem 2.7 and respectively Corollary
2.8, where we extend the field from Q to C.
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• Duality for cones respects linear relations among their characteristic functions: if C1, . . . , Ck
are cones and for some constants c1, . . . , ck ∈ C we have

k∑
i=1

ci[Ci] = 0

then the same relation holds among the characteristic functions for the dual cones,
k∑
i=1

ci[C?
i ] = 0,

interchanging the pointwise product and the convolution.
• There exists a linear map on the vector space spanned by characteristic functions of
cones, which we also denote by ?, such that [C]? = [C?].
• Duality for cones interchanges intersections and Minkowski sums: if C1, C2 are cones,
then [C1 ∩ C2] = [C1] · [C2], and moreover

([C1] · [C2])? = [C?
1 ] • [C?

2 ].

Example 7. Denote ē1 = (2,−1,−1)/3 and ē2 = (−1, 2,−1)/3, hence ē1 + ē2 = (1, 1,−2)/3 =
−ē3. Then the two cones, the simple root cone

〈e1 − e2, e2 − e3〉+
and the Weyl chamber

〈ē1, ē1 + ē2〉+,
are dual to each other. See Figure 1.

(1,-1,0)

(0,1,-1)

(2,-1,-1)/3

(1,1,-2)/3

Figure 1. Dual Cones for Example 7

Definition 8. Denote by [S1, . . . , Sk]? the face of the reflection arrangement labeled by the
ordered set partition (S1, . . . , Sk), given by the equations

(xs1,1 = · · · = xs1,l1
) ≥ (xs2,1 = · · · = xs2,l2

) ≥ · · · ≥ (xsk,1 = · · · = xsk,lk ), x1 + · · ·+ xn = 0

(where si,1, . . . , si,li are the elements of Si), or for short
x(S1) ≥ x(S2) ≥ · · · ≥ x(Sk), x1 + · · ·+ xn = 0,
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where for compactness the symbol x(S) is defined to be the list of equations (xi1 = · · · = xi|S|),
for a subset S = {i1, . . . , i|S|} of {1, . . . , n}.

This can be given equivalently as the conical hull〈
ēS1 , ēS1 + ēS2 , . . . , ēS1 + · · ·+ ēSk−1

〉
+
.

Proposition 9. If (S1, . . . , Sk) is an ordered set partition of a subset S ⊆ {1, . . . , n}, then the
dual cone [S1, . . . , Sk]? to

[S1, . . . , Sk] =

∑
i∈S

xiei ∈ V n
0 :

∑
i∈S1∪···∪Sj

xi ≥ 0, for each j = 1, . . . , k − 1


equals t1 ∑

i∈S1

ei + · · ·+ tk
∑
i∈Sk

ei ∈ V n
0 : t1 ≥ · · · ≥ tk

 .
Proof. Suppose y · x ≥ 0 for all x ∈ [S1, . . . , Sk]. By Equation (2),

[S1, . . . , Sk] = 〈ea − eb : either a, b ∈ Si or (a, b) ∈ Si × Si+1 for i = 1, . . . , k − 1 〉+ ,
it suffices to check that, for either a, b ∈ Si or (a, b) ∈ Si × Si+1, we have

ya − yb = y · (ea − eb) ≥ 0 and yb − ya = y · (eb − ea) ≥ 0.
Thus,

y = t1
∑
i∈S1

ei + · · ·+ tk
∑
i∈Sk

ei +
∑
i∈Sc

yiei

for some t1, . . . , tk and yi, such that |S1|t1 + · · · + |Sk|tk + ∑
i∈Sc yi = 0. Now, for each i =

1, . . . , k − 1, for any (a, b) ∈ Si × Si+1 we have ti − ti+1 = y · (ea − eb) ≥ 0, or ti ≥ ti+1. �

Corollary 10 follows from (2). For pedagogical reasons we include a different proof using
duality.

Corollary 10. If π = [S1, . . . , Sk] is a plate, then we may factor its characteristic function using
the pointwise product. Set theoretically we have

π = [S1, . . . , Sk] =
k−1⋂
i=1

[S1 ∪ · · · ∪ Si, Si+1 ∪ · · · ∪ Sk],

or in terms of characteristic functions,
[π] = [[S1, S2 ∪ S3 · · · ∪ Sk]] · [[S1 ∪ S2, S3 ∪ · · · ∪ Sk]] · · · [[S1 ∪ S2 · · · ∪ Sk−1, Sk]]

and using Minkowski sums as

π =
k−1∑
i=1

[Si, Si+1].

In terms of characteristic functions,
[π] = [[S1, S2]] • [[S2, S3]] • · · · • [[Sk−1, Sk]],

where

[Si, Si+1] =

 ∑
j∈Si∪Si+1

xjej ∈ V n
0 :

∑
j∈Si

xj ≥ 0,
∑

j∈Si∪Si+1

xj = 0

 ,
e1, . . . , en being the standard basis for Rn.
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Proof. The identity for the intersection products follows immediately from the defining inequal-
ities for plates.

For the convolution product identity it is convenient first to dualize,

[[S1, S2]] • [[S2, S3]] • · · · • [[Sk−1, Sk]] = ([[S1, S2]]? · [[S2, S3]]? · · · [[Sk−1, Sk]]?)? ,

where by Proposition 9 we have

[[Si−1, Si]]? =
[
{y ∈ V n

0 : y(Si) ≥ y(Si+1)}
]
.

Thus,

([[S1, S2]]? · [[S2, S3]]? · · · [[Sk−1, Sk]]?)?

=
([
{x ∈ V n

0 : x(S1) ≥ x(S2)}
]
· · ·

[
{x ∈ V n

0 : x(Sk−1) ≥ x(Sk)}
])?

=
[
{x ∈ V n

0 : x(S1) ≥ · · · ≥ x(Sk)}
]?

=
[{
x ∈ V n

0 : xS1 ≥ 0, . . . , xS1∪···∪Sk−1 ≥ 0
}]

= [[S1, . . . , Sk]],

where as usual we use the shorthand notations xS = ∑
i∈S xi and x(S) = (xs1 = · · · = xs|S|), for

S a subset of {1, . . . , n}.
�

2.2. Genericity. The relationships between P̂n,Pn, P̂n1 and Pn1 reduce to variations on a single
linear identity. If S1, S2 ( {1, . . . , n} are any two disjoint nonempty subsets, then the charac-
teristic function of the set

{x ∈ V n
0 : xS1 = xS2 = 0 and xj = 0 for all j 6∈ S1 ∪ S2},

represented by the pointwise product [[S1, S2]] · [[S2, S1]], can be expressed via

[[S1, S2]] + [[S2, S1]] = [[S1, S2]] · [[S2, S1]] + [[S1 ∪ S2]].

The above identity holds in P̂n. To obtain the identity which holds in Pn we specialize to

[[S1, S2]] + [[S2, S1]] = [[S1 ∪ S2]],

where [[S1 ∪ S2]] is the characteristic function of the set

[S1 ∪ S2] =

 ∑
j∈S1∪S2

xjej ∈ Rn :
∑

j∈S1∪S2

xj = 0

 ⊆ V n
0 .

In P̂n1 and Pn1 we we assume that S1, S2 ⊂ {1, . . . , n} are singlets and specialize to respectively

[[S1, S2]] + [[S2, S1]] = [[S1, S2]] · [[S2, S1]]

and
[[S, Sc]] + [[Sc, S]] = 0.
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3. Plate homology: from plates to their faces

The main result of this section is Theorem 21, which expands the face of a plate as a linear
combination characteristic functions of plates in P̂n.

While the symmetric group does not play an essential role in this paper, let us point out some
of the symmetry properties of plates which were implicit in [7]. The action of the symmetric
group Sn on plates is inherited from the coordinate permutation on Rn. In the plate notation,
σ ∈ Sn acts on characteristic functions of plates [[S1, . . . , Sk]] by permuting elements in the
blocks Si.

Remark 11. The permutation group Sn preserves the following operations on characteristic
functions of plates.

(1) Inclusion:
[[S1, . . . , Sk]] 7→ [[T1, . . . , Tl]]

where l ≤ k, each Ti is a union of some consecutive Sj’s and we still have ∪li=1Ti =
{1, . . . , n}. Note that from the defining inequalities we have the inclusion of cones

[S1, . . . , Sk] ⊆ [T1, . . . , Tl].

(2) Block permutation:
[[S1, . . . , Sk]] 7→ [[Sτ1 , . . . , Sτk ]]

for a permutation τ ∈ Sk.
(3) Restriction to a face:

[[S1, . . . , Sk]] = [[S1, S2]] • · · · • [[Sk−1, Sk]] 7→ [[Si1 , Si1+1]] • · · · • [[Sil , Sil+1]]

for any subset {i1, . . . , il} ⊆ {1, . . . , k − 1}.

Henceforth we shall not use the action of the symmetric group Sn.

Proposition 12. The space P̂n, the linear span of the characteristic functions of plates, is freely
generated by characteristic functions of all plates π, and thus has linear dimension the ordered
Bell number ∑n

i=1 k!Sn,k, where Sn,k are the Stirling numbers of the second kind, which count the
number of set partitions of {1, . . . , n} into k disjoint subsets.

Proof. By Remark 6, the involution ? preserves linear relations among characteristic func-
tions; therefore it provides a natural isomorphism of vector spaces from P̂n onto the space
spanned by the characteristic functions of faces of Weyl chambers. Further, for each dimension
k = 0, . . . , n− 1, these faces have non-intersecting relative interiors and consequently their char-
acteristic functions are linearly independent, and by the duality map ?, plates in P̂n are as well.
Therefore, to extract the dimension formula it suffices to count the faces of the arrangement of
reflection hyperplanes; but these are in bijection with the ordered set partitions of {1, . . . , n},
which are counted by the ordered Bell numbers. �

Definition 13. Let S = (S1, . . . , Sk) be an ordered set partition of {1, . . . , n}. Suppose T =
(T1, . . . , Tl) is another ordered set partition of {1, . . . , n}, such that each block of Ti is a union
of blocks Si of S. Define pi ∈ {1, . . . , l} by the condition that Si is a subset of Tpi . Thus if Si is
a subset of the first block of T then p1 = 1. Then T has the orientation pi ≤ pj with respect to
S whenever Si appears to the left of Sj in S, with equality if and only if Si t Sj ⊆ Ta for some
a ∈ {1, . . . , l}. In the case that T satisfies pi < pj, we shall say that T is compatible with the
orientation pi < pj.
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Definition 14. An ordered set partition T = (T1, . . . , Tm) is a shuffle-lumping of ordered set
partitions

S1 = (S1, S2, . . . , Sk1),S2 = (Sk1+1, Sk1+2, . . . , Sk1+k2), . . . ,Sl = (Sk1+···+kl−1+1, . . . , Sk1+···+kl),

provided that each ordered set partition Si is properly oriented:

p1 < p2 < · · · < pk1

pk1+1 < pk1+2 < · · · < pk1+k2

...

pk1+···+kl−1+1 < pk1+···+kl−1+2 < · · · < pn.

Example 15. The plate [S1, . . . , Sk] is uniquely characterized among its shuffle-lumpings by the
set of orientations p1 < p2 < · · · < pk on the blocks S1, . . . , Sk.

Example 16. If (S1, S2, S3, S4) = (1, 4, 23, 5) and (S5, S6) = (678, 9), then shuffle-lumped plates
include for example

[1, 4678, 23, 59] and [678, 1, 4, 23, 9, 5].
Then [1, 4678, 23, 59] is a plate with the smallest possible number of blocks, while [678, 1, 4, 23, 9, 5]
is a plate with the largest possible number of blocks, in the shuffle-lumping of the set composi-
tions (S1, S2, S3, S4) and (S5, S6).

Example 17. The shuffle-lumpings of (S1, S2) = ({1}, {2, 3}) and (S3, S4) = ({4}, {5}) are

{(1, 23, 4, 5), (1, 234, 5), (1, 4, 23, 5), (14, 23, 5), (4, 1, 23, 5), (1, 4, 235), (14, 235), (4, 1, 235),

(1, 4, 5, 23), (14, 5, 23), (4, 1, 5, 23), (4, 15, 23), (4, 5, 1, 23)}

In Lemma 18 we decompose the characteristic function of a union of closed Weyl chambers
into an alternating sum of partially closed Weyl chambers in a canonical way that depends on
descent positions, with respect to the natural order (1, . . . , n). See [18] for a systematic approach
using so-called (P, ω)-partitions.

Lemma 18. We have the decomposition into disjoint sets

V n
0 = tσ∈SnCσ,

where each Cσ is the partially open Weyl chamber defined by

xσi ≥ xσi+1 if σi < σi+1

and
xσi > xσi+1 if σi > σi+1.

The characteristic function of Cσ, with σ = (σ1, . . . , σn) given, is

[Cσ] =
∑
π

(−1)n−len(π)[π?],

where the sum is over the set of plates π = [(S1, . . . , Sk)] which are labeled by ordered set partitions
(S1, . . . , Sk) which satisfy the following property: each block Si = {i1, . . . , i|Si|} is a maximal set
of consecutive descending labels of σ, of the form σi1 > σi1+1 > · · · > σi|Si|.
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Proof. Any x ∈ V n
0 not in any reflection hyperplane xi = xj is in the interior of the Weyl

chamber labeled by the order of its coordinate values, xσ1 > · · · > xσn , say. Now if x is in the
interior of a face labeled by an ordered set partition (S1, . . . , Sk) of {1, . . . , n}, having the form

x = t1eS1 + · · ·+ tkeSk ,

for some t1 > t2 > · · · > tk with ∑k
i=1 |Si|ti = 0, then we put x ∈ Cσ where the permutation σ

is obtained from (S1, . . . , Sk) by placing the labels in each block Si in increasing order and then
concatenating the blocks.

The formula for [Cσ] follows from the standard inclusion-exclusion expression for the character-
istic function of the complement of the union of the codimension 1 faces [σ1, . . . , σiσi+1, . . . , σn]?
corresponding to descents σi > σi+1 in σ:

[σ1, . . . , σn]? \
 ⋃
σi>σi+1

[σ1, . . . , σiσi+1, . . . , σn]?
 ,

that is
[Cσ] = [[σ1, . . . , σn]?]−

∑
π′

(−1)n−1−len(π′)[(π′)?] =
∑
π

(−1)n−len(π)[π?]

where the middle sum is over the lumpings π′ of [σ1, . . . , σn] at descents σi > σi+1 (excluding
[σ1, . . . , σn] itself), and the right sum now includes [σ1, . . . , σn]. �

Example 19. The characteristic functions of the partially open Weyl chambers respectively

{x ∈ V 3
0 : x1 ≥ x2 ≥ x3}

{x ∈ V 3
0 : x2 > x1 ≥ x3}

{x ∈ V 3
0 : x3 > x2 > x1}

can be obtained as linear combinations of characteristic functions of dual plates as

[C(1,2,3)] = [[1, 2, 3]]?

[C(2,1,3)] = [[2, 1, 3]]? − [[21, 3]]?

[C(3,2,1)] = [[3, 2, 1]]? − [[32, 1]]? − [[3, 21]]? + [[321]]?

More generally, in Lemma 18 we replace Weyl chambers, labeled by permutations, with higher
codimension faces of the reflection arrangement which are labeled by ordered set partitions.
Suppose

S1 = (S1, . . . , Sk1), . . . ,Sl = (Sk1+···+kl−1+1, . . . , Sk1+···+kl)
are ordered set partitions of respectively ⋃S∈Si S, i = 1, . . . , l, and let σ = (σ1, . . . , σl) be a
permutation of {1, . . . , l}. Define an embedding ι : V l

0 ↪→ V k1+···+kl
0 by

l∑
i=1

tiei 7→
l∑

i=1

(
ti
|Si|

)
eSi .

Corollary 20. We have
[ι(Cσ)] =

∑
π

(−1)l−len(π)[ι(π?)],

where the sum is the same as in Lemma 18.
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In Theorem 21, we replace the natural order (1, . . . ,m) with an ordered set partition
(S1, S2, . . . , Sm)

of {1, . . . , n}, where m = k1 + · · ·+ kl.
The proof in what follows of Theorem 21 illustrates the essential role of the duality isomor-

phism from Definition 4 and utilizes directly set-theoretic inclusion-exclusion arguments. Now,
by way of Theorem 5.2 of [12], the same formula holds if we extend plates from V n

0 into the
ambient space Rn, in which case the last line of the plate equations becomes x1 + · · ·+ xn ≥ 0.

Theorem 21. Given l ordered set partitions
S1 = (S1, S2, . . . , Sk1),S2 = (Sk1+1, Sk1+2, . . . , Sk1+k2), . . . ,Sl = (Sk1+···+kl−1+1, . . . , Sk1+···+kl)

such that ⊔k1+···+kl
i=1 Si = {1, . . . , n}, then we have the identity for characteristic functions of

plates in P̂n,

[[S1]] • · · · • [[Sl]] =
∑
π

(−1)m−len(π)[π],

where m = k1 + · · ·+ kl and π runs over all shuffle-lumpings of S1, . . . ,Sl.

Proof. We shall work in the space of characteristic functions of faces of the reflection arrangement
and then dualize to obtain the identity for characteristic functions of plates.

We have

[Si]? =
{

m∑
i=1

tieSi ∈ V n
0 : tki−1+1 ≥ · · · ≥ tki

}

and thus

[S1]? ∩ · · · ∩ [Sl]? =


m∑
i=1

tieSi :

t1 ≥ t2 ≥ · · · ≥ tk1 ,
tk1+1 ≥ · · · ≥ tk1+k2 ,

...
tk1+···+kl−1+1 ≥ · · · ≥ tk1+···+kl

 ,

which lives in a copy of V m
0 embedded in V n

0 as ι(∑m
i=1 tiei) 7→

∑m
i=1 ti(eSi/|Si|).

Then ι−1 ([S1]? ∩ · · · ∩ [Sl]?) ⊆ V m
0 is a union of Weyl chambers ⋃τ [τ ]? defined by yτ1 ≥ · · · ≥

yτm labeled by shuffles (τ1, . . . , τm) of
σ1 = (1, 2, . . . , k1), . . . , σl = (m− kl + 1, . . . ,m) .

We replace each such (closed) Weyl chamber defined by yτ1 ≥ · · · ≥ yτm with the partially open
Weyl chamber Cτ from Lemma 18 and obtain the disjoint union

ι−1 ([S1]? ∩ · · · ∩ [Sl]?) ⊇
⊔
τ

Cτ ,

where the disjoint union is dense in the (closed) left hand side. Thus, equality will follow once
we establish that ⊔τ Cτ is already topologically closed.

Supposing x is in a missing boundary face of some partially open Weyl chamber Cτ , then
the coordinates of x satisfy an equality xd = xd+1 where τd > τd+1 is a descent of τ . But
since σ1, . . . , σl are all increasing, this can happen only if τd and τd+1 belong to two different
permutations, say σi and respectively σj, for some i 6= j. This implies that the permutation τ ′
obtained from τ by switching τd and τd+1 is also a shuffle of σ1, . . . , σl, hence x ∈ Cτ ′ , proving
the equality.
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This, together with the expansion from Lemma 18 for the characteristic function [Cτ ] implies
the identity for characteristic functions

[ι−1 ([S1]? ∩ · · · ∩ [Sl]?)] =
∑
τ

[Cτ ] =
∑
τ

(∑
πτ

(−1)m−len(πτ )[ι−1(π?τ )]
)
,

where the inner sum is over all lumpings of the plate πτ which can occur at the descents of τ .
It follows from Theorem 2.3 of [3] that the ι induces a unique linear map on the space of

characteristic functions, and we obtain

[[S1]? ∩ · · · ∩ [Sl]?] =
∑
τ

[ι(Cτ )] =
∑
τ

(∑
πτ

(−1)m−len(πτ )[π?τ ]
)
.

We finally dualize again to obtain the sum over all shuffle-lumpings
[[S1]] • · · · • [[Sl]] =

∑
π

(−1)m−len(π)[π].

�

It is worthwhile to point out that in the convolution [[S1]] • · · · • [[Sl]], the plates [Si] live in
mutually orthogonal subspaces in V n

0 .
Example 22. Let S1 = {1} and (S2, S3) = ({2}, {3}). Then Theorem 21 says that

[[1]] • [[2, 3]] = [[1, 2, 3]] + [[2, 1, 3]] + [[2, 3, 1]]− ([[12, 3]] + [[2, 13]]) .
See Figure 2.

Plate relations: generated by boundaries. Boundaries  are signed shuffle-lumpings.

Monday, July 20, 2015 5:43 PM

Math Notes 15 Page 1

Figure 2. The characteristic function [[1]] • [[2, 3]]

4. Constructing the canonical plate basis

We generalize the notion of the cycle decomposition, from permutations to ordered set parti-
tions. The geometric motivation is to establish a graded basis for P̂n such that the dth graded
piece is spanned by characteristic functions of faces of dimension d of the all-subset hyperplane
arrangement.

In what follows, we fix once and for all the standard ordered set partition (I1, I2, . . . , In) of
{1, . . . , n}, where Ij = {j}. For compactness, we shall abuse notation and write j instead of Ij.
However, it should not be forgotten that this obscures an action of the product group Sn×Sn,
where one factor permutes the order of the blocks and the other permutes their contents.
Definition 23. A composite set partition of {1, . . . , n} is a set {S1, . . . ,Sl} where each Si is an
ordered set partition of a subset Ji ⊂ {1, . . . , n}, such that {J1, . . . , Jl} is an (unordered) set
partition of {1, . . . , n}. If each Si has the property that its first label contains the minimal label
in Ji, then the composite set partition is called standard. Denote by COSPn the set of composite
ordered set partitions of {1, . . . , n}.
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In Lemma 24 we give a bijection between ordered set partitions (S1, . . . , Sk) of the set
{1, . . . , n} and standard composite set partitions. From this we shall derive a basis for P̂n
which is compatible with all quotients P̂n1 ,Pn,Pn1 .

The image of the unitriangular map in P̂n appears quite analogous to the canonical decompo-
sition of the homogeneous component of the free Lie algebra, see the discussion around Lemma
8.22 in [17]. Also note the similarity to Foata’s transform. It would be very interesting to look
into these further.

Lemma 24. There exists a bijection U between ordered set partitions of {1, . . . , n} and standard
composite set partitions.

Proof. For an ordered set partition (S1, . . . , Sk) of {1, . . . , n}, with minimal labels respectively
(s1, . . . , sk), let si1 > si2 > · · · > sil be the maximal decreasing sequence of the minimal labels
which satisfies si1 = s1 and sil = 1.

We construct from (S1, . . . , Sk) a standard composite set partition such that we always have
1 in the first block of S1:

S1 = (Sil , . . . , Sk)
S2 = (Sil−1 , . . . , Sil−1)

...
Sl−1 = (Si2 , . . . , Si3−1)

Sl = (S1, S2, . . . , Si2−1).
For the inverse, if {S1, . . . ,Sl} is a standard composite ordered set partition with minimal

elements respectively s1, . . . , sl, let (si1 , . . . , sil) be the permutation of (s1, . . . , sl) such that si1 >
· · · > sil . We then reconstruct the ordered set partition as the concatenation (Sil ,Sil−1 , . . .Si1).

�

It may be interesting to compare Theorem 27 in what follows with Theorem 5.1 of [17] on the
construction of the Hall basis of the free Lie algebra, using the set of Lyndon words, ordered
alphabetically, for the Hall set.

We define a map C from the set of ordered set partitions to the set of packed words in
{0, . . . , n− 1}, that is sequences in {0, . . . , n− 1}n satisfying the conditions

(1) 0 ∈ {p1, . . . , pn} and
(2) Successive values increase in steps of 1.

Proposition 25. There exists a bijection
C : {Ordered set partitions of {1, . . . , n}} → packed words in {1, . . . , n}.

Proof. Let T = (T1, . . . , Tk) be an ordered set partition of {1, . . . , n}. We define a sequence
(c1, . . . , cn) by ci = j − 1, if i ∈ Tj. By construction 0 = ci for some i and the sequence
is contiguous: if some c ≥ 1 satisfies c ∈ {c1, . . . , cn} then c − 1 satisfies the same. Define
C(T) = (c1, . . . , cn). Conversely, if (c1, . . . , cn) is a contiguous sequence containing 0, define an
ordered set partition T = (T1, . . . , Tk) by letting Ti = {m ∈ {1, . . . , n} : cm = i}. �

In what follows, we induce a partial order on the ordered set partitions from the lexicographic
order on such sequences.

Definition 26. Given two plates π1 = [(T1, . . . , Tk)], π2 = [(T ′1, . . . , T ′l )], say that π1 ≺ π2 if
C(T1, . . . , Tk) < C(T ′1, . . . , T ′l )
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in the lexicographic order. This induces a total order on the set of plates, and thus on the basis of
their characteristic functions, in P̂n. Clearly the first element of ordered basis is the characteristic
function of V n

0 itself, since it is labeled by the trivial ordered set partition, hence C([12 · · ·n]) =
(0, . . . , 0). Similarly, the last element is labeled by the permutation (n, n − 1, . . . , 2, 1), where
we have C([n, n− 1, . . . , 2, 1]) = (n− 1, n− 2 . . . , 1, 0).

Theorem 27. Let Bn be the basis of characteristic functions of plates for the space P̂n, labeled
by ordered set partitions of {1, . . . , n}. For each basis element [π] = [[S1, . . . , Sk]] ∈ Bn, plug the
set partition S1, . . . ,Sl provided by Lemma 24 into Theorem 21:

[π] 7→ U([π]) :=
∑
π′

(−1)m−len(π′)[π′],

where the sum is over all plates π′ which are labeled by shuffle-lumpings of the standard composite
set partition S1, . . . ,Sl.
Then, the matrix of the linear transformation U induced on P̂n is upper unitriangular with

respect to the lexicographically ordered basis Bn. In particular, U is invertible.

Proof. First note that as U([π]) contains [π] itself as a summand, it suffices to prove that U is
order non-increasing with respect to the lexicographic ordering from Definition 26 on ordered
set partitions.

Let {S1, . . . ,Sl} be the resulting standard composite set partition coming from Lemma 24
applied to a plate π = [S1, . . . , Sk], and consider an arbitrary (signed) summand of U(π).
Such a summand is labeled by a shuffle-lumping T = (T1, . . . , Tm) of the ordered set parti-
tions S1, . . . ,Sl, with respect to the ordered set partition ({1}, . . . , {n}). By construction of
the ordered set partitions S1, . . . ,Sl from π in Lemma 24, among all of their shuffle-lumpings π
occurs and is maximal in the lexicographic order ≺. It follows that the matrix for U is upper
triangular; but we noted at the beginning of the proof that the matrix for U with respect to the
basis Bn has 1’s on the diagonal. It follows that U is invertible. �

Intuitively, a convolution of characteristic functions of plates [π1] • · · · • [πk] is an element of
the canonical basis of P̂n if and only if (1) π1, . . . , πk live in mutually orthogonal subspaces of
V n

0 and (2) each plate πi is standard, with its minimal element in the first block. Moreover,
according to Theorem 27 the map U sends [π] to the characteristic function of the unique face
of π which is in the canonical basis and which is maximal with respect to inclusions of sets.

Example 28. With respect to the lexicographic order

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 1), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 1, 0),

via the bijection C, on the plate basis we have respectively

[123], [12, 3], [13, 2], [1, 23], [1, 2, 3], [1, 3, 2], [23, 1], [2, 13],

[2, 1, 3], [3, 12], [3, 1, 2], [2, 3, 1], [3, 2, 1]
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and the map U takes the form

1 0 0 0 0 0 −1 −1 0 −1 0 0 1
0 1 0 0 0 0 0 0 −1 1 0 −1 −1
0 0 1 0 0 0 0 1 0 0 −1 0 −1
0 0 0 1 0 0 1 0 −1 0 −1 0 −1
0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1



,

where columns 7 through 13 label linear combinations of characteristic functions of plates which
vanish outside a higher codimension subset. It is informative to verify (for example, graphically,
using inclusion-exclusion, as in Figure 2) that the rightmost column, an alternating sum over all
13 plates, encodes the characteristic function of the point (0, 0, 0), and that column 7 expresses

[[23, 1]] 7→ [[23, 1]] + [[1, 23]]− [[123]] = [[1]] • [[23]].
Finally, column 12 encodes

[[2, 3, 1]] 7→ [[2, 3, 1]] + [[2, 1, 3]]− [[2, 13]] + [[1, 2, 3]]− [[12, 3]] = [[1]] • [[2, 3]],
or, in an order in which it is perhaps easier to see the shuffle-lumping,

[[1]] • [[2, 3]] = [[2, 3, 1]]− [[2, 13]] + [[2, 1, 3]]− [[12, 3]] + [[1, 2, 3]].

The following more involved example will serve to illustrate the upper-triangularity of Theorem
27.

Example 29. We have
U([[4 11, 10, 3, 5 7, 6 8, 1 9, 2]]) = [[1 9, 2]] • [[3, 5 7, 6 8]] • [[4 11, 10]],

where we omit the (rather long) alternating sum over all shuffle-lumpings of the ordered set
partitions

(1 9, 2), (3, 5 7, 6 8), (4 11, 10).
It is a useful exercise to apply Lemma 24 to check that

C({4, 11}, {10}, {3}, {5, 7}, {6, 8}, {1, 9}, {2}) = (5, 6, 2, 0, 3, 4, 3, 4, 5, 1, 0)
and verify that ({4, 11}, {10}, {3}, {5, 7}, {6, 8}, {1, 9}, {2}) is the shuffle-lumping that is maxi-
mal with respect to the lexicographic ordering: switching or merging any two blocks which are
not in the same ordered set partition results in a lexicographically smaller ordered set parti-
tion. For example, the shuffle-lumping obtained by merging {3} and {10}, which are in distinct
ordered set partitions, obviously decreases the lexicographic order:

C({4, 11}, {3, 10}, {5, 7}, {6, 8}, {1, 9}, {2}) = (4, 5, 1, 0, 2, 3, 2, 3, 4, 1, 0),
while switching {3} and {10} (slightly less obviously) does as well:

C({4, 11}, {3}, {10}, {5, 7}, {6, 8}, {1, 9}, {2}) = (5, 6, 1, 0, 3, 4, 3, 4, 5, 2, 0).
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Figure 3. Some computations in the convolution algebra of permutohedral cones:
expansion in the canonical plate basis

Figure 3 expands the plate [[2, 1, 3]] in the canonical plate basis.
As a consequence of Theorem 27 we have Corollary 30.

Corollary 30. The linear dimension of the degree k component (P̂n)k of the space P̂n, consisting
of linear combinations of characteristic functions of total dimension k Minkowski sums of plates,
is equal to the number of standard composite set partitions {S1, . . . ,Sk} of {1, . . . , n}. Namely,

dim((P̂n)k) =
n∑
i=k

S(n, i)s(i, k).

Likewise, the linear dimension of the degree k component of the space P̂n1 , consisting of linear
combinations of characteristic functions of pointed, total dimension k Minkowski sums of plates,
is equal to the kth Stirling number of the first kind,

dim((P̂n1 )k) = S(n, n)s(n, k) = s(n, k).
Here S(n, i) is the Stirling number of the second kind, which counts the number of set partitions
of {1, . . . , n} into i blocks, and s(i, k) is the Stirling number of the first kind, which counts the
number of permutations of {1, . . . , i} which decompose as a product of k disjoint cycles.

Proof. In the formula for dim((P̂n)k), the contribution S(n, i)s(i, k) is the product of the num-
ber of set partitions of n with i blocks, times the number of permutations of {1, . . . , i} which
decompose into k disjoint cycles. This is exactly the enumeration of the standard composite set
partitions {S1, . . . ,Sk}: each Sa is a standard ordered set partition and⋃

S∈S1

S ∪ · · · ∪
⋃
S∈Sk

S = {1, . . . , n}.
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The formula for the dimension of the kth graded component (P̂n1 )k follows by taking the unique
ordered set partition {{1}, . . . , {n}} of {1, . . . , n} and counting the number of permutations of
{1, . . . , n} which decompose into k disjoint cycles. �

Example 31. The formula in Corollary 30 is given in O.E.I.S. A079641, the matrix product
of the Stirling numbers of the second kind with the unsigned Stirling numbers of the first
kind. The first six rows are given below; note that the rows sum to the ordered Bell numbers
(1, 3, 13, 75, 541, 4683).

1
2 1
6 6 1
26 36 12 1
150 250 120 20 1
1082 2040 1230 300 30 1

The canonical basis for P̂n1 has graded dimension given by the Stirling numbers of the first kind,
1
1 1
2 3 1
6 11 6 1
24 50 35 10 1
120 274 225 85 15 1.

5. Plates and trees

Let {(i1, j1), . . . , (in−1, jn−1)} be the set of oriented edges of a directed tree T on the vertex
set {1, . . . , n}. This data encodes a certain permutohedral cone which is also simplicial, given
explicitly as the conical hull

πT = 〈ei1 − ej1 , . . . , ein−1 − ejn−1〉+.
In Theorem 32 we present a combinatorial formula which expands the characteristic func-

tion of the permutohedral cone assigned to any oriented tree on n vertices as a signed sum of
characteristic functions of plates.

The proof of Theorem 32 follows closely that of Theorem 21. The idea is to decompose a union
of overlapping closed Weyl chambers into a disjoint union of partially open Weyl chambers; then
the characteristic function of the disjoint union expands using the formula in Lemma 18. Then
we dualize to get the permutohedral cone πT .

Theorem 32. Let T = {(i1, j1), . . . (in−1, jn−1)} be a directed tree. We have, in the space P̂n,
the identity of characteristic functions

[〈ei1 − ej1 , . . . , ein−1 − ejn−1〉+] =
∑

π:pia<pja
(−1)n−len(π)[π],

where we recall that pia < pja if and only if in the ordered set partition which labels π, the label
ia is in a block strictly to the left of the block containing ja.

Proof. The dual cone is defined by the equations
〈ei1 − ej1 , . . . , ein−1 − ejn−1〉?+ =

{
y ∈ V n

0 : yi1 ≥ yj1 , . . . , yjn−1 ≥ yjn−1

}
.

We first claim that this is a union of those Weyl chambers ∪τ [τ ]? defined by yτ1 ≥ · · · ≥ yτm
which satisfy the n− 1 conditions τi1 > τj1 , . . . , τin−1 > τjn−1 . To see this, let ēI1 , . . . , ēIn−1 be
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the basis which is orthogonally dual to ei1 − ej1 , . . . , ein−1 − ejn−1 , so that ēIa · (eib − ejb) = δa,b.
Then we have from the corresponding vector space isomorphism a bijection of cone points

〈ei1 − ej1 , . . . , ein−1 − ejn−1〉+ → 〈ei1 − ej1 , . . . , ein−1 − ejn−1〉?+ = 〈ēI1 , . . . , ēIn−1〉+
defined by eia − eja 7→ ēIa , that is

n−1∑
a=1

ta(eia − eja) 7→
n−1∑
a=1

taēIa .

Let [α1]?, . . . , [αm]? be the minimal set of Weyl chambers such that
〈ei1 − ej1 , . . . , ein−1 − ejn−1〉?+ ⊆ ∪mi=1[αi]?,

which means that the permutations α1, . . . , αm are all compatible with the orders (i1, j1), . . . ,
(in−1, in−1). We show that this is an equality: for each y ∈ ∪mi=1[αi]?, since ēI1 , . . . , ēIn−1 is
a basis for V n

0 we have y = ∑n−1
a=1 taēIa for some ta ∈ R, for equality it suffices to show that

yia − yja = y · (eia − eja) = ta ≥ 0 for all a = 1, . . . , n− 1. But having yia − yja < 0 for some a
would imply that αi is not compatible with the order (i1, j1), . . . , (in−1, in−1).

As in Theorem 21, we replace the Weyl chambers [τ ]? with the (mutually disjoint) partially
open Weyl chambers Cτ from Lemma 18. By construction these all satisfy the inequalities
defining the dual cone, and we correspondingly have, for characteristic functions,

[〈ei1 − ej1 , . . . , ein−1 − ejn−1〉?+] =
∑
τ

[Cτ ],

where the sum is over all permutations τ = (τ1, . . . , τn) satisfying the n − 1 conditions τi1 >
τj1 , . . . , τin−1 > τjn−1 .

But from Lemma 18, for each such τ we have the further decomposition
[Cτ ] =

∑
π

(−1)n−len(π)[π?],

where the sum is over all plates π = [S1, . . . , Sk] which are labeled by ordered set partitions
(S1, . . . , Sk) such that each block is labeled by a permutation which has the set of consecutive
descents of τ , of the form τi1 > τi2 > · · · > τi|Si| . Summing over all such τ we obtain

[〈ei1 − ej1 , . . . , ein−1 − ejn−1〉+] =
∑

π:pia<pja
(−1)n−len(π)[π],

which completes the proof.
�

Example 33. Let T = 〈e1 − e2, e1 − e3〉+. Then
[〈e1 − e2, e1 − e3〉+] = [[1, 2, 3]] + [[1, 3, 2]]− [[1, 23]].

Corollary 34. Let T = {(i1, j1), . . . , (ik−1, jk−1)} be a directed tree, where ia, ja ∈ {1, . . . , k}
with ia 6= ja. Let (S1, . . . , Sk) be an ordered set partition of {1, . . . , n}. We have

[[Si1 , Sj1 ]] • · · · • [[Sik−1 , Sjk−1 ]] =
∑

π:pia<pja
(−1)k−len(π)[π].

Proof. The proof of Theorem 32 generalizes with minimal adjustment to the present case, when
(1, 2, . . . , n) is replaced by any ordered set partition (S1, . . . , Sk). �
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Figure 4. The relation for Example 33 and its dual

6. Straightening plates to the canonical basis

We derive in Theorem 35 the general expression for the expansion of a plate in the canonical
basis for P̂n. This implies the result of Ocneanu’s original computation of the so-called plate
relations in which he worked in a vector space generated formally by rooted binary trees. How-
ever, in practice one usually works in one of the quotient spaces Pn, P̂n1 or Pn1 , see Corollary
36.

Theorem 35. Let [π] = [[Sl, Sl−1, . . . , S1, Sl+1, . . . , Sk]] ∈ P̂n. Denote [πa] = [[Sa, Sa+1]] and
[π∪a ] = [[Sa ∪ Sa+1]].

Then

[π] =
∑

J⊆{1,...,l−1}

∑
M⊆J

∑
π′

(−1)|M |(−1)(c1+1+k−l)−len(π)

( ∏
m∈M∩Cc

[πm]
)
•

 ∏
m′∈(J\M)∩Cc

[π∪m′ ]
 • [π′]

 ,

where the sum ∑
π′ is over all shuffle-lumpings of [S1∪ · · · ∪Sc0 , T1, . . . , Tc1 ] satisfying p1 ≤ p2 ≤

· · · ≤ pc−1 ≤ pc and p1 < pl+1 < · · · < pk, where C = {1, 2, . . . , c − 1, c} ⊆ J is the connected
component of J containing 1, so c+1 6∈ J . Here the set M determines c0 as well as the c1 blocks
Ti, each of which is a union of consecutive Si, such that S1 ∪ · · · ∪ Sc0 ∪ T1 ∪ · · · ∪ Tc1 = ∪lc=1Si.

Proof. In the decomposition

[π] = [[Sl, Sl−1, . . . , S1]] • [[S1, Sl+1, . . . , Sk]],
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the left factor becomes
[[Sl, Sl−1, . . . , S1]] =

∑
J⊆{1,...,l−1}

(([[Sj1 ∪ Sj1+1]]− [[Sj1 , Sj1+1]]) + 1) • · · ·

· · · •
(
([[Sj|J| ∪ Sj|J|+1 ]]− [[Sj|J| , Sj|J|+1 ]]) + 1

)
=

∑
J⊆{1,...,l−1}

([π∪j1 ]− [πj1 ]) • · · · • ([π∪j|J| ]− [πj|J| ])

=
∑

J⊆{1,...,l−1}

∑
M⊆J

(−1)|M |
( ∏
m∈M

[πm]
)
•

 ∏
m′∈(J\M)

[π∪m′ ]
 .

Consider the case when 1 6∈ J ; then all summands in the expression
∑
M⊆J

(−1)|M |
( ∏
m∈M

[πm]
)
•

 ∏
m′∈(J\M)

[π∪m′ ]
 • [[S1, Sl+1, . . . , Sk]]

are already convolution products of characteristic functions of mutually orthogonal standard
plates and are thus already in the canonical basis.

Therefore let us consider the case when 1 ∈ J , and let c ∈ {1, . . . , l} be such that C =
{1, . . . , c} ⊆ J is the connected component of J containing 1. Denote S[a,b] = ∪bi=aSi. For each
M ⊆ J we decompose J = C ∪ Cc and obtain

(−1)|M |
( ∏
m∈M

[πm]
)
•

 ∏
m′∈(J\M)

[π∪m′ ]
 • [[S1, Sl+1, . . . , Sk]]

= (−1)|M |
( ∏
m∈M∩Cc

[πm]
)
•

 ∏
m′∈(J\M)∩Cc

[π∪m′ ]
 • [[S[1,c0], T1, . . . , Tc1 ]] • [[S1, Sl+1, . . . , Sk]].

We shall use Corollary 34 to expand in the canonical basis the factor
[[S[1,c0], T1, . . . , Tc1 ]] • [[S1, Sl+1, . . . , Sk]]

for some c0 ≤ c. Here each Ti is a union of consecutive Sj’s and (∪c0
i=1Si)

⋃(∪c1
j=1Tj) = ∪ci=1Si.

We have
[[S[1,c0], T1, . . . , Tc1 ]] • [[S1, Sl+1, . . . , Sk]]

= [[S[1,c0], T1, . . . , Tc1 ]] • [[S[1,c0], Sl+1, . . . , Sk]]
=

∑
π

(−1)(c1+1+k−l)−len(π)[π],

by the formula of Corollary 34. Here the exponent of the sign (−1)(c1+1+k−l)−len(π) counts the
decrease in the number of blocks, from c1 + l+(k− l) for [[S[1,c0], T1, . . . , Tc1 ]]• [[S1, Sl+1, . . . , Sk]]
down to len(π) for the summand [π].

The sum is over all ordered set partitions {S1, S2, . . . , Sc, Sl+1, . . . , Sk} satisfying p1 ≤ p2 ≤
· · · ≤ pc−1 ≤ pc and p1 < pl+1 < · · · < pk, where {1, 2, . . . , c − 1, c} ⊆ J is the connected
component of J containing 1, so c+ 1 6∈ J . This completes the proof.

�

Corollary 36. Let [[Sj, Sj−1, . . . , S1, Sj+1, . . . , Sk]] ∈ P̂n for an ordered set partition {S1, . . . , Sk}
of {1, . . . , n}. Then, passing to the quotient Pn we have

[[Sj, Sj−1, . . . , S1, Sj+1, . . . , Sk]] = (−1)j−1 ∑
pj≥pj−1≥···≥p1<pj+1<···<pk

(−1)k−len(π)[π].
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Now let [[Sj, Sj−1, . . . , S1, Sj+1, . . . , Sn]] be an ordered set partition of {1, . . . , n} where all Si are
singlets.

Then in P̂n1 we have

[[Sj, Sj−1, . . . , S1, Sj+1, . . . , Sn]] =
∑

J⊆{1,...,j−1}

(−1)|J |
∑

{pa+1>pa:a∈J}∪{p1<pj+1<···<pk}
[π]
 ,

where the inner sum is over all plates π whose blocks are shuffle-lumpings of blocks of the ordered
set partition {Sj : j ∈ J}.

In Pn1 we have
[[Sj, Sj−1, . . . , S1, Sj+1, . . . , Sn]] = (−1)j−1 ∑

pj>···>p2>p1<pj+1<···<pk}
[π],

Proof. Reduce the formula of Theorem 35, as follows. In the quotient Pn of P̂n, all summands
become zero except those where J = {1, . . . , j − 1}. For the quotient P̂n1 , only those summands
with M = J survive. For Pn1 , only those terms with J = {1, . . . , j − 1} and M = J survive. �



22 NICK EARLY

7. Acknowledgements

We gratefully acknowledge the hospitality of the Munich Institute for Astro- and Particle
Physics (MIAPP) during the program on Mathematics and Physics of Scattering Amplitudes in
August, 2017, as well the Institute for Advanced Study, where parts of this paper were written.

We thank Adrian Ocneanu for the many intensive discussions during our graduate work.
We thank Nima Arkani-Hamed, Freddy Cachazo, Lance Dixon, Song He, Carlos Mafra, Alex
Postnikov and Oliver Schlotterer for very interesting related discussions at various stages of the
development of the paper. We are grateful to Darij Grinberg and Victor Reiner for proof-reading
and helpful conversations.

References
[1] N. Arkani-Hamed, J.Bourjaily, F. Cachazo, A. Postnikov, and J. Trnka. “On-shell structures of MHV ampli-
tudes beyond the planar limit.” Journal of High Energy Physics 6, no. 2015 (2015): 1-16.
[2] N. Arkani-Hamed, Y. Bai, S. He, and G. Yan. “Scattering Forms and the Positive Geometry of Kinematics,
Color and the Worldsheet.” arXiv preprint arXiv:1711.09102 (2017).
[3] A. Barvinok and J. Pommersheim. “An algorithmic theory of lattice points.” New perspectives in algebraic
combinatorics 38 (1999): 91.
[4] A. Boussicault, V. Féray, A. Lascoux, and V. Reiner. “Linear extension sums as valuations on cones.” J.
Algebraic Combin 35, no. 4 (2012): 573-610.
[5] S. Boyd and L. Vandenberghe. “Convex optimization.” Cambridge university press, 2004.
[6] F. Cachazo, Combinatorial Factorization, 1710.04558.
[7] N. Early. “Combinatorics and Representation Theory for Generalized Permutohedra I: Simplicial Plates.”
arXiv preprint arXiv:1611.06640 (2016).
[8] N. Early. “Generalized Permutohedra, Scattering Amplitudes, and a Cubic Three-Fold.” arXiv preprint
arXiv:1709.03686 (2017). Adv. in Math. 63 (1987), no. 3, 301-316.
[9] Y. Geyer, L. Mason, R. Monteiro, and P. Tourkine. “One-loop amplitudes on the Riemann sphere.” Journal
of High Energy Physics 2016, no. 3 (2016): 114.
[10] S. He, O. Schlotterer, and Y. Zhang. “New BCJ representations for one-loop amplitudes in gauge theories
and gravity.” arXiv preprint arXiv:1706.00640 (2017).
[11] H. Gao, S. He, and Y. Zhang. “Labelled tree graphs, Feynman diagrams and disk integrals.” Journal of High
Energy Physics 2017, no. 11 (2017): 144.
[12] F. Menous, J.-C. Novelli, and J.-Y. Thibon. “Mould calculus, polyhedral cones, and characters of combina-
torial Hopf algebras.” Advances in Applied Mathematics 51, no. 2 (2013):177-227.
[13] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[14] A. Ocneanu. “A Combinatorial Theory of Plates.” In preparation.
[15] A. Postnikov. “Permutohedra, associahedra, and beyond.” International Mathematics Research Notices
2009.6 (2009): 1026-1106.
[16] A. Postnikov, V. Reiner, and L. Williams. “Faces of generalized permutohedra.” Doc. Math 13, no. 207-273
(2008): 51.
[17] C. Reutenauer. “Free Lie Algebras.” Handbook of algebra 3 (2003): 887-903.
[18] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, With a
foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.


	1. Introduction
	2. Landscape: basic properties of cones and plates
	2.1. Notation and conventions
	2.2. Genericity

	3. Plate homology: from plates to their faces 
	4. Constructing the canonical plate basis
	5. Plates and trees
	6. Straightening plates to the canonical basis
	7. Acknowledgements
	References

