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LOCAL METHODS FOR BLOCKS OF FINITE SIMPLE GROUPS

MARC CABANES

Abstract. We review old and new results about the modular representa-
tion theory of finite reductive groups with a strong emphasis on local meth-
ods. This includes subpairs, Brauer’s Main Theorems, fusion, Rickard equiv-
alences. In the defining characteristic we describe the relation between p-local
subgroups and parabolic subgroups, then give classical consequences on sim-
ple modules and blocks, including the Alperin weight conjecture in that case.
In the non-defining characteristics, we sketch a picture of the local meth-
ods pioneered by Fong-Srinivasan in the determination of blocks and their
ordinary characters. This includes the relationship with Lusztig’s twisted in-
duction and the determination of defect groups. We conclude with a survey of
the results and methods by Bonnafé-Dat-Rouquier giving Morita equivalences
between blocks that preserve defect groups and the local structures.
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9.B. Broué’s reduction 53
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Introduction

This survey aims at presenting in an almost self contained fashion some key
results in the representation theory of finite quasi-simple groups that can be related
to some global-local principle. For finite group theorists local information means
information relating to normalizers of nilpotent subgroups. The typical situation is
when given a finite group G and a prime number p, one wants to guess information
about G from information of the same kind about subgroups N normalizing a non
normal p-subgroup of G. Those N are sometimes called p-local subgroups. One
has N � G so the process looks like somehow reducing the questions we might
have about G to questions about more tractable subgroups. This is particularly
apparent in the classification of finite simple groups (CFSG, 1955–1980) where, at
least in the earliest stages, 2-local subgroups were systematically used to sort out
simple groups by the structure of centralizers of involutions.

But what is the relevance of all that to representations, in particular of quasi-
simple groups ? We try to give very concrete answers here.

It is clear that in the years of the classification it was strongly believed that the
p-local information on G should determine many aspects of linear representations
of G in characteristic p. A short textbook by J.L. Alperin appeared in 1986
with the title “Local representation theory” [Alper]. The main themes: Green’s
vertex theory, Brauer’s morphism and defect groups, the case of cyclic defect and
its consequence on the module category B-mod of the block B. On the other
hand, the theme of “simple groups and linear representations” was at that time
recalling mainly the spectacular applications of character theory (both modular
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and ordinary) to CFSG, especially through Glauberman’s Z*-theorem. This was
exemplified by the influential survey [Da71] or the textbooks [Feit], [Nava].

Today the perspective has changed a little. CFSG and the wealth of knowl-
edge on representations of finite groups of Lie type (see the survey [Ge17] of this
volume) or symmetric groups make that representations of (quasi-)simple groups
are becoming the main subject. The development of combinatorial representation
theory and the recent interpretations in terms of categorification (see [ChRo08],
[DuVV15], [DuVV17]), seem to hint at a situation where p-blocks of finite group
algebras are classified regarding their module categories mod and other associated
categories (derived Db, homotopy Ho

b or stable) before the relevant p-local infor-
mation is known. The latter can even possibly be a consequence of the equivalence
of blocks as rings (see Puig’s theorem (Theorem 9.16 below) and its use in [Bo-
DaRo17]). On the other hand, the notion of fusion systems and the topological
questions or results it provides (see for instance [AschKeOl], [Craven]), have given
a new perspective to the determination of local structure both for groups and
blocks.

We try here to sum up the relevance of local methods in representations of
quasi-simple groups, essentially for groups of Lie type. In the defining character-
istic we describe the relation between p-local subgroups and parabolic subgroups,
then we give classical consequences on simple modules and blocks, including the
Alperin’s weight conjecture. In the non-defining characteristics, we sketch a pic-
ture of the local methods pioneered by Fong-Srinivasan in the determination of
blocks and their ordinary characters. On the method side one will find Brauer’s
three Main Theorems, Alperin-Broué subpairs, both revolving around the Brauer
morphism which will reappear also when discussing Rickard equivalences. On the
side of results, we describe the relationship between blocks and Lusztig’s twisted
induction including the determination of defect groups. We also recall applica-
tions to Brauer’s height zero conjecture (Kessar-Malle) and Broué’s abelian defect
conjecture. In all cases we try to give many proofs at least for “main cases” (leav-
ing aside bad primes). We conclude with a survey of the results and methods of
Bonnafé-Dat-Rouquier ([BoRo03], [BoDaRo17]).

The exposition follows a route prescribed by the groups we study. Abstract
methods on blocks are only introduced when needed. The basics about p-local
subgroups and fusion are in sections 1.C-D, p-blocks appear for the first time in
1.E with Brauer’s first and third Main Theorems, Alperin’s weight conjecture is
recalled in 3.C, sections 5.A-D recall the general strategy to find the splitting
of Irr(G) (G a finite group) into blocks and the defect groups as an application
of Brauer’s second Main Theorem. Categorifications are evoked in 5.E, Rickard
equivalences in 9.C.

This text grew out of the course and talks I gave in July and September 2016
during the program “Local representation theory and simple groups” at CIB Lau-
sanne. I heartily thank the organizers for giving me the opportunity to speak in
those occasions and publish in this nice proceedings volume.

On background and notation. We use freely the standard results and notation
of basic module theory (see first chapter of [Benson]). For characters and block
theory we refer to [NagaoTsu] and [AschKeOl, Ch. IV] but restate most theorems
used with references. For categories and homological algebra, we refer to the first
part of [Du17] whose notations we follow. For varieties, algebraic groups and
finite groups of Lie type, our notations are the ones of [DigneMic] and [CaEn].
We borrow as much as possible from [Ge17] and [Du17], but since their algebraic
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group is denoted G and G respectively, we felt free to stick to our good old G. I
also thank Lucas Ruhstorfer for his careful reading, suggestions and references.

I. DEFINING CHARACTERISTIC

We first construct the finite groups GF that will be the main subject of this
survey. Symmetric groups are also evoked in Sections 5.E-G and 10. The groups
GF are commonly called finite groups of Lie type or finite reductive groups. In
order to simplify the exposition we will not try to cover the Ree and Suzuki groups,
nor speak of finite BN-pairs. We will even sometimes assume that F induces no
permutation of the roots (“untwisted groups”) and refer to the bibliography for
the original theorems in their full generality.

1. p-local subgroups and parabolic subgroups

The groups and subgroups we will study are defined as follows (see [CaEn],
[Carter2], [DigneMic], [MalleTe], [Sri], [Spr]).

Let p be a prime and F := Fp the algebraic closure of the field with p elements.
Let G be a connected algebraic group over F. We assume that it is defined over

a finite subfield Fq (q a power of p) thus singling out a Frobenius endomorphism
F : G→ G. The group of fixed points

GF = {g ∈ G | F (g) = g}

is a finite group.

Remark 1.1. Our way of defining things may be less concrete than saying that
G is a subgroup of some GLn(F) (n ≥ 1) defined by polynomial equations (on
the matrix entries) with all coefficients in the finite subfield Fq. This is indeed
equivalent to the definition we gave, but the more intrinsic definition is generally
preferred and also leads to a more compact notation. Subgroups of G that are
F -stable are also very important.

Example 1.2. (a) The group GLn(F) is such a group G. It is defined over any
finite subfield and the map F : G → G raising matrix entries to the q-th power
gives GF = GLn(Fq). Note that any element of GLn(F) has finite order and that
the Jordan decomposition g = gugss of matrices coincides with the decomposition
g = gpgp′ into p-part and p′-part. This also defines a notion of unipotent/semi-
simple elements and Jordan decomposition inside any algebraic group G over
F.

(b) The group Un(F) consisting of upper triangular unipotent matrices is clearly
defined over Fp and is stable under F defined in (a). Note that any element of
Un(F) has finite order a power of p.

(c) The group Dn(F) ∼= (F×)n consists of invertible diagonal matrices. Every
element there has order prime to p.

(d) Groups of type GF are rarely finite simple groups. For instance, SLn(Fq) is
such a group with G = SLn(F) but in general it is not possible to find a connected
group G such that GF is isomorphic to PSLn(Fq). Even factoring out the center
of SLn(F) would produce a PGLn(F) whose subgroup of fixed points under F is ∼=
PGLn(Fq), a non-simple group! But realizing SLn(Fq), a perfect central extension
of our simple group, is preferable for our representation theoretic purposes. Of
course any representation of PSLn(Fq) identifies with a representation of SLn(Fq)
trivial on its center.
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The unipotent radical Ru(H) of an algebraic group H is the maximal connected
normal unipotent subgroup of H (see [Hum1, 19.5]).

The groups G we study are assumed to be reductive, i.e. Ru(G) = {1}. This
implies essentially that Z(G) consists of semi-simple elements andGad := G/Z(G)
is a direct product of abstract simple groups [MalleTe, §8.4]. The factors in the
direct product are in fact taken in a list obtained by the classification of simple
algebraic groups, due to Chevalley and depending on root systems in the usual
list.

We now introduce some subgroups of fundamental importance.

1.A. Parabolic subgroups and Levi subgroups: reductive groups. Each
group G as above contains closed subgroups B = Ru(B)T ≥ T called a Borel
subgroup and a maximal torus. Borel means connected solvable and maximal
as such. Torus means isomorphic to some Dn(F) (n ≥ 0) as in Example 1.2.(c).
Moreover the normalizer of T is such that the Weyl group

WG(T) := NG(T)/T

is finite and

S := {s ∈ WG(T) | B ∪BsB is a subgroup }

generates WG(T). When w ∈ WG(T) the expression BwB means the set of
products b1xb2 with bi ∈ B and x ∈ w where the latter is a class mod T. Since
T ≤ B, BwB is a single double coset with regard to B. The pair (WG(T), S)
satisfies the axioms of Coxeter systems (see [Hum2]).

One has the Bruhat decomposition

G =
⋃

w∈WG(T)

BwB (a disjoint union). (1)

One classically defines the root system Φ(G,T) as a finite subset of the Z-
lattice X(T) := Hom(T,F×) (algebraic morphisms). It is stable under the action
of WG(T). The actual definition of roots refers to the Lie algebra of G and
roots also define certain unipotent subgroups. One has a family of so-called root
subgroups

(Xα)α∈Φ(G,T)

ranging over all minimal connected unipotent subgroups of G normalized by T.
One has wXα = Xw(α) for any α ∈ Φ(G,T), w ∈W (G,T).
There is a basis of the root system ∆ ⊆ Φ(G,T) of cardinality the rank

of Φ(G,T) in R ⊗Z X(T). One has Φ(G,T) = Φ(G,T)+ ⊔ Φ(G,T)− where
Φ(G,T)+ = Φ(G,T) ∩ R+∆, Φ(G,T)− = −Φ(G,T)+.

One has Xα ≤ B if and only if α ∈ Φ(G,T)+ (which defines Φ(G,T)+ and
therefore ∆ from B).

When α ∈ Φ(G,T)
+
, s ∈ S, the condition X−α ≤ B ∪ BsB implies α ∈ ∆.

This establishes a bijection

δ : S → ∆ s 7→ δs. (2)

The commutator formula in a simplified version says the following for any
linearly independent α, β ∈ Φ(G,T)

[Xα,Xβ ] ≤ 〈Xiα+jβ | i, j ∈ Z>0 , iα+ jβ ∈ Φ(G,T)〉 . (3)

One calls parabolic subgroups of G the ones containing a conjugate of B.
Denoting WI := 〈I〉 ≤ W (G,T) for I ⊆ S, the subgroups of G containing B are
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in bijection with subsets of S by the map

I 7→ PI := BWIB. (4)

Note that P∅ = B, PS = G.
One has a semi-direct decomposition called the Levi decomposition

PI = Ru(PI)⋊ LI (5)

where LI := T 〈Xα | α ∈ Φ(G,T) ∩ Rδ(I)〉, a reductive group with same maximal
torus as G, Borel subgroup B ∩ LI and root system Φ(G,T) ∩ Rδ(I).

One denotes UI := Ru(PI) =
〈
Xα | α ∈ Φ(G,T)+, α 6∈ Rδ(I)

〉
.

Example 1.3. The case of G = GLn(F). Then B = TU is the group of upper
triangular matrices, U = Ru(B) the group of upper unipotent matrices (see Ex-
ample 1.2.(b)). It is not difficult to see that NG(T) is the subgroup of monomial
matrices (each row and column has a single non-zero entry) and NG(T)/T identi-
fies with the subgroup of permutation matrices ∼= Sn, where S corresponds to the
set of transpositions of consecutive integers {s1 := (1, 2), . . . , sn−1 := (n − 1, n)}.
The roots Φ(G,T) = {α(i,j) | 1 ≤ i, j ≤ n, i 6= j} are defined as elements of X(T)
by

α(i,j) : T→ F× , diag(t1, . . . , tn) 7→ tit
−1
j . (6)

The elements of Φ(G,T)
+
, resp. ∆, are defined by the condition i < j, resp.

j = i+ 1.
When α ∈ Φ(G,T) corresponds to (i, j) then Xα is the subgroup of matrices

idn +λEi,j (λ ∈ F) where Ei,j is the elementary matrix with 1 as (i, j) entry and
0 elsewhere.

If I ⊆ S, let us write S\I = {sn1 , sn1+n2 , . . . , sn1+n2+···+nk−1
} with n1, n2, . . . , nk−1 ≥

1 and define nk = n − (n1 + n2 + · · ·+ nk−1). Then the elements of PI = UILI

decompose as

n1

n2

...
nk




∗ ∗ ∗ ∗
0 ∗ ∗ ∗

0 0
. . .

0 0 0 ∗


 =




idn1 ∗ ∗ ∗
0 idn2

∗ ∗

0 0
. . .

0 0 0 idnk







∗ 0 0 0
0 ∗ 0 0

0 0
. . .

0 0 0 ∗




Note that LI
∼= GLn1(F)×GLn2(F)× · · · ×GLnk

(F).

1.B. Parabolic subgroups and Levi subgroups: finite groups. All the
above can be taken F -stable: F (B) = B, F (T) = T. Then one denotes B = BF ,
T = TF , N = NG(T)F and W = N/T = (WG(T))F . The later is generated by
the set

S := {wω | ω ∈ S/ 〈F 〉} ←→ S/ 〈F 〉

where ω ranges over F -orbits in S and if I ⊆ S, wI denotes the element of maximal
S-length in WI . From (1) one gets a Bruhat decomposition

G =
⋃

w∈W

BwB , a disjoint union. (7)

For J ⊆ S corresponding to an F -stable subset J ⊆ S, the subgroups PJ , LJ are
F -stable, PJ := PF

J = BWF
J B and LJ := LF

J . Moreover UJ := UF
J = Op(PJ ).

One has
PJ = UJ ⋊ LJ .

The roots are also acted upon by F and the quotient set Φ(G, T ) has proper-
ties similar to Φ(G,T). Similar ideas allow to associate to them p-subgroups
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(Xα)α∈Φ(G,T ) that satisfy consequently an analogue of the commutator formula
(3) seen above.

The relevance to simple groups starts with the following (see [MalleTe, 12.5]).

Theorem 1.4. Assume S has no non-trivial partition into commuting subsets.
Assume G is perfect (i.e. [G,G] = G). Then G/Z(G) is simple.

Recall that a quasi-simple group is a finite perfect groupH such thatH/Z(H)
is simple. A universal covering of a simple group V is a quasi-simple group H
of maximal order such that H/Z(H) ∼= V .

The classification of finite simple groups (CFSG) (see [GoLySo], [Asch,
§47]) tells us that finite non-abelian simple groups are either

• alternating groups An (n ≥ 5),
• groups of Lie type GF /Z(GF ) as above,
• or among the 26 so-called sporadic groups.

Remarkably enough, simple groups of Lie type have universal coverings that
are of type GF (short of 17 exceptions, see [GoLySo, 6.1.3]).

When dealing with finite groups GF , an important tool is Lang’s theorem. It
tells us that if C is a connected closed F -stable subgroup of G, then x 7→ x−1F (x)
is surjective from C to itself.

1.C. p-local subgroups and simple groups of characteristic p type. The
proof of the classification of finite simple groups makes crucial use of the notions
of 2-local subgroups and of simple groups of characteristic 2 type, this last one to
separate simple groups of even and odd characteristic. The notions have also been
defined for any prime (see [Asch, Ch. 48]).

We fix here a prime p.

Definition 1.5. Let H be a finite group. A p-local subgroup of H is any normal-
izer NH(Q) where 1 6= Q ≤ H is a non trivial p-subgroup of H .

Definition 1.6. Let p be a prime and H a finite group. A radical p-subgroup of
H is any p-subgroup Q of H such that

Q = Op(NH(Q)).

Note that a Sylow p-subgroup of H is always p-radical.

Example 1.7. Let G = GF as in the last section, let I ⊆ S. Then UI defined in
1.B satisfies NG(UI) = PI and UI = Op(PI). Both properties are a consequence
of the commutator formula. This proves that the UI ’s are p-radical subgroups.

Proposition 1.8. The maximal p-local subgroups of a finite group H satisfying
Op(H) = {1} are normalizers of radical p-subgroups.

Proof. For any subgroup M ≤ H , we clearly have NH(Op(M)) ≥ M . Applying
this to our maximal p-local subgroup M we get that either M = NH(Op(M)) or
Op(M)⊳H and therefore Op(M) = {1}. But the second case is impossible by the
definition of p-local subgroups. �

Definition 1.9. Let H be a finite simple group and p be a prime. Then H is
said to be of characteristic p type, if and only if

CX(Op(X)) ≤ Op(X) (8)

for any p-local subgroup X of H .
This is equivalent to (8) holding for any maximal p-local subgroup.
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The second statement in the above definition is a non trivial one. We refer to
the proof of [Asch, 31.16], using among other things Thompson’s A×B lemma.

One will of course check here that our groups GF give rise to simple groups of
characteristic p type, see [Asch, 47.8.(3)].

We take G = GF as in Sect. 1.B above. Recall the subgroups PI = UI ⋊LI for
I ⊆ S.

Theorem 1.10 ([BoTi65]). (1) The p-radical subgroups of G are the {g(UI) |
g ∈ G, I ⊆ S} with UI = Op(PI), PI = NG(UI).

(2) If g ∈ G and I, J ⊆ S are such that g(UI) = UJ , then I = J and g ∈ PI .
(3) If S ) I and G/Z(G) is simple then CG(UI) ≤ Z(G)UI .

Corollary 1.11. If G/Z(G) is simple then it has characteristic p type.

We finish this subsection by giving some ideas in the proof of Theorem 1.10.
First the theorem has an equivalent in G as follows (Platonov 1966, see [Hum1,
30.3]).

Lemma 1.12. In G, if V is a closed subgroup of U, then the sequence V0 = V ,
Vi+1 := ViRu(NG(Vi)) is an ascending sequence stabilizing at some Ru(P(V ))
where P(V ) is a parabolic subgroup of G.

Note that if V is F -stable then all Vi’s and therefore P(V ) itself are F -
stable. Once written as gPI for g ∈ G and I ⊆ S, using F -stability one gets
g−1F (g)PF (I) = PI . By the argument we are going to use for (2) of the Theorem,

this implies F (I) = I and g−1F (g) ∈ PI . Lang’s theorem then allows to assume

that g = g′h where g′ ∈ G and h ∈ PI , so that P(V ) = g′

PI with F (I) = I and
g′ ∈ G.

Assume moreover V p-radical inG. The inclusions V ≤ Ru(P(V )) and NG(V ) ≤
P(V ) imply NRu(P(V ))F (V ) ⊳ NG(V ). But Ru(P(V ))F is a p-subgroup of G, so

p-radicality of V implies NRu(P(V ))F (V ) = V . But V ≤ Ru(P(V ))F is an inclusion

of p-groups so we must have indeed V = Ru(P(V ))F . Using the above this gives

V = g′

UI , hence the claim (1).
For the claim (2), writing g ∈ BwB thanks to Bruhat decomposition (7) and

using that B normalizes both UI and UJ , one finds that wUI = UJ . Assume for
simplicity that F acts trivially on W (G,T) and S. Our equality implies on roots
that

w(Φ(G,T)
+ \ Φ(G,T)

+
I ) ⊆ Φ(G,T)

+
.

But a basic property of Weyl groups acting on roots tells us that any element of
W (G,T) decomposes as w = w′v where v ∈ 〈I〉 and w′(Φ(G,T)

+
I ) ⊆ Φ(G,T)

+
.

But then w′(Φ(G,T)
+
) = Φ(G,T)

+
, therefore w′ = 1, w = v ∈ 〈I〉 and g ∈ PI .

(3) Using (7) again and arguing on roots it is easy to show that CG(UI) ≤ B.
We then check that under our assumptions, CB(UI) ≤ Z(G). We show it for I = ∅
and refer to [Asch, 47.5.3] for the general case. Given the semi-direct product
structure B = U ⋊ T with U the Sylow p-subgroup of B, it is not difficult to see
that our claim about CB(U) reduces to the inclusion CT (U) ≤ Z(G). For s ∈ S,
let Cs = CLs

(Us). It is normalized by Xs, Us (hence U), but also by s and we
have seen Cs ≤ B. So

Cs ≤ Ls ∩B ∩B
s = Ls ∩ TUs = T.

So Cs = CT (Us) normalizes U , hence centralizes it since U ∩ Cs = {1}. So
Cs = CT (U). We deduce that CT (U) is normalized by any s ∈ S and by T , hence
by N . On the other hand B = TU ≤ CG(CT (U)), so the latter is a parabolic
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subgroup normalized by N , hence normal in G. By our hypothesis, it has to equal
G, hence the inclusion CT (U) ≤ Z(G).

�

1.D. Consequences on fusion. The problem of p-fusion in finite groups is as
follows. Let Q be a Sylow p-subgroup of a finite group H . One wants to know
when subsets of Q can be H-conjugate.

More generally one defines the “fusion system” FQ(H) as follows

Definition 1.13 ([AschKeOl, I.1.1]). For Q a Sylow p-subgroup of H , the fusion
system FQ(H) has objects the subgroups of Q and if Q1, Q2 ≤ Q, one defines

HomFQ(H)(Q1, Q2) ⊆ Hom(Q1, Q2),

the former consisting of maps

adh,Q1,Q2 : Q1 → Q2

x 7→ hxh−1

for h ∈ H with hQ1 ≤ Q2.

A theorem by Alperin (1967) first showed that this category is generated by
certain elementary operations, see [Asch, 38.1].

A tame intersection of Sylow p-subgroups ofH is a p-subgroup of type Q1∩Q2

with Q1, Q2 both Sylow p-subgroups of H and NQ1(Q1 ∩Q2), NQ2(Q1 ∩Q2) both
Sylow p-subgroups of NH(Q1 ∩Q2).

Theorem 1.14 ([Al67]). Let h ∈ H and A ⊆ Q such that Ah ⊆ Q. Then
there exist Sylow p-subgroups Q1, . . . , Qn and elements hi ∈ NH(Q ∩ Qi) for i =
1, . . . , n− 1 such that

(i) h = h1 . . . hn−1,
(ii) for any i = 1, . . . , n, Q ∩Qi is a tame intersection, and
(iii) A ⊆ Q ∩Q1, A

h1 ⊆ Q ∩Q2, . . . , Ah1...hn−1 ⊆ Q ∩Qn.

This can be summed up as saying that normalizers of tame intersections Q∩Q′

(Q′ another Sylow p-subgroup of H) generate FQ(H).

Remark 1.15. A tame intersection Q1 ∩ Q2 of Sylow subgroups is a p-radical
subgroup (see Definition 1.6). Indeed Op(NH(Q1 ∩ Q2)) is included in both
NQ1(Q1 ∩Q2) and NQ2(Q1 ∩Q2) by the tame intersection hypothesis, so included
in Q1 ∩Q2. In the case of groups G = GF it means that they are G-conjugates of
subgroups UI (I ⊆ S) thanks to Theorem 1.10.

Alperin’s theorem has been strengthened by Goldschmidt so as to find a minimal
family of normalizers of so-called essential p-subgroups (see [AschKeOl, I.3.2])
which generates FQ(H). In the case of groups G = GF , it gives the following
[Puig76, Appendix I]. Recall that U := UF is a Sylow p-subgroup of G.

Theorem 1.16. The fusion system FU (G) is generated by minimal parabolic sub-
groups P{s} = B ∪BsB for s ranging over S.

1.E. Consequences on p-blocks. We show that the condition of being of char-
acteristic p type has strong consequences on the p-blocks of our simple group.

Blocks and the Brauer morphism. Let us recall what are p-blocks of a finite
group H .
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We keep F the algebraic closure of Fp and consider the group algebra FH. As
for any finite dimensional algebra over a field, one has a maximal decomposition

FH ∼= B0 ×B1 × · · · ×Bν (9)

as a direct product of F-algebras. The corresponding two-sided ideals Bi of FH
are called the p-blocks of H , one denotes Bl(H) = {B0, B1, . . . , Bν}. The unit
element bi of each Bi is a primitive idempotent of the center Z(FH) and one
has a bijection between Bl(H) and the primitive idempotents of Z(FH) since any
such idempotent b defines the block FHb. Any FH-module M decomposes as
M = ⊕iBiM as FH-module. So each indecomposable module has only one block
acting non-trivially on it. This induces a partition IBr(H) = ⊔νi=0 IBr(Bi) of the
isomorphism classes of simple FH-modules. The principal block B0(H) is by
definition the one corresponding to the trivial FH-module, i.e. the line F with H
acting as identity, often denoted as F or 1.

When Q is a p-subgroup of H , the Brauer morphism

BrQ : Z(FH)→ Z(FCH(Q)) (10)
∑

h∈H

λhh 7→
∑

h∈CH(Q)

λhh (11)

is a morphism of commutative algebras. The defect groups of a given block Bi

are the p-subgroups Q of H maximal for the property that BrQ(bi) 6= 0. For a
given Bi they form a single H-conjugacy class. For D ≤ H a given p-subgroup of
H , one denotes Bl(H | D) the subset of Bl(H) consisting of blocks admitting D
as defect group.

The principal block has defect group any Sylow p-subgroup of H .
A block Bi has defect group {1} if and only if Bi is a semi-simple algebra (in

fact simple with | IBr(Bi)| = 1), this is called a block of defect zero (defect was
first defined as a numerical invariant corresponding to the exponent d such that
|D| = pd).

Brauer’s first and third so-called Main Theorems are as follows. One keeps H
a finite group.

Theorem 1.17. Let Q be a p-subgroup of H.
(i) The Brauer morphism BrQ induces bijections

Bl(H | Q)←→ Bl(NH(Q) | Q)←→ Bl(QCH(Q) | Q)/NH(Q)- conj .

(ii) Through the above, the principal blocks of H, NH(Q) and CH(Q) corre-
spond.

Blocks in the defining characteristic. Let us return to our finite reductive
groups G = GF , or more generally simple groups of characteristic p type (see 1.C).

Proposition 1.18 (Dagger-Humphreys, see [Hum3, §8.5]). Assume H is a finite
simple group of characteristic p type. Then the non principal p-blocks of H all
have defect {1}.

Proof. Let D be a defect group 6= {1} of a p-block B of H . By (i) of the above
theorem, Bl(DCH(D) | D) 6= ∅. The condition that H has characteristic p type
implies that CX(Op(X)) ≤ Op(X) for X = NH(D). But we clearly have

DCH(D) ≤ Op(X)CX(Op(X)),

so DCH(D) is a p-group. A p-group has only one simple module over F (see
[Benson, 3.14.1]), hence only one p-block, the principal block. So by (ii) of the
above theorem, B is the principal block of H . �
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We will see later that blocks of defect {1} actually exist in this case, corre-
sponding to the so-called Steinberg module, see Theorem 3.3.

2. Yokonuma-Hecke algebras in characteristic p

Iwahori-Hecke algebras are algebras similar to the group algebras of Coxeter
groups (W,S), only the quadratic relations s2 = 1 (s ∈ S) have been there replaced
by an equation

s2 = (q − 1)s+ q

where q is a scalar. See [GePf00]. This models the endomorphism algebras of

induced representations IndGB 1 for G = GF as before with Weyl group W and q
the order of root subgroups Xα.

Yokonuma-Hecke algebras are a bit larger and serve as model for the endo-
morphism algebra of induced representations IndGU 1.

2.A. Self-injective endomorphism algebras, a theorem of Green. We first
present a general theorem of J.A. Green about certain A-modules where A is a
finite dimensional F-algebra. Green’s theorem shows that if Y is an A-module such
that EndA(Y ) is self-injective then EndA(Y )-modules give a lot of information on
A-modules, in particular the simple submodules of Y . This will be applied to
A = FG (F and G as in Sect. 1.B), Y = IndG

U F, so that EndFG(Ind
G
U F) is a

Yokonuma-Hecke algebra in characteristic p.
In the following Y is a finitely generated left module over the finite dimensional

F-algebra A, E := EndA(Y )opp and one considers the functor HY sending an
A-module M to the E-module HY (M) := HomA(Y,M), E acting through com-
position by elements of EndA(Y ) on the right. Note that HY (Y ) = E the regular
left module.

Theorem 2.1. Assume

(1) there is a linear map λ : E → F such that for any x ∈ E, x 6= 0, one has
λ(xE) 6= 0 6= λ(Ex), and

(2) any simple A-module is both a submodule and a quotient of Y .

Then the functor HY sends simple A-modules to simple E-modules and this induces
a bijection between isomorphism types of simple modules for both algebras.

The relevance of self-injectivity (implied by the slightly stronger hypothesis (1)
above, see [Benson, §1.6]) essentially lies in the following lemma where we keep
the same assumptions.

Lemma 2.2. Let V ⊆ E = EndA(Y ) an E-submodule. Denote V.Y :=
∑

f∈V f(Y ) ⊆
Y . Then HY (V.Y ) = V by taking the image of the latter inclusion.

Proof. We clearly have V ⊆ HomA(Y, V.Y ) = HY (V.Y ) as subspaces of HomA(Y, Y ) =
HY (Y ). If the inclusion is strict, since it is an inclusion of E-modules, there is

V ( U ⊆ HY (V.Y ) ⊆ E,

E-modules with U/V simple. Hypothesis (1) implies that projective and injective
E-modules coincide (see [NagaoTsu, 2.8.11]), so any finitely generated module
injects into a free one and any simple module into the regular one. So we have a
map φ : U → E of E-modules such that φ(U) 6= 0 = φ(V ). By injectivity of the

regular module E the map φ extends into φ̂ : E → E.
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0 // U

φ

��

�

�

// E

φ̂��

E

Such a map φ̂ is clearly of the form HY (φ
′) for some φ′ : Y → Y a map of

A-modules. Now φ̂(V ) = 0 6= φ̂(U) implies φ′(V.Y ) = 0 6= φ′(U.Y ). But on the
other hand V.Y = U.Y since V.Y ⊆ U.Y ⊆ HY (V.Y ) ⊆ V.Y . This contradiction
finishes the proof. �

The proof of the Theorem goes as follows. Let M be a simple A-module.
Then M is a factor and a submodule of Y by (2), so E = HY (Y ) ⊇ HY (M) =
HomA(Y,M) 6= 0. Let now 0 6= V ( HY (M) ⊆ E an E-submodule. By simplicity
of M , V.Y = M , but the lemma tells us that V = HY (V.Y ) = HY (M). This
shows that HY (M) is simple.

Moreover, every simple E-module V is obtained that way since V embeds in
E = HY (Y ) as seen before, thus allowing to form V.Y and the Lemma gives
V = HY (V.Y ). If M is a simple submodule of V.Y , then

0 6= HY (M) ⊆ HY (V.Y ) = V

so indeed V = HY (M).
Eventually, if M,M ′ are simple A-modules and HY (M) ∼= HY (M

′), then M
and M ′ can be assumed to be submodules of Y , so that HY (M) and HY (M

′) are
seen as submodules of E. Now the isomorphism HY (M

′) → HY (M) extends to
some map E → E that writes HY (φ) for φ : Y → Y . The restriction of φ to M
gives a non zero map M →M ′, and therefore M ∼=M ′.

0 // HY (M)

6=0

��

�

�

// E = HY (Y )

��

0 // HY (M
′) �
�

// E = HY (Y )

Example 2.3. Assume now that H is a finite group and X a subgroup, let k be
any commutative ring. The kH-module Y = IndHX k = kH ⊗X k is the permu-
tation module on the set of cosets {hX | h ∈ H}. Denote ω ∈ Y the element
corresponding to the coset X or 1 ⊗ 1 ∈ kH ⊗X k. If M is a kH-module, one
denotes by MX the space of fixed points under X . By Frobenius reciprocity, one
can identify explicitly

HomkH(Y,M)
∼
−→MX , f 7→ f(ω).

This can serve first to give a basis of EndkH(Y ) ∼= Y X as a vector space. One
has EndkH(Y ) = ⊕n∈X\H/Xk.a

′
n where a′n is the kH-linear map Y → Y defined

by

a′XhX(ω) =
∑

y∈XhXω

y =
∑

x∈X/X∩hX

xhω. (12)

One has EndkH(Y ) ∼= EndkH(Y )opp by a′n 7→ an := a′n−1 .

Moreover, through the identification above the action of aXhX on MX is by

m 7→ aXhX(m) =
∑

x∈X/X∩Xh

xh−1m. (13)
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2.B. Yokonuma-Hecke algebras: a presentation. As said before we will ap-
ply Green’s theorem to A = FG, Y = IndG

U F in the notations of Sect. 1.B. We
recall the subgroups B = BF , U = Op(B), T = TF , W = W (G,T)F , etc.. In
order to simplify a bit we assume that F acts trivially on W (G,T), so that also
S = S.

One writes U− = UwS where wS is the longest element of W with regard to S.

Definition 2.4. Let HF(G,U) = EndkG(Ind
G
U F). For n ∈ N , let an : Y → Y

defined by an(1 ⊗ 1) =
∑

u∈U∩Un
−

un−1 ⊗ 1.

For s ∈ S corresponding to some δ ∈ ∆ through (2), one defines

Ts := T ∩ 〈Xδ, X−δ〉

and one can find some representative

ṡ ∈ N ∩XδX−δXδ

(see [CaEn, 6.3.(i)]). Moreover for s1, s2 ∈ S and r the order of the product s1s2
in W , one has

ṡ1ṡ2 · · · = ṡ2ṡ1 . . . (r terms on each side). (14)

Theorem 2.5. Let n, n′ ∈ N , s ∈ S.

(1) anan′ = ann′ as soon as lS(nn
′T ) = lS(nT ) + lS(n

′T ).
(2) The at’s for t ∈ T generate a semi-simple subalgebra ∼= FT .
(3) (aṡ)

2 = −|Ts|−1aṡ
∑

t∈Ts
at.

(4) HF(G,U) is presented as an algebra by symbols an (n ∈ N) subject to the
relations (1) and (3) above.

Proof. (1) The additivity of lengths implies that U ∩ Unn′

− = U ∩ Un′

− .(U ∩ Un
−)

n′

with uniqueness by considerations on roots. Note that this is the same argument
as for the corresponding equation in Iwahori-Hecke algebras EndCG(Ind

G
B 1). The

equality anan′ = ann′ then follows by the definition of the an’s.
(2) Clear from the first point, noting that T has order prime to p.
(3) Let δ ∈ ∆ correspond to s by (2), so that Xδ = U ∩ Us

−. The Bruhat
decomposition (7) in Ls implies that 〈Xδ, X−δ〉 = XδTs ∪ XδTsṡXδ. For v ∈
Xδ \ {1} one denotes t(v) ∈ Ts such that

ṡ−1vṡ−1 ∈ Xδt(v)
−1ṡ−1Xδ.

From Definition 2.4, one gets clearly

(aṡ)
2(1⊗ 1) =

∑

u∈Xδ

ṡ−2u⊗ 1 +
∑

u∈Xδ\{1}

aṡt(u)(1⊗ 1).

The first term is 0 since each u acts trivially on 1 ⊗U 1. The second term gives
what is claimed once we check that the cardinality |ṡXδ ṡ∩Xδ ṡtXδ| is the same for
any t ∈ Ts. This is an easy check in the group 〈Xδ, X−δ〉 which in our hypotheses
is a quotient of ∼= SL2(q).

(4) The proof is similar to the one for Iwahori-Hecke algebras [CurtisRei, §67].
�

2.C. Yokonuma-Hecke algebras: simple modules.

Proposition 2.6. Let nS be an element of N whose class mod T is the element
wS ∈W of largest S-length. Let

λ : HF(G,U)→ F
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the F-linear map sending anS
to 1 and an for n ∈ N , n 6= nS to 0. Then λ

vanishes on no non-zero left or right ideal of HF(G,U).

Proof. From Theorem 2.5 it is clear that when n, n′ ∈ N , the product anan′

is always in ann′ +
∑

n′′ Fan′′ where the sum is over n′′ ∈ N with lS(n
′′T ) <

lS(nT ) + lS(n
′T ). Now if 0 6= x =

∑
n∈N µnan with µn ∈ F, let n0 be such that

µn0 6= 0, with lS(n0T ) maximal as such. Then an0an−1
0 nS

= anSn
−1
0
an0 = anS

and

therefore λ(xan−1
0 nS

) = λ(anSn−1
0
x) = µn0 6= 0. �

Definition 2.7. For θ : T → F× a group morphism, let Sθ := {s ∈ S | θ(Ts) = 1}.
One calls admissible pair any pair (θ, I) where θ∈ Hom(T,F×) and I ⊆ Sθ.

Theorem 2.8. The simple HF(G,U)-modules are one-dimensional. Seen as maps
HF(G,U) → F, they are of the form ψ(θ,I) where (θ, I) is an admissible pair and
ψ(θ,I) is defined by

(a) ψ(θ,I)(at) = θ(t) for any t ∈ T
(b) ψ(θ,I)(aṡ) = −1 for s ∈ I, 0 otherwise.

Proof. Let V be a simple HF(G,U)-module. The subalgebra ⊕t∈TFat being com-
mutative, semi-simple with F algebraically closed, V decomposes as a sum of
lines stable under the at’s. Let L ⊆ V be such a line and n0 ∈ N such that
an0 .L 6= 0 and lS(n0T ) is maximal as such. One shows that Fan0 .L is stable un-
der HF(G,U). For t ∈ T , one has atan0 .L = atn0 .L = an0atn0 .L = an0 .L. For
s ∈ S, if lS(sn0T ) = lS(n0T )+1 then Theorem 2.5.(1) and maximality of n0 imply
aṡan0L = aṡn0L = 0. If lS(sn0T ) = lS(n0T ) − 1 then Theorem 2.5.(1) and (3)
imply aṡan0 = aṡaṡaṡ−1n0

∈ an0(⊕t∈Tat) hence aṡan0L ⊆ an0L. We get our claim
by noting that the at’s and the aṡ’s generate HF(G,U) by Theorem 2.5.(4).

The form of the F-algebra morphisms HF(G,U) → F is easy to deduce from
Theorem 2.5.(4). �

3. Simple FG-modules and p-blocks

As announced before, we now apply Theorem 2.1 and the information gathered
onHF(G,U) to simple FGF -module. This theory is due to J.A. Green (see [Gre78],
[Tin79], [Tin80]). This provided a more conceptual framework to a classification
of simple modules of split BN-pairs due to Curtis-Richen [Cu70], [Ri69] (see also
[CaLu74]).

Among other properties of the simple FGF -modules we show the existence of
a block of defect zero (see Proposition 1.18) associated to the so-called Steinberg
module.

The notations are the same as in the preceding chapter.

3.A. Simple FG-modules, the Steinberg module.

Theorem 3.1. For any simple FG-module M , the subspace of fixed points MU is
a line. Moreover M = FU−.M

U .

Theorem 3.2. There is a bijection between the isomorphism types of simple FG-
modules and the set of admissible pairs (see Definition 2.7).

Let the simple FG-module M correspond to the pair (θ, I) then

(i) T acts by θ on the line MU

(ii) for s ∈ S associated with δ ∈ ∆ and m ∈MU one has
∑

u∈Xδ
uṡ.m = −m

if s ∈ I, 0 if s ∈ S \ I.



LOCAL METHODS FOR BLOCKS OF FINITE SIMPLE GROUPS 15

(iii) (Smith 1982 [Sm82]) if J ⊆ S and UJLJ is the Levi decomposition of the
parabolic subgroup PJ , then M

UJ is a simple FLJ -module associated with
the admissible pair (θ, J ∩ I) of LJ .

Theorem 3.3. Keep M a simple FG-module associated with the admissible pair
(θ, I). Then M is projective if and only if I = S.

If moreover G is perfect and G := G/Z(G) is simple, then G has only two
p-blocks

• the principal block
• the block whose unique simple module is the FG-module corresponding to
the simple FG-module associated with the admissible pair (1, S).

The projective simple module associated with the admissible pair (1, S) is called
the Steinberg module.
Proof of the Theorems. One applies Theorem 2.1 to A = FG, Y = IndGU F. The
condition (1) of the theorem is satisfied by Proposition 2.6. The condition (2)
comes from the fact that if M is simple HomFG(Y,M) ∼= MU 6= 0 since U is a
p-group and Y is isomorphic with its F-dual. The first statement of Theorem 3.1
along with Theorem 3.2.(i) and (ii) then come from Theorem 2.1 and the explicit
description we made of the functor HY in our case, see (13).

For the equality M = FU−.M
U , it is enough to show that FU−.M

U is stable
under G. The latter is generated by U−, T and S, so we just check stability under
T and S. First FU−.M

U is T -stable since T normalizes U and U−. Let now s ∈ S
corresponding to δ ∈ ∆. Then

sU−M
U = s(U− ∩ U

s
−)X−δM

U ⊆ U−sX−δM
U

so it suffices to show that sxMU ⊆ FU−M
U for any x ∈ X−δ. Using the Bruhat

decomposition in Ls = TXδ ∪ XδsTXδ, one gets x ∈ XδsTXδ or x = 1. In the
first case

sxMU ⊆ X−δTXδM
U = X−δM

U ⊆ U−M
U .

On the other hand (
∑

x∈X−δ
x)sMU ⊆ MU by (ii) of Theorem 3.2, so the case

x = 1 can be deduced from the first case just treated.
(iii) The weaker statement that FLJ .M

U is a simple FLJ-module is enough for
our purpose. Indeed if M ′ ⊆ FLJ .M

U is a simple FLJ -submodule, it has fixed
points under the p-subgroup U ∩ LJ , but M

′ ⊆ MUJ since UJ is normalized by
LJ , so M

′U∩LJ ⊆ MUJ (U∩LJ) = MU by the Levi decomposition. Since MU is a
line, M ′ must contain it and therefore M ′ ⊇ FLJ .M

U .
On Theorem 3.3. M is projective if and only if its restriction to the Sylow

p-subgroup U− is projective (see for instance [Benson, 3.6.9] or (17) below), i.e.
free as an FU−-module. By Theorem 3.1, the restriction to U− is FU−/V where
V = {v ∈ FU− | v.MU = 0}, and FU−/V is free if and only if V = 0. Since the only
simple submodule of FU− is the line Fσ where σ =

∑
u∈U−

u, one gets that M is

projective if and only if (
∑

u∈U−
u)MU 6= 0. Let n0 := ṡ1ṡ2 . . . ṡl where s1s2 . . . sl

is a decomposition of the lS-longest element of W . By the Theorem 3.2.(ii) giving
the action of HF(G,U) on the line MU , one has

n−1
0 (

∑

u∈U−

u)MU = (
∑

u∈U−

u)n−1
0 MU = ψθ,I(an0)M

U =
( l∏

i=1

ψθ,I(aṡ)
)
MU . (15)

By the definition of ψθ,I and since {s1, . . . , sl} = S, one has
∏l

i=1 ψθ,I(aṡ) 6= 0 if
and only if I = S.
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Now concerning the p-blocks. We know from Proposition 1.18 and Corol-
lary 1.11 that G has only one block of defect 6= {1}. Let’s see that there is only one
block of defect {1}. This would correspond to a simple projective FG-module. On
the other hand Z(G) is a p′-group (since U ∩U− = {1}), so we get an FG-module
simple and projective. By Theorem 3.2 it has to be associated with an admissible
pair (θ, S). It is not too difficult to check that when G is perfect the condition
Sθ = S implies θ = 1 (show first that the associated M is one-dimensional as a
consequence of Theorem 3.2.(iii)). �

3.B. Relation with weight modules. Assume that our pair (G, F ) from Sect.
1.B is such that F acts trivially on the Weyl group NG(T)/T. The simple FGF -
modules have been classified in the following way by R. Steinberg in the 60’s (see
[St63], [Hum3, §2.11]). First the irreducible rational representations

G→ GLn(F)

are classified by the subset of so-called dominant weights X(T)+ ⊆ X(T) where
λ ∈ X(T) is dominant if and only if (λ, δ∨) ≥ 0 for any fundamental coroot
δ∨ ∈ Φ(G,T)∨, δ ∈ ∆. Let us denote by M(λ) the corresponding G-module.

Most of the features described in 3.A above are also present regarding the
rational modules M(λ). The link between the two situations is provided by the
following.

Theorem 3.4. The M(λ) for λ such that 0 ≤ (λ, δ∨) ≤ q − 1 have irreducible
restrictions to GF . This gives all simple FGF -modules only once when G =
[G,G].

Among the properties of the M(λ)’s is the fact that M(λ) has a line of fixed
points under U. The torus T acts by λ on that line, and one proves easily the
following relation with the description given before

Proposition 3.5. The admissible pair associated to ResG
GF M(λ) is (θ, I) where

θ = ResT
TF λ and I ⊆ S is in bijection by (2) with the fundamental roots δ such

that (λ, δ∨) = q − 1.

3.C. Alperin weight conjecture. For F an algebraic closure of Fp andH a finite
group, let us recall Alp(H) the set of H-conjugacy classes of pairs (Q, π) where Q
is a p-subgroup of H and π is a simple projective F(NH(Q)/Q)-module. Alperin
conjectured that

|Alp(H)| equals the number of simple FH-modules (16)

for all finite groups H and primes p [Al87].

We take G = GF as before.

Theorem 3.6. G satisfies Alperin’s weight conjecture (16) for the prime p. More-
over there is a map M 7→ (Q, π) inducing a bijection IBr(G)→ Alp(G) and such
that

(i) the bijection is Aut(G)-equivariant
(ii) π, seen as an FNG(Q)-module, is a submodule of MQ.

Proof. Let us first note that for any (Q, π) in Alp(G), the subgroup Q is p-radical,
or equivalently that Op(L) = {1} for L := NG(Q)/Q. Indeed L has an FL-module

π that is simple and projective. Then πOp(L) is a non trivial FL-submodule, so
Op(L) acts trivially on π. On the other hand π remains projective when restricted
to Op(L), so it is a free FOp(L)-module. This is possible only if Op(L) = {1}.
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Now by Theorem 1.10.(1) and (2), Alp(G) is in bijection with the set of pairs
(UI , π) where I ⊆ S and π is an FLI-module that is simple and projective. From
Theorem 3.2 we know that any such module is associated to an admissible pair
(θ, I) of LI , i.e., θ : T → F× has to be such that θ(Tδ) = {1} for any δ ∈ ∆
corresponding to an element of I.

By Theorem 3.2 we then see that our sets IBr(G) and Alp(G) are both in
bijection with the admissible pairs for G.

Moreover ifM ↔ (θ, I)↔ (Q, π) = (UI ,MLI
(θ, I)), one has that Q is the small-

est p-radical subgroup of G normal in U such that FNG(Q)MU is a simple projec-
tive module for NG(Q)/Q (use Theorem 3.2.(iii)). Then π = FNG(Q)MU . This
intrinsic definition of the map shows that it is equivariant for automorphisms that
preserve U . The latter being a Sylow p-subgroup and inner automorphisms acting
trivially on both IBr(G) and Alp(G), we actually get equivariance for Aut(G). �

Remark 3.7. (a) Let us recall Green’s notion of vertex of an indecomposable
kH-module M (see [NagaoTsu, §4.3]). It is a subgroup V of H minimal for the

property that M is isomorphic to a direct summand of IndGV ResVGM . It is easy
to see that of

M is a direct summand of IndGV ResVGM for V a Sylow p-subgroup of H . (17)

Consequently the vertex of an indecomposable module is always a p-subgroup.
On the other hand, Alperin’s conjecture asks for associating to each simple FH-

module a conjugacy class of p-subgroups of H . When H is p-solvable, the vertex
of the given simple FH-module provides such a correspondence (see [Oku81, 4.1],
[IsNa95]). This can’t be a solution for our groups G = GF since there, when
G/Z(G) is simple non abelian, vertices of simple modules are Sylow p-subgroups
except for simple projective modules (Dipper, see [Di80], [Di83]).

(b) In this case of the defining characteristic a more suggestive definition for Q

associated with a simple FG-module M is as follows. The module IndGU F decom-
poses as a sum Y1 ⊕ · · · ⊕ Yv where the Yi are indecomposable. Then M is the
quotient of a single Yi0 , and Q is the vertex of that Yi0 .

(c) In our case, all p-radical subgroups of G are present in Alp(G). Whether this
is a general fact relates strongly with the question of quasi-simple groups having
blocks of central defect (case of Q = Op(G)). Quasi-simple groups GF have such
blocks for all primes. For the primes 2 and 3, there are infinitely many alternating
groups An without block of defect zero. For all that, see below Theorem 10.1.

II. NON-DEFINING CHARACTERISTIC (ℓ 6= p)

4. Rational series and ℓ-blocks

From now on we will be looking at modular aspects of the representations of
our groups GF (see Sect. 1.B) with regard to a prime ℓ different from the defining
prime p. So we assume essentially that a prime ℓ 6= p has been chosen and also
that we have a so-called ℓ-modular system (O,K, k) where O is a complete
valuation ring with ℓ ∈ J(O), K its fraction field, k = O/J(O). One assumes that
O contains |H |-th roots of 1 for any finite group H we encounter (see [NagaoTsu,
§3.6]).
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4.A. Blocks and central functions. Let us recall the notion of ℓ-blocks of a
finite group H as decomposing the group algebra kH = B0 ×B1 × · · · ×Bν as in
(9) where Bi = kHbi with bi primitive idempotents of the center Z(kH). The field
k having enough roots of unity with regard to H , the bi belong in fact to kH (one
can also impose that k = k, see [AschKeOl, Sect. IV.4.2]). On the other hand it
is easy to see that reduction mod J(O) induces an epimorphism

Z(OH)→ Z(kH) (18)

which implies through the lifting of idempotents that the blocks of OH and the
p-blocks of H identify by OHei 7→ kHbi where bi is the reduction mod J(O)
of ei. Now the p-blocks of H also induce a partition of Irr(H), whose elements
are seen as isomorphism types of simple KH-modules, namely Irr(H) = ⊔i Irr(Bi)
corresponding to the decomposition KH =

∏
iKHei. We will also need to look at

character values, that is we see the elements of Irr(H) as central functions H → K.
Noting that the elements of Irr(H) take values in the subring of K generated by
the |H |-th roots of 1, we even see Irr(H) as a C-basis of CF(H) the complex vector
space of central functions H → C, hence with the decomposition

CF(H) = ⊕iCF(H | Bi). (19)

Each element χ ∈ Irr(H) defines some central idempotent eχ := χ(1)
|H|

∑
h∈H χ(h−1)h ∈

Z(KH) and

ei =
∑

χ∈Irr(Bi)

eχ. (20)

We are later interested in “union of blocks” in Irr(H). It is an easy exercice to
prove the following.

Proposition 4.1. Let A ⊆ Irr(H). The three statements below are equivalent.

(i) A is a union of subsets Irr(Bi).
(ii)

∑
χ∈A eχ ∈ OH.

(iii) The projection prA : CF(H) → CF(H) associated to A, sends the regular
character regH to a central function with values in |H |O = |H |ℓO, namely

prA(regH)(h) ∈ |H |ℓO for all h ∈ H. (21)

4.B. Uniform and p-constant functions. We return to our groups G = GF

keeping the same notation except for the basic pair T ≤ B of F -stable maximal
torus and Borel, that we rename T0 ≤ B0 since we will now allow our maximal
tori (even when F -stable) not to be included in F -stable Borel subgroups.

We give some elements of Deligne-Lusztig’s theory on Irr(GF ) in a very quick
fashion. We refer to the contributions by Geck and Dudas for a more in-depth
introduction (see [Ge17], [Du17]).

There are basically two very important facts about ordinary characters of finite
groups of Lie type. The functors RG

L
and the existence of rational series. A

third basic feature – a so-called Jordan decomposition of characters – will be
seen later (see Sect. 4.D).

The functor RG

L
: Z Irr(LF )→ Z Irr(GF ) is defined as follows.

One takes P = LRu(P) a Levi decomposition of a parabolic subgroup of G and
one assumes that L (and not necessarily P) is F -stable. Then the variety

YP = {gRu(P) | g−1F (g) ∈ Ru(P)F (Ru(P))} (22)

is clearly acted on by LF on the right and GF on the left. Understandably any
cohomology theory of that object would produce modules acted on by those finite



LOCAL METHODS FOR BLOCKS OF FINITE SIMPLE GROUPS 19

groups on those sides. One denotes by Hi
c(YP) the i-th cohomology group defined

by ℓ-adic cohomology with compact support ofYP tensored by C (see more details

in Sect. 9.A below), so as to give a CGF × LF opp
-module.

Definition 4.2. One defines RG

L
: Z Irr(LF )→ Z Irr(GF ) by

[M ] 7→
∑

i∈Z

(−1)i[Hi
c(YP)⊗CLF M ]

where [M ] is the class of a CLF -module M in N Irr(LF ). One denotes by

∗RG

L : Z Irr(GF )→ Z Irr(LF )

the adjoint map for the usual scalar product of central functions.

Remark 4.3. (a) The maps defined above are independent of the choice of P for a
given L in many cases in particular when L is a torus (see [DigneMic, Ch. 11]). The
independence in the general case relates with the validity of a reasonable Mackey
formula similar to the one known for induction/restriction of characters of finite
groups. The most complete result about such a formula is due to Bonnafé-Michel
[BoMi11] (see also [Tay17]).

(b) When P is F -stable, YP identifies with the finite set GF /Ru(P)F and the
functor RG

L
with the so-called parabolic or Harish-Chandra induction, making

any representation of LF into a representation of PF (through trivial action of

Ru(P)F ) then applying ordinary induction IndG
F

PF . The formula

DG =
∑

I⊆S

(−1)|I|RG

LI

∗RG

LI
(23)

involves only Harish-Chandra induction and is called Alvis-Curtis duality.
(c) In order to see how many more functors Deligne-Lusztig theory constructs

as opposed to usual functors defined from subgroups of GF , let us focus on the
case of L a torus. In the finite group G = GF there is only one conjugacy class
of subgroups one would call a maximal torus, the one denoted T = TF

0 at the
beginning of this section. Allowing any group TF for T an F -stable maximal
torus brings a lot more to the picture. Starting from our reference T0, the GF -
conjugacy classes of F -stable maximal tori are in bijection

gT0g
−1 7→ g−1F (g)T0 ∈W (G,T0) (24)

with W = W (G,T0) mod the relation w ∼F vwF (v)−1 for any w, v ∈ W . The
element g−1F (g)T0, or its ∼F -class is called the type of the F -stable maximal
torus gT0g

−1. This is a classical consequence of Lang’s theorem (see [Ge17, 2.3]).
For GLn(F) with F the usual Frobenius on matrix entries, this gives as many
classes of tori as the number of conjugacy classes of Sn.

An important fixed point property of étale cohomology implies the following
character formula ([DL76, §3-4]).

Proposition 4.4. If (u, v) ∈ GF × LF is assumed to be unipotent, let

QG

L (u, v) =
∑

i∈Z

(−1)itr((u, v),Hi
c(YP)).

If su is the Jordan decomposition of an element of GF and f ∈ CF(LF ), then

RG

L
(f)(su) = |LF |−1|C◦

G
(s)F |−1

∑

{g∈GF |s∈gL}

|C◦
gL

(s)F |
∑

v∈C◦
gL

(s)Fu |

Q
C◦

G
(s)

C◦
gL

(s)(u, v
−1)f(g−1svg).
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One lists below some consequences of the character formula that prove useful
in the proof of Broué-Michel’s theorem on ℓ-blocks.

Definition 4.5. We call uniform functions the elements of CF(GF ) that are
C-linear combinations of RG

T
θ for T an F -stable maximal torus and θ ∈ Irr(TF ).

Some f ∈ CF(GF ) is called p-constant if and only if f(su) = f(s) for any
Jordan decomposition su ∈ G.

Lemma 4.6. Let f ∈ CF(G) be p-constant.

(i) f is uniform.
(ii) If L is an F -stable Levi subgroup of G and f ′ ∈ CF(LF ), then RG

L
(f)f ′ =

RG

L
(f ResG

F

LF f ′).
(iii) If χ ∈ CF(G) then DG(fχ) = fDG(χ).
(iv) |G|−1

p′ DG(regG) is the characteristic function of the set of unipotent ele-

ments (i.e. p-elements) of G.

4.C. Rational series and Broué-Michel’s theorem. An important case of
the functor RG

L
is when L is a maximal torus. It allows an important partition of

Irr(GF ).
One defines first a group G∗ dual to G. This means that a choice has been

made of maximal tori T0 ≤G, T∗
0 ≤ G∗ such that Hom(T0,F

×) ∼= Hom(F×,T∗
0)

and Hom(T∗
0,F

×) ∼= Hom(F×,T0) in a way that is compatible with roots and
coroots. One also assumes that all those are stable under compatible Frobenius
endomorphisms F : G→ G, F ∗ : G∗ → G∗. The interest of groups in duality is in
the parametrization of characters of finite tori TF . Indeed for w ∈ W (G,T0) iden-

tified with w∗ ∈ W (G∗,T∗
0), one has isomorphisms Irr(TwF

0 ) ∼= T∗
0
w∗F∗

(where
the notation wF stands for F followed by conjugation by w).

One also gets a bijection
{GF -conjugacy classes of pairs (T, θ) where T is an F -stable maximal torus of

G and θ ∈ Irr(TF )}

l (25)

{G∗F∗

-classes of pairs (T∗, s) where T∗ is an F ∗-stable maximal torus of G∗

and s ∈ T∗F∗

}.

Theorem 4.7 (Deligne-Lusztig). For s ∈ G∗F∗

a semi-simple element, one de-
fines E(GF , s) the set of irreducible components of generalized characters RG

T
θ for

(T, θ) corresponding to some (T∗, s) through the above correspondence.
One gets a partition

Irr(GF ) = ⊔sE(G
F , s) (26)

where s ranges over semi-simple classes of G∗F∗

.

The subsets E(GF , s) for s ∈ G∗
ss
F∗

are called the rational series of Irr(GF ).
The proof of the Theorem, given in [DigneMic, Ch. 14] is quite indirect, going
through the intermediate notion of geometric series and using a regular embedding

G ⊆ G̃ (see [Ge17, §6], [CaEn, §15.1]) with connected Z(G̃). It is easier to
show that RG

L
sends E(LF , s) into ZE(GF , s) via the correspondence between Levi

subgroups of G and G∗ [CaEn, 15.7]. This implies in particular that Alvis-Curtis
duality (see Remark 4.3.(b) above) satisfies

DG(E(G, s)) ⊆ ZE(G, s) for any semi-simple s ∈ G∗F∗

. (27)
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Theorem 4.8 (Broué-Michel). For s ∈ G∗F∗

a semi-simple element of order
prime to ℓ, one defines

Eℓ(G
F , s) :=

⋃

t∈CG∗ (s)F
∗

ℓ

E(GF , st).

This is a union of ℓ-blocks.

Proof. We abbreviateGF = G. We show that the projection pr : CF(G)→ CF(G)
associated with the subset Eℓ(G, s) ⊆ Irr(G), satisfies pr(regG)(G) ⊆ |G|ℓO. This
will give our claim by Proposition 4.1. For π a set of primes, one denotes by δπ
the characteristic function of π-elements of G.

Note that

δπ ∈ O Irr(G) as soon as ℓ ∈ π (28)

thanks to a classical consequence of Brauer’s characterization of generalized char-
acters (see [NagaoTsu, 3.6.15.(iii)]). Note also that δπ is p-constant as soon as
p ∈ π.

We also prove

pr(δℓ′f) = δℓ′pr(f) for any uniform f ∈ CF(G). (29)

To show (29) it suffices to show the equality with f = RG

T
θ for some F -stable

maximal torus T and θ ∈ Irr(TF ). The claim then reduces to showing that
δℓ′R

G

T
θ ∈ CEℓ(G, s) when (T, θ) ↔ (T∗, s′) (see (25)) for some s′ ∈ with s′ℓ′ = s.

Note that this can be done for any semi-simple ℓ′-element, conjugate or not to

the s we are given. By Lemma 4.6.(ii), we have δℓ′R
G

T
(θ) = RG

T
(δ

(TF )
ℓ′ θ). On the

other hand δ
(TF )
ℓ′ θ =

∑
θ′ θ′ where the sum is over θ′ ∈ Irr(TF ) with θ′ℓ′ = θℓ′

(we consider Irr(TF ) as a multiplicative group). But it is easy to check from the
identifications of duality that if s′ℓ′ = s then (T, θ′)↔ (T∗, s′′) with s′′ℓ′ = s. This
gives δℓ′R

G

T
θ ∈ CEℓ(G, s).

Now the proof of the Theorem goes as follows. From Lemma 4.6.(i) we know
that δ{p,ℓ} is uniform and (29) gives now

δℓ′pr(δ{p,ℓ}) = pr(δ{p}). (30)

The image of the right hand side by DG is DG ◦ pr(δp) = pr ◦ DG(δp) =

|G|−1
p′ pr(regG) thanks to (27) and Lemma 4.6.(iv). Using (iii) of the same lemma,

the image by DG of (30) now gives

|G|−1
p′ pr(regG) = δℓ′ .pr(DG(δ{p,ℓ})). (31)

We have seen (28) that δ{p,ℓ} hence also DG(δ{p,ℓ}) ∈ O Irr(G). So the right hand
side of (31) takes values inO. Then indeed pr(regG) takes values in |G|p′O = |G|ℓO
as claimed. �

The sum of blocks of OG corresponding to the theorem is denoted as follows.

Definition 4.9. One denotes eℓ(G
F , s) :=

∑
χ∈Eℓ(GF ,s) eχ ∈ Z(OGF ), eℓ(G

F , s)

its image in Z(kGF ), and Bℓ(G
F , s) := OGF eℓ(G

F , s).

Combining (29) and the fact that multiplication by δℓ′ preserves ℓ-blocks (see
below Brauer’s “second Main Theorem”) one easily gets

Proposition 4.10 (Hiss). For every p-block B of GF such that Irr(B)∩Eℓ(GF , s) 6=
∅, one has Irr(B) ∩ E(GF , s) 6= ∅.
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4.D. Jordan decomposition and ℓ-blocks. We keep G, F,G∗, F ∗, etc... as
before.

Definition 4.11. The elements of E(GF , 1) are called unipotent characters.
Similarly ℓ-blocks B of GF such that Irr(B)∩E(GF , 1) 6= ∅ are called unipotent
blocks.

The set of unipotent characters tends to be sensitive only to the root system
of G and the action of F on it. In particular one has bijections (see [DigneMic,
13.20])

E(GF , 1)↔ E([G,G]F , 1)↔ E((G/Z(G))F , 1) (32)

and E(GF , 1)↔ E(G∗F
∗

, 1) but also E(GF , 1)↔ E(GFm

, 1) (m ≥ 1) when F acts
trivially on the root system of G. However the last bijection relates characters of
different degree, though the degree is the same polynomial in various powers of q,
see [Carter2, Sect. 13.8].

Example 4.12. We consider the case of GF = GLn(Fq), see Example 1.3. For
w ∈ Symn let Tw denote an F -stable torus of type w with regard to the diagonal
torus in the sense of Remark 4.3.c. The set of unipotent characters is in bijection
with Irr(Sn) by the map

χ 7→ Rχ = n!−1
∑

w∈Sn

χ(w)RG

Tw
1

which takes values in ±E(GF , 1) and with adequate signs gives indeed a bijection
Irr(Sn)→ E(GF , 1) (see for instance [DigneMic, §15.4]).

It is customary to call Jordan decomposition of Irr(GF ) any bijection

E(GF , s)↔ E(CG∗(s)F
∗

, 1)

where s ∈ (G∗)F
∗

p′ . However the definition we gave of unipotent characters applies

only to connected groups G, so the set E(CG∗(s)F
∗

, 1) above would be defined as

the set of constituents of induced characters Ind
CG∗(s)F

∗

C◦
G∗(s)F

∗ ζ for ζ ∈ E(C◦
G∗(s)F

∗

, 1).

The existence of such a Jordan decomposition compatible with the RG

L
functors

has been shown by Lusztig [Lu88], here again in a quite indirect way, the results
being a lot more complete in the cases where Z(G) is connected, which in turn
ensures that CG∗(s) is then connected. A basic idea is that Jordan decomposition
should behave like a RG

C
functor for a suitable C.

For the following, see [DigneMic, 13.25].

Theorem 4.13 (Lusztig). Assume L∗ is an F ∗-stable Levi subgroup of G∗ such
that CG∗(s) ≤ L∗. Then L := (L∗)∗ can be seen as a Levi subgroup of G and there
is a sign ǫL,G ∈ {1,−1} such that ǫL,GRG

L
induces a bijection

ǫL,GRG

L : E(LF , s)→ E(GF , s).

In this situation and with s being an ℓ′-element it is not difficult to prove that
ǫL,GRG

L
also induces a bijection

ǫL,GRG

L
: Eℓ(L

F , s)→ Eℓ(G
F , s).

Theorem 4.14 (Broué). The above bijection preserves the partitions induced by
ℓ-blocks. Moreover two ℓ-blocks that thus correspond have defect groups of the same
order.
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About the proof. We sketch the main ideas of the proof, based on Broué’s notion
of perfect bi-characters (see [Bro90a]). For finite groups H , L, a bi-character
µ ∈ Z Irr(H × L) is called perfect if and only if for all (h, l) ∈ H × L, µ(h, l) ∈
|CH(h)|O ∩ |CL(l)|O and whenever µ(h, l) 6= 0 then h ∈ Hℓ′ if and only if l ∈ Lℓ′ .

This is a Z-submodule of Z Irr(H×L) and the trace character of an OH×Lopp-
bimodule which is projective on each side is perfect. This last property is very
important since it gives an arithmetic test for bicharacters that could come from
a Morita equivalence of blocks over O or even a derived equivalence since by a
theorem of Rickard such equivalences are induced by complexes of bi-projective
bimodules [Rick89].

Broué shows that if

a) I ⊆ Irr(H) and J ⊆ Irr(L) are unions of ℓ-blocks, with
b) σ : J → I a bijection and
c) one has signs (ǫχ)χ∈J such that

∑
χ∈J ǫχσ(χ)⊗ χ is perfect,

then

(i) σ preserves the partition of I and J into ℓ-blocks and
(ii) corresponding blocks have defect groups of the same order and same num-

ber of simple modules over k = O/J(O).

In order to apply this to our situation H = GF , L = LF , I = Eℓ(LF , s) and the
bijection of Theorem 4.13, it just remains to show that our bi-character is perfect.
This is a consequence of what has been said about bi-projective modules producing
perfect trace characters and the fact the action ofGF×LF on the varietyYP is free
on each side. This last fact translates into a related property of ℓ-adic cohomology
groups as OGF × LF opp

-modules, thanks to a result of Deligne-Lusztig ([DL76,
3.5]) which is also key to the proof of Proposition 4.4 above. �

It is important to notice that in the above the isometry of characters is without
signs as would happen in the case of a Morita equivalence. Indeed Broué made
the conjecture that this corresponds to a Morita equivalence

Bℓ(L
F , s)-mod

∼
−→ Bℓ(G

F , s)-mod

between the module categories of Bℓ(G
F , s) and Bℓ(L

F , s).
This was proved by Bonnafé-Rouquier [BoRo03]. In Sect. 9 below, we try to

give an idea of their proof which goes very deep into the definition of RG

L
functors.

The result was completed recently by Bonnafé-Dat-Rouquier [BoDaRo17] into a
statement showing isomorphism of defect groups and local structure.

In order to get a Morita equivalence from an isometry of characters, one needs
essentially to have the latter induced by a bi-projective module thanks to the
following

Lemma 4.15 (Broué [Bro90b]). Assume H, L are finite groups, B, C are sums
of blocks of OH, OL respectively. Assume M is a B ⊗ Copp-bimodule that is bi-
projective (i.e., projective on restricting to the subalgebras B ⊗ O and O ⊗ C).
Then

M ⊗OL − : C-mod→ B-mod

is an equivalence of categories if and only if M ⊗K induces a bijection of ordinary
characters Irr(C)→ Irr(B).

Proof. Let N := HomO(M,O). This is a C ⊗ Bopp-bimodule, projective on each
side.
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We have

C-mod
M⊗C−
−−−−−→ B-mod and B-mod

N⊗B−
−−−−→ C-mod are left and right adjoint.

(33)
Indeed the classical (left) adjoint for the tensor product functor M ⊗C − is

HomB(M,−). But the B-projectivity of M allows to identify HomB(M,−) with
HomB(M,B)⊗B−. On the other hand, the algebraB is symmetric overO, namely
the restriction to B of the evaluation of the coordinate at 1 in the group algebra
yields a linear map λ : B → O inducing an isomorphism between B and its O-dual
and such that λ(bb′) = λ(b′b) for all b, b′ ∈ B (compare with assumption (1) in
Theorem 2.1 above). A basic property is then that

HomB(M,B) ∼= N by the map f 7→ λ ◦ f. (34)

. This and exchanging the roles of B and C gives (33).
Using the subscript K to denote tensoring by K for B,C,M,N , we have the

same as (33) for the semi-simple algebras BK and CK . The assumption on MK

implies that MK ⊗CK
− and NK ⊗BK

− are inverse functors and therefore

MK ⊗CK
NK
∼= BK and NK ⊗BK

MK
∼= CK as bi-modules. (35)

On the other hand BB and (M ⊗C N)B are projective as right B-modules
thanks to the bi-projectivity of M and N for the second. But (35) above tells us
that they are isomorphic once tensored with K as BK-modules. It is well-known
that two projective OH modules are isomorphic if and only if they are so when
tensored with K, see for instance [Du17, §4.4]. So we get

(M ⊗CN)B ∼= BB, B(M ⊗CN) ∼= BB, (N ⊗BM)C ∼= CC and C(N ⊗BM) ∼= CC
(36)

by the symmetry of the situation.
The adjunction between the functors M ⊗C − and N ⊗B − mentioned above

provide natural transformations of the composites into identity functors. In the
case of tensor products functors, this means we have bimodule maps

ǫ : C → N ⊗B M and η : M ⊗C N → B.

Note that they can be made explicit by following the steps used above, for instance
η(m⊗n) = λ∗(n)(m) where λ∗ is the inverse of the map (34). The basic property
of adjunctions (see [McLane, IV.1]) implies that the composite

N
ǫ⊗idN−−−−→ N ⊗B M ⊗C N

idN ⊗η
−−−−→ N (37)

is the identity. Keeping only the action of B on the right, the three modules
are all isomorphic thanks to the first statement in (36) and the maps are inverse
isomorphisms. So the maps in (37) are indeed isomorphisms. But then, tensoring
by M on the right gives an isomorphism

N ⊗B M
ǫ⊗idN⊗M
−−−−−−→ N ⊗B M ⊗C N ⊗B M.

By the last statement of (36) this means that ǫ was an isomorphism in the first
place. We also get the same for η and this is enough to conclude that our functors
M ⊗C − and N ⊗B − induce inverse (Morita) equivalences. �

A first application of the lemma is to show that the map of Theorem 4.13 is
induced by a Morita equivalence in a special case.

Corollary 4.16. Assume the hypotheses of Theorem 4.13 with moreover that
L is a Levi subgroup of an F -stable parabolic subgroup P. Then the functor
OGF /Ru(P)F⊗LF− induces a Morita equivalence Bℓ(L

F , s)-mod −→ Bℓ(G
F , s)-mod
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The proof simply consists in noting that the functor given induces on char-
acters the Harish-Chandra induction which coincides with RG

L
in our case (see

Remark 4.3.b), hence a bijection by Theorem 4.13, and on the other hand this
bimodule is clearly bi-projective since one may write it OGF e where e is the
idempotent |Ru(P)F |−1

∑
u∈Ru(P)F u.

5. Local methods for blocks of finite quasi-simple groups

We give more material on general methods for blocks of finite groups. We
then illustrate them with the case of symmetric groups. We conclude with a brief
discussion of Chuang-Rouquier theorems [ChRo08].

5.A. Subpairs and local structure of an ℓ-block. We go back to H some ab-
stract finite group, and ℓ a prime, with (K,O, k) an associated ℓ-modular system.

An ℓ-subpair in H is any pair (Q, bQ) where Q is an ℓ-subgroup of H and bQ
is a primitive idempotent of Z(OCH(Q)). Recall (see Sect. 1.E above) that for C
a finite group we have bijections (where prid stands for primitive idempotents)

blocks of OC ↔ prid(Z(OC))↔ prid(Z(kC))↔ blocks of kC

where the middle map is i 7→ i (reduction mod J(O)) whose inverse is given by
idempotent lifting.

We identify all four kinds of objects above and thus extend the notations Irr(B),
CF(H | B) already seen.

We already introduced the Brauer morphism BrQ : Z(kH) → kCH(Q) in Sect.
1.E, but in fact it can be defined on a bigger algebra. Denoting by (kH)Q the fixed
point subalgebra for the conjugacy action of Q, one has an algebra morphism

BrQ : (kH)Q → kCH(Q)
∑

h∈H

λhh 7→
∑

h∈CH (Q)

λhh

One defines an order relation ≤ on ℓ-subpairs of H by transitive closure of the
following

Definition 5.1 (Alperin-Broué). (Q′, b′)⊳ (Q, b) if and only if

• Q normalizes Q′ and b′ (so that b
′
∈ (kH)Q) and

• BrQ(b
′
)b = b.

The ℓ-blocks of H itself can be seen as ℓ-subpairs of type ({1}, b1). An inclusion
({1}, b1) ⊳ (Q, b) would exist if and only if BrQ(b1) 6= 0 which is the criterion we
have seen to define defect groups (see 1.E).

Theorem 5.2 (Alperin-Broué). (i) If (Q, b) is an ℓ-subpair in H and Q′ is
some subgroup of Q, then there is a single subpair with (Q′, b′) ≤ (Q, b).

(ii) If ({1}, b1) is an ℓ-subpair of H, the ≤-maximal subpairs of H containing
it are all H-conjugate and are of type (D, b) where D is a defect group of
the ℓ-block kHb1.

To an ℓ-block B of H with defect group D ≤ H , one can associate a finite
category similar to the fusion system of Definition 1.13, see [AschKeOl, IV.2.21].
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Definition 5.3. Let (D, bD) be a maximal ℓ-subpair containing ({1}, B). Then
F(D,bD)(B) is the category whose objects are the subgroups of D and if D1, D2 ≤
D, one defines

HomF(D,bD )(B)(D1, D2)

as the set of maps D1 → D2 of the form x 7→ ch(x) = hxh−1 where h ∈ H is such
that one has ℓ-subpair inclusions

h(D1, b1) ≤ (D2, b2) ≤ (D, bD) ≥ (D1, b1).

Like FQ(H) from Definition 1.13 on Q, the above defines a fusion system in
the sense of [AschKeOl] on the ℓ-group D. The “local structure” of the ℓ-block B
usually means the knowledge of F(D,bD)(B), which of course does not depend on
the choice of the maximal subpair (D, bD).

5.B. Brauer’s second Main Theorem. We need first to define the general-
ized decomposition map dx (x an ℓ-element) on central functions. We already
had a glimpse of the ordinary decomposition map (when x = 1) in the form of
multiplication by the function denoted by δℓ′ in the proof of Theorem 4.8.

Definition 5.4. For x ∈ Hℓ let

dx : CF(G)→ CF(CH(x))

defined by dx(f)(y) = f(xy) if y ∈ CH(x)ℓ′ , d
x(f)(y) = 0 otherwise.

Theorem 5.5 (Brauer 1959). Let x ∈ Hℓ. Let ({1}, b1), (〈x〉 , bx) be ℓ-subpairs
of H. Let χ ∈ Irr(b1) and assume dx(χ) ∈ CF(CH(x)) has non-zero projection on
CF(CH(x) | bx). Then

({1}, b1) ≤ (〈x〉 , bx).

5.C. Centric or self-centralizing subpairs.

Definition 5.6. Let (Q, bQ) be an ℓ-subpair of H . Then it is called centric if and
only if bQ has defect group Z(Q) in CH(Q). Then there is a single ζ ∈ Irr(bQ) with
Z(Q) in its kernel, this is called the canonical character of the centric subpair.

It is easy to show the uniqueness of ζ above, using that kCH(Q)bQ has a single
simple module, hence a single projective indecomposable module. One can recover
bQ from ζ by the formula

bQ =
ζ(1)

|CH(Q)|

∑

h∈CH(Q)ℓ′

ζ(h)h−1. (38)

Theorem 5.7 (Brauer). Let (Q, b), (Q′, b′) some centric ℓ-subpairs of H, with
Q′⊳Q. Let ζ ∈ Irr(b), ζ′ ∈ Irr(b′) the canonical characters. Then (Q′, b′) ≤ (Q, b)

if and only if ζ′ is Q-stable and the multiplicity of ζ in Res
CH(Q′)
CH(Q) ζ

′ is in N \ ℓN.

In practice, centric subpairs lead easily to maximal subpairs.

Proposition 5.8. A subpair inclusion (Q1, b1) ≤ (Q2, b2) with centric (Q1, b1)
implies that (Q2, b2) is also centric and Z(Q2) ≤ Z(Q1). A subpair (Q, bQ) is
maximal if and only if it is centric and NH(Q, bQ)/QCH(Q) is an ℓ′-group.
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5.D. Two main theorems of Brauer and blocks of quasi-simple groups.
Assume we are given a finite group H and a prime ℓ. We assume we have some
information on Irr(H) and some character values, especially in the form of algo-
rithms reducing to the related questions for smaller groups of the same type.

Using local methods we want to determine the splitting of Irr(H) into sets
Irr(B) for B the ℓ-blocks of H , along with the ℓ-subpairs of H (which includes
determining the defect groups of ℓ-blocks).

For χ ∈ Irr(H), let us denote by bH(χ) the ℓ-block such that χ ∈ Irr(bH(χ)).
Starting with χ ∈ Irr(H), two possiblities occur. Either there is some 1 6= x ∈

Hℓ such that dxχ 6= 0 or χ(H \Hℓ′) = 0.
In the second case it is classical that bH(χ) has defect {1} and is the only

character of that block. In the first case it’s often the case that such an x can be
found non-central. Then Brauer’s second Main Theorem allows to get an inclusion

({1}, bH(χ)) ≤ (〈x〉 , b′).

If now H ′ := CH(x) has a similar structure as H , or say we know Irr(H ′) just

as well, and if the maps dx
′

: Irr(H ′) → CF(CH′(x′)) are also not too difficult to
compute, we can do for H ′ the same as above.

This subpair enlargement process will provide us with an inclusion

({1}, bH(χ)) ≤ (A, bA)

where A is an abelian ℓ-subgroup and bA has central defect group in CH(A). So
we can assume that (A, bA) is centric.

Using now Theorem 5.7, including (A, bA) into other centric subpairs is a rel-
atively classical problem of character restrictions. One then gets to a maximal
subpair (D, bD) ≥ ({1}, bH(χ)). By conjugacy of maximal subpairs, this solves the
problem of saying when two characters χ, χ′ of H belong to the same block. One
has bH(χ) = bH(χ′) if and only if the corresponding pairs (D, bD) and (D′, bD′)
are conjugate.

This is not precisely the pattern followed by Brauer-Robinson to determine the
blocks of symmetric groups first conjectured by Nakayama (see [Naka41b],[Br47])
but it was used by others (see [MeTa76] and Sect. 5.F below) and by Fong-
Srinivasan for the blocks of finite classical groups ([FoSr82] and [FoSr89]).

Remark 5.9. Note that we have avoided the question of characters that would
vanish on H \Z(H)Hℓ′ but are not in an ℓ-block of central defect. This can happen
only if ℓ | |Z(H)|. If we have started with a quasi-simple group H , this means that
ℓ divides the order of the Schur multiplier of a simple group. Indeed for H the
double cover of alternating or symmetric groups, the 2-blocks of faithful characters
had to be determined by other methods (Bessenrodt-Olsson [BeOl97]). But such
a phenomenon seems a bit isolated and not present in finite groups of Lie type.

5.E. The symmetric group: characters. Let us recall the parametrization of
Irr(Sn) and the formula of Murnaghan-Nakayama giving the character values. We
refer for instance to [JamesKer] for the classical theory while [Klesh] gives a very
direct approach to a more general setting.

For n ≥ 0, one defines P(n) = {λ | λ ⊢ n} the set of integer partitions of n,
λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) with λk > 0 and λ1 + λ2 + · · · + λk = n. One also
denotes |λ| = n. This includes ∅ ⊢ 0.

One has a bijection

P(n)→ Irr(Sn),

λ 7→ ζλ .
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The trivial character corresponds to the partition (n) through this bijection.
We don’t give its definition but go to the Murnaghan-Nakayama rule that allows
to compute inductively the character values.

Let d ≥ 1. To each λ ⊢ n is associated the set hookd(λ) of its hooks of length
d and for each τ ∈ hookd(λ) there is a removal operation producing λ− τ ⊢ n− d.
Each hook has a height h(τ) ∈ N. The Murnaghan-Nakayama rule is as
follows.

Assume 1 ≤ d ≤ n and x ∈ Sn writes as x = x′c where x′ ∈ Sn−d and c is a
cycle of order d on {n− d+ 1, . . . , n}. Let λ ⊢ n. Then [JamesKer, 2.4.7]

ζλ(x) =
∑

τ∈hookd(λ)

(−1)h(τ)ζλ−τ (x
′). (39)

Let’s be more explicit on hooks and the removal process. Partitions are often
represented by Young diagrams, where λ = (λ1 ≥ λ2 ≥ · · · ) is represented by
rows of boxes of sizes λ1, λ2, etc.. The rows are aligned on the left and all boxes
are identical. Below is the diagram for the partition (4, 3, 1, 1) ⊢ 9. The rim of
the diagram consists of the boxes such that no box is at the same time under and
on the right of them. On the first diagram below the rim of 7 boxes is dotted.
A hook is an interval in this rim starting and finishing at some box with no box
under or right of it. Its length is the number of boxes it comprises. Its height
is the number of rows affected minus 1. Below are six hooks with length d and
height h indicated. (Exercise: find the four hooks missing.)

. .
. . .
.
.

(d, h) = (7, 3)

.

(1, 0)

. .

(2, 0)

. .
. .

(4, 1)

. . .

.

.

(5, 2)

It is clear that removing a hook τ of length d gives a Young diagram with n−d
boxes, hence the meaning of λ − τ ⊢ n− d above. Note that in (39) above d can
be equal to 1. This case of the Murnagan-Nakayama rule gives the restriction of
χ ∈ Irr(Sn) to Sn−1 and is called the branching rule.

Note that when λ has no d-hook, then (39) gives ζλ(x
′c) = 0. A partition λ is

said to be a d-core if and only if hookd(λ) = ∅. For instance the partition above
is a 6-core.

For a given d, starting with some partition, the hook removal can be iterated
λ 7→ λ− τ1 7→ (λ − τ1)− τ2 7→ · · · where τ1 ∈ hookd(λ), τ2 ∈ hookd(λ − τ1), etc..
until we get a d-core. This is done below with d = 2, the hook removed next being
dotted.

.

.

7−→
. .

7−→
. .

7−→

It can be proved that given d and λ, this process of hook removal always ends
in the same d-core λ(d) and that the sign ǫλ,d = (−1)h(τ1)+h(τ2)+··· also does not
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depend on the path followed. One then gets the following iterated Murnaghan-
Nakayama rule [JamesKer, 2.7.27]

ζλ(x
′c1c2 . . . cw) = ǫλ,dNλ,dζλ(d)

(x′) (40)

where x′ ∈ Sn−wd, c1, c2, . . . , cw are disjoint cycles of order d on {n−wd+1, . . . , n},
and Nλ,d is the number of ways to go from λ to λ(d) by successive d-hook removals.

Remark 5.10. Young diagrams were essentially created to fill the boxes with
additional information. Working with hooks and cores is made easier by using
β-numbers instead of partitions. One replaces the partition λ = (λ1 ≥ λ2 ≥
· · · ≥ λk) by the set β := {λ1 + k − 1, λ2 + k − 2, . . . , λk}. A hook of length d is
then replaced by a pair {a, a−d} such that a ∈ β and 0 ≤ a−d 6∈ β. The removal
λ 7→ λ − τ becomes β 7→ β \ {a} ∪ {a − d}. The iteration with a fixed d is then
easy to control and uniqueness of the outcome is quite clear. The height of hook
is the number of elements of β between a and a− d, so that the sign (−1)h(τ) can
be interpreted as the signature of a cycle and the product of signs at the end of
the process is clearly independent of the path followed. This makes clear how to
get (40) from (39).

The following fact is also made trivial by working with β-numbers.

If λ ⊢ n and hookd(λ) = ∅ then hookdd′(λ) = ∅ for any d′ ≥ 1. (41)

5.F. The symmetric group: blocks. We give here the classification of blocks
of symmetric groups by use of local methods. The approach to Irr(Sn) described
in [Klesh] gives more generally the blocks of all Iwahori-Hecke algebras of type A

(see [Klesh, 9.6.2]).
Let n ≥ 1 and ℓ be a prime.

Theorem 5.11 (Brauer-Robinson). The ℓ-blocks of Sn are parametrized

κ 7→ Bκ

by the ℓ-cores κ such that κ ⊢ n − wℓ for some w ≥ 0. One has ζλ ∈ Irr(Bκ) if
and only if λ(ℓ) = κ.

The Sylow ℓ-subgroups of Sn−|κ| are defect groups of Bκ.

Lemma 5.12. If λ ⊢ n is an ℓ-core, then ζλ vanishes outside ℓ′-elements of Sn.

To prove the above, let x ∈ Sn with xℓ 6= 1. Then it has in its cycle decompo-
sition a cycle of order t a multiple of ℓ, x = x′c with c a cycle of order t and x′

fixing any element in the support of c. Then hookt(λ) = ∅ by (41) above and the
Murnaghan-Nakayama rule (39) gives ζλ(x

′c) = 0 as claimed.
We now prove Theorem 5.11. Let λ ⊢ n with λ(ℓ) ⊢ n − wℓ, w ≥ 0. Let c a

product of w disjoint cycles of order ℓ on {n − wℓ + 1, . . . , n}. Then CSn
(c) =

Sn−wℓ×W where W is isomorphic to the centralizer of a product of w disjoint
cycles of order ℓ in Swℓ. We have

CW (Op(W )) ≤ Op(W ). (42)

If c = c1 . . . cw is the product of our disjoint cycles of order ℓ, it is clear that the
ci’s are permuted by any element of W , so C := 〈c1, . . . , cw〉 ∼= (Z/ℓZ)w is normal
in W . On the other hand CW (C) = C since a permutation centralizing C has to
stabilize the support of each ci and the centralizer of a cycle of order ℓ in Sℓ is
clearly the cyclic subgroup this cycle generates. Thus (42).

Note that (42) implies that

W has a single ℓ-block B0(W ) (43)
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Indeed the defect group of an ℓ-block of W must contain Op(W ) (see for instance
[NagaoTsu, 5.2.8.(i)]) and then we can argue as in the proof of Proposition 1.18.

Let B := bSn−wℓ
(ζλ(ℓ)

).B0(W ) ∈ Bl(Sn−wℓ×W ). We prove

({1}, bSn
(ζλ))⊳ (〈c〉 , B). (44)

By Brauer’s second Main Theorem (Theorem 5.5), it suffices to prove that dcζλ
has non zero projection on CF(Sn−wℓ×W | B). Since W has only one block
CF(Sn−wℓ×W | B) = CF(Sn−wℓ | bSn−wℓ

(ζλ(ℓ)
)) × CF(W ). On the other hand,

Lemma 5.12 implies that ζλ(ℓ)
is the only irreducible character in its ℓ-block (see

for instance [NagaoTsu, 3.6.29]) so CF(Sn−wℓ×W | B) = Cζλ(ℓ)
×CF(W ). If the

projection of dcζλ were 0 on it, we would have Res
Sn−wℓ ×W
Sn−wℓ

dcζλ ∈ C(Irr(Sn−wℓ)\

{ζλ(ℓ)
}). Using the usual inner product on central functions, this would give

∑

x∈(Sn−wℓ)ℓ′

ζλ(xc)ζλ(ℓ)
(x−1) = 0. (45)

But we have

∑

x∈(Sn−wℓ)ℓ′

ζλ(xc)ζλ(ℓ)
(x−1) =

∑

x∈Sn−wℓ

ζλ(xc)ζλ(ℓ)
(x−1) by Lemma 5.12

= ǫλ,ℓNλ,ℓ

∑

x∈Sn−wℓ

ζλ(ℓ)
(x)ζλ(ℓ)

(x−1) by (40)

= ǫλ,ℓNλ,ℓ|Sn−wℓ | 6= 0, a contradiction.

Note that having (44) proves at once that bSn
(ζλ) = bSn

(ζµ) as soon as λ, µ ⊢ n
have same ℓ-core κ ⊢ n − wℓ. This gives the map κ 7→ Bκ announced. It is also
easy to include the second subpair of (44) into a maximal one. Let D be a Sylow ℓ-
subgroup of S′, the symmetric group on {n−wℓ+1, . . . , n}. AssumeD contains the
cycles of which c is a product. Then the centralizer of D in Sn is Sn−wℓ×CS′(D)
and we define BD = bSn−wℓ

(ζκ).B0(CS′(D)) where B0(CS′(D)) is the principal
block of CS′(D). Using Theorem 5.7 and Proposition 5.8, one gets inclusions

({1}, Bκ) ≤ (〈c〉 , B) and (〈c〉 , B) ≤ (D,BD) (46)

the latter being maximal. �

Remark 5.13. It is easy to check that (42) above is true for any centralizer of an
ℓ-subgroup of Sm having no fixed point on {1, . . . ,m}. Let P be an ℓ-subgroup
of Sn. We assume that its fixed points in {1, . . . , n} are {1, . . . , nP }, so that
CSn

(P ) = SnP
×WP where WP has only one ℓ-block by (43). Let Bκ an ℓ-block

of Sn as in Theorem 5.11, let b
(n)
κ ∈ Z(kSn) the corresponding central idempotent

in the group algebra of characteristic ℓ. From the above, one computes easily the
Brauer morphism

BrP (b
(n)
κ ) =

{
b
(nP )
κ ⊗ 1kWP

, if nP ≥ |κ|,

0, otherwise.
(47)

This shows that the fusion system of ℓ-subpairs of Bκ (see Definition 5.3) is iso-
morphic with the fusion system of ℓ-subgroups of Sn−|κ| (Broué-Puig, see [Bro86,
2.B.4]).
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5.G. The symmetric group: Chuang-Rouquier’s theorems. We keep ℓ a
prime number.

Theorem 5.14 (Chuang-Rouquier, 2008). If two ℓ-blocks A ⊆ OSn and A′ ⊆
OSn′ have isomorphic defect groups then

Db(A-mod) ∼= Db(A′-mod).

The proof introducing to representations of finite groups the notion of cate-
gorifications certainly opens a new chapter of representation theory. See [Mazor]
for a very complete introduction. [ChRo08] appeared on arXiv in 2004 and cate-
gorification was then a very recent notion. At that time MathSciNet had only 10
papers with the word in their title, the first in 1998; there are now on average 20
per year.

The common feature of the various instances of categorification is for A a ring
the existence of exact endofunctors of an abelian category C such that their images
in the endomorphism ring of the Grothendieck group give a representation

A→ End(K0(C)).

This is generally verified by using a presentation of A and checking that our
endofunctors induce endomorphisms of K0(C) satisfying the relations presenting
A. The phrase “categorical action” of A is also used (see [DuVV15]).

Concerning blocks of symmetric groups, it was known for some time that the
size of the defect group of a block of Sn determined all its numerical invariants
(see [En90]). The sum

G := ⊕n≥0K0(kSn)

of the Grothendieck groups of all symmetric groups had been considered by various
authors (see [Ze81]) in connection with the branching rule. More recently, Lascoux-
Leclerc-Thibon had shown an action of affine Lie algebras on it related with Jucys-
Murphy elements Li = (1, i) + (2, i) + · · ·+ (i− 1, i). See also [Klesh, §9]. The
Li’s pairwise commute and the algebra they generate compares with the Cartan
subalgebra of a Lie algebra, thus bringing to symmetric groups a key feature of
Lie theory.

Recall the Lie algebra sln over Z of n × n matrices with trace 0. It can be
presented by generators and relations satisfying the Chevalley-Serre relations. In
the case of n = 2, we get a Lie algebra sl2 = ZE ⊕ ZF ⊕ ZH defined by the
relations [E,F ] = H , [H,E] = 2E, [H,F ] = −2F .

The affine Lie algebra ŝln is generated by the elementsE0, . . . , En−1, F0, . . . , Fn−1,
H0, . . . , Hn−1 subject to the relations

[Ei, Fj ] = δi,jHi, [Hi, Ej ] = Ci,jEj , [Hi, Fj ] = −Ci,jFj (48)

(adEi
)1−Ci,j (Ej) = (adFi

)1−Ci,j (Fj) = 0 for i 6= j. (49)

where Ci,j is the Cartan matrix of the affine root system of type Ân−1.
Let a ∈ Fℓ. For M a kSn-module one denotes

Fa,n(M) = {v ∈M | av =
(
(1, n) + (2, n) + · · ·+ (n− 1, n)

)
.v}

the eigenspace of the n-th Jucys-Murphy element. This is Sn−1-stable. This gives
a decomposition of the additive restriction functor

ResSn

Sn−1
= ⊕a∈Fℓ

Fa,n : kSn -mod→ kSn−1 -mod.

Analogously one gets a decomposition IndSn

Sn−1
= ⊕a∈Fℓ

Ea,n with corresponding

adjunctions. One defines

Ea = ⊕n≥1Ea,n, Fa = ⊕n≥1Fa,n : ⊕n≥1 kSn -mod→ ⊕n≥1kSn -mod. (50)
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Theorem 5.15 (Lascoux-Leclerc-Thibon). (i) The action of the above E0, . . . ,

Eℓ−1, F0, . . . , Fℓ−1 induces an action of ŝlℓ on the Grothendieck group G.
(ii) The decomposition of G induced by ℓ-blocks corresponds to a decomposition

into weight spaces (for the subalgebra generated by the Ha = [Ea, Fa]’s).
(iii) Two ℓ-blocks have same defect group if and only if they are in the same

orbit under the action of the Weyl group of ŝlℓ.

For each pair a ∈ Fℓ, the above situation restricts to actions of sl2. This is
called more generally by Chuang-Rouquier a weak sl2-categorification. A strong
sl2-categorification is defined as follows. We give the version actually used for
blocks of symmetric groups, the one in [ChRo08] uses a parameter q which is 1
here.

Definition 5.16 (Chuang-Rouquier). Let A be a k-linear abelian category with
finiteness properties (satisfied in the application given). A strong sl2-categorification
is the data of a ∈ k, exact functors

E,F : A → A

and natural transformations

X : E → E , T : E2 → E2

such that

(1) (E,F ) is an adjoint pair and F is isomorphic to a left adjoint of E,
(2) E and F induce on the Grothendieck group K0(A) a locally finite repre-

sentation of sl2,
(3) the simple objects of A are weight vectors for the above in K0(A),
(4) (idE T ) ◦ (T idE) ◦ (idE T ) = (T idE) ◦ (idE T ) ◦ (T idE) as natural trans-

formations E3 → E3,
(5) T 2 = idE2 and T ◦ (idE X) ◦ T = X idE −T as natural transformations

E2 → E2,
(6) X − a idE is locally nilpotent.

A very important feature is of course the role of the endomorphisms of func-
tors X and T and the relations they satisfy. Categorification techniques lead to
consider functors as objects and natural transformations as morphisms. Note that
in equations like (4) and (5) above, ◦ denotes the classical composition of natu-
ral transformations of functors. Meanwhile, an expression like idE T means the
endomorphism of EE2 obtained functorially from endomorphisms of E and E2.
Note that in the case of module categories (or categories closely related with due
adaptations), functors are mostly tensor products by bi-modules which in turn are
easy to consider as objects of an abelian category as in the proof of Lemma 4.15.

In practice, one will define several sl2-categorifications that come from a struc-

ture involving a whole ŝlℓ where ℓ is the characteristic of k. On top of the “repre-
sentations” of sl2 one gets, the various X ’s and T ’s will contribute to controlling
the modules produced through the action of (affine) Hecke algebras.

In the setting of Definition 5.16, Chuang-Rouquier prove the following funda-
mental theorem (see [Du17, Sect. 1.2-3] for the categories Hob and Db).

Theorem 5.17 ([ChRo08, 6.4]). There is an equivalence of categories

Θ: Hob(A)→ Hob(A)

inducing the action of the reflection of the Weyl group of sl2 on the Grothendieck
group K0(A).
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We have skipped the (difficult) definition of Θ (originally due to Rickard for
blocks of symmetric groups). A key point is to find an equivalent of the divided
powers em/m!, fm/m! (e and f being the images of E,F ∈ sl2 in a representation
over Q) that are necessary to define the action exp(−f) exp(e) exp(−f) of the
Weyl group on a representation. See [ChRo, 5.13, 6.1] for the model proposed.
Then the proof of invertibility of Θ is another challenge, where a key step is to
show invertibility of the induced functor Db(A)→ Db(A), see [ChRo, 6.4, 6.6] and
proofs.

This theorem, with an additional parameter q ∈ k×, has several applications
in [ChRo08] beyond symmetric groups, namely blocks of Ariki-Koike algebras, of
finite general linear groups, or the so-called category O (see [ChRo08, §7]).

With Theorem 5.17 in hand, the proof of Theorem 5.14 consists then in con-
structing a strong sl2-categorification for each a ∈ Fℓ with A = ⊕n≥1kSn -mod.
The functors Ea, Fa have been seen above. The natural transformations

Xa : Ea → Ea, Ta : E
2
a → E2

a

are defined as follows. The functor Ea = ⊕n≥1Ea,n is such that

Ea,n : kSn−1 -mod→ kSn -mod

is a direct summand of induction, hence induced by a direct summand of the
kSn−1⊗kS

opp
n -bimodule kSn. One defines Xa there as the right multiplica-

tion by (1, n) + (2, n) + · · · + (n − 1, n) on the bimodule. On the other hand
E2

a = ⊕n≥2Ea,nEa,n−1 where the n-th term is a direct summand of the functor
kSn−2 -mod → kSn -mod induced by the kSn−2⊗kS

opp
n -bimodule kSn. The

natural transformation Ta is then defined by right multiplication by (n − 1, n).
One proves that this provides a strong sl2-categorification. Working with A =
⊕n≥1kSn -mod, Theorem 5.17 then allows to deduce an equivalence

Ho
b(A)→ Ho

b(A) restricting to Ho
b(A-mod)→ Ho

b(A′-mod) (51)

for each pair (A,A′) of ℓ-blocks of symmetric groups such that A′ is the image of
A by a fundamental reflection in Theorem 5.15.(iii). Using the integral nature of
all functors involved one can lift that to algebras over O or even Zℓ. Using Theo-
rem 5.15.(iii) one can iterate this strengthened version of (51) to get equivalences

Hob(A-mod)→ Hob(A′-mod) for each pair of ℓ-blocks A ⊆ OSn and A′ ⊆ OSn′

with isomorphic defect groups.
Using the knowledge of the Brauer morphism (see Remark 5.13), Chuang-

Rouquier prove an even stronger equivalence of the blocks A, A′ concerned, namely
a Rickard equivalence (see Definition 9.15 below) that basically preserves the local
structures of the blocks and whose image by the Brauer morphism induces similar
equivalences at the local level [ChRo08, 7.2].

6. Local methods for unipotent blocks: the strategy

In view of a possible Jordan decomposition of characters inducing a strong
equivalence of ℓ-blocks (see Sect. 9 below) it may make sense to give details about
local methods only for unipotent blocks (see Definition 4.11). This is what we do
in Sections 6 to 8.
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6.A. Generalized d-Harish-Chandra theory. We keep G and F : G → G as
before (Ch. 4).

We have until now defined Levi subgroups as complements in a decomposition of
a parabolic subgroup P = Ru(P)⋊L. A more intrinsic definition is by saying that
they are centralizers of tori (not necessarily maximal), see for instance [DigneMic,
1.22].

We will need to speak of cyclotomic polynomials. So, if d ≥ 1, recall that
φd(x) ∈ Z[x] denotes the d-th cyclotomic polynomial, whose complex roots are the
roots of unity of order d.

Definition 6.1. Any F -stable torus S of G has a so-called polynomial order
PS,F ∈ Z[x] defined by

|SFm

| = PS,F (q
m)

for some a ≥ 1 and any m ∈ 1 + aN. Moreover PS,F is a product of cyclotomic
polynomials PS,F = Πd≥1φ

nd

d , (nd ≥ 0).

We give below a fundamental example.

Example 6.2. Let T0 be an F -stable maximal torus of a group (G, F ) such
that F acts on Y (T0) by q. Note that this is the case as soon as the coroots
Φ(G,T0)

∨ generate a lattice of finite index of Y (T0) and F fixes them. Let
w ∈W(G,T0) and assume T is an F -stable maximal torus of type w in the sense
of Remark 4.3.(c). Then the pair (T, F ) is made isomorphic to (T0, wF ) through

conjugation by g ∈ G such that g−1F (g)T0 = w. Therefore |TFm

| = |T(wF )m

0 |

for any m ≥ 1. It is an elementary fact that T
(wF )m

0
∼= Y (T0)/(1− (wF )m)Y (T0)

see [DigneMic, 13.7]. Such a quotient is finite if and only if the endomorphism
1 − (wF )m of the lattice Y (T0) has non zero determinant and the cardinality of
Y (T0)/(1−(wF )m)Y (T0) is | det(1−(wF )m)|. In our case we get the characteristic
polynomial of w−1 at qm. So if a is the order of w and m ∈ 1 + aN, we actually
get |TFm

| = PT,F (q
m) for PT,F the characteristic polynomial of w on Y (T0). It

is a product of cyclotomic polynomials since it is a monic polynomial whose zeroes
are roots of unity, w having finite order.

In all cases of interest, F induces a map of the form qφ on Y (T0) where φ is
an automorphism of finite order. Then the above applies almost unchanged.

The polynomial orders of tori have many properties of orders of abelian groups,
only cyclotomic polynomials play now the role of prime divisors.

Proposition 6.3. Let S be an F -stable torus of G. If PS,F = Πd≥1φ
nd

d , then for
any d ≥ 1, there is a unique subtorus Sd ≤ S such that PSd,F = φnd

d .

Indeed an F -stable torus S of G is essentially characterized as a subtorus of a
maximal one T by the F -stable pure sublattice Y (S) of Y (T).

Definition 6.4. A φd-torus of G is an F -stable torus whose polynomial order is
a power of φd.

A d-split Levi subgroup is any CG(S) where S is a φd-torus of G.

Example 6.5. (a) For d = 1, the 1-split Levi subgroups are the one that are
complements of F -stable parabolic subgroups, henceGF -conjugate to the standard
Levi subgroups LI , for I ⊆ S, F (I) = I.

(b) Let G = GLn(F) with F the raising of matrix entries to the q-th power.
Let T1 the diagonal torus. By (24) the GF -classes of maximal tori are indexed by
conjugacy classes of Sn, or equivalently partitions of n. For λ ⊢ n, denote by Tλ
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an F -stable maximal torus in the corresponding class. If λ = (λ1 ≥ λ2 . . . ) then
the polynomial order of Tλ is (xλ1 − 1)(xλ2 − 1) · · · by Example 6.2. One calls
T(n) a Coxeter torus. This maximal torus T(n) is the only n-split proper Levi

subgroup of G up to GF -conjugation. To see this, note that its polynomial order
xn − 1 is the only polynomial order of an F -stable maximal torus divisible by φn.

Let d ≥ 1, m ≥ 0 such that md ≤ n. Let S(d) be a Coxeter torus of GLd(F).

Let L(m) be GLn−md(F) × (S(d))
m embedded in G = GLn(F) via the diagonal

subgroup GLn−md(F)× (GLd(F))
m. Then L(m) is d-split thanks to the above. A

maximal d-split proper Levi subgroup L of G is isomorphic to (GLm)d×GLn−md

with LF ∼= GLm(qd)×GLn−md(q).

For finite group theorists, Harish-Chandra theory consists in relating two
elements of Irr(GF ) whenever they are constituents of the same RG

L
ζ for ζ ∈

Irr(LF ) and L an F -stable Levi subgroup of an F -stable parabolic subgroup.
This leads quickly to the notion of cuspidal characters, i.e. characters that are
in no RG

L
ζ as above unless L = G. From the fact that RG

L
ζ ∈ N Irr(GF ) it is

easy to see that each set in our partition of Irr(GF ) then coincides with the set of
components of some RG

L
ζ with ζ a cuspidal character of LF .

The idea of Broué-Malle-Michel [BrMaMi93] is to generalize that to d-split Levi
subgroups in the place of the 1-split ones considered in Harish-Chandra theory.

Definition 6.6. One writes (L1, χ1) ≤d (L2, χ2) when Li are d-split Levi sub-

groups in G, χi ∈ E(LF
i , 1) and χ2 is a component of RL2

L1
χ1.

A character χ ∈ E(GF , 1) is said to be d-cuspidal if a relation (L, ζ) ≤d (G, χ)
is possible only with L = G. A pair (L, ζ) with L a d-split Levi subgroup and a
d-cuspidal ζ ∈ E(LF , 1) is called a unipotent d-cuspidal pair of GF .

The following is due to Broué-Malle-Michel, building on observations made by
Fong-Srinivasan [FoSr86] in non-exceptional types. One keeps G, F as before, and
d ≥ 1.

Theorem 6.7 ([BrMaMi93, 3.2]). (i) ≤d is transitive among pairs of the type
considered in Definition 6.6

(ii) If (L, ζ) is a unipotent d-cuspidal pair of GF , then for any component χ
of RG

L
ζ one has

∗RG

L
χ = N

∑

g∈NG(L)F /N
GF (L,ζ)

gζ (52)

where N = 〈χ,RG

L
ζ〉GF 6= 0.

(iii) E(GF , 1) = ∪̇(L,ζ) Irr(G
F | RG

L
ζ) where (L, ζ) ranges over GF -conjugacy

classes of unipotent d-cuspidal pairs and Irr(GF | RG

L
ζ) denotes the set of

irreducible components of the generalized character RG

L
ζ.

It is fairly clear that (ii) and (iii) above are easy consequences of each other
and both consequences of the first point. The proof of the theorem is by a case by
case analysis and relies in fact on the explicit description of the sets of unipotent
characters and the computation of each Lusztig functor

RG

L : E(LF , 1)→ ZE(GF , 1).

Such a computation was done by Asai for classical types ([As84a] and [As84b])
and by Broué-Malle-Michel for exceptional types (see [BrMaMi93, Tables 1,2]).

Broué-Malle-Michel also give a parametrization of Irr(GF | RG

L
ζ) much in the

spirit of McKay’s conjecture (see [Sp17, 3.A]) on character degrees
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Theorem 6.8 (Broué-Malle-Michel). If (L, ζ) is a unipotent d-cuspidal pair of
GF , then one has a bijection

Irr(NG(L, ζ)F /LF )→ Irr(GF | RG

L
ζ)

with good equivariance properties.

Example 6.9. Let us describe the partition of generalized d-Harish-Chandra the-
ory in the case of G = GLn(F), G

F = GLn(q). We have seen in Example 4.12 the
parametrization

χ 7→ Rχ = ±n!−1
∑

w∈Sn

χ(w)RG

Tw
1

of E(GF , 1) by Irr(Sn).
Let L(m) = GLn−dm(F)× (S(d))

m as in Example 6.5.

Let us compose the above parametrization of E(GF , 1) with the parametrization
of Irr(Sn) by partitions of n (see § 5.E above), thus giving λ 7→ χG

λ ∈ E(G
F , 1).

Let λ ⊢ n, then
∗RG

L(1)(χ
G

λ ) =
∑

τ∈hookd(λ)

(−1)h(τ)χL
(1)

λ−τ (53)

where the notations about partitions and hooks is the one of § 5.E and where we
identify E(L(1)F , 1) = E(GLn−d(q), 1).

The proof of (53) relies on computing each ∗RG

L(1)(R
G

Tw
1) by means of a Mackey

type formula (see Remark 4.3 above) and the observation that L(1) can contain
a GF -conjugate of Tw only if w is conjugate in Sn to w′c where w′ ∈ Sn−d

and c = (n − d + 1, n − d + 2, . . . , n). Then (53) is just a consequence of the
Murnaghan-Nakayama rule (39).

Like in the case of the symmetric group, (53) can be iterated as long as d-hooks
can be removed and one gets the equivalent of (40), namely

∗RG

L(m)(χ
G

λ ) = NχL
(m)

κ (54)

where κ ⊢ n−md is the d-core of λ and N is a non-zero integer.

It is not too difficult to show that χL
(m)

κ is d-cuspidal.
So indeed we get enough unipotent d-cuspidal pairs (L, ζ) with any χ ∈ E(GF , 1)

being in one of the disjoint sets Irr(GF | RG

L(m)(ζ)).
More work with (39) as main ingredient would tell us that the above are all the

unipotent d-cuspidal pairs and that Theorem 6.7 holds.

6.B. The theorem. The relation between ℓ-blocks and d-Harish-Chandra theory
is given by the following kind of theorem.

Theorem 6.10 (Cabanes-Enguehard). Let G be a reductive group defined over
the finite field Fq, and let F : G→ G be the associated Frobenius map. Assume ℓ
is a prime ≥ 7, not dividing q. Let d the (multiplicative) order of q mod ℓ. Then
there is a bijection

(L, ζ) 7→ BGF (L, ζ)

between GF -classes of unipotent d-cuspidal pairs and unipotent blocks (see Defi-
nition 4.11). One has

(i) Irr(BGF (L, ζ)) ∩ E(GF , 1) = Irr(GF | RG

L
ζ),

(ii) the Sylow ℓ-subgroups of C◦
G
([L,L])F are defect groups of BGF (L, ζ).

The theorem has many precursors, first of all by Fong-Srinivasan ([FoSr82] and
[FoSr89]) who treat all blocks (not just unipotent) for classical groups. Note that it
is possible to show that just like unipotent characters are insensitive to the center
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of the group, unipotent blocks are basically the same for all groups of same type
and rank (see [CaEn, §17]), so the above could be deduced from Fong-Srinivasan’s
work in many cases. We have chosen the statement for its simplicity and its
relatively straightforward proof sketched in the next section.

The theorem essentially relates the splitting of E(GF , 1) into ℓ-blocks with
the Lusztig functor. More theorems of the same kinds were given by Cabanes-
Enguehard (all ℓ-blocks, ℓ ≥ 5 [CaEn99]), Enguehard (unipotent blocks for all
primes [En00]) and recently by Kessar-Malle (all blocks and primes [KeMa15]).
Note that given Bonnafé-Dat-Rouquier’s theorem showing equivalence of blocks in
a very strong sense with blocks of generally smaller groups, the above is interesting
only for blocks in Eℓ(GF , s) (see Definition 4.9) where C◦

G∗(s) can’t be embedded
in a proper Levi subgroup of G∗ (”isolated” series), which brings us close to
unipotent blocks.

The statement by Kessar-Malle is as follows. Here G is assumed to be an F -
stable Levi subgroup of a simple simply connected group. One keeps ℓ a prime
not dividing q and d the order of q mod ℓ when ℓ is odd, while d is the order of
q mod 4 when ℓ = 2. One denotes E(GF , ℓ′) the union of rational series E(GF , s)
with s ∈ G∗F∗

semi-simple of order prime to ℓ.

Theorem 6.11 ([KeMa15, Th. A]). (i) For any d-Jordan-cuspidal pair (L, λ)
of G such that λ ∈ E(LF , ℓ′), there exists a unique ℓ-block bGF (L, λ) of
GF such that all irreducible constituents of RG

L
(λ) lie in bGF (L, λ).

(ii) The map

(L, λ) 7→ bGF (L, λ) (55)

is a surjection from the set of GF -conjugacy classes of d-Jordan-cuspidal
pairs (L, λ) of G such that λ ∈ E(LF , ℓ′) to the set of ℓ-blocks of GF .

(iii) The map (55) restricts to a surjection from the set of GF -conjugacy classes
of d-Jordan quasi-central cuspidal pairs (L, λ) of G such that λ ∈ E(LF , ℓ′)
to the set of ℓ-blocks of GF .

(iv) For ℓ ≥ 3 the map (55) restricts to a bijection between the set of GF -
conjugacy classes of d-Jordan quasi-central cuspidal pairs (L, λ) of G with
λ ∈ E(LF , ℓ′) and the set of ℓ-blocks of GF .

(v) The map (55) is bijective if ℓ ≥ 3 is a good prime for G, and ℓ 6= 3 if GF

has a factor 3D4(q).

Here the notion of d-Jordan cuspidal character (or pair) is adapted from the
unipotent case through Jordan decomposition. Quasi-central means belonging to
a block of LF covering a block of [L,L]F of central defect (see [KeMa15, §2]).

7. Local methods: unipotent blocks and d-Harish-Chandra theory

The proofs of Theorems 6.10, 6.11 follow the pattern described in § 5.D above
through subpair enlargement and use of Brauer’s second main Theorem.

7.A. The main subpair inclusion.

Lemma 7.1 (see [DigneMic, 13.15.(i)]). If x ∈ GF
p′ then CG(x)/C◦

G
(x) has expo-

nent dividing the order of x and injects into Z(G∗)/Z◦(G∗).

The following compatibility between generalized decomposition maps dx and
∗RG

L
functors is of crucial importance. It was first spotted by Fong-Srinivasan

[FoSr82, (2C)].
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Proposition 7.2. Let P = Ru(P)L be a Levi decomposition in G with F -stable
L. Let ℓ a prime 6= p, let x ∈ LF

ℓ . Then C◦
G
(x) is an F -stable reductive group

and C◦
P(x) = C◦

Ru(P)(x)C
◦
L(x) the Levi decomposition of a parabolic subgroup.

Moreover
dx,L

F

◦ ∗RG

L⊆P
= ∗R

C◦
G
(x)

C◦
L
(x)⊆C◦

P
(x) ◦ d

x,GF

on CF(GF ,K).

Proof. The group theoretic part of the proposition is classic and was already used
in our statement of the character formula (Proposition 4.4). The composition
∗R

C◦
G
(x)

C◦
L
(x)⊆C◦

P
(x) ◦ d

x,GF

makes sense thanks to the inclusion CG(x)Fℓ′ ⊆ C◦
G(x)

F

ensured by Lemma 7.1. The formula itself is an easy consequence of the character
formula. �

Though we will apply this property mainly to unipotent blocks, it is fundamen-
tal to the proof of a theorem of Broué-Michel on general sums of blocks eℓ(G

F , s)
(see § 4.C, Definition 4.9).

We keep G, F as before and ℓ some prime 6= p.

Theorem 7.3 (Broué-Michel [BrMi89]). Let s ∈ (G∗)F
∗

ℓ′ a semi-simple element
and eℓ(G

F , s) the central idempotent of OGF associated (see Definition 4.9). De-
note eℓ(G

F , s) its image in kGF . Let x ∈ GF
ℓ . Then

Brx(eℓ(G
F , s)) =

∑

t | ix(t)=s

eℓ(C
◦
G
(x)F , t),

where ix is a map associating conjugacy classes of semi-simple elements of G∗F∗

to conjugacy classes of semi-simple elements of C◦
G∗(x)∗F

∗

through pairs (T∗, t)→
(T, θ)→ (T∗

1, s) using (25) above.

Proof. Through Brauer’s second Main Theorem it is easy to see that the main
statement is equivalent to checking that

(dx ◦ P (GF )
s )(γGF .x) =

∑

t | ix(t)=s

P
(C◦

G
(x)F )

t (γ1) (56)

where P
(GF )
s : CF(GF ) → CF(GF , Bℓ(G

F , s)) is the projection and γGF .x is the
function being 1 on the conjugacy class of x and 0 elsewhere. One has γ1 =
dx(γGF .x) and γGF .x is uniform (apply Lemma 4.6.(i)), so it is easy to reduce (56)
to the following

dx,G
F

◦ RG

T = |C◦
G(x)F |−1

∑

h∈GF | x∈hT

R
C◦

G
(x)

hT
◦ dx,

h
T

F

◦ adh (57)

where adh is the conjugation by h of central functions. This in turn can be deduced
from Proposition 7.2 by taking adjoints. Note that, for x an ℓ-element of a finite
group H , the adjoint of dx : CF(H,K) → CF(CH(x),K) is the map sending the
central function f : CH(x)→ K to f ′ : H → K defined by

f ′(h) = |CH(x)|−1
∑

v∈H | hℓ=vxv−1

f(x−1hv).

�

Now for unipotent blocks and with the aim of proving Theorem 6.10, the main
step is achieved by the following

Theorem 7.4. Let L be an F -stable Levi subgroup of G and ζ ∈ E(LF , 1). Assume
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(a) LF = CG(Z(L)Fℓ )
F , and

(b) for all A ≤ Z(L)Fℓ and χA an irreducible component of R
C◦

G
(A)

L
ζ, denoting

H = C◦
G(A), one has

∗RH

L
χA = 〈∗RH

L
χA, ζ〉LF

∑

g∈NH(L)F /NH(L,ζ)F

gζ.

Then for any irreducible component χ of RG

L
ζ one has an inclusion of ℓ-subpairs

({1}, bGF (χ)) ≤ (Z(L)Fℓ , bLF (ζ)).

Proof. One uses an induction on |GF /LF |. Everything is clear when GF = LF .
Assume LF 6= GF , so that, thanks to (a), one can pick z ∈ Z(L)Fℓ non central

in GF . Let H := C◦
G
(z) ⊇ L. Let us show

〈dz,G
F

χ,RH

L
ζ〉HF 6= 0. (58)

One has indeed dz,G
F

χ ∈ CF(HF ,K) since CG(z)Fℓ′ ⊆ HF thanks to Lemma 7.1.
We have

〈dz,G
F

χ,RH

L
ζ〉HF = 〈dz,L

F ∗RG

L
χ, ζ〉LF by Proposition 7.2

= 〈RG

L
ζ, χ〉GF

∑

ζ′∈NG(L)F .ζ

〈dz,L
F

ζ′, ζ〉LF by (b) with A = {1}

= 〈RG

L
ζ, χ〉GF

∑

ζ′∈NG(L)F .ζ

〈d1,L
F

ζ′, ζ〉LF since z ∈ Z(L)F ≤ ker(ζ)

= 〈RG

L
ζ, χ〉GF

∑

ζ′∈NG(L)F .ζ

〈d1,L
F

ζ′, d1,L
F

ζ〉LF

= 〈RG

L
ζ, χ〉GF |NG(L)F .ζ|−1〈f, f〉LF

for f :=
∑

ζ′∈NG(L)F .ζ d
1,LF

ζ′. But f ∈ CF(LF ,K) is clearly a central function

such that f(x−1) is the complex conjugate of f(x) for any x ∈ LF and f 6= 0 by
the value at 1. So 〈f, f〉LF 6= 0 and we get (58) from the above.

Now (58) implies that there is an irreducible component χH of RH

L
ζ such that

dz,G
F

χ has a non-zero projection on CF(HF | bHF (χH)).
One may apply the induction hypothesis to H,L, ζ replacing G,L, ζ since (a)

and (b) are clearly satisfied there. The fact that χH is a component of RH

L
ζ implies

the subpair inclusion

({1}, bHF (χH)) ≤ (Z, bLF (ζ)) in HF

where we abbreviate Z = Z(L)Fℓ . Assume HF = CGF (z). Then it is easy to
deduce from the above the subpair inclusion

(〈z〉 , bHF (χH)) ≤ (Z, bLF (ζ)) in GF . (59)

On the other hand the fact that dz,G
F

χ has a non-zero projection on CF(HF |
bHF (χH)) implies that we have

({1}, bGF (χ)) ≤ (〈z〉 , bHF (χH)) in GF (60)

thanks to Brauer’s second Main Theorem. We then get our claim from (59) and
(60) by transitivity of subpair inclusion.

We have assumed for simplification that HF = CGF (z). In general we only
have HF ⊳CGF (z) with index a power of ℓ thanks to Lemma 7.1. Then it is easy
to define the unique block b′ of CGF (z) covering bHF (χH) and prove the analogues
of (59) and (60) with it. �
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7.B. φd-tori and ℓ-subgroups. We keep G, F as before over Fq, and ℓ a prime
∤ q. We also assume now that ℓ ≥ 7.

Note that ℓ divides φm(q) if and only ifmℓ′ = d (see for instance [Serre, § II.3.2]).

Proposition 7.5. Assume ℓ divides φm(q) but neither |Z(G)F /Z◦(G)F | nor
|Z(G∗)F /Z◦(G∗)F |. Let S be a φm-torus (see Definition 6.4), L := CG(S),
Z := Z(L). Then

(i) L = C◦
G
(SF

ℓ ) = C◦
G
(ZF

ℓ ) and
(ii) LF = C◦

G(ZF
ℓ )F = CGF (ZF

ℓ ).

Proof. (i) It suffices to check the first equality. We show it by induction on the
dimension of G. Let π : G→ Gad := G/Z(G) the reduction mod Z(G).

By a classical argument we have an exact sequence

1→ π(SF )→ π(S)F → [S, F ] ∩ Z(G)/[Z(G), F ]→ 1.

By Lang’s theorem, [Z(G), F ] ⊇ Z◦(G), so [S, F ] ∩ Z(G)/[Z(G), F ] is a sec-
tion of Z(G)/Z◦(G) on which the action of F is trivial. But ℓ does not divide
|Z(G)F /Z◦(G)F | so ([S, F ] ∩ Z(G))/[Z(G), F ] is ℓ′ ; thus π(S)Fℓ ⊆ π(SF ). More-
over, if s is of finite order, then π(sℓ) = π(s)ℓ. This implies

π(S)Fℓ = π(SF
ℓ ) . (61)

Now denote C := C◦
G
(SF

ℓ ). The fact that ℓ ≥ 7 eliminates some exceptional
behaviour (“bad” primes, see [GeHi91, 2.1] or [CaEn, §13.2]) and ensures that C
is a Levi subgroup of G. One has clearly L ⊆ C. If C 6= G, then the induction
hypothesis gives L = C, that is our claim.

Assume C = G, that is π(SF
ℓ ) = {1}. By (61), this implies π(S)Fℓ = {1}. But

π(S) is a φm-torus of Gad whose number of fixed points under F is a power of
φm(q). This is prime to ℓ only if this exponent is 0, that is S ⊆ Z◦(G). This
implies L = G and our claim is trivial.

(ii) The first equality comes from (i). For the second we have an inclusion
C◦

G(ZF
ℓ )F ⊳ CGF (ZF

ℓ ). But the factor group is trivial thanks to Lemma 7.1 and
the hypothesis on ℓ with regard to G∗. �

Corollary 7.6. Let ℓ be a prime ≥ 7 and 6= p. Let d be the order of q mod ℓ. Let
(L, ζ) be a unipotent d-cuspidal pair of G. Then

(i) LF = CGF (ZF
ℓ ) and

(ii) ζ(1)ℓ = |LF /Z(L)F |ℓ = |LF /Z◦(L)F |ℓ.

Proof. (i) To deduce this from Proposition 7.5.(ii) we essentially have to show that
the condition ℓ ∤ |Z(G)F /Z◦(G)F |.|Z(G∗)F /Z◦(G∗)F | can be assumed. Since ℓ is
large, this concerns chiefly groups of type An−1 with ℓ dividing q − ǫ with ǫ = 1
or −1 according to the action of F on roots being trivial or not, respectively (see
[CaEn, 13.11]). Let T1 be the diagonal maximal torus. That is the one whose
image in Gad is such that F acts trivially on the associated Weyl group. Then we
have

L = T1 and LF = CGF (LF
ℓ ). (62)

Indeed one can then assume d = 1 or 2 according to ǫ = 1 or −1. On the other
hand it is well-known that E(GF , 1) is the set of components of RG

T1
1, so (T1, 1)

is the only unipotent d-cuspidal pair. This forces L = T1. The second statement
is an easy verification in PGL.

(ii) The degrees of d-cuspidal characters are known from [BrMaMi93] and, up
to integral scalars involving only bad primes, they are polynomials in q where the
power of each φdℓa is the same as in the order of the group. �
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7.C. Defect groups. We finish to review the proof of Theorem 6.10 whose hy-
potheses we keep.

We have a unipotent d-cuspidal pair (L, ζ) and we have seen that if (L, ζ) ≤d

(G, χ) (see Definition 6.6) then one has LF = CGF (Z(L)Fℓ ) and the inclusion of
ℓ-subpairs

({1}, bGF (χ)) ≤ (Z(L)Fℓ , bLF (ζ)). (63)

This is obtained by applying Corollary 7.6.(i) and Theorem 7.4 above. Note that
this already implies that we can define BGF (L, ζ) as the ℓ-block B such that Irr(B)
contains all irreducible components of RG

L
ζ. Concerning defect groups we prove

Proposition 7.7. Let D be a Sylow ℓ-subgroup of CG([L,L])F containing Z(L)Fℓ .

Then ResL
F

C
GF (D) ζ is irreducible and

(Z(L)Fℓ , bLF (ζ)) ≤ (D, bCG(D)F (Res
L

F

C
GF (D) ζ)).

Both subpairs are centric and the second is a maximal subpair.

Proof. For the first statement notice that [L,L]F ≤ CGF (D) ≤ CGF (Z(L)Fℓ ) =
LF . Unipotent characters of LF restrict irreducibly to [L,L]F thanks to (32)
above, hence irreducibly to CGF (D). From Corollary 7.6 we know that (Z(L)Fℓ , bLF (ζ))
is a centric subpair. The subpair inclusion of the proposition is then easily checked

by applying Theorem 5.7. The maximality of the subpair (D, bCG(D)F (Res
L

F

C
GF (D) ζ))

is not too difficult, see also Remark 7.9 below. �

We have now proved almost all of Theorem 6.10. There remains to show that
if two unipotent d-cuspidal pairs (L1, ζ1), (L2, ζ2) are such that BGF (L1, ζ1) =
BGF (L2, ζ2) then they are GF -conjugate. In such a case the maximal subpairs
given by Proposition 7.7 would be GF -conjugate by Theorem 5.2.(ii). But since in
Proposition 7.7, one has [L,L] ≤ CG(D) ≤ L and therefore [L,L] = [CG(D),CG(D)],

one gets easily that the pairs ([Li,Li],Res
Li

[Li,Li]
ζi) are G

F -conjugate. The lemma

below shows that one may assume (L1,Res
L1

[L1,L1]
ζ1) = (L2,Res

L2

[L2,L2]
ζ2). But

then ζ1 = ζ2 by (32).

Lemma 7.8. If two d-split Levi subgroups L1, L2 of G have same derived sub-
group, then they are C◦

G([L1,L1])
F -conjugate.

To show this one notices first that C := C◦
G
([Li,Li]) is a reductive group

where Z◦(Li) is a maximal torus. Moreover Z◦(Li)φd
is a maximal φd-torus in

C. Both properties are by computing the centralizers in C and remembering that
Li = CG(Z◦(Li)φd

) by definition. But then the Sylow theorem for maximal φd-tori
(see [BrMa92], [CaEn, 13.18]) implies our claim.

Remark 7.9. Using Theorem 6.10 the principal ℓ-block of GF is described in the
following fashion. It corresponds to (L, ζ) with L = CG(S) where S is a maximal
φd-torus of (G, F ) and ζ = 1 is the trivial character of LF . With the hypothesis we
have on ℓ (which may be loosened to include ℓ = 5) one can prove that the defect
group D may be taken normalizing Z := Z(L)Fℓ with the additional property that

Z is the unique maximal abelian normal subgroup of D (64)

(see [Ca94]). This gives a quite handy property of Sylow ℓ-subgroups of finite
groups of Lie type for the transversal primes. The exceptions for the primes 2, 3
are given in [Ma07, 5.14, 5.19]. Indeed the subgroup Z is therefore characteristic
in D. This can help conclude about the maximality of the subpair proposed in
Proposition 7.7 (see [KeMa15]).



42 MARC CABANES

One also has M := NG(S)F = NGF (Z) ≥ NGF (D) and any automorphism
of GF preserving D will obviously preserve M thanks to (64). This explains
why, paving the way for future checkings in finite groups of Lie type, the inductive
conditions for McKay or Alperin-McKay conjectures consider a possible overgroup
for the normalizer of the defect group involved in the original statement of the
conjectures (see [IsMaNa07, §10 (2)], [Sp13, 7.2]).

7.D. Non-unipotent characters of unipotent blocks. Brauer’s second Main
Theorem can also be used to give a complete description of Irr(BGF (L, ζ)) (see
Theorem 6.10 above) in terms of Lusztig’s functor.

We keep the context of Theorem 6.10 where ℓ is a prime ≥ 7 different from the
defining characteristic of GF . We assume (G, F ) is in duality with some (G∗, F ∗).
Let t ∈ (G∗)F

∗

ℓ . Then C◦
G∗(t) is a Levi subgroup of G∗, which by duality yields

an F -stable Levi subgroup G(t) of G and a linear character t̂ : G(t)F → C×. A
quite elementary generalization of Theorem 4.13 (see [CaEn, 15.10]) shows that
there is a sign ǫG,t ∈ {1,−1} such that we get a map

ψt : E(G(t)F , 1) → NE(GF , t) by

χt 7→ ǫG,tR
G

G(t)(t̂χt).

Theorem 7.10 (See [CaEn, §23.1). Keep the hypotheses of Theorem 6.10. Let
(L, ζ) be a unipotent d-cuspidal pair in G. Let t ∈ (G∗)F

∗

ℓ , χt ∈ E(G(t)F , 1).
Then ψt(χt) has components in Irr(BGF (L, ζ)) if and only if there is a unipotent
d-cuspidal pair (Lt, ζt) in G(t) such that

(i) (Lt, ζt) ≤d (G(t), χt) in G(t), with

(ii) [L,L] = [Lt,Lt] and ResLt

[Lt,Lt]
ζt = ResL[L,L] ζ.

Then all components of ψt(χt) are in Irr(BGF (L, ζ)).

Note that condition (ii) above implies that tmust be in the centralizer of [L∗,L∗]
for L∗ an F ∗-stable Levi subgroup of G∗ corresponding to L by duality. This
condition looks like dual to the condition for an element of GF of being in the
defect group of BGF (L, ζ), see Theorem 6.10.(ii).

The proof of Theorem 7.10 is by using Proposition 7.2 with x = 1. One gets

d1ψt(χt) = ±d
1(RG

G(t)χt)

which by Brauer’s second Main Theorem must have a non-zero projection on
BGF (L, ζ). This reduces the theorem to a question about unipotent characters. It
is solved by studying a bit more the relation between d-split Levi subgroups and
centralizers of ℓ-subgroups beyond what has been seen in §7.B above (see [CaEn,
§23.1]).

7.E. Unipotent blocks are non-exotic. One of the main questions about blocks
of quasi-simple groups in relation with fusion systems is to relate their fusion sys-
tems (see Definition 5.3) with the ones of finite groups, or equivalently principal
blocks (Open problems 1 and 3 in [AschKeOl, Sect. IV.7]). Fusion systems on
a p-group that are not isomorphic to a FQ(H) (see Definition 1.13) for a Sylow
p-subgroup Q of a finite group H are called exotic. See Remark 5.13 above for
the case of symmetric groups; a similar result is also known for general linear and
unitary groups [Bro86, 3.8].

We show here the same in the context of Theorem 6.10. In other words unipo-
tent ℓ-blocks (ℓ ≥ 7) are non-exotic (sorry). This builds on an earlier theorem
[CaEn99b] showing control of fusion in the sense of [Thev, §49], a slightly weaker
statement.
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Theorem 7.11. Keep the assumptions and notations of Theorem 6.10. Let (L, ζ)
be a unipotent d-cuspidal pair and BGF (L, ζ) the associated ℓ-block of which a
Sylow ℓ-subgroup D of C◦

G([L,L])F is a defect group.

(i) There exists a subgroup H ≤ NGF ([L,L],ResL
F

[L,L]F ζ) such that

(a) D is a Sylow ℓ-subgroup of H, and

(b) H [L,L]F = NGF ([L,L],ResL
F

[L,L]F ζ) .

(ii) For any H satisfying the above, the fusion system of BGF (L, ζ) is isomor-
phic to FD(H).

Proof. The first point is purely group theoretic. The proof uses basically consid-
erations in NG(T), where T is a maximally split torus of [L,L]C◦

G([L,L]), see
[CaEn, Ex 23.1], [CaEn99b, 6-7] for all details. We now prove (ii).

Denote Z := Z(L)Fℓ , C := C◦
G
([L,L]). Note that CF ⊳ H . Recall from (63)

and Proposition 7.7 that we have subpair inclusions in GF

({1}, BGF (L, ζ)) ≤ (Z, bLF (ζ)) ≤ (D, bD) (65)

where the middle one is centric and (D, bD) is maximal with

bD = bC
GF (D)(Res

L
F

C
GF (D) ζ).

For X ≤ D denote (X, bX) the unique subpair of GF such that

(X, bX) ≤ (D, bD).

Our category isomorphism will be (see Definition 5.3)

F(D,bD)(bGF (L, ζ)) → FD(H),

(X, bX) 7→ X.

From the theory of fusion systems, essentially the fact that “F -essential objects
are F -centric” see [AschKeOl, §I.3] and the identification of centric objects in those
categories with what we have called so until now [AschKeOl, IV.3.20], it suffices
to check for X ≤ D

NGF ((X, bX)) = NH(X)CGF (X) if X in H or (X, bX) in GF is centric. (66)

Note that CF ⊳ H with ℓ′ index by assumption (i.a), so a subgroup of D is
centric in H if and only if it is centric in CF .

Let us recall the decomposition G = GaGb associated to a pair (G, F ) and a
prime ℓ (see [CaEn, 22.4]). In the decomposition of

[G,G] = G1 . . .Gm

as a central product of F -stable closed subgroups, one defines Ga = Z◦(G)G′
a

where G′
a is the subgroup generated by the Gi’s such that (Gi)

F
ad
∼= PGLni

(ǫiq
mi)

with ℓ dividing qmi − ǫi. The other Gi’s generate by definition Gb. From the
properties of |Z(Gsc)

F | according to the type of (G, F ) it is easy to see that

Z(Gb)
F and GF /GF

a
GF

b
are abelian ℓ′-groups. (67)

An important (but easy) consequence for centric ℓ-subgroups is the following
[CaEn, 22.5.(ii)], where Y denotes an ℓ-subgroup of GF :

If Z(CGF (Y ))ℓ ⊆ Ga then Y ⊆ Ga. (68)

Let us define K := GaC
◦
G
(Z(D)). Arguing as in the proof of Proposition 7.5,

one sees that K is a Levi subgroup of G such that K ⊇ L = SKb, where S is a
diagonal torus of Ka (therefore [L,L] = Kb), and D ⊆ Ka.
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By (32), restriction maps induce bijections

E(KF , 1) ∼= E(KF
a
, 1)× E(KF

b
, 1) ∼= E(KF

a
, 1)× E(LF , 1).

We then define ζ̃ ∈ E(KF , 1) corresponding to (1KF
a
, ζ) in the last product.

Assume X ≤ D is either centric in CF or (X, bX) is centric in GF . By Propo-
sition 5.8, Z(D) ⊆ Z ∩ Z(X) and therefore K contains CGF (X), and C◦

G
(X).

Iterating the above (68) it is easy to see that X ⊆ Ka.

Let ζX := ResK
F

C
GF (X) ζ̃ whose restriction to [L,L]F is of central defect by ap-

plying for instance Theorem 6.10 to [L,L]. Note that bD is the block of ζD. By
a slight variant of Theorem 5.7 (see [CaEn, 5.29]) one gets the subpair inclusion
(X, bC

GF (X)(ζX)) ≤ (D, bD) and therefore

bX = bC
GF (X)(ζX). (69)

If X is assumed centric in CF , then (X, bX) is centric, or equivalently ζX(1)ℓ ≥
|CGF (X)/Z(X)|ℓ because

|CGF (X)/Z(X)|ℓ = |(CKa
(X)Kb)

F /Z(X)|ℓ

= |CKa
(X)F /Z(X)|ℓ.|K

F
b
|ℓ by (67)

= |KF
b
|ℓ (X centric in KF

a
⊆ C◦

G
(Kb)

F )

= ζ(1)ℓ , see above.

Now assume conversely the weaker assumption that (X, bX) is centric. First ζX
is the canonical character of bX because it has Z(X) ∈ KF

a
in its kernel. Moreover

C◦
G
(X) = C◦

Ka
(X)Kb has its first term of a-type (an easy check by induction on

|X | in groups of type A) so

C◦
G(X)b = [L,L] = Kb. (70)

The restriction of ζ̃ to C◦
G
(X)F (or any (MKb)

F with M an F -stable connected
reductive subgroup of Ka) is a unipotent character, it is the unique one whose
restriction to [L,L]F = KF

b
is the restriction of ζ.

So we get

(iii) Res
C

GF (X)

C◦
G
(X)F

ζX ∈ Irr(C◦
G
(X)F ) is the only unipotent character ζ◦X ∈ E(C

◦
G
(X)F , 1)

such that Res
C◦

G
(X)F

[L,L]F
ζ◦X = ResL

F

[L,L]F ζ.

Let’s keep (X, bX) centric. If g ∈ GF normalizes it, the above implies that
g normalizes [L,L] while the canonical character of bX restricts to [L,L]F as

ResL
F

[L,L]F ζ. Then g normalizes ([L,L],ResL
F

[L,L]F ζ) and therefore g ∈ H [L,L]F ⊆
HCGF (X) by assumption (i.b).

Conversely, if h normalizes X and ([L,L],ResL
F

[L,L]F ζ), it normalizes C◦
G
(X)

and sends Res
CG(X)F

C◦
G
(X)F (ζX) to a unipotent character whose restriction to [L,L]F is

h Res
CG(X)F

[L,L]F (ζX) = h ResL
F

[L,L]F ζ = ResL
F

[L,L]F ζ by (iii) above. So h fixes Res
CG(X)F

C◦
G
(X)F (ζX).

By [NagaoTsu, 5.5.6], bX is the unique block covering bC◦
G
(X)F (Res

CG(X)F

C◦
G
(X)F

(ζX))

since the index is a power of ℓ (use Lemma 7.1). So bX is fixed by h. By assumption
(i.b) this applies to any h ∈ NH(X). This completes the proof of (66). �

7.F. A theorem of Broto-Møller-Oliver. Until now we have compared only
fusion systems of ℓ-blocks of groups GF in the same defining characteristic p.
Broto-Møller-Oliver [BrMO12] have proved a very impressive theorem showing
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equivalence of fusion systems of ℓ-subgroups for groups GF of various defining
characteristics.

We give the theorem in a simplified form (the original one is stronger, see [BMO,
Th. A]).

Theorem 7.12. Let G a reductive group over F. Let H a reductive group over
a field of K of characteristic r. Assume that for some maximal tori T ≤ G, S ≤
H, the two groups have same quadruple Hom(T,F×) ⊇ Φ(G,T), Hom(F×,T) ⊇
Φ(G,T)∨. Let F : G→ G a Frobenius endomorphism acting trivially on the root
system, let q the power of p associated (for instance q = |XF

α | for all α ∈ Φ(G,T)).
Let F ′ : H→ H a similar endomorphism for H and q′ the corresponding power of
r.

Assume ℓ is a prime 6∈ {2, p, r}, assume q, q′ have same multiplicative order d
mod ℓ and that (qd − 1)ℓ = (q′d − 1)ℓ.

Then GF and HF ′

have isomorphic fusion systems of ℓ-subgroups.

The proof would be too long to sketch here, see also [AschKeOl, Sect. III.1.7].
Let’s say just that it uses all the strength of the topological methods developed by
Broto-Levi-Oliver along with an old theorem of Friedlander [Fr82, 12.2] on étale
homotopy of the algebraic groups G and a less old one by Martino-Priddy (see
[Mis90], [MaPr96]).

Remark 7.13. With the elementary group theoretical methods used in the proof
of Theorem 6.10 (Sylow φd-tori and their normalizers) and under the same assump-
tions about ℓ, it is easy to describe the Sylow ℓ-subgroups of GF as semi-direct
products

Z ⋊N

(see [Ca94, 4.4]) where

• Z = Z(CG(S))F for S a Sylow φd-torus of G (see also Remark 7.9),
• N is a Sylow ℓ-subgroup of (WCG(S)(T)⊥)F , where T is an F -stable

maximal torus of CG(S) and WCG(S)(T)⊥ is the subgroup of the Weyl
group WG(T) generated by reflections through roots orthogonal to any
α ∈ Φ(G,T) with α(S) = 1
• the action of N on Z comes from the inclusion Z ≤ TF .

All the above can be read in the “root datum” quadruple of the pair (G, F ).

This would imply that the two finite groups GF and HF ′

of the Theorem above
have isomorphic Sylow ℓ-subgroups. Comparing the fusion systems needs to find
the essential subgroups of ZN in the sense of [AschKeOl, §I.3] and the action
of their normalizers. This has been determined in many cases by Jianbei An as
a by-product of his program to determine radical subgroups (see Definition 1.6)
in finite groups of Lie type and check Alperin’s weight conjecture (16) for those
groups. See [AnDi12, §3] for essential ℓ-subgroups of finite classical groups. See
[AnDiHu14] and the references given there for many exceptional types.

8. Some applications

8.A. Abelian defect. When the defect group of some block B defined by Theo-
rem 6.10 is assumed to be abelian, the description of Irr(B) simplifies a lot. One
keeps the same hypotheses on G, F , ℓ, d, (L, ζ).
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Theorem 8.1. Assume the defect ℓ-groups of BGF (L, ζ) are abelian. Then

Irr(BGF (L, ζ)) =
⋃

t,χt

Irr(RG

G(t)(t̂χt))

where t and χt are subject to the following conditions

(a) t ∈ (G∗)F
∗

ℓ ,
(b) L ⊆ G(t) where the latter is a Levi subgroup in duality with C◦

G∗(t) ,

(c) χt is an irreducible component of R
G(t)
L

ζ.

Proof. By Corollary 7.6 and Proposition 7.7 we know that the defect group can be
abelian only if the centric subpair (Z(L)Fℓ , bLF (ζ)) is maximal and Z(L)Fℓ is a Sylow
ℓ-subgroup of C◦

G([L,L])F . By Corollary 7.6.(ii) this means that the polynomial
order of (C◦

G
([L,L]), F ) has not more powers of cyclotomic polynomials φm with

mℓ′ = d than its (maximal) torus (Z◦(L), F ). This property can be written entirely
in the groups X(T0) and Y (T0) of G, so they transfer to the same property in the

dual, namely C◦
G∗([L∗,L∗])F

∗

has a Sylow ℓ-subgroup in Z◦(L∗)F
∗

. Then when
imposing the condition that t commutes with [L∗,L∗] from Theorem 7.10, one
may assume that t ∈ Z◦(L∗) and therefore L∗ ⊆ C◦

G∗(t). Then one may choose
G(t) ⊇ L. The last point is then clear from Theorem 7.10 by use of Lemma 7.8. �

8.B. Brauer’s height zero conjecture. The description of Theorem 8.1, along
with the parametrization of Theorem 6.8, leads quickly to check the degrees in
Irr(BGF (L, ζ)) when the unipotent block BGF (L, ζ) has abelian defect (see [Br-
MaMi93, 5.15]), keeping the restrictions on ℓ of Theorem 6.10. In particular, χ(1)ℓ
takes only one value for χ ∈ Irr(BGF (L, ζ)), thus confirming Brauer’s height
zero conjecture (BHZC)

D is abelian if and only if |{χ(1)ℓ | χ ∈ Irr(B)}| = 1 (71)

where B is an ℓ-block of a finite group with defect group D.
Kessar-Malle have proven

Theorem 8.2 (see [KeMa13], [KeMa17]). The equivalence of (71) is true for all
blocks of finite quasi-simple groups.

Given past knowledge about alternating groups, sporadic groups and blocks
of finite reductive groups for “good” primes recalled above, Kessar-Malle’s proof
concentrates mostly on ℓ-blocks of groups of Lie type for ℓ ≤ 5 where the challenge
is still remarkably difficult.

This type of verification in groups of Lie type is important because of the
reduction theorems of Berger-Knörr [BeKn88] and Navarro-Späth [NaSp14].

Theorem 8.3 (Berger-Knörr). Let ℓ be a prime number. If for any ℓ-block B of
a quasi-simple group with abelian defect group, (χ(1)ℓ)χ∈Irr(B) is constant, then it
is the case for any ℓ-block with abelian defect of any finite group, i.e. (BHZ1), the
“only if” part of (71), holds.

Corollary 8.4 (see [KeMa13]). If an ℓ-block B of a finite group has abelian defect
groups, then (χ(1)ℓ)χ∈Irr(B) is constant.

The converse should be checked through Navarro-Späth’s reduction theorem.

Theorem 8.5 (Navarro-Späth). If all blocks of finite quasi-simple groups satisfy
the inductive Alperin-McKay condition of [Sp13, 7.2], then (71) holds.
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The reduction theorems for the two directions of Brauer’s height zero conjecture
are proven with very different methods pointing possibly to problems of quite
different nature. While the proof of Theorem 8.3 uses module theoretic methods
and a theorem of Knörr on Green vertices of simple modules (see [Kn79]), the
proof of Theorem 8.5 uses mainly the techniques described in [Sp17].

8.C. Nilpotent blocks. A nilpotent ℓ-block is one such that any of its defect
groups controls the fusion of its subpairs (see [Thev, Sect. 49], [AschKeOl, Sect.
IV.5.6]). Namely

Definition 8.6. An ℓ-block B of a finite group H is called a nilpotent block if
and only if for any B-subpair (P, bP ) in H the quotient

NH(P, bP )/CH(P )

is an ℓ-group.

As in all statements about the fusion system of subpairs, the condition above
can be loosened to be asked only for centric B-subpairs (P, bP ). Note that the
above condition about ℓ-subgroups instead of subpairs would give the well-known
local characterization of ℓ-nilpotent groups (i.e., H/Oℓ′(H) is an ℓ-group) due to
Frobenius [Asch, 39.4].

The main structure theorem about nilpotent blocks is due to Puig (see [Thev,
§49-51], see also [Kuls, 15.3] for the easier version over a finite field).

Theorem 8.7. Let B be a nilpotent ℓ-block seen as a subalgebra of OH. Let D
one of its defect group. Then there is an integer m such that

B ∼= Matm(OD).

This of course implies the same over the finite field k = O/J(O) and therefore
the very important property

| IBr(B)| = 1. (72)

Determining nilpotent blocks of quasi-simple groups H was achieved by An-Eaton.
Their result implies

Theorem 8.8 ([AnEa11, 1.1, 1.2], [AnEa13, 1.1, 1.3]). Let B be an ℓ-block of a
finite quasi-simple group H. Then B is nilpotent if and only if | IBr(bP )| = 1 for
any B-subpair (P, bP ). Moreover B has abelian defect groups.

We prove below a slightly stronger statement concentrating on the property
(72) again in the framework of unipotent ℓ-blocks with ℓ not too bad.

We keep GF , ℓ ≥ 5 a prime good for G (see [GeHi91, 2.1] or [CaEn, §13.2]) not
dividing q, and BGF (L, ζ) a unipotent ℓ-block of GF as in Theorem 6.10.

Proposition 8.9. Assume BGF (L, ζ) has just one Brauer character. Then BGF (L, ζ)
is a nilpotent block and its defect groups are abelian.

Proof. By [CaEn, 14.6], the restrictions of the elements of E(GF , 1) to the set GF
ℓ′

of ℓ-regular elements ofGF are distinct and linearly independent central functions.
Since Brauer characters are a basis for the central functions on GF

ℓ′ , our hypothesis
implies that E(GF , 1)∩Irr(BGF (L, ζ)) has a single element. By Theorem 6.10, this
implies that RG

L
(ζ) is a multiple of a single irreducible character. By Theorem 6.8,

this implies in turn that Irr(NGF (L, ζ)/LF ) has a single element and therefore

NGF (L, ζ) = LF .

Then the centric subpair (Z(L)Fℓ , bLF (ζ)) of Proposition 7.7 above is maximal
(and the only centric subpair up to conjugacy). This can be seen by applying
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Proposition 5.8 and noting that (Z(L)Fℓ , bLF (ζ)) is normal in no other subpair
since NGF (Z(L)Fℓ , bLF (ζ)) = LF = CGF (Z(L)Fℓ ). This proves at the same time
that the defect groups are abelian and that the block is nilpotent. �

8.D. Broué’s abelian defect conjecture when ℓ divides q−1. Broué’s abelian
defect conjecture [Bro90a, 6.2] is as follows.

Let H be a finite group, (O,K, k) an associated ℓ-modular system, B a block
of OH , D its defect group and BD its Brauer correspondent (see Theorem 1.17.(i)
above) viewed as a subalgebra of ONH(D). When D is abelian, Broué’s abelian
defect conjecture says that the derived categories of B and BD should be equiv-
alent

Db(B-mod) ∼= Db(BD-mod) (73)

later strengthened to the requirement that

Hob(B-mod) ∼= Hob(BD-mod) (74)

by a Rickard equivalence (see Definition 9.15 below), that is an equivalence of the
homotopy categories with a strong compatibility with fusion. Note that here one
does not expect consequences on the fusion systems of the blocks involved since
in this case it is very simply the one of BD as a classical consequence of abelian
defect.

In the case of principal blocks, Craven and Rouquier have proved a reduction
theorem to simple groups [CrRo13]. The conjecture for arbitrary blocks with
abelian defect has been checked in many cases. For the defining prime and SL2(q)
it was proved by Okuyama in the influential preprint [Oku00]. Chuang-Kessar
showed it for certain blocks of symmetric groups [ChKe02]. This combined with
Theorem 5.14 allow Chuang-Rouquier to also check it for blocks of symmetric
groups [ChRo08, 7.6]. The same paper shows it for GLn(q) for ℓ ∤ q as a con-
sequence of the Rickard equivalences they prove between blocks of GLn(q)’s and
theorems of Turner [Tu02] supplying results similar to [ChKe02] for those groups.
Dudas-Varagnolo-Vasserot in [DuVV15] and [DuVV17] have also checked Broué’s
conjecture (and Rickard equivalences similar to Theorem 5.14) for certain unipo-
tent blocks of finite reductive groups of types 2A, B and C through categorifications
they build for certain affine Lie algebras. For the application to Broué’s conjec-
ture, some work of Livesey is also used to spot nicer representatives among Rickard
equivalent blocks (see [Li15]).

We just prove here a very elementary case yet substantial where the equivalence
is in fact a quite explicit Morita equivalence. The following is a simplification of
a more general statement by Puig with a different proof [Puig90].

We keep (G, F ) defined over Fq.

Theorem 8.10. Let ℓ ≥ 7 be a prime dividing q− 1. Let D be a Sylow ℓ-subgroup
of GF . Assume D is abelian. Then the principal ℓ-blocks over O of GF and
NGF (D) are Morita equivalent:

B0(G
F )-mod ∼= B0(NGF (D))-mod.

We will prove more concretely

Proposition 8.11. Let T ⊆ B both F -stable in (G, F ) as above. Let ℓ be a
prime dividing q−1 and such that NG(T)F /TF is an ℓ′-group. Let U := Ru(B)F ,

T ′ = TF
ℓ′ . Let M := IndG

F

UT ′ O. Then

EndOGF M ∼= O(NG(T)F /TF
ℓ′)
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by an isomorphism mapping any t ∈ TF
ℓ to the endomorphism of M sending 1⊗ 1

to t−1 ⊗ 1.

Let’s see first how this will give Theorem 8.10. We will essentially apply
Lemma 4.15 and Theorem 8.1.

Let’s note that

Irr(B0(G
F )) = Irr(IndG

F

UT ′ 1) . (75)

This is indeed easy to deduce from Theorem 8.1 and the fact that (T, 1) is the
1-cuspidal pair satisfying (GF , 1) ≥ (T, 1).

Let us denote

A = EndOGF (IndG
F

UT ′ O).

By Proposition 8.11, A and B0(G
F ) are both blocks of finite groups. Moreover

M is a bi-projective B0(G
F )⊗Aopp-module. Indeed right projectivity is ensured

by writing M = OGF e for e = |BF
ℓ′ |

−1
∑

x∈BF
ℓ′
x. For the right projectivity it

suffices to check the restriction to a Sylow ℓ-subgroup of NG(T)F /T ′ through the
isomorphism of Proposition 8.11. By the assumption on NG(T)F /TF this is TF

ℓ

whose action on the right is said to be through the left action of TF , so has already
been checked.

By Broué’s lemma (Lemma 4.15), in order to get Theorem 8.10 it suffices to
show that K ⊗O M induces a bijection between simple K ⊗O A-modules and
Irr(B0(G

F )). One has K ⊗O A = EndKGF (K ⊗O M), so K ⊗O M bijects the
simple K ⊗O A-modules and the Irr(K ⊗O M). Then (75) gives our claim.

Let us now prove Proposition 8.11. We abbreviate G = GF , N = NG(T)F ,
T = TF , W = N/T . Using again that W is an ℓ′-group, one has

N/T ′ ∼= Tℓ ⋊W (76)

by a map leaving unchanged the elements of Tℓ.
On the other hand by Example 2.3, A has a basis (an)n∈UT ′\G/UT ′ defined

by (13). Note that one can take n ∈ N/T ′ by Bruhat decomposition (7). This
contains Tℓ for which the action of at (t ∈ Tℓ) is by multiplication by t. One has
clearly

anat = ant = antan for any n ∈ N/T ′, t ∈ Tℓ. (77)

Let us consider the map

M = IndGUT ′ O → IndGUT O defined by 1⊗UT ′ 1 7→ 1⊗UT 1.

One sees easily that the kernel of this map is stable under A, so any endomorphism
ofM induces an endomorphism of IndGUT O seen as a quotient. The corresponding
morphism between endomorphism rings is (notations of Example 2.3)

an 7→ aw (78)

for n ∈ N/T ′ and w = nT ∈ W . The algebra on the right, EndOG(Ind
G
UT O) is the

well-known Iwahori-Hecke algebra whose generators satisfy (as)
2 = (qs− 1)as+ qs

for s ∈ S, qs := |U/U ∩ Us| (a power of q) and awaw′ = aww′ when the lS-
lengths add (see for instance [CurtisRei, 67.3] or deduce it from the proof of
Theorem 2.5). By the assumption on ℓ, by reduction mod. J(O) the above
relations become the defining relations of W . So composing (78) with reduction

mod J(O).EndOG(Ind
G
UT O) gives a ring morphism

ρ : A→ kW such that ρ(an) = nT ∈W . (79)
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The kernel of ρ is clearly J(OTℓ) where we identify ⊕t∈Tℓ
Oat with OTℓ as said

before. So we get an exact sequence of O-modules

0→ J(OTℓ)A→ A
ρ
−→ kW → 0. (80)

Note that J(OTℓ)A ⊆ J(A) (in fact an equality) thanks to (77), so that an ∈ A×

for any n ∈ N/T ′. Let Γ ≤ A× the group generated by the an’s (n ∈ N/T ′). So
(80) yields an exact sequence of groups

1→ Γ ∩ (1 + J(OTℓ)A)→ Γ
ρ
−→W → 1 (81)

where the second term acts trivially on Tℓ. If the above had been done with
O/J(O)m (m ≥ 1) instead of O we would get some Γm an extension of the ℓ′-
group W by a finite ℓ-group, so (81) would split. In the general case we consider
the J(A)-adic topology on A for which ρ is continuous. We have an exact sequence
of groups

1→ C1+J(OTℓ)A(Tℓ)→ C1+J(OTℓ)A(Tℓ).Γ
ρ
−→W → 1. (82)

The sequence splits by a classical lemma about lifting of J(A)-closed subgroups
(see [CaEn, 23.18]), thus giving some W ′ ≤ C1+J(OTℓ)A(Tℓ).Γ isomorphic to W
by ρ and acting the same on Tℓ. Then A = OTℓW ′ by Nakayama’s lemma and
the equality OTℓW ′ + J(A) = A implied by ρ(OTℓW ′) = kW . This shows that
A ∼= O(Tℓ ⋊W ) as claimed. �

Remark 8.12. A typical example of Morita equivalence between algebras A, B
over O that are sums of blocks over finite groups is when

B ∼= Matn(A)

for some integer n ≥ 1. This is equivalent to our Morita equivalence inducing a
bijection of characters

Irr(A⊗O K)→ Irr(B ⊗O K) ; χ 7→ χ′ (∗)

where the ratio of degrees χ′(1)/χ(1) is a constant integer n (see [CaEn, Ex. 9.6]).
Examples are Theorem 8.7 and the equivalences of Bonnafé-Dat-Rouquier, see
below Theorem 9.1.

In the case of Theorem 8.10 above it is generally not the case. For instance
when GF is SL2(q) for q a power of 2 and ℓ ≥ 7 is a prime divisor of q − 1,
then NG(T)F is a dihedral group of order 2(q − 1) whose principal ℓ-block has
((q−1)ℓ−1)/2 ≥ 2 characters of degree 2. On the other hand the whole Irr(GF ) has
only one character of even degree, the Steinberg character (see for instance [DiMi,
§15.9]). This makes impossible any bijection as in (∗) with the ratio χ′(1)/χ(1)
being always an integer, even depending on χ.

9. Bonnafé-Dat-Rouquier’s theorems

The main theorem of [BoDaRo17] is about the situation of Theorem 4.13 above
where (G, F ) is defined over Fq with dual (G∗, F ∗), ℓ is a prime not dividing q,

s ∈ (G∗)F
∗

ℓ′ is a semi-simple element and L∗ is an F ∗-stable Levi subgroup of G∗

such that

CG∗(s) ⊆ L∗ (83)

a condition sometimes weakened to

C◦
G∗(s) ⊆ L∗. (84)
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Bonnafé-Dat-Rouquier’s main theorem [BoDaRo17] in that situation is the fol-
lowing.

Theorem 9.1 ([BoDaRo17, Th. 1.1]). Let L∗ minimal for the condition (84), let
L an F -stable Levi subgroup of G associated with L∗ by duality, so that E(LF , s)
and eℓ(L

F , s) (see Definition 4.9) make sense. Let N be the stabilizer of eℓ(L
F , s)

in NG(L)F . Then one has a Morita equivalence

ONeℓ(L
F , s) −→ OGF eℓ(G

F , s).

Moreover if two ℓ-blocks are related by the above they have isomorphic defect groups
and fusion systems in the sense of Definition 5.3.

9.A. Etale topology and sheaves. We refer to [CaEn, Ch. A2] for the basic
notions about algebraic varieties.
Sheaves on topological spaces. (See [KaSch].) If a topological space is given
by the datum of the set OpenX of open subsets of a certain set X , OpenX can
be considered as a category with Hom(O,O′) = {→} (a single element) when
O′ ⊆ O, Hom(O,O′) = ∅ otherwise. A presheaf on this topological space is then
any functor

F : OpenX → Set or F : OpenX → A-Mod (85)

to the category of sets or the category of A-modules for A a ring. An example
is the constant presheaf. When O′ ⊆ O in OpenX and s ∈ F(O) one denotes
s|O′ := F(→)(s) ∈ F(O′). One also generally denotes

Γ(X,F) = F(X)

(global sections). A sheaf is a presheaf F such that if (Oi)i is a family of elements

of OpenX and si ∈ F(Oi) is a family such that si|Oi∩Oj
= sj|Oi∩Oj

for any i, j, then

there is a unique s ∈ F(∪iOi) such that s|Oi
= si for any i. There is a canonical

way, called “sheafification”,
F 7→ F+ (86)

to associate a sheaf with a presheaf, adjoint to the forgetful functor F 7→ F . The
constant sheaf is the sheafification of the constant presheaf. For M in A-Mod, the
associated constant sheafMX on X satisfiesMX(U) =Mπ0(U) where π0(U) is the
set of connected components of U . When f : X → X ′ is continuous and F , F ′ are
sheaves on X , X ′ respectively the formulas

f∗F(U
′) = F(f−1(U ′)) , f∗F ′(U) = lim

U ′⊇f(U)
F ′(U ′)

define direct and inverse images of sheaves that are obvious presheaves. They
are made into sheaves by (86) keeping the same notation. For the map σX : X →
{•}, one gets

(σX)∗F = Γ(X,F). (87)

When j : X → X ′ is an open immersion (i.e. a homeomorphism between X and
j(X) ∈ OpenX′)then one defines a presheaf by

j!F(U
′) =

{
F(U ′) if U ′ ⊆ j(X)

0 otherwise.
(88)

This is also made into a sheaf by (86).
Most sheaves of interest are deduced from locally constant sheaves by those

operations. Assume X is pathwise connected and locally simply connected. Let
π1(X, x0) its fundamental group (homotopy classes of loops based at a given x0).
The topological relevance of sheaves is partly contained in the elementary fact
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that locally constant sheaves with values in sets and some additional finiteness
condition (finite stalks) are in bijection with continuous finite π1(X, x0)-sets.

The category ShA(X) of sheaves F : OpenX → A-Mod has enough injectives.
When f : X → X ′ is continuous, we can right-derive the left exact functor f∗ : ShA(X)→
ShA(X

′) into

Rf∗ : D
+(ShA(X)) −→ D+(ShA(X

′)).

In the case of (87) one writes

RΓ(X,F) ∈ D+(A-Mod) (89)

since ShA({•}) = A-Mod. The i-th cohomology A-module of F is by definition
Hi(X,F) := Hi(RΓ(X,F)).
Étale cohomology. (See [Milne], [CaEn, A3], [Du17, §2].) Let X be a variety
over F. The sheaves for the étale topology on X and their cohomology are roughly
defined as follows from the topological model sketched above. The topology on X
is not the Zariski topology but a Grothendieck topology where OpenX is replaced
by the categoryXet whose objects are étale maps of varieties over F with codomain
X

U→ X

and morphisms are given by commutative triangles. Presheaves are defined with
values in A-Mod for A a ring that is generally finite of characteristic prime to p.

A lot of adaptations are needed to define substitutes to intersections (pullbacks),
coverings, sheaves, etc... One defines a certain category of sheaves ShA(Xet)
(finiteness and constructibility assumptions) to which the homological construc-
tions of above can apply. The map σX : X → {•} used above is replaced by the
structural map σX : X → Spec(F). This leads to RΓ(X,F) ∈ D+(A-mod) and
the corresponding cohomology modules. One has also a notion of cohomology
with compact support. Assume one has a compactification j : X →֒ X (an open
embedding with X complete), then

RΓc(X,F) := R(σ
X
)∗j!F ∈ D+(A-mod) (90)

with corresponding homology groups Hi
c(X,F) := Hi(RΓc(X,F)).

The notion of ℓ-adic cohomology (here with compact support) is defined as
follows. Denote O(n) := O/J(O)n (recall O is a finite extension of Zℓ). An ℓ-adic
sheaf is a projective system F = (F (n))n≥1 of sheaves where F (n) ∈ ShO(n)(X)

and F (n) = F (n+1) ⊗ (O(n)) . Then

Hi
c(X,F) := lim←−

n

Hi
c(X,F

(n)) ∈ O-mod.

For instance the module Hi
c(YP) defining the functor RG

L
of Deligne-Lusztig

theory in Definition 4.2 is Hi
c(YP) := C⊗O lim←−n

Hi
c(YP,O

(n)
YP

).

Compactifications give rise to the notion of ramification. The context is
roughly as follows. Assume one has a compactification j : X→ X with smooth X
and complement X \X = D1 ∪D2 ∪ . . . a smooth divisor with normal crossings.
For each irreducible component Dm let

Xm = X \ ∪i6=mDi and X
jm−−→ Xm

im←−− Dm \ ∪i|i6=m(Dm ∩Di)

the associated open and closed immersions.

Definition 9.2. One says that F ramifies along Dm when F is not of the form
j∗mFm for Fm a sheaf on Xm.
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Then by results from [SGA4.5], [SGA5] (see also the survey in [CaEn, A3.19])
one gets that the above condition is equivalent to

i∗mR(jm)∗F = 0 (91)

(otherwise F = j∗mFm for Fm := (jm)∗F).

9.B. Broué’s reduction. In the context of the functor RG

L
, one starts in general

with an F -stable Levi subgroup L complement in a parabolic subgroup P. From
(22) recall the varieties

G/P ⊇ XP := {gP | g−1F (g) ∈ PF (P)}

and
YP := {gRu(P) | g−1F (g) ∈ Ru(P)F (Ru(P))}

and the actions of GF and LF on them. One has π : YP → XP the LF -quotient
map sending gRu(P) to gP.

Definition 9.3. Let L and s be like in Theorem 4.14. Recall O(n) := O/J(O)n.

Then let Fs = (F (n)
s )n≥1 where

F (n)
s := π∗(O

(n)
YP

)eℓ(L
F , s)

recalling that π∗ sends sheaves of O(n)-modules to sheaves of O(n)LF -modules.

For simplicity we assume that XP is affine. This is conjectured in general and
known in many cases (see [Du17, ]). However what follows can be proven knowing
just that it is quasi-affine, which is the case (see [CaEn, 7.15]).

Theorem 9.4 ([Br90b]). If there exists a compactification XP

j
−→ XP

i
←− XP \XP

such that
i∗Rj∗F (n)

s = 0

for all n ≥ 1, then
lim←−
n

HdimYP

c (YP,O
(n))eℓ(L

F , s)

induces a Morita equivalence

Bℓ(L
F , s)-mod→ Bℓ(G

F , s)-mod.

Proof. A first consequence of (91) for F (n)
s is that

j!F
(n)
s
∼= Rj∗F

(n)
s . (92)

This is seen by applying to F (n)
s the open-closed exact sequence

0→ j! → j∗ → i∗i
∗j∗ → 0

suitably right-derived (see [Du17, 2.6]) into a distinguished triangle (note that j!,
i∗ and i∗ are right exact).

We omit the subscripts P from now on. We denote σ : X → Spec(F) and
σ = σ ◦ j : X→ Spec(F) the structure morphisms of X and X. Then (92) and the
definition of RΓ and RΓc allow to write

RΓ(X,F (n)
s ) = Rσ∗F

(n)
s = Rσ∗ ◦ Rj∗F

(n)
s = Rσ∗ ◦ j!F

(n)
s = RΓc(X,F

(n)
s ). (93)

SinceX is affine of dimension the same d everywhere, RΓ(X,F (n)
s ) has cohomology

in degrees only within the interval [0, d] (see [Du17, §2.1]). But by Poincaré-

Verdier duality (see [Du17, 2.4]) since X is smooth, RΓc(X,F
(n)
s ) has cohomology

in degrees ∈ [d, 2d]. So (93) implies that RΓc(X,F
(n)
s ) = RΓc(Y,O(n)).eℓ(G

F , s)
has cohomology in degree d only. Let’s call H(n) this cohomology O(n)-module.
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One can prove that it is O(n)-free. Moreover the groups GF and LF act on Y with
stabilizers that are finite unipotent groups of order invertible in O(n) (trivial in the
case of LF ). So applying for instance [Du17, 2.4] one gets that both restrictions
of H(n) to O(n)GF and O(n)LF are projective. So the same is true for H∞ the
limit over n. By definition C⊗O lim←−n

RΓc(Y,O(n)) is the bimodule inducing the

functor RG

L⊆P
, so H∞ is actually a bi-projective OGF ⊗OLF opp

-module such that
K ⊗O H∞ induces the bijection between ordinary characters

Eℓ(L
F , s) = Irr(KLF eℓ(L

F , s))→ Eℓ(G
F , s) = Irr(KGF eℓ(G

F , s))

thanks to Theorem 4.13. Now we have everything to apply Lemma 4.15 and get
our claim. �

Remark 9.5. When L is a torus, Deligne-Lusztig have shown the existence of
an X such that (91) is satisfied [DeLu76, 9.14]. So the Morita equivalence holds
in that case [Br90b, 3.6]. Note however that in that case methods similar to
Sect. 7 above allow to show that Bℓ(G

F , s) (see Definition 4.9) is a single block
which is nilpotent of defect LF

ℓ . The Morita equivalence is then a consequence of
Theorem 8.7 which gives the structure of nilpotent blocks in general.

9.C. Bonnafé-Rouquier (2003). In view of Theorem 9.4, the main objective of
[BoRo03] is to prove

Theorem 9.6 ([BoRo03, 11.7]). There exists a smooth compactification XP

j
−→

XP

i
←− XP \XP such that i∗Rj∗Fs = 0.

As a consequence the authors get

Theorem 9.7 ([BoRo03, Theorem B’]). Assume CG∗(s)F
∗

⊆ L∗. One has a
Morita equivalence

OLF eℓ(L
F , s)-mod→ OGF eℓ(G

F , s)-mod.

The construction of the smooth compactification for varietiesXP with P a Borel
subgroup extends the one of Bott-Samelson-Demazure-Hansen for Schubert vari-
eties (which are obtained by removing the condition involving F in what follows).
Let B0, T0 a pair of F -stable Borel and torus as before. Let

Σ :=
⋃

m≥0

(S ∪ {1})m

the set of finite sequences of elements of S ∪ {1}. One recalls that a lifting S →
NG(T0), denoted s 7→ ṡ has been chosen satisfying the braid relations of the Weyl
group (see (14) above). For w = (s1, . . . , sr) ∈ Σ, let
X(w) := {(X1, . . . , Xr) ∈ (G/B0)

r |
X−1

1 X2 ∈ B0s1B0, . . . , X
−1
r−1Xr ∈ B0sr−1B0, X

−1
r F (X1) ∈ B0srB0}

Y(w) := {(Y1, . . . , Yr) ∈ (G/U0)
r |

Y −1
1 Y2 ∈ U0ṡ1U0, . . . , Y

−1
r−1Yr ∈ U0ṡr−1U0, Y

−1
r F (Y1) ∈ U0ṡrU0}.

Both are acted on by GF on the left, the first is also acted on by TwF
0 :=

Ts1...srF
0 on the right. The reduction mod B0 gives a finite quotient

πw : Y(w)→ X(w) ∼= Y(w)/TwF
0 .

Let
X(w) =

⋃

w′≤w

X(w′) (94)

where w′ ≤ w means that w′ ∈ {1, s1} × · · · × {1, sr}. This is smooth just like
B0 ∪B0siB0 is smooth, being an algebraic group.
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Bonnafé-Rouquier define the set ∇ of pairs (w, θ) where w = (s1, . . . , sr) ∈ Σ
and

θ : TwF
0 = Ts1...srF

0 → k×

is a group morphism ([BoRo03, §4.4]). For such a pair they define wθ = (s′1, . . . , s
′
r)

by

s′i =

{
1 if si 6= 1 and θ ◦Ns1...sr (s1 . . . si−1(δ

∨
i )) = 1

si otherwise,
(95)

where δ∨i ∈ Φ(G,T0)
∨ is the fundamental coroot corresponding to si andNv : Y (T0)→

TvF
0 for v ∈ W (G,T0) is the norm map used in the classical identification

Y (T0)/(1− vF )Y (T0) ∼= TvF
0 (see for instance [DigneMic, 13.7]).

They also define F(w,θ) and S(w,θ) as follows.

Definition 9.8. Let bθ ∈ kTwF
0 the primitive idempotent such that θ(bθ) 6= 0.

Let

F(w,θ) = (πw)∗kY(w).bθ

a sheaf on X(w) with values in k-vector spaces. Since RΓ(Y(w), kY(w)) is repre-

sented by a complex of kGF ⊗ kTwF
0

opp-modules, we can define

S(w,θ) := RΓ(Y(w), kY(w))bθ ∈ Db(kGF -mod).

One proves

Theorem 9.9 ([BoRo03, 7.7]). For w′ ≤ w, let jww′ : X(w′)→ X(w) the inclusion
from (94). Then R(jww )∗F(w,θ) is annihilated by (jww′)∗ unless wθ ≤ w′.

Theorem 9.10 ([BoRo03, Th. A]). The subcategory of Db(kGF -mod) generated
(through shifts, direct sums, direct summands and mapping cones) by the S(w,θ)

for (w, θ) ∈ ∇ contains the regular module kGF [0].

Those two theorems, of a quite different nature, both concern only varieties
associated to Borel subgroups, not parabolic subgroups. The proof of Theo-
rem 9.9 needs a particularly deep study of the sheaves and tori actions involved,
see [BoRo03, §4]. See also [BoRo09] on a related question. For the proof of Theo-
rem 9.10, see [Du17, §3.5]. Note that [BoDaRo17, 1.2] gives a strengthened version
of that theorem (see also [Du17, 3.12]).

Let’s sketch briefly how Theorem 9.6 is deduced from those two theorems (proof
of [BoRo03, 10.7]). The pair (L, F ) can be changed into (LI , v̇F ) for some I ⊆ S
and v̇ ∈ NG(T0) with vF (I)v−1 = I through conjugation by an element of G.
Then the varieties X and Y of Theorem 9.6 become XI,v = {gPI | g−1F (g) ∈
PI v̇F (PI)} and YI,v = {gUI | g−1F (g) ∈ UI v̇F (UI)} with evident Lv̇F

I -quotient
map π : YI,v → XI,v. Abbreviating L = Lv̇F

I , one has to prove

i∗Rj∗(π∗k ⊗kL kLeℓ(L, s)) = 0 (96)

where we have kept the notation i, j for the immersions associated with XI,v ⊆
XI,v the later being the Zariski closure in the complete variety G/PI . By the
generation property of Theorem 9.10 (applied to LI) it suffices to check

i∗Rj∗(π∗k ⊗kL S
LI ,v̇F
(w,θ) ) = 0 (97)

for any (w, θ) ∈ ∇LI ,v̇F relating to s by duality.
Let dv ∈ SlS(v) be a reduced expression of v and w∪dv be the concatenation in

Σ. Let τ : X(w ∪ dv)→ XI,v defined by (g1B0, . . . ) 7→ g1PI . By basic properties
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of (derived) direct image functors and an isomorphism of varieties related to the
transitivity of Deligne-Lusztig induction, one gets

π∗k ⊗kL S
LI ,v̇F
(w,θ) = Rτ∗F(w∪dv,θ) . (98)

On the other hand we have jτ = τjw∪dv

w∪dv
where τ : X(w∪dv)→ XI,v is (g1B0, . . . ) 7→

g1PI , a proper morphism. So now (97) reduces to

i∗Rτ∗R(j
w∪dv

w∪dv
)∗F(w∪dv,θ) = 0. (99)

One now applies base change (see for instance [CaEn, A3.5]) and gets

i∗Rτ∗ = Rτ ′∗ ◦ i
∗
v (100)

where

iv :
⋃

w′≤w,v′�dv

X(w′ ∪ v′) = X(w ∪ dv) \ τ
−1(XI,v) −→ X(w ∪ dv) (101)

is the open immersion and τ ′ is the restriction of τ . In view of (99) and (100) it
then suffices to prove that

i∗vR(j
w∪dv

w∪dv
)∗F(w∪dv,θ) = 0. (102)

The situation is now close to the one covered by Theorem 9.9 for each inclusion
X(w′ ∪ v′) → X(w ∪ dv). One checks that (w ∪ dv)θ = wθ ∪ dv 6≤ w′ ∪ v′ for

pairs (w, θ) relating to s. Theorem 9.9 then tells us i∗w′∪v′R(j
w∪dv

w∪dv
)∗F(w∪dv,θ) = 0

for each iw′∪v′ : X(w′ ∪ v′)→ X(w ∪ dv) involved in (101). This implies (102) by
checking stalks.

9.D. Bonnafé-Dat-Rouquier (2017). Among many results (see also [Du17,
3.12]) the paper [BoDaRo17] shows that the situation of Theorem 9.7 implies more
than a Morita equivalence. The hypothesis is also slightly strengthened assuming
just (84).

One takes G, G∗ in duality, s a semi-simple ℓ′-element of G∗F
∗

. One lets

L∗
s := CG∗(Z◦(C◦

G∗(s))) ⊲ C◦
G∗(s) and N∗

s = CG∗(s)F
∗

L∗
s

so L∗
s is the smallest Levi subgroup of G∗ containing C◦

G∗(s). Let Ls be an F -
stable Levi subgroup of G in duality with L∗

s. Note that E(LF
s , s) makes sense.

Let Ns ≤ NG(Ls) such that Ns/Ls identifies with N∗
s/L

∗
s through duality. It

is then F -stable and
NF

s = NGF (Ls, E(L
F
s , s))

so that eℓ(L
F
s , s) is a central idempotent of ONF

s .
The following establishes a Morita equivalence for the blocks in characteristic

ℓ.

Theorem 9.11 ([BoDaRo17, 7.5]). Let P = Ru(P)Ls be a parabolic subgroup
having Ls as Levi subgroup. We have:

(i) The action of GF ×(LF
s )

opp on HdimYP

c (YP, k) extends to GF ×(NF
s )

opp.
(ii) The resulting bimodule induces a Morita equivalence

kNF
s eℓ(L

F
s , s)-mod −→ kGF eℓ(G

F , s)-mod.

A. Independence of the parabolic P. A first step in proving Theorem 9.11.(i)
is to show that the kGF ⊗ kLF

s
opp-module HdimYP

c (YP, k) is invariant under the
action of GF ×NF

s (through automorphisms of GF × LF
s induced by GF ×NF

s ).
Only the action of some x ∈ NF

s needs to be checked. The action of GF × LF
s
opp

twisted by (1, x) on YP = {gRu(P) | g−1F (g) ∈ Ru(P)F (Ru(P))} is clearly the
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action of GF × LF
s
opp on YP · x = YPx . The equivariance of étale cohomology

(here the automorphism is even a homeomorphism for Zariski topology) implies
that HdimYP

c (YP, k)
(1,x) ∼= HdimYP

c (YPx , k) and therefore
(
HdimYP

c (YP, k)eℓ(L
F
s , s)

)(1,x) ∼= HdimYP

c (YPx , k)eℓ(L
F
s , s).

The parabolic subgroups P and Px have both Ls as a Levi complement, so the
invariance sought is a consequence of the following.

Theorem 9.12 ([BoDaRo17, 6.5, 6.7]). If P and P′ are parabolic subgroups of G
admitting Ls as Levi complement then

HdimYP

c (YP, k)eℓ(L
F
s , s)

∼= HdimY
P′

c (YP′ , k)eℓ(L
F
s , s)

as kGF ⊗ kLF
s
opp-modules.

Remark 9.13. Note that this answers the question of the dependence of the
Morita equivalence from Theorem 9.7 on the parabolic subgroup used. Note that
the corresponding statement on characters was known for long [DigneMic, 13.28].
In the case of F -stable P, P′, one has

O(GF /Ru(P)F ) ∼= O(GF /Ru(P
′)F )

as bimodules (Dipper-Du, Howlett-Lehrer [CaEn, 3.10]). In general one does not
have Theorem 9.12 without projecting on eℓ(L

F
s , s). Theorem 9.12 has also been

used by Dat in a study of representations of p-adic groups [Dat16].

The proof is quite delicate ([BoDaRo17, Sect. 5-6], see additional explanations
and perspective in [Dat15]). It involves “intermediate” varieties of type

YP,P′ := {(gRu(P), g′Ru(P
′)) | g−1g′ ∈ Ru(P)Ru(P

′) , g′−1F (g) ∈ Ru(P
′)F (Ru(P))}

and maps from their cohomology complexes (up to a shift) to our RΓc(YP, k)
or RΓc(YP′ , k). Then getting quasi-isomorphism once those are projected on the
sum of blocks Bℓ(L

F
s , s) needs quite a lot of additional considerations in the spirit

of the proof of Theorem 9.9.

B. Extendibility. The next problem is to extend HdimYP

c (YP, k) into a k(GF ×
NF

s
opp)-module.
One actually shows that the obstruction to extending HdimYP

c (YP, k) is the
same in G as it would be in an overgroup with connected center, where this
obstruction does not exist. One considers a regular embedding (see [CaEn, §15.1]),
that is an inclusion of algebraic groups

G →֒ G̃ = GZ(G̃)

with connected Z(G̃). One may assume that F extends to G̃. This induces a

surjection σ : G̃∗ → G∗ with connected central kernel. Denote

P̃ := Z(G̃)P , L̃s = Z(G̃)Ls , Ñs := Z(G̃)Ns.

Definition 9.14. Let J ⊆ σ−1(s)F
∗

ℓ′ ⊆ L̃∗
s
F∗

be a representative system for G̃∗F∗

-

conjugacy in σ−1(s)F
∗

ℓ′ . Let

e :=
∑

t̃∈J

eℓ(L̃
F
s , t̃) ∈ Z(kL̃F

s ).

One also defines the following subgroups of G̃F × (G̃F )opp

L̃ := G̃F × (L̃F
s )

opp
⊳ Ñ := G̃F × (ÑF

s )
opp,
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L := (GF × (LF
s )

opp)∆L̃F
s ⊳N := (GF × (NF

s )
opp)∆ÑF

s

(where ∆H = {(h, h−1) | h ∈ H} for a given subgroup H ≤ G̃F ).

Note that Ñ/L̃ ∼= NF
s /L

F
s
∼= (N∗

s/L
∗
s)

F∗

≤ (CG∗(s)/C◦
G∗(s))F

∗

, an ℓ′-group by
Lemma 7.1.

From the definition ofYP, it is clear that it is acted on by L, so we may consider

M := Hd
c(YP, k)eℓ(L

F
s , s) , M̃ = IndL̃LM.

The variety Y
P̃
⊆ G̃/Ru(P) is defined with regard to the same unipotent sub-

group as YP so it has same dimension as YP and one has (see for instance [CaEn,
12.15.(iii)])

M̃ ∼= Hd
c(YP̃

, k)eℓ(L
F
s , s). (103)

Some mild considerations in the dual groups show that

eℓ(G
F , s) =

∑

t̃∈J

eℓ(G̃
F , t̃) and eℓ(L

F
s , s) =

∑

x∈NF
s /LF

s

ex. (104)

In G̃, one has C
G̃∗(t̃) = σ−1(C◦

G∗(s)) ⊆ L̃∗
s , so Bonnafé-Rouquier’s theorem

(Theorem 9.7 above) implies

M̃e⊗
L̃F

s
− induces a Morita equivalence kL̃F

s e-mod −→ kG̃F eℓ(G
F , s)-mod.

(105)

So M̃e is a direct sum of pairwise non-isomorphic indecomposable kL̃-modules.

The same applies to M̃ ∼= ResÑ
L̃
IndÑ

L̃
M̃e.

The next step is to deduce from the above that M extends to N . When the
quotient N/L is cyclic this is enough to extend the action of L on M into an
action of N (see for instance [Da84, 4.5]). For the general case, see Remark 9.24
below. One writes

M = ResNL M ′ for some kN -module M ′. (106)

It is not too difficult to deduce from (105) that IndÑN M ′ induces a Morita equiv-
alence

kL̃F
s eℓ(L

F
s , s)-mod −→ kG̃F eℓ(G

F , s)-mod. (107)

Then one shows that M ′ induces the sought Morita equivalence

kNF
s eℓ(L

F
s , s) −→ kGF eℓ(G

F , s).

For instance the canonical map kNF
s eℓ(L

F
s , s) → EndkGF (M ′) is indeed an

isomorphism since kÑF
s eℓ(L

F
s , s) → EndkG̃F (Ind

Ñ
N M ′) is one by (107) and one

has EndkG̃F (Ind
Ñ
N M ′) ∼= EndkGF (M)⊗NF

s
ÑF

s .
This finishes the proof of Theorem 9.11.

C. Rickard equivalence and local structure. Bonnafé-Dat-Rouquier prove
then that Theorem 9.11 can be strengthened to a Rickard equivalence preserving
the local structure of the blocks of GF and NF

s that are related through this
equivalence.

Recall [BoDaRo17, 2.A]

Definition 9.15. A Rickard equivalence between sums of block algebras A, A′

over Λ ∈ {O, k} is an equivalence

Hob(A)→ Hob(A′)
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induced by a complex C of bi-projective A′⊗ΛA
opp-modules such that the canon-

ical maps A → End•A′(C) and A′ → End•Aopp(C) are isomorphisms in Ho
b(A ⊗Λ

Aopp-mod) and Hob(A′ ⊗Λ A
′opp-mod) respectively (notations of [Du17, §1.2]).

This coincides with the usual definition requiring additional properties of the
Green vertices of summands of C by results of Rouquier [Rou01]. On the other
hand those ℓ-subgroups of the product of the two finite groups involved serve as a
bridge between the local structures of blocks so related. While Rickard’s original
paper [Rick96] had the assumption that blocks involved have same defect group,
one can prove that a Rickard equivalence in the above sense implies a strong
relation at the level of local subgroups. The following is due to Puig.

Theorem 9.16 ([Puig99, 19.7]). If two ℓ-block algebras A, A′ over O are Rickard
equivalent then the defect groups are isomorphic D ∼= D′ and the associated fusion
systems (see Definition 5.3) on D and D′ are equivalent.

Recall a theorem of Rickard (see [Du17, 2.2]).

Theorem 9.17 ([Rick95], [Rou02]). The element RΓc(YP,O) of Db(OGF ⊗
OLF

s
opp) is represented by a well-defined element GΓc(YP,O) of Hob(OGF ⊗

OLF
s
opp) whose terms are direct summands of modules of type Ind

G
F×L

F
s

opp

Q O

where Q is an ℓ-subgroup of GF × LF
s
opp such that (YP)

Q 6= ∅.

The main result of [BoDaRo17] can then be stated as follows.

Theorem 9.18 ([BoDaRo17, 7.7]). In the framework of Theorem 9.11 for G,
s, P ≥ Ls ⊳Ns the complex GΓc(YP,O)eℓ(LF

s , s) induces a Rickard equivalence
between OGF eℓ(G

F , s) and ONF
s eℓ(L

F
s , s).

We sum up some of the main features of the proof ([BoDaRo17, §7.D]).
One works first over k. Denote

C = GΓc(YP,O)eℓ(L
F
s , s)⊗ k.

The main step is to prove the following.

Proposition 9.19. End•kGF (C) ∼= EndDb(kGF )(C)[0] in Hob(kLF
s × LF

s
opp)

The proof of that Proposition leads to checking the following about the action
of GF × LF

s
opp on YP.

Lemma 9.20 ([BoDaRo17, 3.5]). Assume P = Ru(P)L is a Levi decomposition
with F (L) = L. If Q is an ℓ-subgroup of GF × LF opp with fixed points on YP,
then Q is GF ×LF opp-conjugate to a subgroup of ∆(LF ) := {(x, x−1) | x ∈ LF } ⊆
GF × LF opp.

Let us now recall that for H a finite group, an ℓ-permutation kH-module is by
definition any direct summand of a permutation module. For Q an ℓ-subgroup of
H and M an ℓ-permutation kH-module one denotes

BrQ(M) :=MQ/(MQ ∩ J(kQ)M) in kCH(Q)-mod (108)

the image of the Q-fixed points of M in the cofixed points (see also [Du17, §2.3]).
This induces an additive functor from ℓ-permutation kH-modules to ℓ-permutation
kCH(Q)-modules. Note that if Ω is a set acted upon by H , then BrQ(kΩ) = k(ΩQ)
which allows to identify our first definition (10) of the Brauer morphism with a
special case of the above.

The following, chiefly due to Bouc, is very useful to check homotopic equivalence
locally.



60 MARC CABANES

Lemma 9.21 ([Bouc98, 6.4, 6.9]). Let E be a bounded complex of ℓ-permutation
kH-modules. Assume that for any ℓ-subgroup Q ≤ H, BrQ(E) has homology in
degree 0 only. Then

E ∼= H0(E)[0] in Hob(kH-mod).

This will be applied to H = LF
s × LF

s
opp and E := End•kGF (C).

Lemma 9.20 somehow shows that the relevant ℓ-subgroups to check are of the
form ∆Q for Q an ℓ-subgroup of LF

s . By a theorem of Rickard (see [Du17, 2.11])
Br∆Q(RΓc(YP, k)) identifies with RΓc((YP)

∆Q, k). In [BoDaRo17, §3.A] it is
shown that (YP)

∆Q is to be considered as a variety YCP(Q) in the (possibly non-
connected) reductive group CG(Q), which in turn gives sense to and establishes

Br∆Q(C) = GΓc(Y
(CG(Q))
CP(Q) , k) BrQ(eℓ(L

F
s , s)). (109)

Then the authors show for BrQ(eℓ(L
F
s , s)) a formula [BoDaRo17, 4.14] gener-

alizing the one of Broué-Michel seen before (Theorem 7.3) for cyclic subgroups Q.
This allows to identify the right hand side of (109) with a sum of complexes of
the same type as C itself in the local subgroup CG(Q)F . One applies to them
Bonnafé-Rouquier’s theorem (Theorem 9.7) thus getting that their homology is in
one single degree. This essentially gives Proposition 9.19 thanks to Lemma 9.21.
Let us comment that the above adaptations to the case of non-connected reductive
groups needs indeed a lot of work [BoDaRo17, Sect. 3-4].

The next steps go through the following propositions and are less difficult.
Remember that one is looking for a complex acted on by NF

s on the right.

Proposition 9.22. One has

EndHob(k(GF×NF
s

opp))(Ind
G

F×N
F
s

opp

GF×LF
s

opp (C)) ∼= EndDb(k(GF×NF
s

opp))(Ind
G

F×N
F
s

opp

GF×LF
s

opp (C))

∼= Endk(GF×NF
s

opp)(Ind
G

F×N
F
s

opp

GF×LF
s

opp (H
d
c (YP, k))

The proof of the following uses Theorem 9.11.(i).

Proposition 9.23. There is a direct summand C̃ of Ind
G

F×N
F
s

opp

GF×LF
s

opp (C) satisfying

(i) Res
G

F×N
F
s

opp

GF×LF
s

opp (C̃) ∼= C and

(ii) End•kGF (C̃) ∼= EndDb(kGF )(C̃)[0] ∼= kNF
s eℓ(L

F
s , s)[0] in Ho

b(k(NF
s ×N

F
s
opp)).

Using relatively standard techniques allowing with extra information to check
only one of the two isomorphisms of Definition 9.15, one now gets a Rickard
equivalence over k. Lifting all that to O as claimed in Theorem 9.18 follows
classical procedures (see [Rick96, 5.2]).

Remark 9.24. Recalling that we have assumed for (106) above that Ns/Ls is
cyclic, one gets at this point Theorem 9.18 in that case. We even get a similar
statement for any F -stable Levi subgroup L∗ (replacing L∗

s) such that L∗ contains
C◦

G∗(s), is normalized by CG∗(s) and the factor group (CG∗(s)L∗)F
∗

/L∗F∗

is
cyclic. Then the two algebras shown to be Rickard equivalent are OGF eℓ(G

F , s)
and ONeℓ(LF , s) where N ≤ NG(L)F is such that N/LF ∼= (CG∗(s)L∗)F

∗

/L∗F∗

.
When Ns/Ls is not cyclic, the proof proposed by Bonnafé-Dat-Rouquier in

[BoDaRo17b] consists in several steps described to the present author as follows
(October 2017). First, one reduces the problem to groups G that are simple as
algebraic group (finite center and irrreducible root system) through direct products
and central extension. Once this is done, the cases to care about are when Ns/Ls
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or equivalently CG∗(s)/C◦
G∗(s) is not cyclic, which by Lemma 7.1 can occur only

in type D2n (n ≥ 2). There are three possibilities for s up to conjugacy, but only

one such that (CG∗(s)L∗
s)

F∗

/L∗
s
F∗

is not cyclic. Then C◦
G∗(s) has type A2n−3 and

one can choose an F -stable Levi subgroup L∗ of type A2n−3 × A1 × A1 satisfying
the above. One then gets the equivalence sought between OGF eℓ(G

F , s) and
ONeℓ(LF , s) where N/LF corresponds to a subgroup of order 2 of CG∗(s)/C◦

G∗(s).
Going from ONeℓ(LF , s) to our goal ONF

s eℓ(L
F , s) can then be done by proving

versions of Theorem 9.12 and (107) in a non-connected group H such that H◦ = L
and H/L covers the missing part of CG∗(s)/C◦

G∗(s). We refer to [BoDaRo17b] for
more details.

10. Recreation: Blocks of defect zero

Modular group algebras kH where the characteristic of k divides the order of
the finite group H are the typical examples of non semi-simple algebras but they
of course may have blocks that are indeed simple. This may be seen as rather
exceptional and the local structure or representation theory of such blocks is quite
trivial. But on the other hand a statement like Alperin’s weight conjecture (see
3.C above) crucially needs that enough of those situations exist. There are very
few general theorems ensuring that a finite group algebra has such blocks and this
is probably related with how difficult it is to say anything general about Alperin’s
conjecture. Using CFSG, one can see that non abelian simple groups have a lot of
blocks of defect zero.

Theorem 10.1. Let ℓ be a prime and S a finite non-abelian simple group. Then
it has an ℓ-block of defect zero (see 1.D) except in the following cases

(a) ℓ = 2 and S is an alternating group An for n ≥ 7 such that neither n nor
n − 2 is a triangular number, or one of the sporadic groups M12, M22,
M24, J2, HS, Suz, Co1, Co3, BM .

(b) ℓ = 3 and S is an alternating group An for n ≥ 7 such that (3n + 1)p
is non-square for at least one prime p ≡ −1(3), or S is one of the two
sporadic groups Suz and Co3.

The checking of this theorem on the character table of a given simple group
is easy since an ℓ-block of defect zero is signaled by an ordinary character of
degree divisible by the highest power of ℓ dividing the order of the group (see
[NagaoTsu, 3.6.29]). This applies to the 26 sporadic groups and the 18 primes
{2, 3, . . . , 43, 47, 59, 67, 71} that divide the order of one of them.

For groups of Lie type, note that the theorem asserts that all have blocks of
defect zero for all primes. This was checked by Michler [Mi86, 5.1] for odd ℓ and
Willems [Wi88] for ℓ = 2. When ℓ is the defining prime, the Steinberg module gives
such a block (see Theorem 3.3 above). Assume now that the defining prime is some
r 6= ℓ. Then the checking for a group S = GF /Z(GF ) basically consists in finding
regular semi-simple elements s ∈ [G∗,G∗]F

∗

whose centraliser is a maximal torus
T∗ such that TF /Z(GF ) is of order prime to ℓ. Then the corresponding Deligne-
Lusztig character ±RG

T
θ is irreducible with degree |GF /TF |r′ (see [DigneMic,

12.9]), has Z(GF ) in its kernel and therefore is in an ℓ-block of defect zero of
GF /Z(GF ).

Strangely enough the answer for alternating groups was known after the case
of simple groups of Lie type. The problem reduces to the case of the symmetric
group Sn except for the prime 2. There a 2-block of Sn can restrict to a block
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of defect zero of An if it has defect group 1 or S2. Theorem 5.11 gives the defect
group of a 2-block in terms of 2-cores. It is easy to see that a Young diagram
has no 2-hook if and only if its rim has the shape of a regular stair. This means
that this is the partition m,m − 1, . . . , 1 of the triangular number m(m + 1)/2.
Similarly the Young diagram can have only one 2-hook if it is as above plus two
more boxes at the first row, or two more boxes at the first column. Hence n − 2
being a triangular number.

For primes ℓ ≥ 3, one gets from Theorem 5.11 that An has an ℓ-block with
defect zero if and only if there exists an ℓ-core κ ⊢ n.

Many things have been known for a long time about cores since their introduc-
tion by Nakayama [Naka41a]. If cd(n) denotes the number of d-cores κ ⊢ n, one
has

∑

n≥0

cd(n)t
n =

∏

n≥1

(1− tdn)d

(1 − tn)
(110)

as seen from the theory of d-quotients [JamesKer, § 2.7.30]. The numbers are
documented in https://oeis.org/A175595.

The general theorem about existence of d-cores was finally reached by Granville-
Ono in 1996.

Theorem 10.2 ([GrOn96]). Let n ≥ 1, d ≥ 3. Then cd(n) = 0 if and only if
d = 3 and (3n+ 1)ℓ is a non-square for some prime ℓ ≡ −1(3).

For d = 3, Granville-Ono show that

c3(n) =
∑

m|3n+1, m≥1

(m
3

)
(111)

where (m3 ) is the Legendre symbol. Using Gauss’ quadratic reciprocity law [Serre,
p.7], this gives the statement about c3(n). An elementary proof of (111) can be
found in [HiSe09].

For d ≥ 4, one claims that there are d-core partitions of n for any n. Note that
(41) implies that one can restrict the study to d = 4, 6 and odd d ≥ 5.

Using a variant of β-numbers one also shows elementarily that cd(n) 6= 0 if and
only if there is a d-tuple of integers (x1, . . . , xd) such that (see [GaKiSt90, Bij. 2])

n =
d∑

i=1

(d
2
· x2i + (i − 1) · xi

)
and

d∑

i=1

xi = 0. (112)

Granville-Ono [GrOn96] solve the above using modular forms but mainly ele-
mentary arguments for primes d ≥ 17. We conclude by giving below an elementary
argument taken from [Ki96]. The number theoretic flavor is quite apparent.

Proposition 10.3. Assume d ≥ 9 is an odd integer and n ≥ 1
4d

3 + 3
4d− 1. Then

cd(n) 6= 0.

Note that n ≤ 1
4 (d−1)2 leads to trivial solutions (use Young diagrams included

in a square to get λ ⊢ n such that hookc(λ) = ∅ for any c ≥ d).

Proof. (Kiming) One solves the problem in the form of (112). One will need 8
integers x1, . . . , x8 with sum 0 to represent n, whence the condition d ≥ 9.

The condition n ≥ 1
4d

3 + 3
4d − 1 implies that the euclidean division of n by d

gives n = dq + r with 4q ≥ d2 − 1 and d − 1 ≥ r ≥ 0. Let’s change slightly the
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parity of these integers while keeping r2 small. Let

(q′, r′) :=





(q, r) if q ≡ 1 (2) and r 6≡ 0 (4)

(q + 1, r − d) if q ≡ r ≡ 0 (2)

(q + 2, r − 2d) if q ≡ 1 (2) and r ≡ 0 (4)

(q − ǫ, r + ǫd) if q ≡ 0 (2) and r ≡ ǫd (4) for ǫ = ±1.

We still have n = dq′ + r′ but now q′ is odd and one of the following occurs

(a) r′ is odd and 4q′ ≥ r′2 (two first cases above).
(b) r′ ≡ 2 (4) and 16q′ ≥ r′2.

Let’s look at case (a). Then 0 < 4q′−r′2 ≡ 3 (8) so 4q′−r′2 can be represented
by a sum of three odd squares (see [Serre, p. 45]). Therefore

4q′ = r′2 + a2 + b2 + c2 (113)

with r′, a, b, c odd. If necessary, we may change a into −a to ensure that r′+a+b+c
is a multiple of 4. One then defines

α = (r′ + a+ b+ c)/4 β = (r′ − a− b+ c)/4

γ = (r′ − a+ b− c)/4 δ = (r′ + a− b− c)/4

and (x1, . . . , x8) = (−α, α,−β, β,−γ, γ,−δ, δ).
One has x1 + · · ·+ x8 = 0 and

d

2
x21 +

d

2
x22 + x2 +

d

2
x23 + 2x3 + · · ·+

d

2
x28 + 7x8 =

d

4
(r′2 + a2 + b2 + c2) + r′

= dq′ + r′ = n by (113).

This solves the equation (112).
In the case (b), one replaces r′ by r′/2 to define a, b, c, α, β, γ, δ similarly. Then

one takes (x1, . . . , x8) = (−α,−β, α, β,−γ,−δ, γ, δ). �
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