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Abstract

The homogeneous form Φn(X,Y ) of degree ϕ(n) which is associated with
the cyclotomic polynomial φn(X) is dubbed a cyclotomic binary form. A pos-
itive integer m ≥ 1 is said to be representable by a cyclotomic binary form
if there exist integers n, x, y with n ≥ 3 and max{|x|, |y|} ≥ 2 such that
Φn(x, y) = m. We prove that the number am of such representations of m by a
cyclotomic binary form is finite. More precisely, we have ϕ(n) ≤ (2/log 3) logm
and max{|x|, |y|} ≤ (2/

√
3)m1/ϕ(n). We give a description of the asymptotic

2010 Mathematics Subject Classification: Primary 11E76; Secondary 12E10.

Key words and phrases: Cyclotomic binary forms, Cyclotomic polynomials, Euler’s totient func-

tion, Families of Diophantine equations, Thue Diophantine equations, Representation of integers by

binary forms.

1

http://arxiv.org/abs/1712.09019v1
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cardinality of the set of values taken by the forms for n ≥ 3. This will imply
that the set of integers m such that am 6= 0 has natural density 0. We will
deduce that the average value of the integers am among the nonzero values of
am grows like

√
log m.

1 Introduction

K. Győry obtained in [G] many interesting results on the representation of integers

(resp. algebraic integers) by binary forms. He obtained sharp estimates, in contrast

with the exponential bounds previously obtained on Thue’s equations by means of

Baker’s results on lower bounds for linear forms in logarithms of algebraic numbers.

The bibliography of [G] contains a useful selection of articles dealing with these

problems, including [N1] and [N2]. Most particularly, Győry considered binary forms

of degree d with integral coefficients,

F (X,Y ) = a0X
d + a1X

d−1Y + · · ·+ ad−1XY d−1 + adY
d,

which are products of ℓ irreducible forms, assuming that the roots of F (X, 1) are

totally imaginary quadratic numbers over a totally real number field, and he proved

that for m 6= 0, the solutions (x, y) ∈ Z2 of F (X,Y ) = m satisfy

|x| ≤ 2|ad|1−(2ℓ−1)/d|m|1/d and |y| ≤ 2|a0|1−(2ℓ−1)/d|m|1/d.

In other words, the splitting field of each irreducible factor of F (X, 1) is a CM-

field, i.e., a totally imaginary quadratic extension of a totally real number field. In

particular, cyclotomic fields are such number fields.

Examples of such binary forms with a0 = ad = 1 are given by the cyclotomic

binary forms, which we define as follows.

For n ≥ 1, denote by φn(X) the cyclotomic polynomial of index n and degree

ϕ(n) (Euler’s totient function). Following Section 6 of [N2], the cyclotomic binary

form Φn(X,Y ) is defined by Φn(X,Y ) = Y ϕ(n)φn(X/Y ). In particular, we have

Φn(x, y) > 0 for n ≥ 3 and (x, y) 6= (0, 0) (see §4 below).

In the special case of cyclotomic binary forms, Győry [G] gives

max{|x|, |y|} ≤ 2|m|1/ϕ(n)

for the integral solutions (x, y) of Φn(X,Y ) = m. In contrast with our Theorem 1.1

below, Győry [G] gives an upper bound for n only if max{|x|, |y|} ≥ 3.

Here is our first main result, in which we exclude the cases n = 1 and n = 2 for

which the cyclotomic polynomial φn is linear.
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Theorem 1.1. Let m be a positive integer and let n, x, y be rational integers

satisfying n ≥ 3, max{|x|, |y|} ≥ 2 and Φn(x, y) = m.Then

ϕ(n) ≤ 2

log 3
logm and max{|x|, |y|} ≤ 2√

3
m1/ϕ(n).

In particular, there is no solution when m ∈ {1, 2}.
From the following lower bound for ϕ(n), proved in six lines in [M–W], namely

ϕ(n) >
( n

2.685

)1/1.161
,

we deduce that the upper bound ϕ(n) < 2(logm)/ log 3 of Theorem 1.1 implies

(1.1) n < 5.383(log m)1.161.

Theorem 1.1 is a refinement of Győry’s above mentioned result for these cy-

clotomic binary forms. Subject to gcd(x, y) = 1, Nagell (see Lemma 1, p. 152 of

[N1]) comes up with a slightly larger bound than ours for ϕ(n), namely he has

ϕ(n) < (4 logm)/(3 log 2), and he does not exhibit a bound for max{|x|, |y|}.
The estimates of Theorem 1.1 are optimal because for ℓ ≥ 1,

Φ3(ℓ,−2ℓ) = 3ℓ2.

If we assume ϕ(n) > 2, namely ϕ(n) ≥ 4, the conclusion of Theorem 1.1 can be

replaced by

ϕ(n) ≤ 4

log 11
logm and max{|x|, |y|} ≤ 2

4
√
11

m1/ϕ(n)

thanks to (5.2). Again these estimates are best possible since for ℓ ≥ 1, we have

Φ5(ℓ,−2ℓ) = 11ℓ4.

There are infinitely many integers n such that Φn(1, 2) < 2ϕ(n); for instance,

n = 2 · 3e with e ≥ 1. We will prove the following.

Theorem 1.2. For θ ∈ ]0, 1[, there are only finitely many triples (n, x, y) with

n ≥ 3 and max{|x|, |y|} ≥ 2, such that Φn(x, y) ≤ 2θϕ(n); these triples can be

effectively determined and they satisfy max{|x|, |y|} = 2.

As a matter of fact, we shall see that the conclusion max{|x|, |y|} = 2 follows

from the weaker assumption

Φn(x, y) < 7ϕ(n)/2,

which is optimal since Φ3(1,−3) = 7.
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Theorem 1.1 shows that, for each integer m ≥ 1, the set

{

(n, x, y) ∈ Z3 | n ≥ 3, max{|x|, |y|} ≥ 2, Φn(x, y) = m
}

is finite. The finiteness of the subset of (n, x, y) subject to the stronger condition

max{|x|, |y|} ≥ 3 follows from [G], but not for max{|x|, |y|} ≥ 2. Let us denote by am

the number of elements in the above set. The positive integers m such that am ≥ 1

are the integers which are represented by a cyclotomic binary form. We will see in

§7 that the sequence of integers m ≥ 1 such that am ≥ 1 starts with the following

values of am:

m 3 4 5 7 8 9 10 11 12 13 16 17 18 19 20

am 8 16 8 24 4 16 8 8 12 40 40 16 4 24 8

Table 1

The only result in this direction that we found in the literature is a1 = 0: see

[G, N1, N2].

For N ≥ 1 and n ≥ 3 let A(Φn;N) be the set of positive integers m ≤ N which

are in a restricted image of Z2 by Φn. In other words, for n ≥ 3 we define

A(Φn;N) :=
{

m ∈ N | m ≤ N, m = Φn(x, y) for some (x, y) ∈ Z2

with max(|x|, |y|) ≥ 2
}

.

The following theorem describes the asymptotic cardinality of the set of values taken

by the polynomials Φn for n ≥ 3. Defining

A(Φ{n≥3};N) :=
⋃

n≥3

A(Φn;N),

we have

Theorem 1.3. There exist two sequences (αh) and (βh) (with α0 > 0 and

β0 > 0), such that for every M ≥ 0, the following equality holds uniformly for

N ≥ 2:

(1.2)

∣

∣A(Φ{n≥3};N)
∣

∣ =
N

(logN)
1

2

{(

α0 −
β0

(logN)
1

4

)

+
1

logN

(

α1 −
β1

(logN)
1

4

)

+ · · ·

+
1

(logN)M

(

αM − βM

(logN)
1

4

)

+O

(

1

(logN)M+1

)

}

.
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The proof of this theorem will be given in §6 with the precise definitions of

the coefficients α0 and β0. This proof will show that the largest contribution to
∣

∣A(Φ{n≥3};N)
∣

∣ comes from the sets A(Φ3;N) and A(Φ4;N).

It follows from Theorem 1.3 that the set of integers m such that am 6= 0 has

natural density 0. Combining Theorem 1.3 with Lemma 5.1, we will deduce that

the average value of am among the nonzero values of am grows like
√
logm. More

precisely, we have the following.

Corollary 1.4. For N ≥ 1, define AN and MN by

AN =
∣

∣A(Φ{n≥3};N)
∣

∣ and MN =
1

AN
(a1 + a2 + · · ·+ aN ).

Then there exists a positive absolute constant κ1 such that

MN ∼ κ1
√

logN .

In particular, the sequence (am)m≥1 is unbounded; this follows from the fact that

the number of representations of a positive integer by the quadratic form Φ4(X,Y )

is an unbounded sequence. The same is true for the quadratic forms Φ3(X,Y ) and

Φ6(X,Y ).

In Lemma 5.1, we will prove that the number CN of integers ≤ N which are

represented by a binary form Φn(X,Y ) with ϕ(n) > 2 and max{|x|, |y|} ≥ 2 is less

than

κ2N
1

2

where κ2 is a positive absolute constant.

For m ≥ 1, denote by bm the number of elements in the set

{

(n, x, y) ∈ Z3 | ϕ(n) > 2, max{|x|, |y|} ≥ 2, Φn(x, y) = m
}

.

We will see in the last section that for m between 1 and 100, there are exactly 16

values of m for which bm is different from 0; they are the following ones:

m 11 13 16 17 31 32 43 55 57 61 64 73 80 81 82 97

bm 8 8 24 8 8 4 8 8 8 16 24 16 4 24 8 8

Table 2

Lemma 1.5. We have

lim sup
m→∞

bm log log logm

log logm
≥ 8

whereupon the sequence (bm)m≥1 is unbounded.
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Proof. For the s-th odd prime ps, let us consider the integer

ks = ϕ(3 · 5 · · · ps),

the product being taken over all the primes between 3 and ps. Set ms = 2ks . Then

Φn(x, y) = ms for at least 8s values of (n, x, y), namely

(ℓ, 0,±2t), (ℓ,±2t, 0), (2ℓ, 0,±2t), (2ℓ,±2t, 0),

for each prime ℓ between 3 and ps with t = ks/ϕ(ℓ). Therefore, by excluding ℓ = 3

we have bms
≥ 8(s− 1).

Because

log ks =
∑

3≤p≤ps

log(p − 1),

the Prime Number Theorem implies that for s → ∞ we have

log ks ∼ ps ∼ s log s,

hence

s ∼ log ks
log log ks

with ks =
logms

log 2

and

s ∼ log logms

log log logms
·

This completes the proof of Lemma 1.5.

2 Positive definite binary forms

Consider a Thue equation F (X,Y ) = m associated with the polynomial f(X) de-

fined by f(X) = F (X, 1), where the polynomial f(X) has no real roots and has

positive values on R. It happens that this is the case for the cyclotomic polynomials.

Such a situation was also considered in [G]. The following result shows that the

study of the associated Diophantine equation F (X,Y ) = m reduces to finding a

lower bound for the values of f(t) on R.

Lemma 2.1. Let f(X) ∈ Z[X] be a nonzero polynomial of degree d which has

no real root. Let g(X) = Xdf(1/X). Assume that the leading coefficient of f(X) is

positive, so that the real numbers, defined by







γ1 = inf
t∈R

f(t), γ2 = inf
t∈R

g(t),

γ′1 = inf
−1≤t≤1

f(t), γ′2 = inf
−1≤t≤1

g(t), γ′ = min
{

γ′1, γ
′
2

}

,
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are > 0. Let F (X,Y ) be the binary form Y df(X/Y ) associated with f(X).

(1) Then for each (x, y) ∈ Z2, we have

F (x, y) ≥ γ1|y|d, F (x, y) ≥ γ2|x|d, F (x, y) ≥ γ′max
{

|x|d, |y|d
}

.

(2) Moreover, the following statements hold true:

(i) For any real number c1 with c1 > γ1, there exist an infinite set of couples

(x, y) in Z× Z satisfying y > 0 and

F (x, y) < c1y
d.

(ii) Further, for any real number c2 with c2 > γ2, there exist an infinite set of

couples (x, y) in Z× Z satisfying x > 0 and

F (x, y) < c2x
d.

(iii) Furthermore, for any real number c with c > γ′, there exist an infinite set of

couples (x, y) in Z× Z satisfying

F (x, y) < cmax
{

|x|d, |y|d
}

.

Before proceeding with the proof, some remarks are in order. For |t| > 1, from

g(t) = tdf(1/t) we deduce f(1/t) ≤ g(t). Hence

inf
−1≤t≤1

|f(t)| ≤ inf
|t|≥1

|g(t)|.

Therefore, if we set

γ′′1 = inf
|t|≥1

f(t), γ′′2 = inf
|t|≥1

g(t),

then we have

γ1 = min{γ′1, γ′′1}, γ2 = min{γ′2, γ′′2}, γ′2 ≤ γ′′1 , γ′1 ≤ γ′′2 .

Hence

γ′ = min{γ′1, γ′2} ≤ min {γ′′1 , γ′′2} ≤ max {γ1, γ2}.

It follows that for a reciprocal polynomial f we have γ1 = γ2 = γ′1 = γ′2 = γ′; in

particular, for a reciprocal polynomial, we have

(2.1) inf
t∈R

f(t) = inf
|t|≤1

f(t).
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Proof of Lemma 2.1 . (1) The proof of the first two lower bounds of the first

part is direct. Let us prove the third one. It is plain that

F (x, y) ≥ γ′1|y|d for |x| ≤ |y| and F (x, y) ≥ γ′2|x|d for |x| ≥ |y|.

The third lower bound follows.

(2) In the second part of the lemma, we claim that the lower bounds of part (1)

are optimal.

(i) Suppose that t0 ∈ R is a value such that f(t0) = γ1. There exists a real

number a > 0 such that, for t in the open interval ]t0 − a, t0 + a[, we have

|f(t)− γ| ≤ (|f ′(t0)|+ 1)(t − t0).

For y > 0, let x in Z such that
∣

∣

∣

∣

t0 −
x

y

∣

∣

∣

∣

≤ 1.

For y sufficiently large, x/y is in the interval ]t0 − a, t0 + a[ and we have

|F (x, y) − ydf(t0)| ≤ (|f ′(t0)|+ 1)yd−1.

As a consequence, for y sufficiently large, we have

F (x, y) < c1y
d.

(ii) The next result is proved in the same way.

(iii) Let us prove now the last statement. Assume first c > γ′1. Let us uppose

−1 ≤ t0 ≤ 1. Our argument above gives infinitely many couples (x, y) in Z×Z with

F (x, y) < c|y|d and |y| ≤ |x|. Hence

F (x, y) < cmax
{

|x|d, |y|d
}

.

The same argument, starting with |t0| ≥ 1, gives infinitely many couples (x, y) with

F (x, y) < c|x|d and |x| ≤ |y|. The case c > γ′2 is proved in the same way. Hence the

result.

Let us mention in passing that Győry (page 364 of [G]) exhibited Thue equations

which have as many (nonzero) solutions as one pleases, by allowing the degree to

be large enough. Let us complement with a similar example. Let cj (j = 1, 2, . . . , ℓ)

be different rational integers and let c > 0 be also any fixed integer. Consider the

binary form F (X,Y ) of degree 2ℓ defined by

F (X,Y ) =

ℓ
∏

j=1

(X − cjY )2 + cY 2ℓ.
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Here F (x, y) > 0 for all (x, y) ∈ R2 \ {(0, 0)}. Moreover, for j = 1, 2, . . . , ℓ, we have

F (cj , 1) = c, and the minimum value on the real axis of the associated polynomial

f(X), defined by F (X, 1), is c.

3 On cyclotomic polynomials

The cyclotomic polynomials φn(X) ∈ Z[X], n ≥ 1, are defined by the formula

(3.1) φn(X) =
∏

ζ∈En

(X − ζ)

where En is the set of primitive roots of unity of order n. One can also define them

via the recurrence provided by

(3.2) Xn − 1 =
∏

d|n

φd(X).

The degree of φn(X) is ϕ(n), where ϕ is Euler’s totient function. We will always

suppose that n ≥ 3, whereupon ϕ(n) is always even. For n ≥ 3, the polynomial

φn(X) has no real root.

Two very important formulas for cyclotomic polynomials are the following ones:

when n is an integer ≥ 1 written as n = prm with p a prime number dividing n and

with m such that gcd(p,m) = 1, we have

(3.3) φn(X) =
φm

(

Xpr
)

φm

(

Xpr−1
) and φn(X) = φpm

(

Xpr−1)

.

For our purposes, we will use the following properties:

(i) The n-th cyclotomic polynomial can be defined by

(3.4) φn(X) =
∏

d|n

(Xd − 1)µ(n/d),

where µ is the Mœbius function.

(ii) Let n = 2e0pe11 · · · perr where p1, . . . , pr are different odd primes, e0 ≥ 0, ei ≥ 1

for i = 1, . . . , r and r ≥ 1. Denote by R the radical of n, namely

R =

{

2p1 · · · pr if e0 ≥ 1,

p1 · · · pr if e0 = 0.

Then,

(3.5) φn(X) = φR(X
n/R).

(iii) Let n = 2m with m odd ≥ 3. Then

(3.6) φn(X) = φm(−X).
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4 The invariants cn

The real number cn, which we define by

cn = inf
t∈R

φn(t),

is always > 0 for n ≥ 3; this invariant cn will play a major role in this paper. Since

the cyclotomic polynomials are reciprocal, we deduce from (2.1)

(4.1) cn = inf
−1≤t≤1

φn(t).

Proposition 4.1. Let n ≥ 3. Write

n = 2e0pe11 · · · perr

where p1, . . . , pr are odd primes with p1 < · · · < pr, e0 ≥ 0, ei ≥ 1 for i = 1, . . . , r

and r ≥ 0.

(i) For r = 0, we have e0 ≥ 2 and cn = c2e0 = 1.

(ii) For r ≥ 1 we have

cn = cp1···pr ≥ p−2r−2

1 .

Here are the first values of cn for n odd and squarefree, with for each n a value

of tn ∈]− 1, 1[ such that cn = φn(tn):

n cn tn

3 0.75 −0.5
5 0.673... −0.605...
7 0.635... −0.670...
11 0.595... −0.747...
13 0.583... −0.772...
15 0.544... −0.792...
17 0.567... −0.808...

n cn tn

19 0.562... −0.822...
21 0.496... −0.834...
23 0.553... −0.844...
29 0.544... −0.867...
31 0.541... −0.873...
33 0.447... −0.879...
35 0.375... −0.884...

n cn tn

37 0.536... −0.889...
39 0.786... −0.954...
41 0.533... −0.897...
43 0.531... −0.900...
47 0.529... −0.907...
51 0.778... −0.964...
53 0.526... −0.915...

Tables 3

Proof of Proposition 4.1. In view of the properties (3.5) and (3.6), we may

restrict to the case where n is odd and squarefree.

We plan to prove

(4.2) φp1p2···pr(t) ≥
1

p2
r−2

1
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for r ≥ 1 and −1 ≤ t ≤ 1.

We start with the case r = 1. Let p be an odd prime. For −1 ≤ t ≤ 0, we have

1 ≤ 1− tp ≤ 1− t ≤ 2, hence

(4.3)
1

2
≤ φp(t) ≤ 1.

For 0 ≤ t ≤ 1, we have 0 ≤ 1 − t ≤ 1 − tp ≤ 1 and φp(t) = 1 + t + t2 + · · · + tp−1,

whereupon

(4.4) 1 ≤ φp(t) ≤ p.

We deduce 1/2 ≤ φp(t) ≤ p for −1 ≤ t ≤ 1. Since c3 = 3/4, this completes the proof

of (4.2) for r = 1.

Assume now r ≥ 2. Using (3.4) for n = p1 · · · pr, we express φn(t) as a product

of 2r−1 factors, half of which are of the form φp1(t
d) while the other half are of the

form 1/φp1(t
d), where d is a divisor of p2p3 · · · pr.

For t the interval [−1, 0], using (4.3), we have

1

2
≤ φp1(t) ≤ 1 and

1

2
≤ φp1(t

d) ≤ 1,

hence

(4.5)
1

22r−2
≤ φp1p2···pr(t) ≤ 22

r−2

.

For t the interval [0, 1], using (4.4), we have

1 ≤ φp1(t) ≤ p1 and 1 ≤ φp1(t
d) ≤ p1,

whereupon

(4.6)
1

p2
r−2

1

≤ φp1p2···pr(t) ≤ p2
r−2

1 .

From (4.5) and (4.6), we conclude that (4.2) is true. Thanks to (4.1), (4.2) can be

written

log cn ≥ −2r−2 log p1. �

We need an auxiliary result.

Lemma 4.2. For any odd squarefree integer n = p1 · · · pr with p1 < p2 < · · · < pr

satisfying n ≥ 11 and n 6= 15, we have

(4.7) ϕ(n) > 2r+1 log p1.
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Proof. If r = 1, the number n is a prime ≥ 11 and (4.7) is true with p1 = n. If

r = 2, n 6= 15, we have p2 ≥ 7, hence

ϕ(p1p2) = (p1 − 1)(p2 − 1) > 6(p1 − 1) > 8 log p1,

whereupon (4.7) is true.

Assume r ≥ 3. We have

ϕ(n) = (p1 − 1)(p2 − 1) · · · (pr − 1) > (p1 − 1)22(r−1) ≥ (p1 − 1)2r+1 > 2r+1 log p1.

This completes the proof of Lemma 4.2.

We deduce the following consequence.

Proposition 4.3. For n ≥ 3, we have

cn ≥ (
√
3/2)ϕ(n).

This lower bound is best possible, since there is equality for n = 3 (and n = 6).

Proof of Proposition 4.3. It suffices to check the inequality when n is an

odd squarefree integer, say n = p1 · · · pr where p1 < p2 < · · · < pr with r ≥ 1. This

lower bound is true for n = 3 (with equality, since c3 = 3/4), and also for n = 5, for

n = 7 and for n = 15, since

c5 > 0.6 > (
√
3/2)4, c7 > 0.6 > (

√
3/2)6, c15 > 0.5 > (

√
3/2)8.

Using Proposition 4.1(ii) and Lemma 4.2, we have

8 log cn ≥ −2r+1 log p1 ≥ −ϕ(n),

whereupon

cn ≥ e−ϕ(n)/8 ≥
(√

3

2

)ϕ(n)

since log(2/
√
3) > 1/8.

Proposition 4.3 will be sufficient for the proofs of Theorem 1.1, Theorem 1.2 and

Lemma 5.1. However, it may be of independent interest to state further properties

of cn, which are easy to prove.

For p an odd prime number, the derivative φ′
p(t) of the cyclotomic polynomial

φp(t) has a unique real root, this root lives in the interval ]− 1,−1
2 ] and will be

denoted tp.
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• For p = 3, we have t3 = −1
2 .

• For p an odd prime number, one has cp = ptp−1
p .

• The sequence (tp)p odd prime is decreasing and converges to −1; in fact, we have

−1 +
log(2p)

p
− (log(2p))2

2p2
< tp < −1 +

log(2p)

p
+

log(2p)

p2
·

• The sequence (cp)p odd prime is decreasing and converges to 1/2; in fact, we have

cp =
1

2
+

1 + log(2p)

4p
+

νp(log p)
2

p2
with |νp| ≤

1

4
·

• Let p1 and p2 be two primes. We have

cp1p2 ≥ 1

p1
·

Further, for any prime p1, we have

lim
p2→∞

cp1p2 =
1

p1
·

• We have lim inf
n→∞

cn = 0 and lim sup
n→∞

cn = 1.

5 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Assume

Φn(x, y) = m

with n ≥ 3 and max{|x], |y|} ≥ 2. Using Lemma 2.1, we deduce

(5.1) cn max{|x], |y|}ϕ(n) ≤ m.

From Proposition 4.3 we deduce

(5.2)

(√
3

2
max{|x|, |y|}

)ϕ(n)

≤ m.

Since max{|x], |y|} ≥ 2, we deduce the desired upper bound for ϕ(n):

3ϕ(n)/2 ≤ m.

Using again (5.2), we deduce

max{|x|, |y|} ≤ 2√
3
m1/ϕ(n). �
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Proof of Theorem 1.2. We first prove that if the triple (n, x, y) satisfies

n ≥ 3, max{|x|, |y|} ≥ 2 and Φn(x, y) < 7ϕ(n)/2,

then max{|x|, |y|} = 2. Using MAPLE [M], we check that this property is verified

for n ∈ {3, 5, 7, 15}, namely, each of the inequalities

Φ3(x, y) < 7, Φ5(x, y) < 72, Φ7(x, y) < 73, Φ15(x, y) < 74

implies max{|x|, |y|} = 2.

For n an odd squarefree integer 6∈ {3, 5, 7, 15}, according to (4.7), we have

ϕ(n) > 2r+1 log p1.

Since log(3/
√
7) > 1/8, we deduce from (5.1) and Proposition 4.1 that the assump-

tion Φn(x, y) < 7ϕ(n)/2 implies

ϕ(n) logmax{|x|, |y|} ≤ log Φn(x, y)− log cn

<
ϕ(n)

2
log 7 + 2r−2 log p1

<

(

1

2
log 7 +

1

8

)

ϕ(n) < ϕ(n) log 3,

hence max{|x|, |y|} < 3 and therefore max{|x|, |y|} = 2. Since 2 log 2 < log 7, we

deduce that the assumptions n ≥ 3, max{|x|, |y|} ≥ 2, and Φn(x, y) ≤ 2ϕ(n) imply

max{|x|, |y|} = 2.

Let θ ∈]0, 1[ and let the triple (n, x, y) satisfy n ≥ 3, max{|x|, |y|} ≥ 2, and

Φn(x, y) ≤ 2θϕ(n). Therefore

cn ≤ 2(θ−1)ϕ(n).

Proposition 4.1 implies

(1− θ)(log 2)ϕ(n) ≤ 2r−2 log p1.

It remains to check that the odd squarefree integers n satisfying this condition are

bounded. Indeed, if r = 1, then n = p1 satisfies

2(log 2)(1 − θ)(p1 − 1) ≤ log p1,

hence p1 is bounded. If r ≥ 2, then the condition

(1− θ)(log 2)(p1 − 1)(p2 − 1)(p3 − 1) · · · (pr − 1) ≤ 2r−2 log p1

shows that p1p2 · · · pr is bounded.
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The proofs of Theorem 1.3 and Corollary 1.4 will use the following result, the

proof of which rests on Proposition 4.3.

Lemma 5.1. Let d > 2. There exists an effectively computable positive constant

C(d) such that the number of triples (n, x, y) in Z3 which are satisfying ϕ(n) ≥ d,

max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by C(d)N2/d.

Given a positive integer N and a binary form F (X,Y ) of degree d, with integer

coefficients and nonero discriminant, denote by RF (N) the number of integers of

absolute value at most N which are represented by F (X,Y ). In [S–Y], the authors

quote the foundational work of Fermat, Lagrange, Legendre and Gauss concerning

the case where F is a binary quadratic form, and a result of Erdős and Mahler

(1938) for forms of higher degrees. They prove that for d ≥ 3, there exists a positive

constant CF > 0 such that RF (N) is asymptotic to CFN
2/d. In Lemma 5.1, we deal

with a sequence of forms having no real zero, a situation which is easier to deal with.

Proof of Lemma 5.1. If m < N is represented by Φn(x, y) with ϕ(n) ≥ d,

then we have Φn(x, y) < N , hence by (5.1) we have cn2
ϕ(n) < N . From Proposition

4.3 we deduce 3ϕ(n)/2 < N , whereupon ϕ(n) < (2 logN)/ log 3. Next, from (5.2) we

deduce

max{|x|, |y|} ≤ 2√
3
m1/ϕ(n) <

2√
3
N1/ϕ(n) ≤ 2√

3
N1/d,

which proves that for each n, the number of (x, y) is bounded by (16/3)N2/d. From

(1.1) we deduce that the number of triples (n, x, y) in Z3 which satisfy ϕ(n) ≥ d,

max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by 29N2/d(logN)1.161.

To complete the proof of Lemma 5.1, we consider two cases. If there is no n with

ϕ(n) = d, then we deduce the sharper upper bound 29N2/(d+1)(logN)1.161. If the

set {n1, n2, . . . , nk} of integers n satisfying ϕ(n) = d is not empty, for 1 ≤ j ≤ k

the number of couples (x, y) in Z2 satisfying max{|x|, |y|} ≥ 2 and Φnj
(x, y) < N is

bounded by (16/3)N2/d , while the number of triples (n, x, y) in Z3 with ϕ(n) > d,

max{|x|, |y|} ≥ 2 and Φn(x, y) < N is bounded by 29N2/(d+1)(logN)1.161. Since k

is bounded in terms of d, Lemma 5.1 follows.
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6 Proof of Theorem 1.3 and Corollary 1.4

We start from the easy inequality concerning the cardinality of the union of finite

sets. We have

(6.1)
∣

∣

∣

∣

∣A(Φ{n≥3};N)
∣

∣ −
(

∣

∣A(Φ3;N)
∣

∣ +
∣

∣A(Φ4;N)
∣

∣−
∣

∣A(Φ3;N) ∩ A(Φ4;N)
∣

∣

) ∣

∣

∣

≤
∣

∣

⋃

ϕ(n)≥4

A(Φn;N)
∣

∣.

By Lemma 5.1 the right–hand side of (6.1) is O(N
1

2 ) which is absorbed by the error

term of the formula (1.2). So we are led to study the cardinalities of three sets

A(Φ3;N), A(Φ4;N) and A(Φ3;N) ∩ A(Φ4;N). For algebraic considerations, it is

better to consider for k ∈ {3, 4} the larger sets

Ã(Φk;N) :=
{

m ∈ N | m ≤ N,m = Φn(x, y) for some (x, y) ∈ Z2\{(0, 0)}
}

,

which differ from A(Φk;N) by at most two terms. In conclusion, the proof of The-

orem 1.3 will be complete (with αh = α
(3)
h + α

(4)
h , h ≥ 0) as soon as we prove

Proposition 6.1. There exist three sequences of real numbers (α
(3)
h ), (α

(4)
h ) and

(βh) (h ≥ 0) with α
(3)
0 , α

(4)
0 and β0 > 0, such that for every for M ≥ 0, the following

equalities holds uniformly for N ≥ 2

(6.2)
∣

∣ Ã(Φk;N)
∣

∣ =
N

(logN)
1

2

{

α
(k)
0 +

α
(k)
1

(logN)
+ · · ·

+
α
(k)
M

(logN)M
+O

(

1

(logN)M+1

)

}

(k = 3, 4)

and

(6.3)
∣

∣ Ã(Φ3;N) ∩ Ã(Φ4;N)
∣

∣ =
N

(logN)
3

4

{

β0 +
β1

logN
+ · · ·

+
βM

(logN)M
+O

(

1

(logN)M+1

)}

.

The proof of this proposition will be achieved in the next three subsections. We

will exploit the fact that Φ3 and Φ4 are binary quadratic forms, which also are the

norms of integers of imaginary quadratic fields with class number one. Finally the

characteristic functions of the sets Ã(Φk;∞) for k ∈ {3, 4} are studied by analytic

methods via the theory of Dirichlet series.
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6.1 Algebraic backgrounds

We fix some notations. The letter p is reserved for primes. If a and q are two integers,

we denote by Na,q any integer ≥ 1 satisfying the condition

p | Na,q =⇒ p ≡ a mod q.

Proposition 6.2. The following equivalences hold true.

(i) An integer n ≥ 1 is of the form

n = Φ4(x, y) = x2 + y2

if and only if there exist integers a ≥ 0, N3,4 and N1,4 such that

n = 2a N2
3,4N1,4.

(ii) An integer n ≥ 1 is of the form

n = Φ3(u, v) = Φ6(u,−v) = u2 + uv + v2

if and only if there exist integers b ≥ 0, N2,3 and N1,3 such that

n = 3b N2
2,3 N1,3.

(iii) An integer n ≥ 1 is simultaneously of the forms

n = Φ3(u, v) = u2 + uv + v2 and n = Φ4(x, y) = x2 + y2

if and only if there exist integers a, b ≥ 0, N5,12, N7,12, N11,12 and N1,12 such

that

n =
(

2a 3b N5,12 N7,12 N11,12

)2
N1,12.

Proposition 6.2(i) is famous (see [H–W, Theorem 366] for instance). It can be

proved by detecting primes in the ring of the Gaussian integers Z[i] of the quadratic

field Q(i). This ring is principal and the norm of the element x + iy is given by

the quadratic form Φ4(x, y) = x2 + y2. The quadratic field Q(
√
−3) has similar

properties: its associated ring of integers is a principal domain equal to Z[j] with

j = (−1 +
√
−3)/2. The primes of Z[j] (also called Eisenstein primes) are detected

by the values of the Kronecker symbol (−3/p) and the norm of the element u+vj of

Z[j] is equal to Φ3(u,−v) = Φ6(u, v) = u2 + uv + v2. This gives Proposition 6.2(ii).

For instance this statement is a particular case of [B–Ch, Théorème 3, p. 267] and

it is implicitely contained in [H–W, Theorem 254], [H, Exercise 2, p. 308].

Combining Proposition 6.2(i)and 6.2(ii), we deduce Proposition 6.2(iii) directly.
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6.2 Analytic background

Our main tool is based on the Selberg–Delange method. The following version is a

weakened form of the quite general result due to Tenenbaum (see [T, Theorem 3,

p. 185]). It gives an asymptotic expansion of the summatory function of a sequence

(an) when the attached Dirichlet series can be approached by some power of the

ζ-function in a domain slightly larger than the half–plane {s ∈ C | ℜs ≥ 1}. We

have

Proposition 6.3. Let s = σ + it be the complex variable and let

F (s) :=
∑

n≥1

ann
−s

be a Dirichlet series such that

• the coefficients an are real nonnegative numbers,

• there exist z ∈ C, c0 > 0, δ > 0 and K > 0, such that the function

G(s) := F (s)ζ(s)−z

has a holomorphic continuation in the domain D of the complex plane, defined by

the inequality

(6.4) σ > 1− c0
1 + log(1 + |t|) ,

and satisfies the inequality

(6.5) |G(s)| ≤ K(1 + |t|)1−δ

for every s ∈ D.

Then there exists a sequence of real numbers (λk) (k ≥ 0) such that for all M ≥ 1,

uniformly for x ≥ 2, we have the equality

∑

1≤n≤x

an = x(log x)z−1







∑

0≤k≤M

λk

(log x)k
+O

( 1

(log x)M+1

)







·

In particular, we have the equality

λ0 =
1

Γ(z)
G(1).
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6.3 Proof of Proposition 6.1

We restrict ourselves to the proof of (6.3) since the proof of (6.2) is simpler. Let ξn

be the characteristic function of the set of integers n ≥ 1 which are simultaneously

represented by Φ3 and Φ4. Let F (s) =
∑

n ξnn
−s be the associated Dirichlet series.

Note the equality
∣

∣ Ã(Φ3;N) ∩ Ã(Φ4;N)
∣

∣ =
∑

n≤N

ξn.

By the third part of Proposition 6.2, F (s) factorizes in the product

(6.6) F (s) = H(s)Π(s)

with

H(s) =

(

1− 1

4s

)−1(

1− 1

9s

)−1
∏

p≡ 5, 7, 11 mod 12

(

1− 1

p2s

)−1

,(6.7)

Π(s) =
∏

p≡ 1 mod 12

(

1− 1

ps

)−1

.(6.8)

The function H is holomorphic for σ > 1/2 and uniformly bounded for σ ≥ 3/4.

The infinite product Π(s) is absolutely convergent for σ > 1 and we want to study

the behavior of this product in the vicinity of the singularity s = 1. To detect

among the primes p ≥ 5 those which are congruent either to 1 modulo 12 or to

5, 7, 11 modulo 12, we use the formula

(6.9)
1

4

(

1 +

(−3

p

)

+

(−4

p

)

+

(

12

p

))

=

{

1 if p ≡ 1 mod 12,

0 if p ≡ 5, 7, 11 mod 12.

Inserting (6.9) into (6.8), we deduce that for σ > 1 we have the equality

Π(s) =
∏

p≥5

{(

1− 1

ps

)(

1− (−3/p)

ps

)(

1− (−4/p)

ps

)(

1− (12/p)

ps

)}− 1

4

×
∏

p≡ 5, 7, 11 mod 12

(

1− 1

p2s

)
1

2

·

Completing the first infinite product with the factors associated with the primes

p = 2 and p = 3 to obtain the ζ–function and some L–functions, we deduce that for

σ > 1, Π(s) satisfies the equality

(6.10) Π(s) = H1(s) ζ(s)
1

4 L(s, (−3/·)) 1

4 L(s, (−4/·)) 1

4 L(s, (12/·)) 1

4 ,
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with

H1(s) =

(

1− 1

4s

)
1

4

(

1− 1

9s

)
1

4 ∏

p≡ 5, 7, 11 mod 12

(

1− 1

p2s

)
1

2

.

By (6.6), (6.7), (6.8) and (6.10), we deduce that F (s) satisfies for σ > 1 the equality

(6.11) F (s) = H2(s)ζ(s)
1

4 L(s, (−3/·)) 1

4 L(s, (−4/·)) 1

4 L(s, (12/·)) 1

4 ,

with

H2(s) =
(

1− 1

4s

)− 3

4

(

1− 1

9s

)− 3

4
∏

p≡5, 7, 11 mod 12

(

1− 1

p2s

)− 1

2

.

The function H2 is holomorphic for σ > 1/2 and uniformly bounded for σ ≥ 3/4.

By the classical zero–free region of the Dirichlet L–functions, there exists c0 > 0

such that in the domain D defined in (6.4), the function

L(s, (−3/·))L(s, (−4/·))L(s, (12/·))

does not vanish. This implies that the function

G(s) := F (s)ζ(s)−
1

4 = H2(s)L(s, (−3/·)) 1

4 L(s, (−4/·)) 1

4 L(s, (12/·)) 1

4

can be extended to a holomorphic function on D, satisfying the inequality (6.5), with

δ = 1/2, as a consequence of the functional equation and the Phragmen–Lindelöf

convexity principle (see [I–K, Exercise 3, p. 100] for instance).

All the conditions of Proposition 6.3 are satisfied with z = 1/4 and we obtain

(6.3) with

β0 = H2(1)L(1, (−3/·)) 1

4 L(1, (−4/·)) 1

4 L(1, (12/·)) 1

4 /Γ(1/4),

which can be written as

β0 =
(3

2

)
3

4 · 1

Γ(1/4)

× L(1, (−3/·)) 1

4 L(1, (−4/·)) 1

4 L(1, (12/·)) 1

4

∏

p≡ 5, 7, 11 mod 12

(

1− 1

p2

)− 1

2

·

Since [OEIS A101455, A073010, A196530]

L(1, (−4/·)) = π

4
, L(1, (−3/·)) = π

3
3

2

and L(1, (12/·)) = log(2 +
√
3)√

3
,

we deduce

β0 =
3

1

4

2
5

4

· π 1

2 · (log(2 +
√
3))

1

4 · 1

Γ(1/4)
·

∏

p≡ 5, 7, 11 mod 12

(

1− 1

p2

)− 1

2

.
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The proof of (6.2) for k = 3 and k = 4 is simpler since the formula to detect the

congruences p ≡ 1 mod 3 and p ≡ 1 mod 4 contains only two terms instead of four

as in (6.9). In both cases k = 3 and k = 4, the parameter z has the value z = 1/2.

This gives (6.2) with

α
(3)
0 =

1

2
1

23
1

4

·
∏

p≡ 2 mod 3

(

1− 1

p2

)− 1

2

and

α
(4)
0 =

1

2
1

2

·
∏

p≡ 3 mod 4

(

1− 1

p2

)− 1

2

.

Finally, (6.2) is a detailed version of Landau’s formula which states that for N

tending to infinity, we have

∣

∣ Ã(Φ4;N)
∣

∣ ∼ C
N√
logN

,

where C = α
(4)
0 = 0.764 223 653 589 220 . . . is the Landau–Ramanujan constant (cf.

[L, pp 257-263] and [OEIS A000404, OEIS A064533]). Using Pari GP [P], one checks

that the first decimal digits of α
(3)
0 are 0.638 909, while the first decimal digits of β0

are 0.302 316.

6.4 Proof of Corollary 1.4

For N ≥ 1, a1 + · · · + aN counts the number of triples (n, x, y) with n ≥ 3,

max{|x|, |y|} ≥ 2 and Φn(x, y) ≤ N . The number of these triples (n, x, y) with

n = 4 is asymptotically πN . The number of these triples with n = 3 is asymptot-

ically (π/
√
3)N , and it is the same for n = 6. The number of these triples with

ϕ(n) > 2 is o(N), as shown by Lemma 5.1. Hence

a1 + · · ·+ aN ∼
(

1 +
2√
3

)

πN

and Corollary 1.4 with

κ1 =
π

α0

(

1 +
2√
3

)

follows from Theorem 1.3.

7 Numerical computations

From the inequalities in (5.2), we deduce that the assumptions n ≥ 3, Φn(x, y) ≤ 20

and max{|x|, |y|} ≥ 2 imply
(√

3

2
max{|x|, |y|}

)ϕ(n)

≤ 20.
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We deduce firstly 3ϕ(n)/2 ≤ 20, hence ϕ(n) ≤ 4, and secondly

max{|x|, |y|} ≤ 2
√

20/3,

hence max{|x|, |y|} ≤ 5. It is now again a simple matter of computation with MAPLE

[M] to complete the rest of Table 1. For instance, one can find in Table 4 the values

of (x, y) which are the only ones satisfying the stronger condition Φn(x, y) ≤ 10.

m = 3 : n = 3, (x, y) = (1,−2), (−1, 2), (2,−1), (−2, 1),

m = 3 : n = 6, (x, y) = (1, 2), (−1,−2), (2, 1), (−2,−1);

m = 4 : n = 3, (x, y) = (0, 2), (0,−2), (2, 0), (2,−2), (−2, 0), (−2, 2),

m = 4 : n = 4, (x, y) = (0, 2), (0,−2), (2, 0), (−2, 0),

m = 4 :, n = 6, (x, y) = (0, 2), (0,−2), (2, 0), (2, 2), (−2, 0), (−2,−2);

m = 5 : n = 4, (x, y) = (1, 2), (1,−2), (−1, 2), (−1,−2), (2, 1), (2,−1),

(−2, 1), (−2,−1);

m = 7 : n = 3, (x, y) = (1, 2), (1,−3), (−1, 3), (−1,−2), (−3, 1), (3,−1),

(2, 1), (2,−3), (−2, 3), (−2,−1), (3,−2), (−3, 2),

m = 7 : n = 6, (x, y) = (1, 3), (1,−2), (−1, 2), (−1,−3), (3, 1), (−3,−1),

(2, 1), (2,−1), (2, 3), (−2,−3), (3, 2), (−3,−2);

m = 8 : n = 4, (x, y) = (2, 2), (2,−2), (−2, 2), (−2,−2);

m = 9 : n = 3, (x, y) = (0, 3), (0,−3), (3, 0), (3, 3), (−3, 0), (−3, 3),

m = 9 : n = 4, (x, y) = (0, 3), (0,−3), (3, 0), (−3, 0),

m = 9 : n = 6, (x, y) = (0, 3), (0,−3), (3, 0), (3, 3), (−3, 0), (−3, 3);

m = 10 : n = 4, (x, y) = (1, 3), (1,−3), (−1, 3), (−1,−3), (3, 1), (3,−1),

(−3, 1), (−3,−1).

Table 4

With similar calculations, we obtain Table 2. The triples (n, x, y) which con-

tribute to Table 2 satisfy ϕ(n) ∈ {4, 6} and max{|x|, |y|} ∈ {2, 3}.
Notice that given h ≥ 3, the smallest valuemh ofm for which there exists (n, x, y)

with n ≥ 2, max{|x|, |y|} ≥ h and Φn(x, y) = m is

mh =



















Φ3

(

h− 1

2
,−h

)

= Φ3

(

h+ 1

2
,−h

)

=
3h2 + 1

4
if 2 ∤ h,

Φ3

(

h

2
,−h

)

=
3h2

4
if 2 | h.
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