
45

An Explicit Universal Cycle for the (n − 1)-Permutations
of an n-Set

FRANK RUSKEY AND AARON WILLIAMS

University of Victoria

Abstract. We show how to construct an explicit Hamilton cycle in the directed Cayley graph−→
Cay({σn, σn−1} : Sn), where σk is the rotation (1 2 · · · k). The existence of such cycles was shown
by Jackson [1996] but the proof only shows that a certain directed graph is Eulerian, and Knuth
[2005] asks for an explicit construction. We show that a simple recursion describes our Hamilton
cycle and that the cycle can be generated by an iterative algorithm that uses O(n) space. Moreover,
the algorithm produces each successive edge of the cycle in constant time; such algorithms are said
to be loopless. Finally, our Hamilton cycle can be used to construct an explicit universal cycle for
the (n − 1)-permutations of a n-set, or as the basis of an efficient algorithm for generating every
n-permutation of an n-set within a circular array or linked list.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial
algorithms; permutations and combinations; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Universal cycle, loopless algorithm

ACM Reference Format:
Ruskey, F. and Williams, A. 2010. An explicit universal cycle for the (n − 1)-permutations of an
n-set. ACM Trans. Algor. 6, 3, Article 45 (June 2010), 12 pages. DOI = 10.1145/1798596.1798598
http://doi.acm.org/10.1145/1798596.1798598

1. Introduction and motivation

There are many proofs in the mathematical literature showing the existence of
Hamilton cycles or Eulerian cycles in important families of graphs. However, turn-
ing these proofs into efficient algorithms often represents a significant challenge.

An interesting case in point is the well-known De Bruijn cycle, which is a length
kn circular string over a k-ary alphabet with the property that every length n string
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45:2 F. RUSKEY AND A. WILLIAMS

occurs as a substring. The existence of De Bruijn cycles is commonly presented in
undergraduate discrete mathematics courses as a consequence of a certain graph
being Eulerian. However, it is not widely known how to efficiently generate a
De Bruijn cycle. In the authors’ view two aspects of this question have particular
importance.

—Space, not time, is the primary enemy. A naı̈ve solution would be to build the
graph and then use a Eulerian cycle algorithm to produce the cycle. This will
be practical for small values of n and k, but for large values space will be the
limiting factor long before time becomes a factor. In general, we need to be able
to generate the Hamilton or Eulerian cycle without building the graph, or storing
exponentially-long sublists. There are algorithms for building De Bruijn cycles
that use space O(n). The earliest of these is due to Fredricksen and Maiorana
[1978] and is presented in Knuth [2005].

—The development of efficient algorithms reveals structure. It is often worthwhile
to turn a proof into an algorithm, or to develop an alternate proof, because the
process often results in a deeper structural understanding of the cycles being
listed. For example, the efficient algorithm due to Fredricksen and Maiorana
[1978] is based on necklaces, Lyndon words, and is related to pattern-matching
and Lyndon factorization.

As another example from the Hamiltom cycle domain, Eades et al. [1984] con-
sidered the graph G(n, k) whose vertices are all length n bitstrings with density k
and where two bitstrings are joined by an edge if they differ by transposing two
adjacent bits. They showed that G(n, k) is Hamiltonian if and only if n is even and
k is odd. The proof is inductive and relies on the fact that the graph has a spanning
subgraph that is the prism of two “combs." However, it was not at all clear how to
turn that proof into an efficient algorithm. Eventually an algorithm that mimics the
proof was found that uses O(n) space and take time O(1) per bitstring generated
[Hough and Ruskey 1988].

In the present article we are considering the construction of a “universal cycle"
for the (n − 1)-permutations of an n-set (which we take to be {1, 2, . . . , n}). Here a
universal cycle is a circular string of length n! that contains each of the n! different
(n − 1)-permutations as a (contiguous) substring. For example, 321312 is a such a
universal cycle for n = 3, since its substrings are 32, 21, 13, 31, 12, and 23.

More general universal cycles were introduced by Chung et al. [1992] as a way
of extending the de Bruijn cycle idea to combinatorial objects in general. The
existence of a universal cycle for the k-permutations of an n-set was shown by
Jackson [1996] when k < n. His proof sets up a certain natural Eulerian graph, call
it Jk,n , and shows that any Eulerian cycle in that graph corresponds to the required
universal cycle. However, no explicit construction of the cycle is indicated. The
problem for k = n − 1 is discussed by Knuth [2005, Exercise 112 of Section
7.2.1.2]. On page 121 of Knuth [2005] we find the following quote.

“At least one of these cycles must almost surely be easy to describe and
to compute, as we did for de Bruijn cycles in Section 7.2.1.1. But no
simple construction has yet been found.”

The purpose of this article is to provide such a description and computational
method. We will show how to construct a particular universal cycle. Our algorithm
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takes space O(n) and uses a constant amount of time between successive outputs
of characters in the cycle. To be precise regarding the space requirement: The
algorithm uses a constant number of arrays, each with O(n) indices, and each
storing integers of value at most n. Similarly regarding time, we use a constant
number of operations (comparisons, increments, decrements, and parity tests) on
integers of value at most n.

Universal cycles for the permutations of an n-set are not directly possible unless
n ≤ 2. However, every (n −1)-permutation of an n-set can be uniquely extended to
a permutation of an n-set by appending the unique missing symbol. Thus, universal
cycles for (n −1)-permutations can be viewed as universal cycles for permutations.
For example, 321312 produces the permutations 321, 213, 132, 312, 123, and 231,
where the appended missing symbols are underlined. For this reason, our results
add to the already sizeable literature on generating permutations. A good survey is
provided by Sedgewick [1977] and more recent developments are to be found in
Knuth [2005].

We don’t expect our algorithms to be a fast way to generate permutations using
the usual model of computation, since at least n − 1 of the n values change
at each step. However, they will be fast if a circular representation is used; for
example, when using linked lists or a circular array. In a circular array we maintain
a start position and do arithmetic on indices mod n. They will also be fast if
the permutation is stored as a computer word. For example, we can store the
permutations up to n = 16 by dividing 64-bit words into 16 half-bytes. The shifts
can then be accommodated in a few machine instructions.

Finally, we mention that additional symbols can also be used to create univer-
sal cycles whose substrings are order isomorphic to permutations. For example,
421423 produces the permutations 321, 213, 132, 312, 123, and 231. Recently
Johnson [2009] proved a conjecture in Chung et al. [1992] by showing that n + 1
symbols are always sufficient for constructing these universal cycles.

The article is organized as follows. In Section 2 we give our explicit construction
of a universal cycle for the (n − 1)-permutations of {1, 2, . . . , n} as a certain
recursively defined string. Then, in Section 3, we show that this string can be
generated by an algorithm that uses only a constant amount of computation between
the output of successive symbols of the string, the first such algorithm for a universal
cycle. In Section 4, we give further properties of our recursive construction; first
some results on the number of σn or σn−1 operations that are used, then that
our ordering has an efficiently computable ranking function, and finally that it is
“multiversal," in a sense to be described later. We conclude with Section 5, which
contains some open problems.

2. An Explicit Construction

Initially, we will couch our discussion in terms of finding Hamilton paths in certain
directed Cayley graphs. Cayley graphs are denoted X = −→

Cay({α1, α2, . . . , αk} : G).
Here {α1, α2, . . . , αk} is a generating set of a group G. The vertices of X are the
elements of G and the edges are all of the form g → αi g; these edges are usually
thought of as being labeled with αi . In an undirected Cayley graph, if α is in
the generating set, then its inverse α− is also in the generating set. Driven by the
question of Lovász of whether there is a Hamilton cycle in all undirected Cayley
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graphs, there is a significant literature of results about Hamilton cycles in Cayley
graphs. A survey may be found in Gallian and Witte [1984]; see also Pak and
Radoičić [2004].

In the solution to Exercise 112 of Section 7.2.1.2 Knuth implicitly poses the prob-
lem of finding an explicit expression for universal cycles of (n − 1)-permutations
of an n-set [Knuth 2005]. This problem is equivalent to generating permutations
of an n-set by rotations of the form (1 2 · · · n) or (1 2 · · · n−1); that is, it is
equivalent to asking whether the Cayley graph

�n := −→
Cay({σn, σn−1} : Sn)

is Hamiltonian. We use Sk,n to denote the set of k-permutations of the n-set [n] =
{1, 2, . . . , n}. In the case where k = n we use Sn . Although we do not use this fact
in that follows, it is interesting to note that a short proof reveals that the graph �n
is the line graph of the Jackson graph Jn .

Our results are based upon the construction of a particular binary string Sn . Before
describing this string, it is useful to first present a small technical lemma. Recall
that σk represents the rotation (1 2 · · · k). We also let σ i

k represent i successive
applications of σk ; that is, σ 0

k (π ) = π and σ i
k (π ) = σk(σ i−1

k (π )), whenever π is a
permutation of at least k symbols.

LEMMA 2.1. Suppose that π, τ ∈ Sn−1. If τ differs from π by a length n−1 ro-
tation (respectively, by a length n −2 rotation), then n τ differs from σ n−3

n−1 (σ 2
n (n π ))

by a length n − 1 rotation (respectively, by a length n rotation).

PROOF. Without loss of generality, let π = 1 2 3 · · · n − 1. The cases where
τ = σn−1(π ) and τ = σn−2(π ) are covered by the derivations on the left and right,
respectively

n τ = n σn−1(π ) n τ = n σn−2(π )
= n σn−1(1 2 3 · · · n − 1) = n σn−2(1 2 3 · · · n − 1)
= n 2 3 · · · n − 1 1 = n 2 3 · · · n − 2 1 n − 1

= σ n−2
n−1 (2 3 · · · n − 1 n 1) = σn(n − 1 n 2 3 · · · n − 2 1)

= σ n−2
n−1

(
σ 2

n (n 1 2 3 · · · n − 1)
) = σn

(
σ n−3

n−1 (2 3 · · · n − 1 n 1)
)

= σ n−2
n−1

(
σ 2

n (n π )
) = σn

(
σ n−3

n−1

(
σ 2

n (n 1 2 3 · · · n − 1)
))

= σn−1
(
σ n−3

n−1

(
σ 2

n (n π )
)) = σn

(
σ n−3

n−1

(
σ 2

n (n π )
))

.

Now let us describe the binary string Sn by using the following recursive rules.
The base case is S2 = 00. For n ≥ 2, if Sn = x1x2 · · · xn!, then

Sn+1 := 001n−2 x1001n−2 x2 · · · 001n−2 xn!. (1)

In the preceding equation x denotes flipping the bit x , and we use the usual
convention that if w is a string and m is an integer then wm is w concatenated
together m times, wm = ww · · · w ; also w0 is the empty string.
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Next we list S3, S4, and S5. Each Si is of the form ww since 00 has this property
and the recurrence (1) preserves it.

S3 = 00 0̄ 00 0̄ = 00 1 00 1

S4 = 001 0̄ 001 0̄ 001 1̄ 001 0̄ 001 0̄ 001 1̄=001 1 001 1 001 0 001 1 001 1 001 0
S5 = ( 0011 1 0011 1 0011 0 0011 0 0011 1 0011 1

0011 0 0011 0 0011 1 0011 1 0011 0 0011 1 )2

Now define the mapping φ by 0 → σn and 1 → σn−1.

THEOREM 2.2. The list φ(Sn) is a Hamilton cycle in the directed Cayley graph
�n.

PROOF. In listing the Hamilton cycle we use one-line notation for the permu-
tations, starting with n n−1 · · · 2 1, and think of the cycles σn−1 and σn as acting
on the positions in the one-line notation. Thus, in a slight abuse of notation,

φ(S3) = 321, 213, 132, 312, 123, 231,

since S3 implies the successive application of σ3, σ3, σ2, σ3, σ3, and finally σ2 to
map the last permutation to the first.

Our proof strategy is to give an explicit listing of permutations of [n] with
the required properties and then show that it is equivalent to the one derived
from (1). Recursively define a circular list �(n) = �(n)0, �(n)1, . . . , �(n)n!−1 of
permutations of [n]. For small values of n, define �(1) = 1, �(2) = 21, 12, and
�(3) = φ(S3). Every nth permutation of �(n) is defined as follows.

�(n) jn := n �(n − 1) j (2)

The n − 1 permutations what follow n π , where π = �(n − 1) j , are defined to be

σn(n π ), σ 2
n (n π ), σn−1

(
σ 2

n (n π )
)
, . . . , σ n−3

n−1

(
σ 2

n (n π )
)
. (3)

The list �(4) is shown in Table I, column (e). The permutation n π followed by the
previous permutations comprise the sublist �(n) jn, �(n) jn+1, . . . , �(n)( j+1)n−1
and these permutations are all distinct since the position of n is successively in the
n different positions 1, n, n − 1, . . . , 2. Furthermore, because we can recover π
from any permutation in this sublist, the uniqueness of every permutation in �(n)
follows inductively from the uniqueness of every permutation in �(n − 1).

It remains only to prove that successive permutations differ by σn or σn−1 and
that the list is circular. These facts follow inductively from Lemma 2.1, and the
fact that successive strings in �(n − 1) differ by σn−1 or σn−2, and that �(n − 1) is
circular with this property. (The circularity of �(n) also follows from Lemma 2.3
that follows.)

LEMMA 2.3. Any Hamilton path in �n is, in fact, a Hamilton cycle.

PROOF. Suppose that � = �1, �2, . . . , �n! is a Hamilton path in �n that is not
a Hamilton cycle. In particular σn(�n!) �= �1 and σn−1(�n!) �= �1. Thus �n! �=
σ−

n (�1) and �n! �= σ−
n−1(�1). We must then have that σ−

n (�1) → σn−1(σ−
n (�1))

and σ−
n−1(�1) → σn(σ−

n−1(�1)) are distinct edges in �(n). However, an easy
calculation shows that σ−

n−1σn = σ−
n σn−1 = (n−1 n) and thus these permutations

are identical. This contradiction shows that � is a Hamilton cycle.
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45:6 F. RUSKEY AND A. WILLIAMS

TABLE I. (A) COUNTING IN MULTIRADIX BASE 2 × 3 × 4, (B) THE R4 SEQUENCE, (C) THE

CORRESPONDING MULTIRADIX GRAY CODE, (D) INDENTED VERSION OF S4, (E) THE LIST �(4),
(F) THE UNIVERSAL CYCLE U4, AND (G) THE RANK OF EACH PERMUTATION

(a) (b) (c) (d) (e) (f) (g)
234 R4 234 S4 �(4) U4 rank
000 3 000 . . 0 4321 4 0
001 3 001 . . 0 3214 3 1
002 3 002 . . 1 2143 2 2
003 2 003 . 1 . 1423 1 3
010 3 013 . . 0 4213 4 4
011 3 012 . . 0 2134 2 5
012 3 011 . . 1 1342 1 6
013 2 010 . 1 . 3412 3 7
020 3 020 . . 0 4132 4 8
021 3 021 . . 0 1324 1 9
022 3 022 . . 1 3241 3 10
023 1 023 0 . . 2431 2 11
100 3 123 . . 0 4312 4 12
101 3 122 . . 0 3124 3 13
102 3 121 . . 1 1243 1 14
103 2 120 . 1 . 2413 2 15
110 3 110 . . 0 4123 4 16
111 3 111 . . 0 1234 1 17
112 3 112 . . 1 2341 2 18
113 2 113 . 1 . 3421 3 19
120 3 103 . . 0 4231 4 20
121 3 102 . . 0 2314 2 21
122 3 101 . . 1 3142 3 22
123 1 100 0 . . 1432 1 23

The proof shows that in fact the lemma is true for any Cayley graph on two
generators ρ and τ for which τ−ρ is an involution.

The universal cycle for (n − 1)-permutations of [n] is obtained by recording the
first symbol in each of the permutations in �(n). We use Un to denote the resulting
universal cycle.

3. A Loop-Free Algorithm

Suppose that in our recurrence (1) for Sn+1 that for each “new" bit we record the
value n, and apply this idea recursively. Call the corresponding new sequence Rn+1.
That is, R2 = 11, and for n > 1,

Rn+1 = nn y1nn y2 · · · nn yn!,

where Rn = y1 y2 · · · yn!. For example R3 = 221 221 and

R4 = 333 2 333 2 333 1 333 2 333 2 333 1.

The sequence R4 is exactly the sequence that is obtained by recording the most
significant position that changes when counting with the multi-radix numbers with
parameters 2 × 3 × 4, when the numbers are indexed 1, 2, 3, from left-to-right. See
Table I, columns (a) and (b). In general, Rn gives us the positions when counting
with multi-radix numbers 2 × 3 × · · · × n.

These observations suggest that we may be able to efficiently generate the
Sn sequence by modifying the classic algorithm for counting with multi-radix

ACM Transactions on Algorithms, Vol. 6, No. 3, Article 45, Publication date: June 2010.



An Explicit Universal Cycle for the (n − 1)-Permutations of an n-Set 45:7

numbers. In the classic algorithm the multi-radix number is stored in the array
an−1 · · · a2a1 and j is used to represent the rightmost, or smallest, index where
a j is not at its maximum value. The next multi-radix number is obtained by
incrementing a j and setting all values to its right to 0. For example, given the
parameters 2×3×4×5×6, the classic algorithm changes the multi-radix number
01345 into 02000, and j = 4 into j = 1.

Now suppose that we just incremented the value in position j so that the multi-
radix number becomes an−1 · · · a1 with a j−1 · · · a1 = 0 · · · 0. Then the correspond-
ing Rn value is n − j and so the nonrecursive part of the Sj sequence that we are
listing is going through the pattern 001n− j−1 or the pattern 110n− j−1, depending on
whether j is odd or even, respectively. For proposition P we use the notation [[P]] to
mean the value 1 if P is true and the value 0 if P is false; also ⊕ denotes exclusive-
or. The expression [[ j even ⊕ a j ≤ 1]] gives the correct value of the bit to be output.
The following algorithm, rendered in pseudocode, is the complete implementation.

an+1an · · · a1 ← 0 0 · · · 0;
repeat

j ← 1;
while a j = n − j do a j ← 0; j ← j + 1; od;
output( [[ j even ⊕ a j ≤ 1]] );
a j ← a j + 1;

until j ≥ n;

There is an loopless algorithm for listing multi-radix numbers as a Gray code
in which the value in only one position changes and that change is by ±1 (see,
e.g., Williamson [1985, pg. 112], or Knuth [2005, pg. 20]). Together with the ideas
used in the previous “counting" algorithm, we can adapt those loopless algorithms
to get a loopless algorithm for generating Sn or our universal cycle. In the Gray
code for multi-radix numbers, the values in a given position alternately increase
and decrease. In the implementation we maintain a direction array d where +1
means increase and −1 means decrease; we also maintain an array f of “focus
pointers" which allow instant access to the next position whose value will change.
Furthermore, the values change in exactly the positions given by the Rn sequence.
See Table I, column (c), for an example.

Thus the values of j from the counting algorithm are exactly the same in the
Gray code algorithm, except that in the Gray code algorithm j is the position
where a value changes. The only complication arises because the values in a given
position can be decreasing, and so the test “a j ≤ 1" is not sufficient. Fortunately, all
algorithms that looplessly implement the Gray code maintain an array of directions
dn−1 · · · d2d1 for each position, where di ∈ {+1, −1}, indicating whether the values
in that position are currently increasing (+1) or decreasing (−1). If d j = +1 then
we can continue to test a j ≤ 1, but to account for d j = −1, we need to test

(a j ≤ 1 and d j = 1) or (a j ≥ n − j − 1 and d j = −1).

We can “optimize" this condition. Notice that the test (a j ≤ 1 and d j = 1) can
be replaced by a j −d j ≤ 0. This change is possible because if d j = −1 then a j −d j
is guaranteed to be greater than zero because a j ≥ 0. Therefore, if a j − d j ≤ 0,
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45:8 F. RUSKEY AND A. WILLIAMS

then this immediately implies that d j = 1 and so a j − 1 ≤ 0, which is equivalent
to the original test a j ≤ 1. Likewise, the test (a j ≥ n − j − 1 and d j = −1) can
be replaced by a j − d j ≥ n − j . The following is our loopless algorithm in full
detail.

an+1an · · · a1 ← 0 0 · · · 0;
dndn−1 · · · d1 ← 1 1 · · · 1;
fn fn−1 · · · f1 ← n+1 n−1 · · · 1;
repeat

j ← f1; f1 ← 1;
output( [[ j even ⊕ (a j − d j ≤ 0 or a j − d j ≥ n − j) ]] );
a j ← a j + d j ;
if a j = 0 or a j = n − j

then d j ← −d j ; f j ← f j+1; f j+1 ← j + 1; fi;
until j ≥ n;

It is also possible to output the universal cycle itself in a loopless manner, but
an additional circular array is required to hold the current permutation. To follow
are the details. Define an array π1π2 · · ·πn initialized to n n−1 · · · 1 and an index
t that will be incremented mod n on each iteration of the algorithm. We will think
of π as a circular array. The index t is the position of the last element of π , so
initially t = n. As each bit of Sn is determined, we will ouput the first element
of π (i.e., the one in position t + 1). If the bit is a 1, so that σn−1 is acting on π
then we need to swap the last two elements: πt−1 ↔ πt . In other words the output
statements in the preceding code fragments are replaced with the following code
where expr is the expression inside of the output statement in either the previous
counting algorithm of the previous loopless algorithm.

t ′ ← t ; t ← (t + 1) mod n;
output( π(t+1) mod n );
if expr = 1 then πt ↔ πt ′ fi;

Finally, we note that every permutation can be output in a circular fashion by
outputting π and t . We could also use a linked list, which would give a loopless
permutation generation algorithm.

4. Further Properties

In this section we explore further properties of �n and our Hamilton cycle.

4.1. HOW MANY OF EACH ROTATION IS USED? It is clear from the recurrence
relation (1) that the number, call it fn , of σn’s in φ(Sn) satisfies the recurrence
relation

fn+1 =
{

2 if n = 1

3n! − fn if n > 1.
(4)
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This recurrence relation can be iterated to obtain

fn = 2(−1)n − 3
n−1∑
k=1

(−1)k(n − k)!,

from which it follows that

fn ∼ 3(n − 1)! or
fn

n!
∼ 3

n
.

Interestingly, this sequence appears in OEIS [Sloane] as A122972 as the solution
to the “symmetric" recurrence relation a(n +1) = (n −1) ·a(n)+n ·a(n −1). The
values of fn for n = 1..10 are 1, 2, 4, 14, 58, 302, 1858, 13262, 107698, 980942.

Consider the cosets induced by σn; there are n!/n = (n − 1)! of them. In a
Hamilton cycle there must be at least one σn−1 edge that leaves each coset, and thus
there must be at least (n − 1)! of them. Alternatively, consider the cosets induced
by σn−1; there are n!/(n − 1) = n · (n − 2)! of them. In a Hamilton cycle there
must be at least one σn edge that leaves the coset, and thus there must be at least
n · (n − 2)! of them. We can make a stronger statement regarding the σn edges.

LEMMA 4.1. The least number of σn edges in any Hamilton cycle in �n is
2n(n − 2)! − 2.

PROOF. First, observe that

σ−
−1σnσ

−
n−1σn = (n−1 n)(n−1 n) = id.

The two σn edges are incident with the same unordered pair of cosets induced by
σn−1. Thus if we contract each coset into a singe super-vertex, then the resulting
graph, call it Qn , is undirected in the sense that every directed edge is paired with
an edge in a 2-cycle. Furthermore, it is not hard to see that if one of those σn
edges is used in a Hamilton cycle, then so must the other. Thus a Hamilton cycle
in �n becomes a connected spanning subgraph of Qn . Since a minimal connected
spanning subgraph is a spanning tree, and any spanning tree has n · (n − 2)! − 1
edges, the number of σn edges is at least 2n(n − 2)! − 2.

Figure 1 shows the Cayley graph �4. Note that the contracted graph Q4 is the
3-cube. The red edges show the Hamilton cycle S4. In this case Sn corresponds to
a spanning tree in Qn , but this is not the case for n ≥ 6.

4.2. RANKING. The rank of a permutation π is the value r for which
�(n)r = π . Our recursive equation for the rank depends on the position of n
within the permutation being ranked. From the definition of �(n) we can infer that
rank(a1a2 · · · ak−1nak+1 · · · an) is equal to⎧⎪⎨

⎪⎩
0 if n = 1,

n · rank(a2a3 · · · an) if k = 1,

n − k + 1 + n · rank(anak+1 · · · an−1a1 · · · ak) if k > 1.

(5)
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FIG. 1. The Cayley graph �4 on the left. The graph Q4 on the right. The thick (red) edges indicate
the Hamilton cycle S4.

The expression n − k + 1 accounts for the position of the n, and the rest comes
from the recursive part of the definition of �(n). We can also express the rank as

rank( αnβ ) =

⎧⎪⎨
⎪⎩

0 if α = β = ε,

n · rank( β ) if α = ε,

n − |α| + n · rank( σ (β)α ) otherwise ,

(6)

where σ (β) is β rotated one position to the right.
Implemented in the obvious manner, these recurrence relations lead to algorithms

that use O(n2) arithmetic operations on integers as large as n!.

4.3. MULTIVERSAL CYCLE PROPERTY. In this section we prove that �(n) =
�(n)0, �(n)1, . . . , �(n)n!, written out as one long string of symbols by concate-
nating each permutation, is a “multiversal cycle." We denote this “flattening" of
�(n) as 
(n). For example, for n = 3, consider the length 18 string


(3) = 321︸︷︷︸ 213︸︷︷︸ 132︸︷︷︸ 312︸︷︷︸ 123︸︷︷︸ 231︸︷︷︸ .

Starting in positions j = 0, 1, 2 and advancing the position in increments of n = 3,
recording the first n − 1 = 2 symbols after each increment, we obtain n! strings
each of length n − 1, as illustrated in the following table.

j 
(3) S2,3

0 321213132312123231 32, 21, 13, 31, 12, 23
1 321213132312123231 21, 13, 32, 12, 23, 31
2 321213132312123231 12, 31, 23, 21, 32, 13

Notice that the strings associated with each starting position form a complete
set of all 2-permutations of Fredricksen and Maiorana [1978]. The purpose of this
section is to prove that this property holds in general.

Definition 4.2. A multiversal cycle for the (n − 1)-permutations of an n-set
is a circular string a0a1 · · · aN−1 of length N = n · n! such that, for all m =
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0, 1, . . . , n − 1,

{am+in · · · am+in+n−2 | i = 0, 1, . . . , n! − 1} = Sn−1,n, (7)

where arithmetic in the indices is taken mod n.

Before getting to the main theorem in this section we prove a technical lemma.

LEMMA 4.3. If 
(n) = a0a1 · · · aN−1 and i �= 0, −1 mod n, then ai =
ai+n−1.

PROOF. Because i �= 0 mod n the numbers ai and ai+n−1 lie in two successive
permutations of �(n). The conclusion now follows since successive permutations
differ by σn or σn−1. The i �= −1 mod n condition is necessary when they differ
by σn−1.

THEOREM 4.4. The circular string 
(n) is a multiversal cycle for the (n − 1)-
permutations of an n-set.

PROOF. Let 
(n) = a0a1 · · · aN−1, where N = n ·n!. The proof is by induction
on the value m in Definition 4.2. The base case m = 0 satisfies (7) because
�(n)0, �(n)1, . . . , �(n)n!−1 is a listing of all permutations of [n], so ignoring
the last character of each permutation gives a complete listing of all (n − 1)-
permutations of [n]. Similarly, when m = 1, ignoring the first character of each
permutation also gives a complete listing of all (n − 1)-permutations of [n]. We
now argue by contradiction. Suppose that there are some values m > 1, i and i ′,
with i �= i ′, such that

am+in · · · am+in+n−2 = am+i ′n · · · am+i ′n+n−2. (8)

Inductively, we know that

am−1+in · · · am−1+in+n−2 �= am−1+i ′n · · · am−1+i ′n+n−2.

Thus it must be the case that am−1+in �= am−1+i ′n . However, applying Lemma 4.3
to am−1+in and am−1+i ′n gives

am−1+in = am−1+in+n−1 and am−1+i ′n = am−1+i ′n+n−1,

so long as m �= 0, 1. But by (8) we now have

am−1+in = am−1+in+n−1 = am+in+n−2 = am+i ′n+n−2 = am−1+i ′n+n−1 = am−1+i ′n,

which is a contradiction.

The careful reader will have noted that Lemma 4.3 and Theorem 4.4 apply to
any Hamilton cycle in �n since the only property that we use is that successive
permutations differ by σn−1 or σn .

5. Final Remarks, Open Problems

In this article we have developed an explicit algorithm for generating a universal
cycle for the (n − 1)-permutations of an n-set. This is the first universal cycle for
which a loopless algorithm has been discovered.
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The following is a list of open problems inspired by this work.

—Can the results of this article be extended to k-permutations of [n] for 1 ≤ k <
n − 1?

—Among all Hamilton cycles in �n we determined in Lemma 4.1 the least number
of σn edges that need to be used in a Hamilton cycle in �n . What is the least
number of σn−1 edges that need be used? In our construction, the number of
σn edges is asymptotic to 3/n and the number of σn−1 edges is asymptotic to
(n − 3)/n. Is there a general construction that uses more σn edges than σn−1
edges?

—Can the results of this article be extended to the permutations of a multiset? That
is, given multiplicities n0, n1, . . . , nt , where ni is the number of times i occurs
in the multiset and n = n0 + n1 + · · · + nt , is there a circular string a1a2 · · · aN

of length N = ( N
n0,n1,...,nt

)
with the property that

{ai ai+1 · · · ai+n−2 ι(ai , ai+1, . . . , ai+n−2) | 1 ≤ i ≤ N }
is equal to the set of all permutations of the multiset? Since the length of
ai ai+1 · · · ai+n−2 is n − 1 it is not a permutation of the multiset; one character
is missing. The function ι gives the missing character. We call these strings
shorthand universal cycles. The current article gave a shorthand cycle for per-
mutations of [n].

—It would be interesting to gain more insight in to the ranking process. Is there a
way to iterate the recursion so that it can be expressed as a sum?
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