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Abstract

The following congruence for power sums, Snppq, is well known and

has many applications:

1n ` 2n ` ¨ ¨ ¨ ` pn ”

#

´1 pmod pq, if p ´ 1 � n;

0 pmod pq, if p ´ 1 ffl n,

where n P N and p is prime. We extend this congruence, in particular,

to the case when p is any power of a prime. We also show that the

sequence pSnpmq mod kqmě1 is periodic and determine its period.

1 Introduction

Sums of powers of integers defined below have captivated mathematicians for
many centuries [1].

Definition 1. For n,m P N, let

Snpmq “
m
ÿ

i“1

in.
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With their pebble experiments, the Pythagoreans were the first to dis-
cover a formula for the sum of the first powers. Formulas for the sums
of second and third powers were proved geometrically by Aryabhatta and
Archimedes, and Harriot later provided a generalizable form for these for-
mulas. Faulhaber gave formulas for power sums up to the 17th power,
and Fermat, Pascal, and Bernoulli provided succinct formulas for them.
Since then, different representations and number-theoretic properties of these
power sums have been an object of study [5, 6]. Bernoulli numbers have been
used to represent the coefficients of polynomial formulas for these power sums
such as Faulhaber’s formula [3, p. 107]. In a recent paper, Newsome et al.
[10] have demonstrated symmetry properties of the power sum polynomials
and their roots via a novel Bernoulli number identity.

One of the most well-known results concerning the number-theoretic prop-
erties of power sums is the following congruence relation:

Theorem 2. If n P N and p is prime, then

Snppq ”

#

´1 pmod pq, if p ´ 1 � n;

0 pmod pq, if p ´ 1 ffl n.

The case p´1 � n is an easy consequence of Fermat’s little theorem. There
are several different proofs for the case p ´ 1 ffl n in the literature. Some of
the notable ones are by Rado [4, 8, 11] using the theory of primitive roots,
Zagier [7] using Lagrange’s theorem, and MacMillan and Sondow [6] using
Pascal’s identity. Also, a proof of both cases by Carlitz [2] uses Bernoulli
numbers.

This congruence is used to prove the von Staudt-Clausen theorem [4, 11]
and its generalization [2], prove the Carlitz-von Staudt theorem [7], and study
the Erdős-Moser equation Snpm ´ 1q “ mn [7, 8, 9].

Our main goal in this paper is to generalize the well-known congruence re-
sult above and to present periodicity properties of the sequence pSnpmq mod
kqmě1. In Section 2, we extend Theorem 2 to the case when p is a power
of a prime. In Section 3, we prove that pSnpmq mod kqmě1 is periodic and
determine its period for different values of k and n.
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2 Generalization of Theorem 2

Theorem 3. (1) For n P N and p “ 2a with a ě 2,

Snppq ”

#

ϕppq pmod pq, if n “ 1 or 2 � n;

0 pmod pq, if n ą 1 and 2 ffl n,

where ϕ is Euler’s totient function.

(2) If n P N and p “ qa where q is an odd prime and a ě 1, then

Snppq ”

#

ϕppq pmod pq, if q ´ 1 � n;

0 pmod pq, if q ´ 1 ffl n.

Proof. (1) The proof is by induction on a. For a “ 2,

Snp4q ” 1n ` 2n ` 3n ` 4n ” 1n ` 2n ` p´1qn

”

#

2 pmod 4q, if n “ 1 or 2 � n;

0 pmod 4q, if n ą 1 and 2 ffl n.

Suppose the statement holds for some a ě 2. Then, for n “ 1 we have

S1p2
a`1q ”

2a`1p2a`1 ` 1q

2
” 2a ” ϕp2a`1q pmod 2a`1q,

and for n ě 2,

Snp2a`1q ” 1n ` ¨ ¨ ¨ ` p2aqn ` p2a ` 1qn ` ¨ ¨ ¨ ` p2a`1qn

” Snp2aq `
2
a

ÿ

t“1

p2a ` tqn

” Snp2aq `
2a
ÿ

t“1

`

tn ` n2atn´1
˘

(all other terms are divisible by p2aq2, thus divisible by 2a`1)

” 2Snp2aq ` n2a Sn´1p2aq
looomooon

even

psince a ě 2, Sn´1p2
aq has an even number of odd termsq

” 2Snp2aq pmod 2a`1q.
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If 2 � n, then
Snp2aq ” ϕp2aq pmod 2aq,

so
Snp2a`1q ” 2Snp2aq ” 2ϕp2aq ” ϕp2a`1q pmod 2a`1q.

If 2 ffl n, then
Snp2aq ” 0 pmod 2aq,

so
Snp2a`1q ” 2Snp2aq ” 0 pmod 2a`1q.

(2) The proof is by induction on a. The case a “ 1 is Theorem 2.

Suppose the statement holds for some a ě 1. Then, for n “ 1 we have

S1pqa`1q “
qa`1pqa`1 ` 1q

2
” 0 pmod qa`1q,

and for n ě 2,

Snpqa`1q ” p1n ` ¨ ¨ ¨ ` pqaqnq ` ¨ ¨ ¨ `
`

ppq ´ 1qqa ` 1qn ` ¨ ¨ ¨ ` pqa`1qn
˘

”
q´1
ÿ

i“0

qa
ÿ

t“1

piqa ` tqn

”
q´1
ÿ

i“0

qa
ÿ

t“1

`

tn ` niqatn´1
˘

(all other terms are divisible by pqaq2, thus divisible by qa`1)

”
q´1
ÿ

i“0

pSnpqaq ` niqaSn´1pq
aqq

” qSnpqaq ` n
pq ´ 1qq

2
qaSn´1pq

aq

” qSnpqaq pmod qa`1q.

If q ´ 1 � n, then
Snpqaq ” ϕpqaq pmod qaq,

so
Snpqa`1q ” qSnpqaq ” qϕpqaq ” ϕpqa`1q pmod qa`1q.

If q ´ 1 ffl n, then
Snpqaq ” 0 pmod qaq,
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so
Snpqa`1q ” qSnpqaq ” 0 pmod qa`1q.

Corollary 4. For any a, n P N and prime q,

Snpqaq ” 0 pmod qa´1q.

The next few results will be used to extend Theorem 3 (2).

Lemma 5. If n, i, j, k P N and q is an odd prime such that qi � n, then

qi`j �

ˆ

n

k

˙

pqjqk. Moreover, for k ě 2, qi`j`1 �

ˆ

n

k

˙

pqjqk.

Proof. If k “ 1, then

ˆ

n

k

˙

pqjqk “ nqj is divisible by qi`j.

If k ě 2, note that since

ˆ

n

k

˙

“
npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q

k!
and the highest

power of q that divides k! is qα where α “

Z

k

q

^

`

Z

k

q2

^

` ¨ ¨ ¨ , it is sufficient

to show that

i ` j ă i ´

ˆZ

k

q

^

`

Z

k

q2

^

` ¨ ¨ ¨

˙

` jk.

Indeed,

i ` j ď i ` j `
k

2
´ 1

“ i ` j ´
k

2
` k ´ 1

ď i ` j ´
k

q ´ 1
` jpk ´ 1q

“ i ´
8
ÿ

t“1

k

qt
` jk

ă i ´

ˆZ

k

q

^

`

Z

k

q2

^

` ¨ ¨ ¨

˙

` jk.

Corollary 6. If i, j, n, t P N, q is an odd prime, and qi � n, then

pt ` qjqn ” tn pmod qi`jq.
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Proof. We have

pt ` qjqn ” tn `
n

ÿ

k“1

ˆ

n

k

˙

pqjqktn´k

” tn pmod qi`jq. (by Lemma 5)

If q is an odd prime and g is invertible modulo q, then multiplication by
g permutes elements of Z˚

q , that is,

tg ¨ 1 mod q, . . . , gpq ´ 1q mod qu “ t1, . . . , q ´ 1u (1)

as sets.
The following theorem extends Theorem 3 (2).

Theorem 7. If i P Z, i ě 0, j, n P N, q is an odd prime, q ´ 1 ffl n, and
qi � n, then

Snpqjq ” 0 pmod qi`jq.

Proof. The case i “ 0 is Theorem 3 (2).
For any fixed i ě 1 we use induction on j. First consider j “ 1. Let g be

a generator of the multiplicative group Z
˚

q . Then

gnSnpqq ” gn
q

ÿ

k“1

kn

”
q

ÿ

k“1

pgkqn

”
q

ÿ

k“1

pgk mod qqn (by Corollary 6)

”
q

ÿ

k“1

kn (by (1))

” Snpqq pmod qi`1q.

Thus
pgn ´ 1qSnpqq ” 0 pmod qi`1q.
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But gn ı 1 (mod q) since g is a generator of Z˚

q and q ´ 1 ffl n. Therefore

Snpqq ” 0 pmod qi`1q.

Now assume that Snpqjq ” 0 (mod qi`j) for some j ě 1. Then

Snpqj`1q ”
q´1
ÿ

t“0

qj
ÿ

r“1

ptqj ` rqn

”
q´1
ÿ

t“0

qj
ÿ

r“1

˜

rp ` ntqjrn´1 `
n

ÿ

k“2

ˆ

n

k

˙

ptqjqkrn´k

¸

”
q´1
ÿ

t“0

qj
ÿ

r“1

`

rn ` ntqjrn´1 ` 0
˘

(by Lemma 5)

”
q´1
ÿ

t“0

`

Snpqjq ` ntqjSn´1pq
jq

˘

” qSnpqjq ` n
pq ´ 1qq

2
qjSn´1pq

jq

” 0 pmod qi`j`1q. psince qi � nq

3 Periodicity

In this section, we first establish the periodicity of the sequence of sequences
ppSnpmq mod kqně1qmě1 for any k P N. An immediate implication of this
result is that the sequence pSnpmq mod kqmě1 is periodic for all values of k
and n. We then provide formulas for the length of the period when k is a
power of a prime.

Theorem 8. For each k P N, the sequence of sequences

ppS1pmq mod k, S2pmq mod k, S3pmq mod k, . . . qqmě1

is periodic. If k “ qa1
1
qa2
2

¨ ¨ ¨ qarr where qi’s are distinct primes, then the period
is qa1`1

1
qa2`1

2
¨ ¨ ¨ qar`1

r .
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Proof. We will first prove that

Snpm ` qa`1q ” Snpmq pmod qaq

for all prime q and natural n, m, and a. We have

Snpm ` qa`1q ” Snpqa`1q ` pqa`1 ` 1qn ` ¨ ¨ ¨ ` pqa`1 ` mqn

” Snpqa`1q ` Snpmq

” Snpmq pmod qaq

since Snpqa`1q ” 0 (mod qa) by Corollary 4.
Thus, the sequence of sequences

ppS1pmq mod qa, S2pmq mod qa, S3pmq mod qa, . . . qqmě1

repeats every qa`1 terms. Thus it is periodic with period being a factor of
qa`1. To show that the period is not less than qa`1, it is sufficient to show
that the sequence does not repeat every qa terms. More precisely, we will
show that Snpqaq ı Snpqa`1q (mod qa) for at least one value of n.

Consider n “ q ´ 1 (or, in fact, any n divisible by q ´ 1 if q is odd).
By Theorem 2 in the case a “ 1, and by Theorem 3 otherwise, and using
Corollary 4,

Snpqaq ” ϕpqaq ı 0 ” Snpqa`1q pmod qaq.

Thus the sequence does not repeat every qa terms, which implies the period
is exactly qa`1.
Next, if k “ qa1

1
qa2
2

¨ ¨ ¨ qarr where qi’s are distinct primes, then from the case
proved above and the Chinese Remainder Theorem, it follows that the period
of the sequence is qa1`1

1
qa2`1

2
¨ ¨ ¨ qar`1

r .

It follows from Theorem 8 that given any values of k and n, the sequence

pSnpmq mod kqmě1

is periodic with period not exceeding the one given in Theorem 8. However,
for some values of k and n the period is smaller.

Theorem 9. For k, n P N, let ℓpk, nq denote the period of the sequence
pSnpmq mod kqmě1. Then

(1) ℓp2, nq “ 4 for all n.
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(2) for a ě 2,

ℓp2a, nq “

#

2a`1, if n “ 1 or 2 � n;

2a, otherwise.

(3) for q an odd prime and a ě 1,

ℓpqa, nq “

$

’

&

’

%

qa`1, if q ´ 1 � n;

qa´i, if q ´ 1 ffl n, νqpnq “ i, 0 ď i ď a ´ 2;

q, if q ´ 1 ffl n and qa´1 � n,

where νqpnq is the exponent of the highest power of q that divides n.

Proof. (1) Theorem 8 implies that ℓp2, nq is a factor of 4. Since

1n ” 1 pmod 2q,
1n ` 2n ” 1 pmod 2q,

1n ` 2n ` 3n ” 0 pmod 2q,
1n ` 2n ` 3n ` 4n ” 0 pmod 2q,

ℓp2, nq “ 4.

(2) Let a ě 2.

If n “ 1 or 2 � n, by Theorem 3 (1) we have Snp2aq ” ϕp2aq (mod 2a).
However, Theorem 8 implies that ℓp2a, nq is a factor of 2a`1, and hence
must be 2a`1.

If n ą 1 and 2 ffl n, Theorem 3 (1) implies that Snp2aq ” 0 (mod 2a).

We have

Snpm ` 2aq ” Snp2aq ` p2a ` 1qn ` ¨ ¨ ¨ ` p2a ` mqn

” Snp2aq ` Snpmq

” Snpmq pmod 2aq.

Thus, ℓp2a, nq is a factor of 2a. We now show that ℓp2a, nq is not smaller
than 2a. Assume to the contrary that ℓp2a, nq is a factor of 2a´1. Then

Snp2a´1q ” Snp2aq ” 0 pmod 2aq,
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but then

Snp2a´1 ` 1q ” Snp2a´1q ` p2a´1 ` 1qn

” 0 ` 1n ` n2a´1 `
n

ÿ

k“2

ˆ

n

k

˙

p2a´1qk1n´k

” 1n ` n2a´1

ı 1n (since n is odd)

” Snp1q pmod 2aq,

which is a contradiction.

(3) Let q be an odd prime and a ě 1.

The case q ´ 1 � n follows from the proof of Theorem 8.

If q ´ 1 ffl n and qi � n for 0 ď i ď a ´ 1, then by Theorem 7

Snpqa´iq ” 0 pmod qaq.

Then

Snpm ` qa´iq ” Snpqa´iq `
m
ÿ

r“1

pqa´i ` rqn

” 0 `
m
ÿ

r“1

˜

rn `
n

ÿ

k“1

ˆ

n

k

˙

pqa´iqkrn´k

¸

”
m
ÿ

r“1

rn (by Lemma 5)

” Snpmq pmod qaq,

so ℓpqa, nq is a factor of qa´i.

We will show that if qi`1 ffl n for 0 ď i ď a ´ 2, then ℓpqa, nq is not
smaller than qa´i. Assume to the contrary that ℓpqa, nq is a factor of
qa´i´1. Then

Snpqa´i´1q ” Snpqa´iq ” 0 pmod qaq,
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but then

Snpqa´i´1 ` 1q ” Snpqa´i´1q ` pqa´i´1 ` 1qn

” 0 ` 1n ` nqa´i´1 `
n

ÿ

k“2

ˆ

n

k

˙

pqa´i´1qk1n´k

” 1n ` nqa´i´1 ` 0 (by Lemma 5)

ı 1n (since qi`1 ffl n)

” Snp1q pmod qaq,

which is a contradiction.

Thus we have shown that for 0 ď i ď a´ 2, if q ´ 1 ffl n, and νqpnq “ i,
then ℓpqa, nq is a factor of qa´i but not a factor of qa´i´1. Therefore,
ℓpqa, nq “ qa´i.

In the last case (q ´ 1 ffl n and qa´1 � n), we have shown above that
ℓpqa, nq is a factor of q. However,

Snp1q ” 1 ı 0 ” Snpqq pmod qaq,

so ℓpqa, nq ‰ 1. Therefore, ℓpqa, nq “ q.
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