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Abstract

The following congruence for power sums, S, (p), is well known and
has many applications:

—1 (modp), if p—1]mn;

1" 4+2" 4 4t =
b {0 (mod p), if p—1/n,

where n € N and p is prime. We extend this congruence, in particular,
to the case when p is any power of a prime. We also show that the
sequence (S, (m) mod k)m>1 is periodic and determine its period.

Introduction

Sums of powers of integers defined below have captivated mathematicians for
many centuries [1].

Definition 1. For n,m € N, let
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With their pebble experiments, the Pythagoreans were the first to dis-
cover a formula for the sum of the first powers. Formulas for the sums
of second and third powers were proved geometrically by Aryabhatta and
Archimedes, and Harriot later provided a generalizable form for these for-
mulas. Faulhaber gave formulas for power sums up to the 17" power,
and Fermat, Pascal, and Bernoulli provided succinct formulas for them.
Since then, different representations and number-theoretic properties of these
power sums have been an object of study [5, 6]. Bernoulli numbers have been
used to represent the coefficients of polynomial formulas for these power sums
such as Faulhaber’s formula [3, p. 107]. In a recent paper, Newsome et al.
[10] have demonstrated symmetry properties of the power sum polynomials
and their roots via a novel Bernoulli number identity.

One of the most well-known results concerning the number-theoretic prop-
erties of power sums is the following congruence relation:

Theorem 2. Ifn e N and p is prime, then

_ -1 (HIOd p)a Zf p— 1 ‘ n;
Sn(p) = {0 (mod p), if p—1/)n.

The case p—1 | nis an easy consequence of Fermat’s little theorem. There
are several different proofs for the case p — 1 J n in the literature. Some of
the notable ones are by Rado [1, 8, 11] using the theory of primitive roots,
Zagier [7] using Lagrange’s theorem, and MacMillan and Sondow [6] using
Pascal’s identity. Also, a proof of both cases by Carlitz [2] uses Bernoulli
numbers.

This congruence is used to prove the von Staudt-Clausen theorem [1, 11]
and its generalization [2], prove the Carlitz-von Staudt theorem [7], and study
the Erdés-Moser equation S,(m — 1) = m™ [7, 8, 9].

Our main goal in this paper is to generalize the well-known congruence re-
sult above and to present periodicity properties of the sequence (.S, (m) mod
k)m=1. In Section 2, we extend Theorem 2 to the case when p is a power
of a prime. In Section 3, we prove that (S, (m) mod k),,>1 is periodic and
determine its period for different values of k and n.



2 Generalization of Theorem 2

Theorem 3. (1) ForneN and p = 2% with a > 2,

S, (p) = e(p) (modp), if n=1o0r2|mn;
= 0 (mod p), if n>1and?2}n,
where @ is Fuler’s totient function.

(2) If n e N and p = q* where q is an odd prime and a > 1, then

_Jelp) (modp), if ¢—11|n;
Sn(p) = {O (mod p), if ¢q—1/)n.

Proof. (1) The proof is by induction on a. For a = 2,
Sp(4)=1"4+2"+3"+4"=1"+ 2"+ (—1)"
]2 (mod4), ifn=1or2|mn
~ |0 (mod4), ifn>1and?2/n.

Suppose the statement holds for some a > 2. Then, for n = 1 we have

2a+1 (2a+1 4 1)
2

Sl(2a+1) =90 = ¢<2a+1> (mod 2a+1>’

and for n > 2,

S22 = 1" 4 (29 (29 D) e (20T

2(L
Sn(2%) + D (2% + )"

=1

2(L
Sa(2%) + >0 (" + n2t" )

t=1
(all other terms are divisible by (2%)?, thus divisible by 2°*1)
= 25,(2%) + n2°5,-1(2%)

—_——

even

(since a = 2, S,-1(2%) has an even number of odd terms)
=2S5,(2%) (mod 2°*1).



If 2 | n, then
Sn(2%) = ¢(2%)  (mod 27),

S, (2071 = 25,(2%) = 20(2%) = p(2*"')  (mod 2*M1).

If 2 / n, then
Sn(2%) =0 (mod 29),

SO
S, (2071 =25,(2) =0 (mod 2°*1).

The proof is by induction on a. The case a = 1 is Theorem 2.

Suppose the statement holds for some a > 1. Then, for n = 1 we have

qa+1(qa+1 4 1)

Si(g**h) = 5 =0 (mod ¢**"),
and for n > 2,
Salg™) ="+ + (@) + -+ (((g=Dg* + )" + -+ (¢"*H)")
q—1 q°
= > (ig" + 1)
1=0t=1
q—1 q°
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Sn(@™™) = ¢Su(q”) = gp(¢”) = (¢**")  (mod ¢*™).
If g—1 4 n, then



SO

Corollary 4. For any a,n € N and prime q,
S.(g*)=0 (mod ¢ ).
The next few results will be used to extend Theorem 3 (2).

Lemma 5. If n,i,5,k € N and q is an odd prime such that ¢* | n, then
vzl (Z) (¢)*. Moreover, for k=2, ¢+ | (Z) (¢/)F.

Proof. 1t k =1, then (Z) (¢/)F = ng’ is divisible by ¢"*i.

nn—1)---(n—k+1)
k!
k

k
power of ¢ that divides k! is ¢® where a = {—| + {—2J + .-+, it is sufficient
q q

¢+j<¢—({§|+{q—q+...)+jk.

z+]<2+]+§—1

k
—itj-g+k-1

If £ > 2, note that since <Z) = and the highest

to show that

Indeed,

k
Si+j———+jk—1
it q_lﬂ( )

. k k .
<i—\|=|+t |zt )tk
q q
Corollary 6. Ifi,j,n,t € N, q is an odd prime, and ¢' | n, then

(t+¢)"=t" (mod ¢'*?).

5



Proof. We have

. " /n .
t+ I\ = 41 + J ktnfk
(t+d¢) 1;1 ( k) (¢')
=t" (mod ¢"*7). (by Lemma 5)
]

If ¢ is an odd prime and g is invertible modulo ¢, then multiplication by
g permutes elements of Z7, that is,

{g-1modgq,...,9(¢g—1)mod g} ={1,...,q— 1} (1)

as sets.
The following theorem extends Theorem 3 (2).

Theorem 7. Ifi € Z, i1 > 0, j,n € N, q is an odd prime, ¢ — 1 / n, and
q' | n, then ' .
Su(¢’) =0 (mod ¢"™).

Proof. The case ¢ = 0 is Theorem 3 (2).
For any fixed 7 > 1 we use induction on j. First consider j = 1. Let g be
a generator of the multiplicative group Z7. Then

q

g"Su(a) = g" Y K"

k=1

= Z(gk‘ mod ¢)" (by Corollary 6)

Thus



But g" # 1 (mod ¢) since g is a generator of Z} and ¢ — 1} n. Therefore
Su(g) =0 (mod ¢").
Now assume that S, (¢’) = 0 (mod ¢**7) for some j = 1. Then
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k=2 <Z) (tqj)kr"—k>

t=0r=1
g1 ¢’
= Z Z (r" + ntg/r" ' +0) (by Lemma 5)
t=0r=1
q—1 ‘
= (S (") + ntg S, ( ))
t=0
) —1 ) .
= q5n(¢’) +nl 5 )quSn—l(qj)
=0 (mod ¢"t7"), (since ¢' | n)

3 Periodicity

In this section, we first establish the periodicity of the sequence of sequences
((Sp(m) mod k)p>1)ms1 for any k € N. An immediate implication of this
result is that the sequence (S, (m) mod k),,>1 is periodic for all values of k
and n. We then provide formulas for the length of the period when k£ is a
power of a prime.

Theorem 8. For each k € N, the sequence of sequences

((S1(m) mod k, Sy(m) mod k, Sz(m) mod k, ...))m>1

is periodic. If k = ¢{*q5? - - - q° where q;’s are distinct primes, then the period
1 42 T
ZS qa1+1qa2+1 qar+1
T



Proof. We will first prove that
Sa(m +¢**) = S,(m)  (mod ¢*)
for all prime ¢ and natural n, m, and a. We have

Sn(m + anrl) = Sn( (qa+1 + 1)n 4ot (qa+1 + m)”
Sn(q S, (m)
Su(m)  (mod ¢%)

+
+

since S, (¢*™) =0 (mod ¢%) by Corollary 4.
Thus, the sequence of sequences

((S1(m) mod ¢*, Sa(m) mod ¢*, S3(m) mod ¢%, ...))m>1

repeats every ¢! terms. Thus it is periodic with period being a factor of
q®™t. To show that the period is not less than ¢!, it is sufficient to show
that the sequence does not repeat every ¢ terms. More precisely, we will
show that S, (¢%) # S,(¢**") (mod ¢%) for at least one value of n.

Consider n = g — 1 (or, in fact, any n divisible by ¢ — 1 if ¢ is odd).
By Theorem 2 in the case a = 1, and by Theorem 3 otherwise, and using
Corollary 4,

Sn(q®) = ©(q*) #0= Su(¢"*")  (mod ¢%).

Thus the sequence does not repeat every ¢* terms, which implies the period

is exactly g™t
Next, if k = ¢¢3* - - - ¢% where ¢;’s are distinct primes, then from the case
proved above and the Chinese Remainder Theorem, it follows that the period

a1+1 _az+1 .

of the sequence is ¢ " ¢ coqor L, O

It follows from Theorem 8 that given any values of k£ and n, the sequence
(Sp(m) mod k)1

is periodic with period not exceeding the one given in Theorem 8. However,
for some values of k£ and n the period is smaller.

Theorem 9. For k,n € N, let {(k,n) denote the period of the sequence
(Sp(m) mod k)p=1. Then

(1) £(2,n) =4 for all n.



(2) fora =2,

(2 ) 2081 ifn =1 o0r2 | n;
) n = .
24, otherwise.

(3) for q an odd prime and a > 1,

¢t ifg—11mn
ﬁ(qa’n): qaiia ifq—1/n, Vq(n):i> O0<i<a-—2
q, ifg—1/nand ¢ |n,
where v,(n) is the exponent of the highest power of q that divides n.

Proof. (1) Theorem 8 implies that £(2,n) is a factor of 4. Since

1"=1 (mod 2),

1"+2"=1 (mod 2),

1" +2"+3"=0 (mod 2),

1" +2"+3"+4" =0 (mod 2),

0(2,n) = 4.

(2) Let a = 2.

If n=1o0r 2 | n, by Theorem 3 (1) we have S,,(2%) = ¢(2%) (mod 2%).
However, Theorem 8 implies that £(2%,n) is a factor of 2", and hence
must be 2971,

If n > 1 and 2 f n, Theorem 3 (1) implies that 5,(2%) = 0 (mod 2%).
We have

Sp(m+2%)=S,2)+ 2+ )"+ -+ (2*+m)"
Sn(2%) + S, (m)
Sn

(m) (mod 2%).

Thus, £(2%, n) is a factor of 2. We now show that ¢(2%,n) is not smaller
than 2. Assume to the contrary that £(2% n) is a factor of 2¢7!. Then

S, (21 =5,2)=0 (mod 2),



but then

S22t + =85, + L+ 1)"

n n
=0+1"+n2"" + ( ) 207 )k
;2 ) @)

=1" +n2*!
£ 1" (since n is odd)
= S,(1) (mod 2%),

which is a contradiction.

Let ¢ be an odd prime and a > 1.

The case ¢ — 1 | n follows from the proof of Theorem 8.

If¢q—1)nand ¢ | nfor0<i<a-—1,then by Theorem 7
So(g*™) =0 (mod ¢%).

Then

so £(q%, n) is a factor of ¢*".

We will show that if ¢"** J n for 0 < i < a — 2, then ¢(¢% n) is not
smaller than ¢®~*. Assume to the contrary that ¢(¢% n) is a factor of
q* !, Then

Sn(qa_i_1> = Sn(qa_i)

0 (mod ¢*),

10



but then

Sn(qa—i—l + 1) = Sn(qa—i—l> + (qa—i—l + l)n

=04+ 1"+ nqafifl + Z (Z) (qafifl)klnfk

k=2
=1"+ng" "1 +0 (by Lemma 5)
£ 1" (since ¢'*' J n)

= S5,(1) (mod ¢%),

which is a contradiction.

Thus we have shown that for 0 <i<a—2,if ¢—1 } n, and v (n) =i,
then £(q%,n) is a factor of ¢*~* but not a factor of ¢®*~'. Therefore,
Uq*,n) = q"".

In the last case (¢ — 1 f n and ¢* ' | n), we have shown above that
0(q*,n) is a factor of q. However,

Su(1)=1#£0=S,(¢q) (mod ¢*),

so £(q*,n) # 1. Therefore, {(¢°,n) = q.
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