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Abstract

We pursue the investigation of generalizations of the Pascal triangle based on binomial coefficients
of finite words. These coefficients count the number of times a finite word appears as a subsequence of
another finite word. The finite words occurring in this paper belong to the language of a Parry numeration
system satisfying the Bertrand property, i.e., we can add or remove trailing zeroes to valid representations.
It is a folklore fact that the Sierpinski gasket is the limit set, for the Hausdorff distance, of a convergent
sequence of normalized compact blocks extracted from the classical Pascal triangle modulo 2. In a similar
way, we describe and study the subset of [0,1] x [0, 1] associated with the latter generalization of the
Pascal triangle modulo a prime number.
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1 Introduction

Several generalizations and variations of the Pascal triangle exist and lead to interesting combinatorial,
geometrical or dynamical properties [I} 2, [8, [0, [10]. This paper is inspired by a series of papers based on
generalizations of Pascal triangles to finite words [10, [T}, 12} [13].

1.1 Binomial coefficients of words and Pascal-like triangles

In this short subsection, we briefly introduce the concepts we use in this paper. For more definitions, see
section A finite word is a finite sequence of letters belonging to a finite set called the alphabet. The
binomial coefficient (:j) of two finite words u and v is the number of times v occurs as a subsequence of u
(meaning as a “scattered” subword).

Let A be a totally ordered alphabet, and let L C A* be an infinite language over A. We order the words
of L by increasing genealogical order and we write L = {wg < w; < wg < ---}. Associated with the language
L, we define a Pascal-like triangle Py, : N x N — N represented as an infinite table. The entry Py (m,n) on
the mth row and nth column of Py is the integer (va)
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1.2 Previous work

Let b be an integer greater than 1. We let rep,(n) denote the (greedy) base-b expansion of n € N\ {0}
starting with a non-zero digit. We set rep,(0) to be the empty word denoted by . We let

Ly={1,....,b—1}{0,....b— 1} U {e}

be the set of base-b expansions of the non-negative integers. In [10], we study the particular case of L = L.
The increasing genealogical order thus coincides with the classical order in N. For example, see Table [I] for
the first few values? of Py. Clearly, P}, contains several subtables corresponding to the usual Pascal triangle.

e 1 10 11 100 101 110 111

e/l 0 0 O O 0 0 0
11 1 0 0 O 0 0 0
10(1 1 1 0 0 0 0 0
11 2 0 1 O 0 0 0
w011 2 0 1 0 0 0
10171 2 1 1 0 1 0 0
11011 2 2 1 0 0 1 0
111771 3 0 3 O 0 0 1

Table 1: The first few values in the generalized Pascal triangle Py (A282714).

For instance, it contains (b — 1) copies of the usual Pascal triangle obtained when only considering words of
the form a™ with a € {1,...,b— 1} and m > 0 since (%,) = (7). In Table|l} a copy of the classical Pascal
triangle is written in bold.

Considering the intersection of the lattice N? with [0,2"] x [0,2"], the first 2" rows and columns of the
usual Pascal triangle modulo 2 ((;) mod 2)o<;, j<2n provide a coloring of this lattice. If we normalize this
compact set by a homothety of ratio 1/2", we get a sequence of subsets of [0, 1] x [0, 1] which converges, for
the Hausdorff distance, to the Sierpinski gasket when n tends to infinity. In the extended context described
above, the case when b = 2 gives similar results and the limit set, generalizing the Sierpinski gasket, is
described using a simple combinatorial property called (x) [10].

Inspired by [10], we study the sequence (Sy(n))n>o which counts, on each row m of Py, the number of
words of L; occurring as subwords of the mth word in Ly, i.e., Sp(m) = #{n € N | Py(m,n) > 0}. This
sequence is shown to be b-regular [11), [I3]. We also consider the summatory function (A(n)),>o of the
sequence (Sp(n))n>0 and study its behavior [12] [13].

So far, the setting is the one of integer bases. As a first extension, we handle the case of the Fibonacci
numeration system, i.e., with the language Ly = {e} U 1{0,01}* [I1, 12]. It turns out that the sequence
(Sr(n))n>0 counting the number of words in Ly occurring as subwords of the nth word in Ly has properties
similar to those of (Sy(n))n>0. Finally, the summatory function (Ap(n)),>0 of the sequence (Sp(n)),>o has
a behavior similar to the one of (4y(n))n>0.

1.3 Our contribution

The Fibonacci numeration system belongs to an extensively studied family of numeration systems called
Parry-Bertrand numeration systems, which are based on particular sequences (U(n)),>o (the precise defi-
nitions are given later). In this paper, we fill the gap between integer bases and the Fibonacci numeration
systems by extending the results of [10] to every Parry—Bertrand numeration system. First, we generalize

2Some of the objects discussed here are stored in Sloane’s On-Line Encyclopedia of Integer Sequences [20]. See sequences
A007306, | A282714, A282715, A282720, A282728 A284441, and A284442|
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the construction of Pascal-like triangles to every Parry—Bertrand numeration system. For a given Parry-
Bertrand numeration system based on a particular sequence (U(n)),>0, we consider the intersection of the
lattice N? with [0, U(n)] x [0,U(n)]. Then the first U(n) rows and columns of the corresponding generalized
Pascal triangle modulo 2 provide a coloring of this lattice regarding the parity of the corresponding bino-
mial coefficients. If we normalize this compact set by a homothety of ratio 1/U(n), we get a sequence in
[0,1] x [0, 1] which converges, for the Hausdorff distance, to a limit set when n tends to infinity. Again, the
limit set is described using a simple combinatorial property extending the one from [I0].

Compared to the integer bases, new technicalities have to be taken into account to generalize Pascal
triangles to a large class of numeration systems. The numeration systems occurring in this paper essentially
have two properties. The first one is that the language of the numeration system comes from a particular
automaton. The second one is the Bertrand condition which allows to delete or add ending zeroes to valid
representations.

This paper is organized as follows. In Section |2 we collect necessary background. Section |3|is devoted to
a special combinatorial property that extends the (x) condition from [I0]. This new condition allows us to
define a sequence of compact sets, which is shown to be a Cauchy sequence in Section[d] In Section [5} using
the property of the latter sequence, we define a limit set which is the analogue of the Sierpinski gasket in
the classical framework. We show that the sequence of subblocks of the generalized Pascal triangle modulo 2
in a Parry—Bertrand numeration converges to this new limit set. As a final remark, we consider the latter
sequence of compact sets modulo any prime number.

2 Background and particular framework

We begin this section with well-known definitions from combinatorics on words; see, for instance, [18]. Let
A be an alphabet, i.e., a finite set. The elements of A are called letters. A finite sequence over A is called
a finite word. The length of a finite word w, denoted by |w|, is the number of letters belonging to w. The
only word of length 0 is the empty word €. The set of finite words over the alphabet A including the empty
word (resp., excluding the empty word) is denoted by A* (resp., AT). The set of words of length n over A
is denoted by A™. If u and v are two finite words belonging to A*, the binomial coefficient (Z) of u and v is
the number of occurrences of v as a subsequence of u, meaning as a scattered subword. The sequences over
A indexed by N are the infinite words over A. If w is a finite non-empty word over A, we let w* := www - - -
denote the infinite word obtained by concatenating infinitely many copies of w. If L C A* is a set of finite
words and u € A* is a finite word, we let u~!.L denote the set of words {v € A* | uv € L}. Let A be totally
ordered. If u,v € A* are two words, we say that u is less than v in the genealogical order and we write u < v
if either |u| < |v], or if |u| = |v| and there exist words p,q,r € A* and letters a,b € A with u = pag, v = pbr
and a < b. By u < v, we mean that either u < v, or u = v.

In the first part of this section, we gather two results on binomial coefficients of finite words and integers.
For a proof of the first lemma, we refer the reader to [I4, Chap. 6].

Lemma 1. Let A be a finite alphabet. Let u,v € A* and let a,b € A. Then we have

()= () +#:(0)

where g 15 equal to 1 if a = b, 0 otherwise.

Let us also recall Lucas’ theorem relating classical binomial coefficients modulo a prime number p with
base-p expansions. See [16], p. 230] or [7]. Note that in the following statement, if the base-p expansions of
m and n are not of the same length, then we pad the shortest with leading zeroes.

Theorem 2. Let m and n be two non-negative integers and let p be a prime number. If

m = mgp® +mp_1p" "+ + map+ mo



and
n=np" +ng_1p" -+ nip+ng

with m;,n; € {0,...,p— 1} for all i, then the following congruence relation holds

k
() =TI (%) moa
n =0 \Thi

using the following convention: (7;;) =0ifm<n.

In the last part of this section, we introduce the setting of particular numeration systems that are used
in this paper: the Parry—Bertrand numeration systems. First of all, we recall several definitions and results
about representations of real numbers. For more details, see, for instance, [3, Chap. 2|, [I5, Chap. 7] or [19].

Definition 3. Let 8 € Ry and let Ag = {0,1,...,[8] —1}. Every real number x € [0,1) can be written as
a series
“+oo
T = Z cjﬁ_j
j=1

where ¢; € Ag for all j > 1, and where [-] denotes the ceiling function defined by [z] =inf{z € Z | z > x}.
The infinite word cycs - - - is called a B-representation of . Among all the S-representations of x, we define the
B-expansion dg(z) of x obtained in a greedy way, i.e., for all j > 1, we have ¢; 377 +¢; 187771+ < 77T
We also make use of the following convention: if w = w,, - --wq is a finite word (resp., w = wyws -+ is an
infinite word) over Ag, the notation 0.w has to be understood as the real number Z?:o w;iBI="1 (resp.,

j:f w;B77); it actually corresponds to the value of the word w in base f3.

In an analogous way, the S-expansion dg(1) of 1 the following infinite word over Ag

(B —1)~, if g eN;
dg(1) := { ([81 —1)dg(1 —([B] —1)/B), otherwise.

In other words, if § is not an integer, the first digit of the S-expansion of 1 is [#] — 1 and the other digits
are derived from the S-expansion of 1 — ([5] —1)/8.

Let dg(1) = (tn)n>1 be the S-expansion of 1. Observe that t; = [8] — 1. We define the quasi-greedy
B-expansion dj(1) of 1 as follows. If dg(1) = t1---t,, is finite, i.e., t,, # 0 and ¢; = 0 for all j > m, then
d5(1) = (t1 - tm-1(tm — 1)), otherwise dj(1) = dg(1).

A real number 8 > 1is a Parry number if dg(1) is ultimately periodic. If dg(1) is finite, then § is called
a simple Parry number. In this case, Proposition [5] gives an easy way to decide if an infinite word is the
B-expansion of a real number [17]. For more details, see, for instance, [15, Chap. 7]. First, let us recall the
definition of a deterministic finite automaton.

Definition 4. A deterministic finite automaton (DFA), over an alphabet A is given by a 5-tuple A =
(Q,q0, A, 5, F) where @ is a finite set of states, ¢o € @ is the initial state, 0 : Q@ x A — @ is the transition
function and F' C @ is the set of final states (graphically represented by two concentric circles). The map
d can be extended to @ x A* by setting §(q,e) = ¢ and d(q, wa) = 6(d(¢q,w),a) for all ¢ € Q, a € A and
w € A*. We also say that a word w is accepted by the automaton if 6(qp, w) € F.

Proposition 5. Let g € Ry1 be a Parry number.

(a) Suppose that dg(1) = t1---t,, is finite, i.e., t,, # 0 and t; = 0 for all j > m. Then an infinite word
is the (B-expansion of a real number in [0,1) if and only if it is the label of a path in the automaton
Ag = ({ag, ..., am-1},a0,A43,9,{ao,...,am—1}) depicted in Figure .



(a) The case when dg(1) is finite.

(b) The case when dg(1) is ultimately periodic but not finite.

Figure 1: The automaton Ag in function of the ultimately periodic word dg(1).
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Figure 2: The automaton A, (on the left) and the automaton A,z (on the right).

(b) Suppose that dg(1) = t1 -ty (Emt1 - tmtk)” where m,k are taken to be minimal. Then an infinite
word is the B-expansion of a real number [0,1) if and only if it is the label of a path in the automaton

Az = ({ag, ..., @mtk-1}, 00, Ap,0,{a0, ... ,amsr—1}) depicted in Figure .

Let us illustrate the previous proposition. For other examples, see, for instance, [5].

Example 6. If 3 € R, is an integer, then dg(1) = dj(1) = (8 — 1)*. The automaton Ag consists of a
single initial and final state ag with a loop of labels 0,1,...,5 — 1.

Example 7. Consider the golden ratio ¢. Since 1 = 1/¢+1/¢?, we have d,(1) = 11 and d(1) = (10)“. It
is thus a Parry number. The automaton A, is depicted in Figure

The square ¢? of the golden ratio is again a Parry number with d2(1) = d72(1) = 21%. The automaton
A,z is depicted in Figure 2b]

With every Parry number is canonically associated a linear numeration system. Let us recall the definition
of such numeration systems.

Definition 8. Let U = (U(n)),>0 be a sequence of integers such that U is increasing, U(0) = 1 and

SUpP;, > U[(]TE:)” is bounded by a constant. We say that U is a linear numeration system if U satisfies a linear
recurrence relation, i.e., there exist £ > 1 and ao,...,ax—1 € Z such that
VYn>0, Umn+k)=ar1Un+k—-—1)+---+asU(n). (1)
Let n be a positive integer. By successive Euclidean divisions, there exists £ > 1 such that
-1
n=> ¢U(j)
j=0

where the c¢;’s are non-negative integers and c,—; is non-zero. The word ¢, - - - ¢g is called the normal U-
representation of n and is denoted by rep;(n). In other words, the word ¢,_1 - - - ¢o is the greedy expansion
of n in the considered numeration system. We set repy;(0) := . Finally, we refer to Ly := repy(N) as the
language of the numeration and we let Ay denote the minimal alphabet such that Ly C Af,. If d,---dp is
a word over an alphabet of digits, then its U-numerical value is

valy (dy -+ do) :=Y_d; U(j).
j=0

Observe that, if valy(d, - - - dy) = n, then the word d,. - - -dy is a U-representation of n (but not necessarily
its normal U-representation).

Definition 9. Let 5 € R.; be a Parry number. We define a particular linear numeration system Ug :=
(Us(n))n>0 associated with 3 as follows.

If dg(1) = t1 - - - ty, is finite (¢, # 0), then we set Ug(0) := 1, Ug(i) := t1Us(i — 1) +--- +t;Up(0) + 1 for
all i € {1,...,m — 1} and, for all n > m,

Us(n) :=tUs(n— 1)+ - +t,Us(n —m).
Ifdg(1) =t1 -t (tmt1 - - tmtk) (m, k are minimal), then we set Ug(0) := 1, Ug(s) := t,Ug(i — 1) +
<+ t,Ug(0)+1forallie{l,...,m+k—1} and, for all n > m + k,
Ug(n) :=t1Ug(n — 1)+ -+ + tyxUs(n —m — k) + Ug(n — k)
—t1Ug(n—k—1)—-- - —t,Ug(n —m —k).



The linear numeration system Ug from Definition |§| has an interesting property: it is a Bertrand numer-
ation system.

Definition 10. A linear numeration system U = (U(n)),>o is a Bertrand numeration system if, for all
weAﬁ,weLU«waeLU.

Bertrand proved that the linear numeration system Upg associated with the Parry number 8 from Defini-
tion@is the unique linear numeration system associated with /3 that is also a Bertrand numeration system [4].
In that case [4], any word w in the set 0*Ly, of all normal Ug-representations with leading zeroes is the
label of a path in the automaton Ag from Proposition

Finally, every Parry number is a Perron number [I5, Chap. 7]. A real number 8 > 1 is a Perron number
if it is an algebraic integer whose conjugates have modulus less than 5. Numeration systems based on Perron
numbers are defined as follows and have the property 7 which is often used in this paper.

Definition 11. Let U = (U(n))n>0 be a linear numeration system. Consider the characteristic polynomial
of the recurrence given by P(X) = X* —ap_; X* 1 —... —a; X — ap. If P is the minimal polynomial
of a Perron number 5 € Ry, we say that U is a Perron numeration system. In this case, the polynomial P
can be factored as

P(X) = (X = B)(X —az) - (X — o)

where the complex numbers ao, ..., a; are the conjugates of 8, and, for all j > 1, we have |a;| < 8. Using
a well-known fact regarding recurrence relations, we have

Un)=c18"+coay + - +cpay Yn>0

where c1, ..., c; are complex numbers depending on the initial values of U. Since |a;| < 3 for all j > 1, we
have
. Un)
nggloo ﬁn =a. (2)

Remark 12. Note that if two Perron numeration systems are associated with the same Perron number,
then these two systems only differ by the choice of the initial values U(0),...,U(k —1). The choice of those
initial values is of great importance. See, for instance, Example

Example 13. The usual integer base system is a special case of a Perron—Bertrand numeration system.

Example 14. The golden ratio ¢ is a Perron number whose minimal polynomial is P(X) = X? — X — 1.
A Perron—Bertrand numeration system associated with ¢ is the Fibonacci numeration system based on the
Fibonacci numbers (F(n)),>o defined by F(0) = 1, F(1) = 2 and F(n+2) = F(n+ 1) + F(n). If we
change the initial conditions and set F'(0) = 1, F'(1) = 3 and F'(n +2) = F'(n+ 1) + F'(n), we again get
a Perron numeration associated with ¢ which is not a Bertrand numeration system. Indeed, 2 is a greedy
representation, but not 20 because rep . (valps(20)) = 102.

The particular setting of this paper is the following one: we let § € Rs; be a Parry number and
we constantly use the special Parry-Bertrand numeration Ug from Definition @ From Definition [3| and
Definition [8} the alphabet Ay, is the set {0,1,...,[3] — 1} and the language of the system of numeration
Ugis Ly, C A;}B (which is defined using the automaton Ag from Proposition . To end this section, we
prove a useful lemma about binomial coefficients of words ending with blocks of zeroes.

Lemma 15. For all non-empty words u,v € Ly, and all k € N, we have

(o) -2 () ()

Jj=0



Proof. We proceed by induction on k € N. If kK = 0, the result is obvious. Suppose that the result holds
true for all non-empty words u,v € Ly, and for 0,..., k. We show that it still holds true for all non-empty
words u,v € Ly, and k + 1. Using Lemma we first have

w0F Y\ uo® uOk
vOR+L )\ WOk + v0k
where v' = v0 € Ly, since Up is a Parry-Bertrand numeration system. By induction hypothesis, we get

(3e) = 20500 5 00)

Jj=1

= (Do) 2 (GE) - O (8)+ (50

Jj=1

-5 (5)(8)

3 The (x) condition

We let w,, = repy, (n) denote the nth word of the language Ly, in the genealogical order. The generalized

Pascal triangle Py, : N x N = N : (4,5) — (gf) is represented as an infinite table? whose entry on the ith
J

row and the jth column is the binomial coefficient (;’j’) For instance, when 8 = ¢, the first few values in

the generalized Pascal triangle Py, are given in Table 2| below. Considering the intersection of the lattice N2
with [0, Ug(n)] x [0, Ug(n)], the first Ug(n) rows and columns of the generalized Pascal triangle P, modulo 2

((“’) mod 2>
wj 0<i,j<Ug(n)

provide a coloring of this lattice, leading to a sequence of compact subsets of R2. If we normalize these sets
respectively by a homothety of ratio 1/Ug(n), we define a sequence (Uf?),,>o of subsets of [0,1] x [0, 1].

Definition 16. Let Q := [0,1] x [0, 1]. Consider the sequence (U?),>o of sets in [0, 1] x [0, 1] defined for all
n >0 by

6 .— 1 va. V), va u u, v U = mo .
2 = s U vl (00 v, 0) 4 @ Lo @ L (1) = 1mod 2 € 0,1] ¢ o1

Each U$ is a finite union of squares of size 1/Us(n) and is thus compact.

Example 17. When 3 = ¢ is the golden ratio, the first values in the generalized Pascal triangle Py, are
given in Table 2| The sets Uy, U and U are depicted in Figure [3l The set U is depicted in Figure
given in the appendix.

Remark 18. Each pair (u,v) of words of length at most n with an odd binomial coefficient gives rise to a
square region in 4. More precisely, we have the following situation. Let n > 0 and u,v € Ly, such that
0<|v| < |ul <nand (¥) =1mod2. We have

((Va’lUﬁ (U)7 ValU[—i (u)) + Q)/UB (n) C Z/[ﬁ
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(a) The set U5 .
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(b) The set U .
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(c) The set U.

Figure 3: The sets Uy, Uy and U when = ¢ is the golden ratio.



j

(@) | 1 10 100 101 1000 1001 1010
/1 00 0 0 0 0 0
11110 0 0 0 0 0
0111 0 0 0 0 0

i 100(1 1 2 1 0 0 0 0
0112 1 0 1 0 0 0
000(1 1 3 3 0 1 0 0
0001 2 2 1 2 0 1 0
010(1 2 3 1 1 0 0 1

Table 2: The first few values in the generalized Pascal triangle Py, .

Us(n)

valUﬁ (u) .
e

11— ———— == = = I
"

0 valy g (v) 1
[
\
[
\
[
\
[
\
[
\
[
\
[

Figure 4: Visualization of a square region in U°.

as depicted in Figure

We consider the space (H(R?), d,) of the non-empty compact subsets of R? equipped with the Hausdorff
metric dj, induced by the Euclidean distance d on R2. It is well known that (#(R?),d},) is complete [6]. We
let B(x,€) denote the open ball of radius € > 0 centered at € R? and, if S C R?, we let

[S])e := U B(x,¢€)

zeS

denote e-fattening of S.

Our aim is to show that the sequence (U?),>o of compact subsets of [0, 1] x [0,1] is converging and to
provide an elementary description of its limit set. The idea is the following one. Let (u,v) € Ly, x Ly,
be a pair of words having an odd binomial coefficient. On the one hand, some of those pairs are such that
(““) = Omod 2 for all letters a such that ua,va € Ly,. In other words, those pairs of words create a

va
black square region in Z/{li | while the corresponding square region in Z/lli +1 is white. As an example, take

8 = ¢, u=1010 and v = 101. We have (58) = 2 (see Figure . On the other hand, some of those pairs

create a more stable pattern, i.e., (?}Zj) = 1 mod 2 for all words w such that vw,vw € Ly,. Roughly, those

3Using the notation (:), the rows (resp., columns) of Py, are indexed by the words u (resp., v).
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Figure 5: The automaton Ag for the dominant root 3 of the polynomial P(X) = X* —2X3 — X2 — 1.

pairs create a diagonal of square regions in (L{ﬁ)nzo. For instance, take § = ¢, v = 101 and v = 10. In
this case, (szv’) = 1 mod 2 for all admissible words w. In particular, the pairs of words (u,v), (u0,v0) and
(100, v00), (u01,v01) have odd binomial coefficients (see Figure [3]) and create a diagonal of square regions.
With the second type of pairs of words, we define a new sequence of compact subsets (A?),,>q of [0,1] x [0, 1]
which converges to some well-defined limit set £°. Then, we show that the first sequence of compact sets
us Jn>0 also converges to this limit set. The remaining of this paper is dedicated to formalize and prove
those statements.

To reach that goal, for all non-empty words u,v € Ly,, we first define the least integer p such that
u0Pw, v0Pw belong to Ly, for all words w € 0*Ly,. In other terms, any word w can be read after u0” and

v0? in the automaton Ag. Then, some pairs of words (u,v) € Ly, x Ly, have the property that not only
(:f) = 1 mod 2 but also (ggﬁjjj) = 1 mod 2 for all words w € 0*Ly,; see Corollary Such a property creates

a particular pattern occurring in 42 for all sufficiently large n, as shown in Remark

Proposition 19. For all non-empty words u,v € Ly,, there exists a smallest nonnegative integer p(u,v)
such that
(uoP )" Ly, = (0P Ly, = 0% Ly,

Proof. Using Proposition [5 take p(u,v) to be the least nonnegative integer p such that §(ag,u0?) = ag =
d(ag,v0P). Then, for any word w € 0* Ly, the words w0P (V) gy, pOP(®2)y are labels of paths in Ag. Conse-
quently, they are words in Ly,. Conversely, if the words uOP(® ), pOP(% )y are labels of paths in Apg, then
w € 0* Ly, . O

In the following, we will be using p(e,e). Observe that, using Proposition |5} d(ag,e) = ag. We naturally
set p(e,e) := 0 and we thus have (EOP(E’e))_l.LUﬁ = Ly,.

Example 20. If § > 1 is an integer, then p(u,v) = 0 for all u,v € Ly,. See Example @

Example 21. If 8 = ¢ is the golden ratio, then p(u,v) = 0 if and only if u and v end with 0 or u = v = ¢,
otherwise p(u,v) = 1.

The integer of Proposition [19| can be greater than 1 as illustrated in the following example.

Example 22. Let 3 be the dominant root of the polynomial P(X) = X% —2X3— X2 —1. Then 8 ~ 2.47098
is a Parry number with dg(1) = 2101 and dj(1) = (2100)*. The automaton A is depicted in Figure 5 For
instance, p(101,21) = 2.

Definition 23. Let (u,v) € Ly, x Ly,. We say that (u,v) satisfies the (x) condition if either u = v = ¢, or

|u| > |v] > 0 and
uOP) 0P
(UOP(“v”)> =1mod?2 and (UOP(“»”)() =0 Vac Ay,

where p(u,v) is defined by Proposition Observe that, if (u,v) # (g,¢), then vOP(“)q € Ly, for all
a <€ AUﬁ.

11



Remark 24. Observe that if only one of the two words u or v is empty, then the pair (u,v) never satisfies
(%)
The next lemma shows that all diagonal elements of U satisfy (x).

Lemma 25. For any word u € Ly,, the pair (u,u) satisfies (x).

Proof. If u = e, the result is clear using Definition Suppose u is non-empty and let p := p(u, u) denote
the integer from Proposition Then, for all a € Ay,, we have

» D
uo =1=1mod2 and uo =0
u(QP u0Pa

since |u0Pa| > |u0P|. O

If a pair of words satisfies (%), it has the following two properties. First, its binomial coefficient is odd,
as stated in the following proposition. Secondly, it creates a special pattern in L{E for all large enough n; see
Proposition Corollary [28 and Remark

Proposition 26. Let (u,v) € Ly, x Ly, satisfying (x). Then

(u) =1 mod 2.
v

Proof. If u = v = ¢, the result is clear by definition. Suppose that « and v are non-empty. Let us proceed by
contradiction and suppose that (Z) is even. Let us set p := p(u,v) from Proposition On the one hand,

by Definition 23] we know that
P
(uO ) = 1mod 2
v0P

and, on the other hand, Lemma [15| states that

(tor) =2 0) )+ ()

Jj=1

p
<p)< u) =1mod2>0
— \J v(0J

J

and there must exist ¢ € {1,...,p} such that (vg) > (0. Using again Lemma we also have

(s0) - i (7)) = (7)) (o) =0

Jj=1

Consequently, we have

which contradicts Definition 23] O

Proposition 27. Let u,v € Ly, be two non-empty words such that (u,v) satisfies (x). For any letter
a € Ay,, the pair of words (uOP(-v) g, pOP(4V) ) € Ly, x Ly, satisfies (x).

Proof. For the sake of clarity, set p := p(u,v). Let a be a letter in Ay, and also set p’ := p(u0Pa,v0Pa). By

Lemma [I] and Lemma
0P a0’ B 4 o’ ulPa n u0P N u0P
v0PalP’ ) — \ j ) \v0ra0i v0Pa 0P )’

J
12



Since (u,v) satisfies (), all the coefficients (UgSZgj), for j =1,...,p, and (;g?f’a) are equal to 0. Otherwise,

it means that the word v0Pa appears as a subword of the word u0P, which contradicts (). Consequently,
using Definition 23] we get
P 0P »
u0*a0 L) = uo =1 mod 2.
v0PalP v0P

Using the same argument, for any letter b € Ay, we have
u0P a0’ —0
v0PalP'b)

The next corollary extends Lemma 25| when (u, v) # (e, ). Indeed, recall that p(e,e) = 0.

Corollary 28. Let u,v € Ly, be two non-empty words such that (u,v) satisfies (x). Then

(qu(“”’)w

UOP(“»“)w> =1mod2 Vwe 0 Ly,.

Proof. Set p := p(u,v). From Proposition (19} u0Pw,v0Pw belong to Ly, for any word w € 0*Ly,. Now
proceed by induction on the length of w € 0* Ly, . If |[w| = 0, then w = ¢ is the empty word and the statement
is true using Definition If |w| = 1, then w = a is a letter belonging to Ay,. Then, by Proposition [27, we
know that (u0Pa,v0Pa) satisfies (x). Using Proposition [26] we have

D
<UO a> =1 mod 2.
v0Pa

Now suppose that [w| > 2 and write w = aw'b € 0*Ly, where a,b are letters. From Lemma (1} we deduce
that

uPw\ [ u0Paw’ n u0Paw’

v0Pw ) \w0Paw'b v0Paw’ )
By induction hypothesis, (7:8;)25:) = 1 mod 2 since aw’ € 0"Ly, and |aw’| < |w|. Furthermore, (;oe,p;;j’,ll))

must be 0, otherwise it means that the word v0Pa occurs as a subword of the word u0P, which contradicts
the fact that (u,v) satisfies (x). This ends the proof. O

The next lemma is useful to characterize the pattern created in U2, for all sufficiently large n, by pairs
of words satisfying (%), see Remark In this result, we make use of the convention given in Definition

Lemma 29. Let (u,v) € Ly, x Ly, satisfying (x).

valy, (vOP(w-0)+m) valy,, (u0P(wv)+m)
Usllul + plaz0) 1) Uslled + plao) < ) )

converges to the pair of real numbers (0.0'““‘”'070@).

(a) The sequence

(b) For alln >0, let w = d,, denotes the prefiz of length n of dj(1). Then the sequence
valy, (v0P(“)d,, ) valy, (u0P(v)d,,)
Ul + o) + )’ Ul +plw o) +m) ) )

converges to the pair of real numbers (0.0'“‘_‘“|UOP(“7”)d2§(1),O.UOP(“’”)d’E(l)).

13



Proof. Let (u,v) € Ly, x Ly, satisfying (x) and set p := p(u,v). We prove the first item as the proof of the
second one is similar. The result is trivial if u = v = €. Suppose that u and v are non-empty words. Let us
Write U = Ujy|—1Ujy|—2 - - Up Where u; € Ay, for all i. By definition, we have

valy, (u0P*™) lul =1 Us(i+p+n)

Us(lu| +p+n) Z Us(Ju|+p+n)’

Using , Us(i+p+n)/Us(Jul +p+n) tends to B°/B1* when n tend to infinity. Consequently,

valy, (u0P+m) lul—1

i N AN B = 0.4,
nigloo Us(lu| +p+n) Z uill b

=0

Using the same reasoning on the word v, we conclude that the sequence
valy, (voPw)+n) valy, (uOP(w-v)+n)
Ua(lul + ple,v) + 1) Ul +plw o) +m) ) )

converges to the pair of real numbers (0.01“/=1*ly, 0.u). O

Remark 30. Let (u,v) € Ly, x Ly, satisfying () and set p := p(u,v). Suppose that u and v are non-

empty (the case when u = v = ¢ is similar: in the following, replace 0*Ly, by Ly, where needed). Using

Corollary the pair of words (u0Pw,v0Pw) has an odd binomial coefficient for any word w € 0*Ly,. In

particular, the pair of words (u0Pw, v0Pw) corresponds to a square region in L{ﬁL I+ptn for all w € 0" Ly, such
that |w| =mn > 0. Using Remark |18 this region is

( valy, (v0Pw) valy, (u0Pw) > Q cuf

Us(lul +p+n) Us(lul +p+n)) = Us(lu| +p+mn) ~ "lutete

Using Lemma when w = 0" (the smallest word of length n in 0* Ly, ), the sequence

(( valy, (v0P*"™)  valy, (u0PT™) ))
Us(lul +p+n)" Us(lul +p+n) ) ) 50
converges to the pair of real numbers (0.0'““‘”'1),0@). This point will be the first endpoint of a segment

associated with v and v. See Definition [32] Analogously, using Lemma [29] when w = d,, is the prefix of
length n of d(1) (the greatest word of length n in 0* Ly, ), then the sequence

(( valy, (v0Pd,)  valy,(uOPd,) ))
Us(lul +p+n) Us(lul +p+n) ) /,~0
converges to the pair of real numbers (0.0~ |”‘v0pdﬂ( ), 0.u0Pd(1)). This point will be the second endpoint

of the same segment associated with u and v. See Definition [32] . As a consequence, the sequence of sets
whose nth term is defined by

U (( valy, (v0Pw) valy, (u0Pw) ) N Q ) 3)
& Gl G+ v m) Gl s+
wEO*LU[a

converges, for the Hausdorff distance, to the diagonal of the square (0.01“/=1*ly, 0.u) + Q/pI*P.

Example 31. As a first example, when § = 2, we find back the construction in [I0]. As a second example,
let us take 8 = ¢ to be the golden ratio. Let v = 101 and v = 10 (resp., v’ = 100 = v). Then p(u,v) =1
(resp., p(u’,v") = 0); see Example Those pairs of words satisfy (x). The first few terms of the sequence of
sets are respectively depicted in Figure@ and Figurelﬂ Observe that when n tends to infinity, the union of
black squares in U7, 4 (vesp., Uy, 4) converges to the diagonal of (0.0v,0.u)+Q/¢* (resp., (0.v/,0.4')+Q/¢?).
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(d) The element n = 2 of (3).

Figure 6: The first few terms of sequence of sets (3] converging to the diagonal of the square (0.0v, 0.u)+Q/p*

for v = 101 and v = 10.
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(b) The element n = 0 of (3).
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(e) The element n = 3 of (B).
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(a) The element n =0 of (3). (b) The element n = 1 of (3).
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(c) The element n = 2 of (3). (d) The element n = 3 of (3).

Figure 7: The first few terms of sequence of sets ([3)) converging to the diagonal of the square (0.v',0.u’)+Q /3
for v/ = 100 and v’ = 100.
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4 The sequence of compact sets (AY),~g

The observation made in Remark leads to the definition of an initial set AOB. The same technique is
applied in [I0]. At first, let us define a segment associated with a pair of words.

Definition 32. Let (u,v) in Ly, x Ly, such that |u| > [v| > 0. We define a closed segment S, , of slope 1
and of length v/2 - g~1#=P(w:%) in [0,1] x [0, 1]. The endpoints of Su,v are given by A, , := (0.0!u1=1vly, 0.u)
and

Buw = Ay + (g—IU\—p(um)’5—\u|—p(u,v)) = (o,olul—lv\Uop(u,v)d2(1)7O_uop(uw)d;(l)).

Observe that, if u = v = ¢, the associated segment of slope 1 has endpoints (0,0) and (1,1). Otherwise, the
segment S, , lies in [0,1] x [1/8, 1].

Definition 33. Let us define the following compact set which is the closure of a countable union of segments

Ag = U Suv-
(u,v)

satisfying(x)

Notice that Definition 32 implies that Ag C [0,1] x [0,1]. More precisely, Ag \ See C [0,1] x [1/8,1].
Furthermore, observe that we take the closure of a union to ensure the compactness of the set.

Example 34. Let = ¢ be the golden ratio. In Figure 8 the segment S, , is represented for all (u,v)
satisfying (%) and such that 0 < |v| < |u| < 10.

In the following definition, we introduce another sequence of compact sets obtained by transforming the
initial set .A under iterations of two maps. This new sequence, which is shown to be a Cauchy sequence in
Proposition allows us to define properly the limit set £5.

Definition 35. We let ¢ denote the homothety of center (0,0) and ratio 1/8 and we consider the map
h:(z,y) — (z,By). We define a sequence of compact sets by setting, for all n > 0,

A= ) W(d(AD).
0<i<n
0<j<i

In Figure @ we apply ¢ and h at most twice from .Ag \ See. Let m,n with m < n. Using Figure @
observe that

AR ([1/BmH 1] % [0,1]) = AR N ([1/8™4,1] % [0, 1)) (4)

Proposition 36. The sequence (A2),>¢ is a Cauchy sequence.

Proof. Let € > 0 and take n > m. We must show that A2 C [A?], and AP C [AZ].. The first inclusion is
easy. Indeed, since A2, C A2, we directly have that [AZ]. contains A?,. Let us show the second inclusion.

mn

From ({)), A%, and consequently [A2 ] both contain A2 N ([1/8™+1,1] x [0,1]). Now we show that [AZ ],
contains [0,1/8™+1) x [0, 1] if m is sufficiently large, which ends the proof. By Deﬁnition Ag contains the
segment S . of slope 1 with endpoints (0,0) and (1,1). Thus, by Definition AB contains the segment
h™(c™(Se.c)) of slope ™ with endpoints (0,0) and (1/8™,1). Let (z,y) € [0,1/8™%1) x [0,1]. Then
(y/B™,y) belongs to h™(c™(Se.)) C AP, Consequently,

d((z,y), AD,) < d((x,y), (y/B™.y) <z +y/B" <e

if m is sufficiently large. O
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Figure 8: An approximation of A§ computed with words of length < 10.
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Figure 9: Two applications of ¢ and & from A} \ S. ..

Definition 37. Since the sequence (A?),,>o is a Cauchy sequence in the complete metric space (H(R?), dy,),
its limit is a well-defined compact set denoted by £°.

Example 38. Let ¢ be the golden ratio. We have represented in Figure [10]all the segments of A{ for words
of length at most 10 and we have applied the maps h’(c?(-)) to this set of segments for 0 < j <14 < 4. Thus
we have an approximation of AY.

5 The limit of the sequence of compact sets (U°),~

In this section, we show that the sequence (U),>o of compact subsets of [0, 1] x [0, 1] also converges to L.
The proofs of Lemma Lemma {44] are essentially the same as the ones from [10] ([10, Lemma 27, Lemma
28, Theorem 29]). However we recall them so that the paper is self-contained. The first part is to show that,
when € is a positive real number, then U? C [L£P]. for all sufficiently large n.

Lemma 39. Let € > 0. For all sufficiently large n € N, we have
u? c 1£°..

Proof. Let € > 0. Take n € N and let (z,y) € U?. From Remark there exists (u,v) € Ly, x Ly, such
that () =1 mod 2, 0 < |v| < |u| < n and the point (z,y) belongs to the square region

((valy, (v), valy, (w) + Q)/Us(n) C Uy, (5)

Let us set

= (T )

to be the upper-left corner of the square region in UP.
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Figure 10: An approximation of the limit set £¥.

Assume first that (u,v) satisfies (x). The segment S, , of length /2 - B=14=P(4:) having A, , =
(0.0“I=1vly,0.u) as endpoint belongs to Ag. Now apply n — |u| times the homothety ¢ to this segment So
the segment ¢"~1*/(S,, ,) of length v/2- 7" ~P(:%) of endpoint By := (0.0"~ "Iy, 0.0"~I"ly) belongs to An lul
and thus to £°. Using (the reasoning is similar to the one developed in the proof of Lemma , there
exists N; € N such that, for all n > Ny, d(A, By) < €/2. Hence, for all n > N such that \/i/U/g(n) < €/2,
we have

d((z,y), £%) < d((z,y), By) < d((z,y), A) + d(A, By) < V2/Us(n) +d(A, By) < e.

Now assume that (u,v) does not satisfy (x). Since (;‘) = 1 mod 2, then either v and v are non-empty
words, or u is non-empty and v = . Suppose that u and v are non-empty. By assumption, we have an odd
number 7 of occurrences of v in u. For each occurrence of v in u, we count the total number of zeroes after
it. We thus define a sequence of non-negative integer indices

lu| > i1 >dp > -+ >0 >0
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corresponding to the number of zeroes following the first, the second, ..., the rth occurrence of v in u. Now
let k be a non-negative integer such that k > [log, |u|] and 2% > p(u,v). By definition of p(u,v), the words

102" 1 and v02"1 belong to Ly,. We get

w0 1\ = (2F e
002" 1 72 9k ’

(=1

Indeed, for each £ € {1,...,r}, consider the ¢th occurrence of v in u: we have the factorization u = pw where
the last letter of p is the last letter of the ¢th occurrence of v and |w|g = 4,. With this particular occurrence
of v, we obtain occurrences of v02"1 in w021 by choosing 2* zeroes among the 2¥ + i, zeroes available in
w02"1. Moreover, with the long block of 2% zeroes, it is not possible to have any other occurrence of 0021
than those obtained from occurrences of v in .

Then, for each ¢ € {1,...,r}, we have

2k 44
( ;];w> =1 mod 2

from Theorem [2] Since r is odd, we get

02"1
(UOle) = 1 mod 2.
v

Now, for all & € N such that & > [log, |u|] and 2¥ > p(u,v), it is easy to check that the pair of
words (uOle,UOle) satisfies (). For the sake of simplicity, define uy := u02k1, v = v02"1 and P =
of length /2 - ﬁ""'”k’lfpk having A, v, =
(0.0'“"‘”'@02k 1, 0.u02" 1) as endpoint belongs to Ag. Now apply n—|u| times the homothety ¢ to this segment.
So the segment ¢~ 14l (S,,, , ) of length v/2 - B~"2"~1=Pk of endpoint B := (0.0"~1*1v02"1, 0.0~ 1"l402" 1)
belongs to Ag—\m and thus to £°. Using again and a reasoning similar to the one from the proof of
Lemma there exists No € N such that, for all n > Na, d(A, Bs) < ¢/2. Hence, for all n > Ny such that
V2/Ug(n) < €/2, we have

p(ug, vg). As in the first part of the proof, the segment .S,

k>Vk

ksVk

d((z,y), £7) < d((z,y), Bz2) < d((2,y), A) + d(A, B2) < V2/Us(n) +d(A, Bp) < e.

Assume now that u _is non-empty and v = €. In this case, the point A is on the vertical line of equation
x=0. By Deﬁnition Ag contains the segment S, . of slope 1 with endpoints (0,0) and (1,1). Thus, by
Definition AZ contains the segment h"(c"(S..)) of slope 8" with endpoints (0,0) and (1/8",1). This
segment also lies in £7. There exists N3 € N such that, for all n > N3, d(A,h"(c"(S:.))) < 1/8" < €/2.
Consequently, for all n > N3 such that v/2/Us(n) < €/2, we have

d((z,y), L") d((z,y), " (c"(5c.2))) < d((z,y), A) + d(A, h"(c"(5z.)))

<
< V2/Us(n) + d(A, B (€"(S-.0))) < e.

In each of the three cases, we conclude that (z,y) € [£?], which proves that U C [£P]. for all sufficiently
large n. O

If € > 0, it remains to show that £° C [U,]. for all sufficiently large n € N. To that aim, we need to
bound the number of consecutive words, in the genealogical order, that end with 0 in Ly,.

Definition 40. We let Cs € N denote the maximal number of consecutive 0 in dj(1), i.e.,

Cp :=max{n € N|0" is a factor of dj(1)}.
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Figure 11: The automaton Ag for the dominant root 8 of the polynomial P(X) = X* — X3 — 1.

In the next proposition, we show that the maximal number of consecutive words ending with 0 in Ly, is
05 + 1.

Proposition 41. If we order the words in Ly, by the genealogical order, the mazimal number of consecutive
words ending with 0 in Ly,, i.e., the maximal number of consecutive normal Ug-representations ending with
0, s Cg + 1.

Proof. Let n € N be such that repy, (n) ends with 0. We can suppose that repy, (n — 1) does not end with
0, otherwise we translate n. If [repy, (n +1)[ = [repy, (n)], then repy, (n + 1) does not end with 0 because
Ug(m) > 2 for all m > 1. Indeed, if a single digit (not the least significant one) is changed, then the value
is increased by at least 2. Let C' > 1 be such that, for all k € {0,...,C}, [repy, (n + k)| = |repy, (n)| + k
and |repy, (n + C +1)| = [repy, (n + C)|. The normal-U representation preserves the order, i.e., for all
integers m1 and ma, m1 < mo if and only if repy, (m1) < repy,(m2) (see, for instance, [3]). Thus, the
words repy, (n), ..., repy, (n + C — 1) are prefixes of dj;(1), respectively of length |repy, (n)|, [repy, (n)| +

L,...,|repy,(n)| + C — 1 (the prefixes of dj(1) are the maximal words of different length in Ly,). By
Definition @ we deduce that C' < (3. Consequently, there are at most Cg + 1 consecutive words ending
with 0 in Ly, . O]

Let us illustrate the previous proposition.

Example 42. Let ¢ be the golden ratio. Then Cy, = 1 since d},(1) = (10)“. The first few words of Ly, are
€,1,10,100,101, 1000, 1001, 1010, 10000, 10001, . ... The maximal number of consecutive words ending with
0in Ly, is Cp+1=2.

Example 43. Let 3 be the dominant root of the polynomial P(X) = X% — X3 — 1. Then 3 ~ 1.38028 is a
Parry number with dg(1) = 1001 and dj(1) = (1000)*. The automaton Ag is depicted in Figure In this
example, Cs = 3. The first few words of Ly, are ¢,1,10,100, 1000, 10000, 10001, .... The maximal number
of consecutive words ending with 0 in Ly, is Cg +1 = 4.

Lemma 44. Let € > 0. For all (z,y) € £P, d((x,y),U’) < € for all sufficiently large n.
Proof. Let € > 0 and let (z,y) € £P. Since (A2),>0 converges to £?, there exists Ny and (z/,y') € A?Vl
such that,
d((z,y), (@', y")) < e/4.
By definition of Af\,l, there exist i, j such that 0 < j <7 < Ny and (x(,y;) € AOB such that
W (' (2, 90))) = (@', 9).
By definition of Aj, there exists a pair (u,v) € Ly, x Ly, satisfying (x) and (z,yy) € Sy, such that
(20, 9o), (2, yg)) < €/4

Notice that, since j < 1,
d((z',y"), 17 (' (25, 93))))

d(h (¢ (2, y0))), 1 (¢ (25, )
d(((E(], y{))? (ﬁg, yg)) < 6/4‘

IN
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Consequently, we get that o
d((z,y), b (' (0, ¥p)))) < €/2.
In the second part of the proof, we will show that d(h?(c((zy,yl))),U?) < €/2 for all sufficiently large
n. We will make use of the constants i, j, the words u,v given above and the integer p := p(u,v).

Set

L if u=v=c¢
Lyw:= * Vs . U &
’ 0*Ly,, otherwise.

Since (u,v) € Ly, x Ly, satisfies (x), the pair of words (u0Pw, v0Pw) has an odd binomial coefficient, for all
words w € Ly, using Lemmalf_Sl and Corollary @ In particular, this is the case when w € L, is of length
n. We can choose n sufficiently large such that Ug(n) > Cs + 3 using Proposition In this case, there
exist at least two words w € L, , with |w| = n and not ending with 0. Furthermore, as soon as w does not

end with 0, Lemma [I] shows that
0Pw0OF P
u0Pw0 _ u0Pw — 1 mod 2
v0Pw v0Pw

for all £ > 0. By definition of the sequence Ug, we also have
#{z € 0" Ly, | u0Pwz € Ly, and |z| = k} < Ug(k).

Thus, for all j < 4, we conclude that at least one of the Ug(j) binomial coefficients of the form (%%Z;%z ) with
w not ending with 0 and |z| = j is odd (indeed, choose z = 07 for instance). Otherwise stated, at least one

of the square regions

( valy, (v0Pw) valy, (u0Pwz) ) Q
Us(n+i+[ul+p) Us(n+i+lul+p))  Us(n+i+|ul+p)

» with [2| = j, (6)

; B
is a subset of L{nHHqu,

Now observe that, for any word w € L, ,,, each square region of the form (6]) is intersected by k7 (c*(Sy..))-
Indeed, the latter segment has A := (0.0°1*/=1*ly,0.0""7u) and B := (0.0°TT"I=1*lp0Pd(1),0.0°-Tu0Pd} (1))

as endpoints and slope 37. Using , if n is sufficiently large, the points

( valy, (v0P0™) valy, (u0PO™+7) >( ( valy, (v0Pdy,) valy, (u0Pd, 4 5) ))
s " resp., - s -
Usg(n+i+ul+p) Us(n+i+|ul+p) P Ug(n+i+ |u|+p) Us(n+i+|ul+p)

since |v0Pw|, [u0Pwz| < n + 14+ |u| + p. This can be visualized in Figure

and A (resp., B) are close for all j < i, where d,, denotes the prefix of length n of dj3(1) for all n > 0. When
u and v are non-empty, this can be seen in Figure [L3| where each rectangular gray region contains at least
one square region from L{S Fit|ul+p (to draw this picture, we take the particular case of the golden ratio ¢
and i = 2). When u = v = ¢, Figure [13|is modified in the following way: simply replace each word of the
forms u0¢, v0¢ by e.

Consequently, every point of h7(c(S, ,)) is at distance at most

2-(Cs+2)-Up(y)
Us(n+i+ |ul+p)

from a point in U 5 it Jul+p when n is sufficiently large. Indeed, either the point falls into a gray region from
Figure [13] or not. In the first case, the point is at distance at most Ug(j)/Ug(n + i+ |u| + p) from a square

region in L{f ik ul+pt S€€ Figure Observe that this square region is of the form @ where w does not end
with 0. Otherwise, the point falls into a (white) square region of the form
valy, (v0Pw) valy, (u0Pw'z) Q . , _
. : . . , with |w| = |[w'| = n, |2 = j.
Us(n+i+|ul+p) Us(n+i+[ul +p) Us(n+i+ |ul +p)
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B
»
v0Pw un+i+\u|+p

j - 0 uopw .

j=1 u0Pw0

< U,@(l)
j=2 u0Pw00 .

< U[;(Q)
j=3 10Pw000 .

< Us(3)

w0Pw0?
v0Pw

Figure 12: If w does not end with 0 and is such that |w| = n, then ( ) being odd creates a square

. 8
region in L{nHHqu.
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v0OPQ™ v0Pd,

u0PO™
B
02 (S ) un+2+|u|+1)
u0Pd,,
Uopon—i-l Uopdn+1
uoPQntl
h(CQ(Su,U)) c(Suv)
qudnH i
PO 2 v0Pdy, 40
uQPQnt2
\ | A2(e(Su,0) &(cw ) S
qudn+2
1
Un+2+|u|+p
1

Figure 13: The situation occurring in the proof of Lemma where we choose 3 to be the golden ratio.
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Since n is large enough, there exists a word w” not ending with 0 with |w”| = n, which is within a distance
of 2- (Cs +2) of w and w’. Then, applying the argument from the previous case proves the statement.

In particular, the result holds for the point h’(c'((zf,yy))) belonging to hi(ct(S,,)). Hence, for all
sufficiently large n,

d(h? (' (x5, y0))), UL ) < €/2.
The conclusion follows. O

Corollary 45. Let (u,v) € Ly, x Ly, satisfying (x) and let 0 < j <i. For every point (f,g) of the segment
hi(c*(Suw)), there exists a sequence ((fn, gn))n>0 converging to (f,g) and such that (fn,gn) € UE for all n.

Proof. Let (f,g) be a point of the segment h’(c?(S, ,)). From the proof of Lemma {44} we have

2-(Cp+2)-Up(y)
Up(m)

d((f,9),Uj) <
for all sufficiently large m. Consequently, there exists a sequence ((fy, gn))n>0 converging to (f,g) and such
that (f,, gn) € UP for all n. O
We are now ready to prove the main result of this paper.
Theorem 46. The sequence (U?),>0 converges to LP.

Proof. Let ¢ > 0. From Lemma it suffices to show that £ C [Uf?]. for all sufficiently large n € N.
For all (z,y) € £#, using Corollary there exists a (Cauchy) sequence ((fi(x,y),g:(x,y))i>0 such that
(fi(z,y),9:(x,y)) € L{f for all ¢, and there exists N, ,) such that, for all i, j > N, ),

d((fi(z7y)7gi(x7y))v (fj(x,y),gj(Ly))) < 6/2 (7)

and
d((fl(x7 y)a gi(‘xa y))? (33, y)) < 6/2
We trivially have

LPc U B((fN(z,y)(ﬁvy)agN(z,y)(xay))76/2)'

(zy)eLsh
Since £7 is compact, we can extract a finite covering: there exist (x1,%1),..., (g, yx) in £° such that
k
£ U BUne, ) @180 950, o (55)), €/2).
j=1

Let N = maxj—1 kN, .y, From (7, we deduce that, for all j € {1,...,k} and all n > N,

B((INGy oy (5 Y3): NG, (@35 95))5 €/2) © B((Fn (@5, 95), 9n (5, 95), €)

and therefore i

Lfc U B((fn(2j,95), gn(zj, ;) €) C [UE]E.

j=1
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Remark 47. As in [I0], the results mentioned above can be extended to any prime number. Let ¢ be a

prime number and 7 be a positive residue in {1,...,¢ — 1}. We can extend Definition 16| to
1
Z/lfi,. = o) U {(valUB (v),valy,(u)) + Q | u,v € Ly, (Z) = r mod q} C [0,1] x [0,1].

Since we make use of Lucas’ theorem, we limit ourselves to congruences modulo a prime number. We just
sketch the main differences with the case ¢ = 2.

See, for instance, Figure [15] for the case 5 = ¢, ¢ = 3 and r = 2.

The (x) condition from Definition 23 becomes (x),. We say that (u,v) € Ly, x Ly, satisfies the (x),

condition if either u = v = ¢ and () =7 mod g, or |u| > |v| > 0 and

uop(uiv) uop(uﬂv)
<UOP(“7”)) =rmod ¢ and <v0p(“v”)a> =0 Vace Ay,

where p(u,v) is defined using Proposition In this extended context, Proposition Proposition
Corollary Lemma and Remark are easy to adapt. Note that the pairs (u, v) satisfying this condition
depend on the choice of ¢ and 7. The sets A? are defined as before. The pair (u,u) satisfies (x), if and only

if r =1; see Lemma Thus, the segment of slope 1 with endpoints (0,0) and (1, 1) belongs to Ag if and
only if = 1. An alternative proof of Proposition [36| follows the same lines as in [10].

6 Appendix

Example 48. We have represented the set g in Figure

Figure 14: The set Uy .

Example 49. Let us consider the case when 5 = ¢ is the golden ratio. We have represented in Figure
the set Z/lgf 5 when considering binomial coefficients congruent to 2 modulo 3 and an approximation of the
limit set L£¥ proceeding as in Example

In this last example, we give an approximation of the limit object £? for several different values of 5. A
real number 8 > 1 is a Pisot number if it is an algebraic integer whose conjugates have modulus less than 1.
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Figure 15: The set Z/lgfz (on the left) and an approximation of the corresponding limit set £# (on the right).

Example 50. Let us define several Parry numbers. Let 81 = 2.47098 be the dominant root of the polynomial
P(X)=X*-2X3— X% — 1, which is a Parry and Pisot number; see Example Let B2 = 2.47098 be the
dominant root of the polynomial P(X) = X* — X3 — 1, which is a Parry and Pisot number; see Example
Let 33 ~ 2.80399 be the dominant root of the polynomial P(X) = X* —2X3 —2X?2 — 2. We can show that
B3 is a Parry number, but not a Pisot number. Let 54 &~ 1.32472 be the dominant root of the polynomial
P(X) = X5 — X% — 1. We can show that 34 is a Parry number and also the smallest Pisot number. In
Figure we depict an approximation of £° for 3 in {¢?, B, ..., B4}
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(b) An approximation of £°1.

2

(a) An approximation of £# .

(d) An approximation of £%3.

(c) An approximation of £%2.

(e) An approximation of £P1.

Figure 16: An approximation of the limit object £? for different values of 3.
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