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Abstract

We pursue the investigation of generalizations of the Pascal triangle based on binomial coefficients
of finite words. These coefficients count the number of times a finite word appears as a subsequence of
another finite word. The finite words occurring in this paper belong to the language of a Parry numeration
system satisfying the Bertrand property, i.e., we can add or remove trailing zeroes to valid representations.
It is a folklore fact that the Sierpiński gasket is the limit set, for the Hausdorff distance, of a convergent
sequence of normalized compact blocks extracted from the classical Pascal triangle modulo 2. In a similar
way, we describe and study the subset of [0, 1] × [0, 1] associated with the latter generalization of the
Pascal triangle modulo a prime number.

2010 Mathematics Subject Classification: 11A63, 11A67, 11B65, 11K16, 68R15.
Keywords: Binomial coefficients of words; generalized Pascal triangles; β-expansions; Perron numbers; Parry
numbers; Bertrand numeration systems.

1 Introduction

Several generalizations and variations of the Pascal triangle exist and lead to interesting combinatorial,
geometrical or dynamical properties [1, 2, 8, 9, 10]. This paper is inspired by a series of papers based on
generalizations of Pascal triangles to finite words [10, 11, 12, 13].

1.1 Binomial coefficients of words and Pascal-like triangles

In this short subsection, we briefly introduce the concepts we use in this paper. For more definitions, see
section 2. A finite word is a finite sequence of letters belonging to a finite set called the alphabet. The
binomial coefficient

(
u
v

)
of two finite words u and v is the number of times v occurs as a subsequence of u

(meaning as a “scattered” subword).
Let A be a totally ordered alphabet, and let L ⊂ A∗ be an infinite language over A. We order the words

of L by increasing genealogical order and we write L = {w0 < w1 < w2 < · · · }. Associated with the language
L, we define a Pascal-like triangle PL : N× N→ N represented as an infinite table. The entry PL(m,n) on
the mth row and nth column of PL is the integer

(
wm
wn

)
.

1Corresponding author.
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1.2 Previous work

Let b be an integer greater than 1. We let repb(n) denote the (greedy) base-b expansion of n ∈ N \ {0}
starting with a non-zero digit. We set repb(0) to be the empty word denoted by ε. We let

Lb = {1, . . . , b− 1}{0, . . . , b− 1}∗ ∪ {ε}

be the set of base-b expansions of the non-negative integers. In [10], we study the particular case of L = Lb.
The increasing genealogical order thus coincides with the classical order in N. For example, see Table 1 for
the first few values2 of P2. Clearly, Pb contains several subtables corresponding to the usual Pascal triangle.

ε 1 10 11 100 101 110 111
ε 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0
11 1 2 0 1 0 0 0 0

100 1 1 2 0 1 0 0 0
101 1 2 1 1 0 1 0 0
110 1 2 2 1 0 0 1 0
111 1 3 0 3 0 0 0 1

Table 1: The first few values in the generalized Pascal triangle P2 (A282714).

For instance, it contains (b− 1) copies of the usual Pascal triangle obtained when only considering words of

the form am with a ∈ {1, . . . , b− 1} and m ≥ 0 since
(
am

an

)
=
(
m
n

)
. In Table 1, a copy of the classical Pascal

triangle is written in bold.
Considering the intersection of the lattice N2 with [0, 2n] × [0, 2n], the first 2n rows and columns of the

usual Pascal triangle modulo 2 (
(
i
j

)
mod 2)0≤i,j<2n provide a coloring of this lattice. If we normalize this

compact set by a homothety of ratio 1/2n, we get a sequence of subsets of [0, 1]× [0, 1] which converges, for
the Hausdorff distance, to the Sierpiński gasket when n tends to infinity. In the extended context described
above, the case when b = 2 gives similar results and the limit set, generalizing the Sierpiński gasket, is
described using a simple combinatorial property called (?) [10].

Inspired by [10], we study the sequence (Sb(n))n≥0 which counts, on each row m of Pb, the number of
words of Lb occurring as subwords of the mth word in Lb, i.e., Sb(m) = #{n ∈ N | Pb(m,n) > 0}. This
sequence is shown to be b-regular [11, 13]. We also consider the summatory function (Ab(n))n≥0 of the
sequence (Sb(n))n≥0 and study its behavior [12, 13].

So far, the setting is the one of integer bases. As a first extension, we handle the case of the Fibonacci
numeration system, i.e., with the language LF = {ε} ∪ 1{0, 01}∗ [11, 12]. It turns out that the sequence
(SF (n))n≥0 counting the number of words in LF occurring as subwords of the nth word in LF has properties
similar to those of (Sb(n))n≥0. Finally, the summatory function (AF (n))n≥0 of the sequence (SF (n))n≥0 has
a behavior similar to the one of (Ab(n))n≥0.

1.3 Our contribution

The Fibonacci numeration system belongs to an extensively studied family of numeration systems called
Parry–Bertrand numeration systems, which are based on particular sequences (U(n))n≥0 (the precise defi-
nitions are given later). In this paper, we fill the gap between integer bases and the Fibonacci numeration
systems by extending the results of [10] to every Parry–Bertrand numeration system. First, we generalize

2Some of the objects discussed here are stored in Sloane’s On-Line Encyclopedia of Integer Sequences [20]. See sequences
A007306, A282714, A282715, A282720, A282728, A284441, and A284442.

2

http://oeis.org/A282714
http://oeis.org/A007306
http://oeis.org/A282714
http://oeis.org/A282715
http://oeis.org/A282720
http://oeis.org/A282728
http://oeis.org/A284441
http://oeis.org/A284442


the construction of Pascal-like triangles to every Parry–Bertrand numeration system. For a given Parry–
Bertrand numeration system based on a particular sequence (U(n))n≥0, we consider the intersection of the
lattice N2 with [0, U(n)]× [0, U(n)]. Then the first U(n) rows and columns of the corresponding generalized
Pascal triangle modulo 2 provide a coloring of this lattice regarding the parity of the corresponding bino-
mial coefficients. If we normalize this compact set by a homothety of ratio 1/U(n), we get a sequence in
[0, 1]× [0, 1] which converges, for the Hausdorff distance, to a limit set when n tends to infinity. Again, the
limit set is described using a simple combinatorial property extending the one from [10].

Compared to the integer bases, new technicalities have to be taken into account to generalize Pascal
triangles to a large class of numeration systems. The numeration systems occurring in this paper essentially
have two properties. The first one is that the language of the numeration system comes from a particular
automaton. The second one is the Bertrand condition which allows to delete or add ending zeroes to valid
representations.

This paper is organized as follows. In Section 2, we collect necessary background. Section 3 is devoted to
a special combinatorial property that extends the (?) condition from [10]. This new condition allows us to
define a sequence of compact sets, which is shown to be a Cauchy sequence in Section 4. In Section 5, using
the property of the latter sequence, we define a limit set which is the analogue of the Sierpiński gasket in
the classical framework. We show that the sequence of subblocks of the generalized Pascal triangle modulo 2
in a Parry–Bertrand numeration converges to this new limit set. As a final remark, we consider the latter
sequence of compact sets modulo any prime number.

2 Background and particular framework

We begin this section with well-known definitions from combinatorics on words; see, for instance, [18]. Let
A be an alphabet, i.e., a finite set. The elements of A are called letters. A finite sequence over A is called
a finite word. The length of a finite word w, denoted by |w|, is the number of letters belonging to w. The
only word of length 0 is the empty word ε. The set of finite words over the alphabet A including the empty
word (resp., excluding the empty word) is denoted by A∗ (resp., A+). The set of words of length n over A
is denoted by An. If u and v are two finite words belonging to A∗, the binomial coefficient

(
u
v

)
of u and v is

the number of occurrences of v as a subsequence of u, meaning as a scattered subword. The sequences over
A indexed by N are the infinite words over A. If w is a finite non-empty word over A, we let wω := www · · ·
denote the infinite word obtained by concatenating infinitely many copies of w. If L ⊂ A∗ is a set of finite
words and u ∈ A∗ is a finite word, we let u−1.L denote the set of words {v ∈ A∗ | uv ∈ L}. Let A be totally
ordered. If u, v ∈ A∗ are two words, we say that u is less than v in the genealogical order and we write u < v
if either |u| < |v|, or if |u| = |v| and there exist words p, q, r ∈ A∗ and letters a, b ∈ A with u = paq, v = pbr
and a < b. By u ≤ v, we mean that either u < v, or u = v.

In the first part of this section, we gather two results on binomial coefficients of finite words and integers.
For a proof of the first lemma, we refer the reader to [14, Chap. 6].

Lemma 1. Let A be a finite alphabet. Let u, v ∈ A∗ and let a, b ∈ A. Then we have(
ua

vb

)
=

(
u

vb

)
+ δa,b

(
u

v

)
where δa,b is equal to 1 if a = b, 0 otherwise.

Let us also recall Lucas’ theorem relating classical binomial coefficients modulo a prime number p with
base-p expansions. See [16, p. 230] or [7]. Note that in the following statement, if the base-p expansions of
m and n are not of the same length, then we pad the shortest with leading zeroes.

Theorem 2. Let m and n be two non-negative integers and let p be a prime number. If

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0

3



and
n = nkp

k + nk−1p
k−1 + · · ·+ n1p+ n0

with mi, ni ∈ {0, . . . , p− 1} for all i, then the following congruence relation holds(
m

n

)
≡

k∏
i=0

(
mi

ni

)
mod p,

using the following convention:
(
m
n

)
= 0 if m < n.

In the last part of this section, we introduce the setting of particular numeration systems that are used
in this paper: the Parry–Bertrand numeration systems. First of all, we recall several definitions and results
about representations of real numbers. For more details, see, for instance, [3, Chap. 2], [15, Chap. 7] or [19].

Definition 3. Let β ∈ R>1 and let Aβ = {0, 1, . . . , dβe− 1}. Every real number x ∈ [0, 1) can be written as
a series

x =

+∞∑
j=1

cjβ
−j

where cj ∈ Aβ for all j ≥ 1, and where d·e denotes the ceiling function defined by dxe = inf{z ∈ Z | z ≥ x}.
The infinite word c1c2 · · · is called a β-representation of x. Among all the β-representations of x, we define the
β-expansion dβ(x) of x obtained in a greedy way, i.e., for all j ≥ 1, we have cjβ

−j+cj+1β
−j−1+ · · · < β−j+1.

We also make use of the following convention: if w = wn · · ·w0 is a finite word (resp., w = w1w2 · · · is an
infinite word) over Aβ , the notation 0.w has to be understood as the real number

∑n
j=0 wjβ

j−n−1 (resp.,∑+∞
j=1 wjβ

−j); it actually corresponds to the value of the word w in base β.
In an analogous way, the β-expansion dβ(1) of 1 the following infinite word over Aβ

dβ(1) :=

{
(β − 1)ω, if β ∈ N;

(dβe − 1)dβ(1− (dβe − 1)/β), otherwise.

In other words, if β is not an integer, the first digit of the β-expansion of 1 is dβe − 1 and the other digits
are derived from the β-expansion of 1− (dβe − 1)/β.

Let dβ(1) = (tn)n≥1 be the β-expansion of 1. Observe that t1 = dβe − 1. We define the quasi-greedy
β-expansion d∗β(1) of 1 as follows. If dβ(1) = t1 · · · tm is finite, i.e., tm 6= 0 and tj = 0 for all j > m, then
d∗β(1) = (t1 · · · tm−1(tm − 1))ω, otherwise d∗β(1) = dβ(1).

A real number β > 1 is a Parry number if dβ(1) is ultimately periodic. If dβ(1) is finite, then β is called
a simple Parry number. In this case, Proposition 5 gives an easy way to decide if an infinite word is the
β-expansion of a real number [17]. For more details, see, for instance, [15, Chap. 7]. First, let us recall the
definition of a deterministic finite automaton.

Definition 4. A deterministic finite automaton (DFA), over an alphabet A is given by a 5-tuple A =
(Q, q0, A, δ, F ) where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q × A 7→ Q is the transition
function and F ⊂ Q is the set of final states (graphically represented by two concentric circles). The map
δ can be extended to Q × A∗ by setting δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a) for all q ∈ Q, a ∈ A and
w ∈ A∗. We also say that a word w is accepted by the automaton if δ(q0, w) ∈ F .

Proposition 5. Let β ∈ R>1 be a Parry number.

(a) Suppose that dβ(1) = t1 · · · tm is finite, i.e., tm 6= 0 and tj = 0 for all j > m. Then an infinite word
is the β-expansion of a real number in [0, 1) if and only if it is the label of a path in the automaton
Aβ = ({a0, . . . , am−1}, a0, Aβ , δ, {a0, . . . , am−1}) depicted in Figure 1a.

4



a0 a1 a2 am−2 am−1

0, . . . , t1 − 1

0, . . . , t2 − 1

. . . . . . . . .

0, . . . , t3 − 1

t1 t2 t3 tm−2 tm−1

0, . . . , tm − 1

(a) The case when dβ(1) is finite.

a0 a1 a2 am−2 am−1

amam+k−1

0, . . . , t1 − 1

0, . . . , t2 − 1

. . . . . . . . .

0, . . . , t3 − 1

t1 t2 t3 tm−2 tm−1

0, . . . , tm − 1

tm

. . .. . .. . . tm+1tm+k−1

0, . . . , tm+1 − 1

tm+k

0, . . . , tm+k − 1

(b) The case when dβ(1) is ultimately periodic but not finite.

Figure 1: The automaton Aβ in function of the ultimately periodic word dβ(1).
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a0 a1

0
1

0

(a)

a0 a1

0, 1 1
2

0

(b)

Figure 2: The automaton Aϕ (on the left) and the automaton Aϕ2 (on the right).

(b) Suppose that dβ(1) = t1 · · · tm(tm+1 · · · tm+k)ω where m, k are taken to be minimal. Then an infinite
word is the β-expansion of a real number [0, 1) if and only if it is the label of a path in the automaton
Aβ = ({a0, . . . , am+k−1}, a0, Aβ , δ, {a0, . . . , am+k−1}) depicted in Figure 1b.

Let us illustrate the previous proposition. For other examples, see, for instance, [5].

Example 6. If β ∈ R>1 is an integer, then dβ(1) = d∗β(1) = (β − 1)ω. The automaton Aβ consists of a
single initial and final state a0 with a loop of labels 0, 1, . . . , β − 1.

Example 7. Consider the golden ratio ϕ. Since 1 = 1/ϕ+ 1/ϕ2, we have dϕ(1) = 11 and d∗ϕ(1) = (10)ω. It
is thus a Parry number. The automaton Aϕ is depicted in Figure 2a.

The square ϕ2 of the golden ratio is again a Parry number with dϕ2(1) = d∗ϕ2(1) = 21ω. The automaton
Aϕ2 is depicted in Figure 2b.

With every Parry number is canonically associated a linear numeration system. Let us recall the definition
of such numeration systems.

Definition 8. Let U = (U(n))n≥0 be a sequence of integers such that U is increasing, U(0) = 1 and

supn≥0
U(n+1)
U(n) is bounded by a constant. We say that U is a linear numeration system if U satisfies a linear

recurrence relation, i.e., there exist k ≥ 1 and a0, . . . , ak−1 ∈ Z such that

∀n ≥ 0, U(n+ k) = ak−1 U(n+ k − 1) + · · ·+ a0 U(n). (1)

Let n be a positive integer. By successive Euclidean divisions, there exists ` ≥ 1 such that

n =

`−1∑
j=0

cj U(j)

where the cj ’s are non-negative integers and c`−1 is non-zero. The word c`−1 · · · c0 is called the normal U -
representation of n and is denoted by repU (n). In other words, the word c`−1 · · · c0 is the greedy expansion
of n in the considered numeration system. We set repU (0) := ε. Finally, we refer to LU := repU (N) as the
language of the numeration and we let AU denote the minimal alphabet such that LU ⊂ A∗U . If dr · · · d0 is
a word over an alphabet of digits, then its U -numerical value is

valU (dr · · · d0) :=

r∑
j=0

dj U(j).

Observe that, if valU (dr · · · d0) = n, then the word dr · · · d0 is a U -representation of n (but not necessarily
its normal U -representation).

Definition 9. Let β ∈ R>1 be a Parry number. We define a particular linear numeration system Uβ :=
(Uβ(n))n≥0 associated with β as follows.

If dβ(1) = t1 · · · tm is finite (tm 6= 0), then we set Uβ(0) := 1, Uβ(i) := t1Uβ(i− 1) + · · ·+ tiUβ(0) + 1 for
all i ∈ {1, . . . ,m− 1} and, for all n ≥ m,

Uβ(n) := t1Uβ(n− 1) + · · ·+ tmUβ(n−m).

If dβ(1) = t1 · · · tm(tm+1 · · · tm+k)ω (m, k are minimal), then we set Uβ(0) := 1, Uβ(i) := t1Uβ(i − 1) +
· · ·+ tiUβ(0) + 1 for all i ∈ {1, . . . ,m+ k − 1} and, for all n ≥ m+ k,

Uβ(n) :=t1Uβ(n− 1) + · · ·+ tm+kUβ(n−m− k) + Uβ(n− k)

− t1Uβ(n− k − 1)− · · · − tmUβ(n−m− k).

6



The linear numeration system Uβ from Definition 9 has an interesting property: it is a Bertrand numer-
ation system.

Definition 10. A linear numeration system U = (U(n))n≥0 is a Bertrand numeration system if, for all
w ∈ A+

U , w ∈ LU ⇔ w0 ∈ LU .

Bertrand proved that the linear numeration system Uβ associated with the Parry number β from Defini-
tion 9 is the unique linear numeration system associated with β that is also a Bertrand numeration system [4].
In that case [4], any word w in the set 0∗LUβ of all normal Uβ-representations with leading zeroes is the
label of a path in the automaton Aβ from Proposition 5.

Finally, every Parry number is a Perron number [15, Chap. 7]. A real number β > 1 is a Perron number
if it is an algebraic integer whose conjugates have modulus less than β. Numeration systems based on Perron
numbers are defined as follows and have the property (2), which is often used in this paper.

Definition 11. Let U = (U(n))n≥0 be a linear numeration system. Consider the characteristic polynomial
of the recurrence (1) given by P (X) = Xk − ak−1Xk−1 − · · · − a1X − a0. If P is the minimal polynomial
of a Perron number β ∈ R>1, we say that U is a Perron numeration system. In this case, the polynomial P
can be factored as

P (X) = (X − β)(X − α2) · · · (X − αk)

where the complex numbers α2, . . . , αk are the conjugates of β, and, for all j > 1, we have |αj | < β. Using
a well-known fact regarding recurrence relations, we have

U(n) = c1β
n + c2α

n
2 + · · ·+ ckα

n
k ∀n ≥ 0

where c1, . . . , ck are complex numbers depending on the initial values of U . Since |αj | < β for all j > 1, we
have

lim
n→+∞

U(n)

βn
= c1. (2)

Remark 12. Note that if two Perron numeration systems are associated with the same Perron number,
then these two systems only differ by the choice of the initial values U(0), . . . , U(k− 1). The choice of those
initial values is of great importance. See, for instance, Example 14.

Example 13. The usual integer base system is a special case of a Perron–Bertrand numeration system.

Example 14. The golden ratio ϕ is a Perron number whose minimal polynomial is P (X) = X2 −X − 1.
A Perron–Bertrand numeration system associated with ϕ is the Fibonacci numeration system based on the
Fibonacci numbers (F (n))n≥0 defined by F (0) = 1, F (1) = 2 and F (n + 2) = F (n + 1) + F (n). If we
change the initial conditions and set F ′(0) = 1, F ′(1) = 3 and F ′(n+ 2) = F ′(n+ 1) + F ′(n), we again get
a Perron numeration associated with ϕ which is not a Bertrand numeration system. Indeed, 2 is a greedy
representation, but not 20 because repF ′(valF ′(20)) = 102.

The particular setting of this paper is the following one: we let β ∈ R>1 be a Parry number and
we constantly use the special Parry–Bertrand numeration Uβ from Definition 9. From Definition 3 and
Definition 8, the alphabet AUβ is the set {0, 1, . . . , dβe − 1} and the language of the system of numeration
Uβ is LUβ ⊂ A∗Uβ (which is defined using the automaton Aβ from Proposition 5). To end this section, we
prove a useful lemma about binomial coefficients of words ending with blocks of zeroes.

Lemma 15. For all non-empty words u, v ∈ LUβ and all k ∈ N, we have

(
u0k

v0k

)
=

k∑
j=0

(
k

j

)(
u

v0j

)
.

7



Proof. We proceed by induction on k ∈ N. If k = 0, the result is obvious. Suppose that the result holds
true for all non-empty words u, v ∈ LUβ and for 0, . . . , k. We show that it still holds true for all non-empty
words u, v ∈ LUβ and k + 1. Using Lemma 1, we first have(

u0k+1

v0k+1

)
=

(
u0k

v′0k

)
+

(
u0k

v0k

)
where v′ = v0 ∈ LUβ since Uβ is a Parry–Bertrand numeration system. By induction hypothesis, we get(

u0k+1

v0k+1

)
=

k+1∑
j=1

(
k

j − 1

)(
u

v0j

)
+

k∑
j=0

(
k

j

)(
u

v0j

)

=

(
k + 1

k + 1

)(
u

v0k+1

)
+

k∑
j=1

((
k

j − 1

)
+

(
k

j

))(
u

v0j

)
+

(
k + 1

0

)(
u

v

)

=

k+1∑
j=0

(
k + 1

j

)(
u

v0j

)
.

3 The (?) condition

We let wn = repUβ (n) denote the nth word of the language LUβ in the genealogical order. The generalized

Pascal triangle PUβ : N × N → N : (i, j) 7→
(
wi
wj

)
is represented as an infinite table3 whose entry on the ith

row and the jth column is the binomial coefficient
(
wi
wj

)
. For instance, when β = ϕ, the first few values in

the generalized Pascal triangle PUϕ are given in Table 2 below. Considering the intersection of the lattice N2

with [0, Uβ(n)]× [0, Uβ(n)], the first Uβ(n) rows and columns of the generalized Pascal triangle PUβ modulo 2((
wi
wj

)
mod 2

)
0≤i,j<Uβ(n)

provide a coloring of this lattice, leading to a sequence of compact subsets of R2. If we normalize these sets
respectively by a homothety of ratio 1/Uβ(n), we define a sequence (Uβn )n≥0 of subsets of [0, 1]× [0, 1].

Definition 16. Let Q := [0, 1]× [0, 1]. Consider the sequence (Uβn )n≥0 of sets in [0, 1]× [0, 1] defined for all
n ≥ 0 by

Uβn :=
1

Uβ(n)

⋃{
(valUβ (v), valUβ (u)) +Q | u, v ∈ LUβ ,

(
u

v

)
≡ 1 mod 2

}
⊂ [0, 1]× [0, 1].

Each Uβn is a finite union of squares of size 1/Uβ(n) and is thus compact.

Example 17. When β = ϕ is the golden ratio, the first values in the generalized Pascal triangle PUϕ are
given in Table 2. The sets Uϕ3 , Uϕ4 and Uϕ5 are depicted in Figure 3. The set Uϕ9 is depicted in Figure 14
given in the appendix.

Remark 18. Each pair (u, v) of words of length at most n with an odd binomial coefficient gives rise to a
square region in Uβn . More precisely, we have the following situation. Let n ≥ 0 and u, v ∈ LUβ such that

0 ≤ |v| ≤ |u| ≤ n and
(
u
v

)
≡ 1 mod 2. We have

((valUβ (v), valUβ (u)) +Q)/Uβ(n) ⊂ Uβn

8



ε

1

10

100

101

ε 1 10 100 101

(a) The set Uϕ3 .

ε

1

10

100

101

1000

1001

1010

ε 1 10 10
0

10
1

10
00

10
01

10
10

(b) The set Uϕ4 .

ε
1
10
100
101
1000
1001
1010
10000
10001
10010
10100
10101

ε 1 10 10
0
10

1
10

00
10

01
10

10
10

00
0

10
00

1

10
01

0

10
10

0

10
10

1

(c) The set Uϕ5 .

Figure 3: The sets Uϕ3 , Uϕ4 and Uϕ5 when β = ϕ is the golden ratio.
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j(
wi
wj

)
ε 1 10 100 101 1000 1001 1010

ε 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0
i 100 1 1 2 1 0 0 0 0

101 1 2 1 0 1 0 0 0
1000 1 1 3 3 0 1 0 0
1001 1 2 2 1 2 0 1 0
1010 1 2 3 1 1 0 0 1

Table 2: The first few values in the generalized Pascal triangle PUϕ .

u

v
0

1

1
valUβ (v)

Uβ(n)

valUβ (u)

Uβ(n)

Figure 4: Visualization of a square region in Uβn .

as depicted in Figure 4.

We consider the space (H(R2), dh) of the non-empty compact subsets of R2 equipped with the Hausdorff
metric dh induced by the Euclidean distance d on R2. It is well known that (H(R2), dh) is complete [6]. We
let B(x, ε) denote the open ball of radius ε ≥ 0 centered at x ∈ R2 and, if S ⊂ R2, we let

[S]ε :=
⋃
x∈S

B(x, ε)

denote ε-fattening of S.
Our aim is to show that the sequence (Uβn )n≥0 of compact subsets of [0, 1] × [0, 1] is converging and to

provide an elementary description of its limit set. The idea is the following one. Let (u, v) ∈ LUβ × LUβ
be a pair of words having an odd binomial coefficient. On the one hand, some of those pairs are such that(
ua
va

)
≡ 0 mod 2 for all letters a such that ua, va ∈ LUβ . In other words, those pairs of words create a

black square region in Uβ|u| while the corresponding square region in Uβ|u|+1 is white. As an example, take

β = ϕ, u = 1010 and v = 101. We have
(
u0
v0

)
= 2 (see Figure 3). On the other hand, some of those pairs

create a more stable pattern, i.e.,
(
uw
vw

)
≡ 1 mod 2 for all words w such that uw, vw ∈ LUβ . Roughly, those

3Using the notation
(u
v

)
, the rows (resp., columns) of PUβ are indexed by the words u (resp., v).
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a0 a1 a2 a3

0, 1
2

0

1 0

0

Figure 5: The automaton Aβ for the dominant root β of the polynomial P (X) = X4 − 2X3 −X2 − 1.

pairs create a diagonal of square regions in (Uβn )n≥0. For instance, take β = ϕ, u = 101 and v = 10. In
this case,

(
uw
vw

)
≡ 1 mod 2 for all admissible words w. In particular, the pairs of words (u, v), (u0, v0) and

(u00, v00), (u01, v01) have odd binomial coefficients (see Figure 3) and create a diagonal of square regions.
With the second type of pairs of words, we define a new sequence of compact subsets (Aβn)n≥0 of [0, 1]× [0, 1]
which converges to some well-defined limit set Lβ . Then, we show that the first sequence of compact sets
(Uβn )n≥0 also converges to this limit set. The remaining of this paper is dedicated to formalize and prove
those statements.

To reach that goal, for all non-empty words u, v ∈ LUβ , we first define the least integer p such that
u0pw, v0pw belong to LUβ for all words w ∈ 0∗LUβ . In other terms, any word w can be read after u0p and
v0p in the automaton Aβ . Then, some pairs of words (u, v) ∈ LUβ × LUβ have the property that not only(
u
v

)
≡ 1 mod 2 but also

(
u0pw
v0pw

)
≡ 1 mod 2 for all words w ∈ 0∗LUβ ; see Corollary 28. Such a property creates

a particular pattern occurring in Uβn for all sufficiently large n, as shown in Remark 30.

Proposition 19. For all non-empty words u, v ∈ LUβ , there exists a smallest nonnegative integer p(u, v)
such that

(u0p(u,v))−1.LUβ = (v0p(u,v))−1.LUβ = 0∗LUβ .

Proof. Using Proposition 5, take p(u, v) to be the least nonnegative integer p such that δ(a0, u0p) = a0 =
δ(a0, v0p). Then, for any word w ∈ 0∗LUβ , the words u0p(u,v)w, v0p(u,v)w are labels of paths in Aβ . Conse-

quently, they are words in LUβ . Conversely, if the words u0p(u,v)w, v0p(u,v)w are labels of paths in Aβ , then
w ∈ 0∗LUβ .

In the following, we will be using p(ε, ε). Observe that, using Proposition 5, δ(a0, ε) = a0. We naturally
set p(ε, ε) := 0 and we thus have (ε0p(ε,ε))−1.LUβ = LUβ .

Example 20. If β > 1 is an integer, then p(u, v) = 0 for all u, v ∈ LUβ . See Example 6.

Example 21. If β = ϕ is the golden ratio, then p(u, v) = 0 if and only if u and v end with 0 or u = v = ε,
otherwise p(u, v) = 1.

The integer of Proposition 19 can be greater than 1 as illustrated in the following example.

Example 22. Let β be the dominant root of the polynomial P (X) = X4−2X3−X2−1. Then β ≈ 2.47098
is a Parry number with dβ(1) = 2101 and d∗β(1) = (2100)ω. The automaton Aβ is depicted in Figure 5. For
instance, p(101, 21) = 2.

Definition 23. Let (u, v) ∈ LUβ ×LUβ . We say that (u, v) satisfies the (?) condition if either u = v = ε, or
|u| ≥ |v| > 0 and (

u0p(u,v)

v0p(u,v)

)
≡ 1 mod 2 and

(
u0p(u,v)

v0p(u,v)a

)
= 0 ∀ a ∈ AUβ

where p(u, v) is defined by Proposition 19. Observe that, if (u, v) 6= (ε, ε), then v0p(u,v)a ∈ LUβ for all
a ∈ AUβ .

11



Remark 24. Observe that if only one of the two words u or v is empty, then the pair (u, v) never satisfies
(?).

The next lemma shows that all diagonal elements of Uβn satisfy (?).

Lemma 25. For any word u ∈ LUβ , the pair (u, u) satisfies (?).

Proof. If u = ε, the result is clear using Definition 23. Suppose u is non-empty and let p := p(u, u) denote
the integer from Proposition 19. Then, for all a ∈ AUβ , we have(

u0p

u0p

)
= 1 ≡ 1 mod 2 and

(
u0p

u0pa

)
= 0

since |u0pa| > |u0p|.

If a pair of words satisfies (?), it has the following two properties. First, its binomial coefficient is odd,
as stated in the following proposition. Secondly, it creates a special pattern in Uβn for all large enough n; see
Proposition 27, Corollary 28 and Remark 30.

Proposition 26. Let (u, v) ∈ LUβ × LUβ satisfying (?). Then(
u

v

)
≡ 1 mod 2.

Proof. If u = v = ε, the result is clear by definition. Suppose that u and v are non-empty. Let us proceed by
contradiction and suppose that

(
u
v

)
is even. Let us set p := p(u, v) from Proposition 19. On the one hand,

by Definition 23, we know that (
u0p

v0p

)
≡ 1 mod 2

and, on the other hand, Lemma 15 states that(
u0p

v0p

)
=

p∑
j=1

(
p

j

)(
u

v0j

)
+

(
u

v

)
.

Consequently, we have
p∑
j=1

(
p

j

)(
u

v0j

)
≡ 1 mod 2 > 0

and there must exist i ∈ {1, . . . , p} such that
(
u
v0i

)
> 0. Using again Lemma 15, we also have(

u0p

v0p0

)
=

p+1∑
j=1

(
p

j − 1

)(
u

v0j

)
≥
(

p

i− 1

)(
u

v0i

)
> 0,

which contradicts Definition 23.

Proposition 27. Let u, v ∈ LUβ be two non-empty words such that (u, v) satisfies (?). For any letter

a ∈ AUβ , the pair of words (u0p(u,v)a, v0p(u,v)a) ∈ LUβ × LUβ satisfies (?).

Proof. For the sake of clarity, set p := p(u, v). Let a be a letter in AUβ and also set p′ := p(u0pa, v0pa). By
Lemma 1 and Lemma 15, (

u0pa0p
′

v0pa0p′

)
=

p′∑
j=1

(
p′

j

)(
u0pa

v0pa0j

)
+

(
u0p

v0pa

)
+

(
u0p

v0p

)
.

12



Since (u, v) satisfies (?), all the coefficients
(
u0pa
v0pa0j

)
, for j = 1, . . . , p′, and

(
u0p

v0pa

)
are equal to 0. Otherwise,

it means that the word v0pa appears as a subword of the word u0p, which contradicts (?). Consequently,
using Definition 23, we get (

u0pa0p
′

v0pa0p′

)
=

(
u0p

v0p

)
≡ 1 mod 2.

Using the same argument, for any letter b ∈ AUβ , we have(
u0pa0p

′

v0pa0p′b

)
= 0.

The next corollary extends Lemma 25 when (u, v) 6= (ε, ε). Indeed, recall that p(ε, ε) = 0.

Corollary 28. Let u, v ∈ LUβ be two non-empty words such that (u, v) satisfies (?). Then(
u0p(u,v)w

v0p(u,v)w

)
≡ 1 mod 2 ∀w ∈ 0∗LUβ .

Proof. Set p := p(u, v). From Proposition 19, u0pw, v0pw belong to LUβ for any word w ∈ 0∗LUβ . Now
proceed by induction on the length of w ∈ 0∗LUβ . If |w| = 0, then w = ε is the empty word and the statement
is true using Definition 23. If |w| = 1, then w = a is a letter belonging to AUβ . Then, by Proposition 27, we
know that (u0pa, v0pa) satisfies (?). Using Proposition 26, we have(

u0pa

v0pa

)
≡ 1 mod 2.

Now suppose that |w| ≥ 2 and write w = aw′b ∈ 0∗LUβ where a, b are letters. From Lemma 1, we deduce
that (

u0pw

v0pw

)
=

(
u0paw′

v0paw′b

)
+

(
u0paw′

v0paw′

)
.

By induction hypothesis,
(
u0paw′

v0paw′

)
≡ 1 mod 2 since aw′ ∈ 0∗LUβ and |aw′| < |w|. Furthermore,

(
u0paw′

v0paw′b

)
must be 0, otherwise it means that the word v0pa occurs as a subword of the word u0p, which contradicts
the fact that (u, v) satisfies (?). This ends the proof.

The next lemma is useful to characterize the pattern created in Uβn , for all sufficiently large n, by pairs
of words satisfying (?), see Remark 30. In this result, we make use of the convention given in Definition 3.

Lemma 29. Let (u, v) ∈ LUβ × LUβ satisfying (?).

(a) The sequence ((
valUβ (v0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)
,

valUβ (u0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u).

(b) For all n ≥ 0, let w = dn denotes the prefix of length n of d∗β(1). Then the sequence((
valUβ (v0p(u,v)dn)

Uβ(|u|+ p(u, v) + n)
,

valUβ (u0p(u,v)dn)

Uβ(|u|+ p(u, v) + n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v0p(u,v)d∗β(1), 0.u0p(u,v)d∗β(1)).
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Proof. Let (u, v) ∈ LUβ ×LUβ satisfying (?) and set p := p(u, v). We prove the first item as the proof of the
second one is similar. The result is trivial if u = v = ε. Suppose that u and v are non-empty words. Let us
write u = u|u|−1u|u|−2 · · ·u0 where ui ∈ AUβ for all i. By definition, we have

valUβ (u0p+n)

Uβ(|u|+ p+ n)
=

|u|−1∑
i=0

ui
Uβ(i+ p+ n)

Uβ(|u|+ p+ n)
.

Using (2), Uβ(i+ p+ n)/Uβ(|u|+ p+ n) tends to βi/β|u| when n tend to infinity. Consequently,

lim
n→+∞

valUβ (u0p+n)

Uβ(|u|+ p+ n)
=

|u|−1∑
i=0

uiβ
i−|u| = 0.u.

Using the same reasoning on the word v, we conclude that the sequence((
valUβ (v0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)
,

valUβ (u0p(u,v)+n)

Uβ(|u|+ p(u, v) + n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u).

Remark 30. Let (u, v) ∈ LUβ × LUβ satisfying (?) and set p := p(u, v). Suppose that u and v are non-
empty (the case when u = v = ε is similar: in the following, replace 0∗LUβ by LUβ where needed). Using
Corollary 28, the pair of words (u0pw, v0pw) has an odd binomial coefficient for any word w ∈ 0∗LUβ . In

particular, the pair of words (u0pw, v0pw) corresponds to a square region in Uβ|u|+p+n for all w ∈ 0∗LUβ such

that |w| = n ≥ 0. Using Remark 18, this region is(
valUβ (v0pw)

Uβ(|u|+ p+ n)
,

valUβ (u0pw)

Uβ(|u|+ p+ n)

)
+

Q

Uβ(|u|+ p+ n)
⊂ Uβ|u|+p+n.

Using Lemma 29, when w = 0n (the smallest word of length n in 0∗LUβ ), the sequence((
valUβ (v0p+n)

Uβ(|u|+ p+ n)
,

valUβ (u0p+n)

Uβ(|u|+ p+ n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v, 0.u). This point will be the first endpoint of a segment
associated with u and v. See Definition 32. Analogously, using Lemma 29, when w = dn is the prefix of
length n of d∗β(1) (the greatest word of length n in 0∗LUβ ), then the sequence((

valUβ (v0pdn)

Uβ(|u|+ p+ n)
,

valUβ (u0pdn)

Uβ(|u|+ p+ n)

))
n≥0

converges to the pair of real numbers (0.0|u|−|v|v0pd∗β(1), 0.u0pd∗β(1)). This point will be the second endpoint
of the same segment associated with u and v. See Definition 32. As a consequence, the sequence of sets
whose nth term is defined by⋃

|w|=n
w∈0∗LUβ

((
valUβ (v0pw)

Uβ(|u|+ p+ n)
,

valUβ (u0pw)

Uβ(|u|+ p+ n)

)
+

Q

Uβ(|u|+ p+ n)

)
(3)

converges, for the Hausdorff distance, to the diagonal of the square (0.0|u|−|v|v, 0.u) +Q/β|u|+p.

Example 31. As a first example, when β = 2, we find back the construction in [10]. As a second example,
let us take β = ϕ to be the golden ratio. Let u = 101 and v = 10 (resp., u′ = 100 = v′). Then p(u, v) = 1
(resp., p(u′, v′) = 0); see Example 21. Those pairs of words satisfy (?). The first few terms of the sequence of
sets (3) are respectively depicted in Figure 6 and Figure 7. Observe that when n tends to infinity, the union of
black squares in Uϕn+4 (resp., Uϕn+3) converges to the diagonal of (0.0v, 0.u)+Q/ϕ4 (resp., (0.v′, 0.u′)+Q/ϕ3).
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u

v

Uϕ3

(a) A subset of Uϕ3 .

u0

v0

Uϕ4

(b) The element n = 0 of (3).

u00

u01

v00 v01

Uϕ5

(c) The element n = 1 of (3).

u000

u001

u010

v000 v001 v010

Uϕ6

(d) The element n = 2 of (3).

u0000
u0001
u0010
u0100
u0101

v0
00

0

v0
00

1

v0
01

0

v0
10

0

v0
10

1

Uϕ7

(e) The element n = 3 of (3).

Figure 6: The first few terms of sequence of sets (3) converging to the diagonal of the square (0.0v, 0.u)+Q/ϕ4

for u = 101 and v = 10.
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u′

v′

Uϕ3

(a) The element n = 0 of (3).

u′0

u′1

v′0 v′1

Uϕ4

(b) The element n = 1 of (3).

u′00

u′01

u′10

v′00 v′01 v′10

Uϕ5

(c) The element n = 2 of (3).

u′000

u′001

u′010

u′100

u′101

v
′ 00

0
v
′ 00

1
v
′ 01

0
v
′ 10

0
v
′ 10

1

U
ϕ
6

(d) The element n = 3 of (3).

Figure 7: The first few terms of sequence of sets (3) converging to the diagonal of the square (0.v′, 0.u′)+Q/ϕ3

for u′ = 100 and v′ = 100.
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4 The sequence of compact sets (Aβn)n≥0

The observation made in Remark 30 leads to the definition of an initial set Aβ0 . The same technique is
applied in [10]. At first, let us define a segment associated with a pair of words.

Definition 32. Let (u, v) in LUβ × LUβ such that |u| ≥ |v| ≥ 0. We define a closed segment Su,v of slope 1

and of length
√

2 · β−|u|−p(u,v) in [0, 1]× [0, 1]. The endpoints of Su,v are given by Au,v := (0.0|u|−|v|v, 0.u)
and

Bu,v := Au,v + (β−|u|−p(u,v), β−|u|−p(u,v)) = (0.0|u|−|v|v0p(u,v)d∗β(1), 0.u0p(u,v)d∗β(1)).

Observe that, if u = v = ε, the associated segment of slope 1 has endpoints (0, 0) and (1, 1). Otherwise, the
segment Su,v lies in [0, 1]× [1/β, 1].

Definition 33. Let us define the following compact set which is the closure of a countable union of segments

Aβ0 :=
⋃
(u,v)

satisfying(?)

Su,v.

Notice that Definition 32 implies that Aβ0 ⊂ [0, 1] × [0, 1]. More precisely, Aβ0 \ Sε,ε ⊂ [0, 1] × [1/β, 1].
Furthermore, observe that we take the closure of a union to ensure the compactness of the set.

Example 34. Let β = ϕ be the golden ratio. In Figure 8, the segment Su,v is represented for all (u, v)
satisfying (?) and such that 0 ≤ |v| ≤ |u| ≤ 10.

In the following definition, we introduce another sequence of compact sets obtained by transforming the
initial set Aβ0 under iterations of two maps. This new sequence, which is shown to be a Cauchy sequence in
Proposition 36, allows us to define properly the limit set Lβ .

Definition 35. We let c denote the homothety of center (0, 0) and ratio 1/β and we consider the map
h : (x, y) 7→ (x, βy). We define a sequence of compact sets by setting, for all n ≥ 0,

Aβn :=
⋃

0≤i≤n
0≤j≤i

hj(ci(Aβ0 )).

In Figure 9, we apply c and h at most twice from Aβ0 \ Sε,ε. Let m,n with m ≤ n. Using Figure 9,
observe that

Aβm ∩ ([1/βm+1, 1]× [0, 1]) = Aβn ∩ ([1/βm+1, 1]× [0, 1]). (4)

Proposition 36. The sequence (Aβn)n≥0 is a Cauchy sequence.

Proof. Let ε > 0 and take n > m. We must show that Aβm ⊂ [Aβn]ε and Aβn ⊂ [Aβm]ε. The first inclusion is
easy. Indeed, since Aβm ⊂ Aβn, we directly have that [Aβn]ε contains Aβm. Let us show the second inclusion.
From (4), Aβm and consequently [Aβm]ε both contain Aβn ∩ ([1/βm+1, 1] × [0, 1]). Now we show that [Aβm]ε
contains [0, 1/βm+1)× [0, 1] if m is sufficiently large, which ends the proof. By Definition 33, Aβ0 contains the
segment Sε,ε of slope 1 with endpoints (0, 0) and (1, 1). Thus, by Definition 35, Aβm contains the segment
hm(cm(Sε,ε)) of slope βm with endpoints (0, 0) and (1/βm, 1). Let (x, y) ∈ [0, 1/βm+1) × [0, 1]. Then
(y/βm, y) belongs to hm(cm(Sε,ε)) ⊂ Aβm. Consequently,

d((x, y),Aβm) ≤ d((x, y), (y/βm, y)) ≤ x+ y/βm < ε

if m is sufficiently large.
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Figure 8: An approximation of Aϕ0 computed with words of length ≤ 10.
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0 1

1

Aβ0 \ Sε,ε

c(Aβ0 \ Sε,ε)

h(c(Aβ0 \ Sε,ε))

c2(Aβ0 \ Sε,ε)

h(c2(Aβ0 \ Sε,ε))

h2(c(Aβ0 \ Sε,ε))

c

c

h

1
β

1
β2

1
β3

1
β

1
β2

Figure 9: Two applications of c and h from Aβ0 \ Sε,ε.

Definition 37. Since the sequence (Aβn)n≥0 is a Cauchy sequence in the complete metric space (H(R2), dh),
its limit is a well-defined compact set denoted by Lβ .

Example 38. Let ϕ be the golden ratio. We have represented in Figure 10 all the segments of Aϕ0 for words
of length at most 10 and we have applied the maps hj(ci(·)) to this set of segments for 0 ≤ j ≤ i ≤ 4. Thus
we have an approximation of Aϕ4 .

5 The limit of the sequence of compact sets (Uβn )n≥0

In this section, we show that the sequence (Uβn )n≥0 of compact subsets of [0, 1]× [0, 1] also converges to Lβ .
The proofs of Lemma 39, Lemma 44 are essentially the same as the ones from [10] ([10, Lemma 27, Lemma
28, Theorem 29]). However we recall them so that the paper is self-contained. The first part is to show that,
when ε is a positive real number, then Uβn ⊂ [Lβ ]ε for all sufficiently large n.

Lemma 39. Let ε > 0. For all sufficiently large n ∈ N, we have

Uβn ⊂ [Lβ ]ε.

Proof. Let ε > 0. Take n ∈ N and let (x, y) ∈ Uβn . From Remark 18, there exists (u, v) ∈ LUβ × LUβ such

that
(
u
v

)
≡ 1 mod 2, 0 ≤ |v| ≤ |u| ≤ n and the point (x, y) belongs to the square region

((valUβ (v), valUβ (u)) +Q)/Uβ(n) ⊂ Uβn . (5)

Let us set

A :=

(
valUβ (v)

Uβ(n)
,

valUβ (u)

Uβ(n)

)
to be the upper-left corner of the square region (5) in Uβn .
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Figure 10: An approximation of the limit set Lϕ.

Assume first that (u, v) satisfies (?). The segment Su,v of length
√

2 · β−|u|−p(u,v) having Au,v =

(0.0|u|−|v|v, 0.u) as endpoint belongs to Aβ0 . Now apply n − |u| times the homothety c to this segment. So

the segment cn−|u|(Su,v) of length
√

2 ·β−n−p(u,v) of endpoint B1 := (0.0n−|v|v, 0.0n−|u|u) belongs to Aβn−|u|
and thus to Lβ . Using (2) (the reasoning is similar to the one developed in the proof of Lemma 29), there
exists N1 ∈ N such that, for all n ≥ N1, d(A,B1) < ε/2. Hence, for all n ≥ N1 such that

√
2/Uβ(n) < ε/2,

we have
d((x, y),Lβ) ≤ d((x, y), B1) ≤ d((x, y), A) + d(A,B1) ≤

√
2/Uβ(n) + d(A,B1) < ε.

Now assume that (u, v) does not satisfy (?). Since
(
u
v

)
≡ 1 mod 2, then either u and v are non-empty

words, or u is non-empty and v = ε. Suppose that u and v are non-empty. By assumption, we have an odd
number r of occurrences of v in u. For each occurrence of v in u, we count the total number of zeroes after
it. We thus define a sequence of non-negative integer indices

|u| ≥ i1 ≥ i2 ≥ · · · ≥ ir ≥ 0
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corresponding to the number of zeroes following the first, the second, ..., the rth occurrence of v in u. Now
let k be a non-negative integer such that k > dlog2 |u|e and 2k > p(u, v). By definition of p(u, v), the words

u02
k

1 and v02
k

1 belong to LUβ . We get (
u02

k

1

v02k1

)
=

r∑
`=1

(
2k + i`

2k

)
.

Indeed, for each ` ∈ {1, . . . , r}, consider the `th occurrence of v in u: we have the factorization u = pw where
the last letter of p is the last letter of the `th occurrence of v and |w|0 = i`. With this particular occurrence

of v, we obtain occurrences of v02
k

1 in u02
k

1 by choosing 2k zeroes among the 2k + i` zeroes available in

w02
k

1. Moreover, with the long block of 2k zeroes, it is not possible to have any other occurrence of v02
k

1
than those obtained from occurrences of v in u.

Then, for each ` ∈ {1, . . . , r}, we have (
2k + i`

2k

)
≡ 1 mod 2

from Theorem 2. Since r is odd, we get (
u02

k

1

v02k1

)
≡ 1 mod 2.

Now, for all k ∈ N such that k > dlog2 |u|e and 2k > p(u, v), it is easy to check that the pair of

words (u02
k

1, v02
k

1) satisfies (?). For the sake of simplicity, define uk := u02
k

1, vk := v02
k

1 and pk :=

p(uk, vk). As in the first part of the proof, the segment Suk,vk of length
√

2 · β−|u|−2k−1−pk having Auk,vk =

(0.0|u|−|v|v02
k

1, 0.u02
k

1) as endpoint belongs toAβ0 . Now apply n−|u| times the homothety c to this segment.

So the segment cn−|u|(Suk,vk) of length
√

2 · β−n−2k−1−pk of endpoint B2 := (0.0n−|v|v02
k

1, 0.0n−|u|u02
k

1)

belongs to Aβn−|u| and thus to Lβ . Using again (2) and a reasoning similar to the one from the proof of

Lemma 29, there exists N2 ∈ N such that, for all n ≥ N2, d(A,B2) < ε/2. Hence, for all n ≥ N2 such that√
2/Uβ(n) < ε/2, we have

d((x, y),Lβ) ≤ d((x, y), B2) ≤ d((x, y), A) + d(A,B2) ≤
√

2/Uβ(n) + d(A,B2) < ε.

Assume now that u is non-empty and v = ε. In this case, the point A is on the vertical line of equation
x = 0. By Definition 33, Aβ0 contains the segment Sε,ε of slope 1 with endpoints (0, 0) and (1, 1). Thus, by
Definition 35, Aβn contains the segment hn(cn(Sε,ε)) of slope βn with endpoints (0, 0) and (1/βn, 1). This
segment also lies in Lβ . There exists N3 ∈ N such that, for all n ≥ N3, d(A, hn(cn(Sε,ε))) ≤ 1/βn < ε/2.
Consequently, for all n ≥ N3 such that

√
2/Uβ(n) < ε/2, we have

d((x, y),Lβ) ≤ d((x, y), hn(cn(Sε,ε))) ≤ d((x, y), A) + d(A, hn(cn(Sε,ε)))

≤
√

2/Uβ(n) + d(A, hn(cn(Sε,ε))) < ε.

In each of the three cases, we conclude that (x, y) ∈ [Lβ ]ε, which proves that Uβn ⊂ [Lβ ]ε for all sufficiently
large n.

If ε > 0, it remains to show that Lβ ⊂ [Un]ε for all sufficiently large n ∈ N. To that aim, we need to
bound the number of consecutive words, in the genealogical order, that end with 0 in LUβ .

Definition 40. We let Cβ ∈ N denote the maximal number of consecutive 0 in d∗β(1), i.e.,

Cβ := max{n ∈ N | 0n is a factor of d∗β(1)}.
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a0 a1 a2 a3

0

1 0 0

0

Figure 11: The automaton Aβ for the dominant root β of the polynomial P (X) = X4 −X3 − 1.

In the next proposition, we show that the maximal number of consecutive words ending with 0 in LUβ is
Cβ + 1.

Proposition 41. If we order the words in LUβ by the genealogical order, the maximal number of consecutive
words ending with 0 in LUβ , i.e., the maximal number of consecutive normal Uβ-representations ending with
0, is Cβ + 1.

Proof. Let n ∈ N be such that repUβ (n) ends with 0. We can suppose that repUβ (n− 1) does not end with
0, otherwise we translate n. If | repUβ (n+ 1)| = | repUβ (n)|, then repUβ (n+ 1) does not end with 0 because
Uβ(m) ≥ 2 for all m ≥ 1. Indeed, if a single digit (not the least significant one) is changed, then the value
is increased by at least 2. Let C ≥ 1 be such that, for all k ∈ {0, . . . , C}, | repUβ (n + k)| = | repUβ (n)| + k
and | repUβ (n + C + 1)| = | repUβ (n + C)|. The normal-U representation preserves the order, i.e., for all
integers m1 and m2, m1 ≤ m2 if and only if repUβ (m1) ≤ repUβ (m2) (see, for instance, [3]). Thus, the
words repUβ (n), . . . , repUβ (n + C − 1) are prefixes of d∗β(1), respectively of length | repUβ (n)|, | repUβ (n)| +
1, . . . , | repUβ (n)| + C − 1 (the prefixes of d∗β(1) are the maximal words of different length in LUβ ). By
Definition 40, we deduce that C ≤ Cβ . Consequently, there are at most Cβ + 1 consecutive words ending
with 0 in LUβ .

Let us illustrate the previous proposition.

Example 42. Let ϕ be the golden ratio. Then Cϕ = 1 since d∗ϕ(1) = (10)ω. The first few words of LUϕ are
ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, . . .. The maximal number of consecutive words ending with
0 in LUϕ is Cϕ + 1 = 2.

Example 43. Let β be the dominant root of the polynomial P (X) = X4 −X3 − 1. Then β ≈ 1.38028 is a
Parry number with dβ(1) = 1001 and d∗β(1) = (1000)ω. The automaton Aβ is depicted in Figure 11. In this
example, Cβ = 3. The first few words of LUβ are ε, 1, 10, 100, 1000, 10000, 10001, . . .. The maximal number
of consecutive words ending with 0 in LUβ is Cβ + 1 = 4.

Lemma 44. Let ε > 0. For all (x, y) ∈ Lβ, d((x, y),Uβn ) < ε for all sufficiently large n.

Proof. Let ε > 0 and let (x, y) ∈ Lβ . Since (Aβn)n≥0 converges to Lβ , there exists N1 and (x′, y′) ∈ AβN1

such that,
d((x, y), (x′, y′)) < ε/4.

By definition of AβN1
, there exist i, j such that 0 ≤ j ≤ i ≤ N1 and (x′0, y

′
0) ∈ Aβ0 such that

hj(ci((x′0, y
′
0))) = (x′, y′).

By definition of Aβ0 , there exists a pair (u, v) ∈ LUβ × LUβ satisfying (?) and (x′′0 , y
′′
0 ) ∈ Su,v such that

d((x′0, y
′
0), (x′′0 , y

′′
0 )) < ε/4.

Notice that, since j ≤ i,

d((x′, y′), hj(ci((x′′0 , y
′′
0 )))) = d(hj(ci((x′0, y

′
0))), hj(ci((x′′0 , y

′′
0 ))))

≤ d((x′0, y
′
0), (x′′0 , y

′′
0 )) < ε/4.
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Consequently, we get that
d((x, y), hj(ci((x′′0 , y

′′
0 )))) < ε/2.

In the second part of the proof, we will show that d(hj(ci((x′′0 , y
′′
0 ))),Uβn ) < ε/2 for all sufficiently large

n. We will make use of the constants i, j, the words u, v given above and the integer p := p(u, v).
Set

Lu,v :=

{
LUβ , if u = v = ε;

0∗LUβ , otherwise.

Since (u, v) ∈ LUβ ×LUβ satisfies (?), the pair of words (u0pw, v0pw) has an odd binomial coefficient, for all
words w ∈ Lu,v, using Lemma 25 and Corollary 28. In particular, this is the case when w ∈ Lu,v is of length
n. We can choose n sufficiently large such that Uβ(n) ≥ Cβ + 3 using Proposition 41. In this case, there
exist at least two words w ∈ Lu,v with |w| = n and not ending with 0. Furthermore, as soon as w does not
end with 0, Lemma 1 shows that (

u0pw0k

v0pw

)
=

(
u0pw

v0pw

)
≡ 1 mod 2

for all k ≥ 0. By definition of the sequence Uβ , we also have

#{z ∈ 0∗LUβ | u0pwz ∈ LUβ and |z| = k} ≤ Uβ(k).

Thus, for all j ≤ i, we conclude that at least one of the Uβ(j) binomial coefficients of the form
(
u0pwz
v0pw

)
with

w not ending with 0 and |z| = j is odd (indeed, choose z = 0j for instance). Otherwise stated, at least one
of the square regions(

valUβ (v0pw)

Uβ(n+ i+ |u|+ p)
,

valUβ (u0pwz)

Uβ(n+ i+ |u|+ p)

)
+

Q

Uβ(n+ i+ |u|+ p)
, with |z| = j, (6)

is a subset of Uβn+i+|u|+p, since |v0pw|, |u0pwz| ≤ n+ i+ |u|+ p. This can be visualized in Figure 12.

Now observe that, for any word w ∈ Lu,v, each square region of the form (6) is intersected by hj(ci(Su,v)).
Indeed, the latter segment has A := (0.0i+|u|−|v|v, 0.0i−ju) and B := (0.0i+|u|−|v|v0pd∗β(1), 0.0i−ju0pd∗β(1))

as endpoints and slope βj . Using (2), if n is sufficiently large, the points(
valUβ (v0p0n)

Uβ(n+ i+ |u|+ p)
,

valUβ (u0p0n+j)

Uβ(n+ i+ |u|+ p)

)(
resp.,

(
valUβ (v0pdn)

Uβ(n+ i+ |u|+ p)
,

valUβ (u0pdn+j)

Uβ(n+ i+ |u|+ p)

))
and A (resp., B) are close for all j ≤ i, where dn denotes the prefix of length n of d∗β(1) for all n ≥ 0. When
u and v are non-empty, this can be seen in Figure 13 where each rectangular gray region contains at least
one square region from Uβn+i+|u|+p (to draw this picture, we take the particular case of the golden ratio ϕ

and i = 2). When u = v = ε, Figure 13 is modified in the following way: simply replace each word of the
forms u0`, v0` by ε.

Consequently, every point of hj(ci(Su,v)) is at distance at most

2 · (Cβ + 2) · Uβ(j)

Uβ(n+ i+ |u|+ p)

from a point in Uβn+i+|u|+p when n is sufficiently large. Indeed, either the point falls into a gray region from

Figure 13, or not. In the first case, the point is at distance at most Uβ(j)/Uβ(n+ i+ |u|+ p) from a square

region in Uβn+i+|u|+p; see Figure 12. Observe that this square region is of the form (6) where w does not end

with 0. Otherwise, the point falls into a (white) square region of the form(
valUβ (v0pw)

Uβ(n+ i+ |u|+ p)
,

valUβ (u0pw′z)

Uβ(n+ i+ |u|+ p)

)
+

Q

Uβ(n+ i+ |u|+ p)
, with |w| = |w′| = n, |z| = j.
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u0pwj = 0

v0pw

j = 1 u0pw0

...

≤ Uβ(1)

j = 2 u0pw00

...
≤ Uβ(2)

j = 3 u0pw000

...

≤ Uβ(3)

Uβn+i+|u|+p

Figure 12: If w does not end with 0 and is such that |w| = n, then
(
u0pw0j

v0pw

)
being odd creates a square

region in Uβn+i+|u|+p.
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0 1

1

Uβn+2+|u|+p
c2(Su,v)

h(c2(Su,v))

h2(c2(Su,v))

c(Su,v)

h(c(Su,v)) Su,v

v0p0n v0pdn

v0p0n+1 v0pdn+1

v0p0n+2 v0pdn+2

u0p0n

u0pdn

u0p0n+1

u0pdn+1

u0p0n+2

u0pdn+2

1
Un+2+|u|+p

Figure 13: The situation occurring in the proof of Lemma 44, where we choose β to be the golden ratio.
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Since n is large enough, there exists a word w′′ not ending with 0 with |w′′| = n, which is within a distance
of 2 · (Cβ + 2) of w and w′. Then, applying the argument from the previous case proves the statement.

In particular, the result holds for the point hj(ci((x′′0 , y
′′
0 ))) belonging to hj(ci(Su,v)). Hence, for all

sufficiently large n,
d(hj(ci((x′′0 , y

′′
0 ))),Uβn ) < ε/2.

The conclusion follows.

Corollary 45. Let (u, v) ∈ LUβ ×LUβ satisfying (?) and let 0 ≤ j ≤ i. For every point (f, g) of the segment

hj(ci(Su,v)), there exists a sequence ((fn, gn))n≥0 converging to (f, g) and such that (fn, gn) ∈ Uβn for all n.

Proof. Let (f, g) be a point of the segment hj(ci(Su,v)). From the proof of Lemma 44, we have

d((f, g),Uβm) ≤ 2 · (Cβ + 2) · Uβ(j)

Uβ(m)

for all sufficiently large m. Consequently, there exists a sequence ((fn, gn))n≥0 converging to (f, g) and such
that (fn, gn) ∈ Uβn for all n.

We are now ready to prove the main result of this paper.

Theorem 46. The sequence (Uβn )n≥0 converges to Lβ.

Proof. Let ε > 0. From Lemma 39, it suffices to show that Lβ ⊂ [Uβn ]ε for all sufficiently large n ∈ N.
For all (x, y) ∈ Lβ , using Corollary 45, there exists a (Cauchy) sequence ((fi(x, y), gi(x, y))i≥0 such that

(fi(x, y), gi(x, y)) ∈ Uβi for all i, and there exists N(x,y) such that, for all i, j ≥ N(x,y),

d((fi(x, y), gi(x, y)), (fj(x, y), gj(x, y))) < ε/2 (7)

and
d((fi(x, y), gi(x, y)), (x, y)) < ε/2.

We trivially have

Lβ ⊂
⋃

(x,y)∈Lβ
B((fN(x,y)

(x, y), gN(x,y)
(x, y)), ε/2).

Since Lβ is compact, we can extract a finite covering: there exist (x1, y1), . . . , (xk, yk) in Lβ such that

Lβ ⊂
k⋃
j=1

B((fN(xj,yj)
(xj , yj), gN(xj,yj)

(xj , yj)), ε/2).

Let N = maxj=1,...,kN(xj ,yj). From (7), we deduce that, for all j ∈ {1, . . . , k} and all n ≥ N ,

B((fN(xj,yj)
(xj , yj), gN(xj,yj)

(xj , yj)), ε/2) ⊂ B((fn(xj , yj), gn(xj , yj), ε)

and therefore

Lβ ⊂
k⋃
j=1

B((fn(xj , yj), gn(xj , yj)), ε) ⊂ [Uβn ]ε.
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Remark 47. As in [10], the results mentioned above can be extended to any prime number. Let q be a
prime number and r be a positive residue in {1, . . . , q − 1}. We can extend Definition 16 to

Uβn,r :=
1

Uβ(n)

⋃{
(valUβ (v), valUβ (u)) +Q | u, v ∈ LUβ ,

(
u

v

)
≡ r mod q

}
⊂ [0, 1]× [0, 1].

Since we make use of Lucas’ theorem, we limit ourselves to congruences modulo a prime number. We just
sketch the main differences with the case q = 2.

See, for instance, Figure 15 for the case β = ϕ, q = 3 and r = 2.
The (?) condition from Definition 23 becomes (?)r. We say that (u, v) ∈ LUβ × LUβ satisfies the (?)r

condition if either u = v = ε and
(
u
v

)
≡ r mod q, or |u| ≥ |v| > 0 and(

u0p(u,v)

v0p(u,v)

)
≡ r mod q and

(
u0p(u,v)

v0p(u,v)a

)
= 0 ∀ a ∈ AUβ

where p(u, v) is defined using Proposition 19. In this extended context, Proposition 26, Proposition 27,
Corollary 28, Lemma 29 and Remark 30 are easy to adapt. Note that the pairs (u, v) satisfying this condition
depend on the choice of q and r. The sets Aβn are defined as before. The pair (u, u) satisfies (?)r if and only

if r = 1; see Lemma 25. Thus, the segment of slope 1 with endpoints (0, 0) and (1, 1) belongs to Aβ0 if and
only if r = 1. An alternative proof of Proposition 36 follows the same lines as in [10].

6 Appendix

Example 48. We have represented the set Uϕ9 in Figure 14.

Figure 14: The set Uϕ9 .

Example 49. Let us consider the case when β = ϕ is the golden ratio. We have represented in Figure 15
the set Uϕ9,2 when considering binomial coefficients congruent to 2 modulo 3 and an approximation of the
limit set Lϕ proceeding as in Example 38.

In this last example, we give an approximation of the limit object Lβ for several different values of β. A
real number β > 1 is a Pisot number if it is an algebraic integer whose conjugates have modulus less than 1.
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Figure 15: The set Uϕ9,2 (on the left) and an approximation of the corresponding limit set Lϕ (on the right).

Example 50. Let us define several Parry numbers. Let β1 ≈ 2.47098 be the dominant root of the polynomial
P (X) = X4 − 2X3 −X2 − 1, which is a Parry and Pisot number; see Example 22. Let β2 ≈ 2.47098 be the
dominant root of the polynomial P (X) = X4−X3− 1, which is a Parry and Pisot number; see Example 43.
Let β3 ≈ 2.80399 be the dominant root of the polynomial P (X) = X4 − 2X3 − 2X2 − 2. We can show that
β3 is a Parry number, but not a Pisot number. Let β4 ≈ 1.32472 be the dominant root of the polynomial
P (X) = X5 − X4 − 1. We can show that β4 is a Parry number and also the smallest Pisot number. In
Figure 16, we depict an approximation of Lβ for β in {ϕ2, β1, . . . , β4}.
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(a) An approximation of Lϕ
2

. (b) An approximation of Lβ1 .

(c) An approximation of Lβ2 . (d) An approximation of Lβ3 .

(e) An approximation of Lβ4 .

Figure 16: An approximation of the limit object Lβ for different values of β.
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