
ar
X

iv
:1

80
1.

03
96

8v
1

 [
cs

.A
I]

 1
1

Ja
n

20
18

Interactive Learning of Acyclic Conditional

Preference Networks

Eisa Alanazi1, Malek Mouhoub2, and Sandra Zilles2

1Department of Computer Science

Umm Al-Qura University

Makkah, Saudi Arabia
2Department of Computer Science

University of Regina

Regina, SK, Canada S4S 0A2

Abstract

Learning of user preferences, as represented by, for example, Con-
ditional Preference Networks (CP-nets), has become a core issue in
AI research. Recent studies investigate learning of CP-nets from ran-
domly chosen examples or from membership and equivalence queries.
To assess the optimality of learning algorithms as well as to better un-
derstand the combinatorial structure of classes of CP-nets, it is helpful
to calculate certain learning-theoretic information complexity param-
eters. This paper determines bounds on or exact values of some of
the most central information complexity parameters, namely the VC
dimension, the (recursive) teaching dimension, the self-directed learn-
ing complexity, and the optimal mistake bound, for classes of acyclic
CP-nets. We further provide an algorithm that learns tree-structured
CP-nets from membership queries. Using our results on complexity
parameters, we assess the optimality of our algorithm as well as that
of another query learning algorithm for acyclic CP-nets presented in
the literature. Our algorithm is near-optimal, and can, under certain
assumptions be adapted to the case when the membership oracle is
faulty.

1 Introduction

Since preference learning is important in many AI applications, there is a
need for a strong theoretical underpinning of research on this topic. In re-

1

http://arxiv.org/abs/1801.03968v1

cent years, substantial advances have been made in this field, for example in
the design of Conditional Preference Networks (CP-nets) [1] and the study
of their learnability [2, 3, 4, 5, 6, 7]. A CP-net is a compact preference repre-
sentation for multi-attribute domains where the preference of one attribute
may depend on the values of other attributes.

Koriche and Zanuttini [2] investigated query learning of bounded acyclic
CP-nets (i.e., with a bound on the number of attributes on which the pref-
erences for any attribute may depend). Their successful algorithms used
both membership and equivalence queries, cf. [8], while they proved that
equivalence queries alone are not sufficient for efficient learnability. CP-nets
have also been studied in models of passive learning from examples, both
for batch learning [3, 4, 5, 7] and for online learning [6].

A fundamental question in assessing the proposed algorithms is how
many queries or examples would be needed by the best possible learning
algorithm in the given learning model. For several models, lower bounds
can be derived from the Vapnik Chervonenkis dimension (VCD, [9]). This
central parameter is one of several that, in addition to yielding bounds
on the performance of learning algorithms, provide deep insights into the
combinatorial structure of the studied concept class. Such insights can in
turn help to design new learning algorithms.

Our main contributions are the following:
(a) We provide the first study that exactly calculates the VCD for the

class of unbounded acyclic CP-nets, and give a lower bound for any bound
k. So far, the only existing studies present a lower bound [2], which we
prove incorrect for large values of k, and asymptotic complexities [10]. The
latter show that VCD ∈ Θ(2n) for k = n − 1 and VCD ∈ Θ̃(n2k) when
k ∈ o(n), in agreement with our result that VCD = 2n − 1 for k = n − 1,
and is at least VCD ≥ 2k−1+(n−k)2k for general values of k. It should be
noted that both previous studies assume that CP-nets can be incomplete,
i.e., for some variables no preference relations may be given. In our study,
we make the (not uncommon) assumption that CP-nets are complete, but
our result specifically on VCD also applies to the more general case that
includes incomplete CP-nets. Further, our results are more general than
existing ones in that they cover also the case of CP-nets with multi-valued
variables (as opposed to binary variables).

As a byproduct of our study, we obtain that the VCD of the class of all
consistent CP-nets (whether acyclic or cyclic)1 equals that of the class of all

1A consistent CP-net is one that does not prefer an outcome o over another outcome
ô while at the same time preferring ô over o. Acyclic CP-nets are always consistent, but

2

acyclic CP-nets. Hence, the class of acyclic CP-nets is less expressive than
that of all consistent CP-nets, but may (at least in some models) be as hard
to learn.

(b) We further provide exact values (or, in some cases, non-trivial bounds)
for other important information complexity parameters, namely the teach-
ing dimension [11], the recursive teaching dimension [12], the self-directed
learning complexity [13], and the optimal mistake bound [14].

(c) We present a new algorithm that learns tree-structured CP-nets from
membership queries and use our results on the teaching dimension to show
that our algorithm is close to optimal.

(d) In most real-world scenarios, one would expect some degree of noise
in the responses to membership queries, or that sometimes no response at
all is obtained. To address this issue, we demonstrate how, under certain
assumptions on the noise and the missing responses, our algorithm for learn-
ing tree CP-nets can be adapted to handle incomplete or incorrect answers
to membership queries.

(e) We re-assess the degree of optimality of Koriche and Zanuttini’s al-
gorithm for learning bounded acyclic CP-nets, using our result on the VCD.

This article extends a previous conference paper [15].

2 Background

2.1 Conditional Preference Networks (CP-nets)

We largely follow the notation introduced by Boutilier et al. [1] in their
seminal work on CP-nets.

Let V = {v1, v2, . . . , vn} be a set of attributes or variables. Each variable
vi ∈ V has a set of possible values (its domain) Dvi = {vi1, vi2, . . . , vim}. We
assume that every domain Dvi is of a fixed size m ≥ 2, independent of
i. An assignment x to a set of variables X ⊆ V is a mapping for every
variable vi ∈ X to a value from Dvi . We denote the set of all assignments
of X ⊆ V by OX and remove the subscript when X = V . A preference
is an irreflexive, transitive binary relation ≻. For any o, o′ ∈ O, we write
o ≻ o′ (resp. o ⊁ o′) to denote the fact that o is strictly preferred (resp. not
preferred) to o′, where o and o′ are incomparable w.r.t. ≻ if both o ⊁ o′ and
o′ ⊁ o holds. We use o[X] to denote the projection of o onto X ⊂ V and
write o[vi] instead of o[{vi}].
cyclic ones are not necessarily so.

3

The CP-net model captures complex qualitative preference statements
in a graphical way. Informally, a CP-net is a set of statements of the form u :
vij ≻ vik which states that the preference over vi with Dvi = {vi1, vi2, . . . , vim}
is conditioned upon the assignment of U ⊆ V \{vi} where vij, v

i
k ∈ Dvi . In

particular, when U has the value u ∈ OU , v
i
j is preferred to vik as a value

of vi ceteris paribus (all other things being equal). That is, for any two
outcomes o, o′ ∈ O where o[vi] = vij and o′[vi] = vik the preference holds
when i) o[U] = o′[U] = u and ii) o[Z] = o′[Z] for all Z = V \U ∪ {vi}. In
such case, we say o is preferred to o′ ceteris paribus. Clearly, there could be
exponentially many pairs of outcomes (o,o′) that are affected by one such
statement.

CP-nets provide a compact representation of preferences over O by pro-
viding such statements for every variable. For every vi ∈ V , the decision
maker2 chooses a set Pa(vi) ⊆ V \{vi} of parent variables that influence the
preference order of vi. For any u ∈ OPa(vi), the decision maker specifies
an ordering ≻vi

u over Dvi . We refer to ≻vi
u as the conditional preference

statement of vi in the context of u. A Conditional Preference Table for
vi, CPT(vi), is a set of conditional preference statements {≻vi

u1
, . . . ,≻vi

uk
}.

CPT(vi) is said to be complete, if, for every element in OPa(vi), CPT(vi)
contains a statement that imposes a total order on Dvi ; otherwise CPT(vi)
is incomplete.

Definition 1 (CP-net [1]). Given, V , Pa(v), and CPT(v) for v ∈ V , a
CP-net is a directed graph (V,E), where, for any vi, vj ∈ V , (vi, vj) ∈ E iff
vi ∈ Pa(vj).

Analogously, a CP-net N is said to be complete if every CPT it poses
is complete; otherwise it is incomplete. A CP-net is acyclic if it contains no
cycles. It is separable if the edge set of its graph is the empty set and it is a
tree if it is acyclic with indegree at most one. Lastly, we assume CP-nets are
defined in their minimal form, i.e., there is no dummy parent in any CPT
that actually does not affect the preference relation.

Example 1. Figure 1a shows a CP-net over V = {A,B,C} with DA =
{a, ā}, DB = {b, b̄}, DC = {c, c̄}. Each variable is annotated with its CPT.
For variable A, the user prefers a to ā unconditionally. For C, the preference
depends on the values of B, i.e., Pa(C) = {B}. For instance, in the context
of b̄, c̄ is preferred over c.

2This can be any entity in charge of constructing the preference network, i.e., a com-
puter agent, a person, a group of people, etc.

4

A B

C

b ≻ b̄a ≻ ā

b : c ≻ c̄
b̄ : c̄ ≻ c

(a) The CP-net.

ab̄c̄ ābc̄ āb̄c

abc̄ ab̄c ābc

abc

āb̄c̄

(b) The induced preference
graph.

Figure 1: An acyclic CP-net (c.f. Def. 1) and its induced preference graph
(c.f. Def. 2).

Two outcomes o, ô ∈ O are swap outcomes (‘swaps’ for short) if they
differ in the value of exactly one variable vi; then vi is called the swapped
variable [1].

The size of a preference table for a variable vi, denoted by size(CPT(vi)),
is the number of preference statements it holds which is m|Pa(vi)| if CPT(vi)
is complete. The size of a CP-net N is defined as the sum of its tables’ sizes.

Example 2. In Figure 1, abc, ābc are swaps over the swapped variable A.
The size of the CP-net is 1 + 1 + 2 = 4.

The semantics of CP-nets are described in terms of improving flips. Let
u ∈ OPa(vi) be an assignment of the parents for a variable vi ∈ V . Let
≻vi

u = vi1 ≻ . . . ≻ vim be the preference order of vi in the context of u. Then,
all else being equal, going from vij to vik is an improving flip over vi whenever
k < j ≤ m.

Example 3. In Figure 1a, (ab̄c, abc) is an improving flip with respect to the
variable B.

The improving flip notion makes every pair (o, ô) of swap outcomes com-
parable, i.e., either o ≻ ô or ô ≻ o holds [1]. The question “is o ≻ ô?” is then
a special case of a so-called dominance query and can be answered directly
from the preference table of the swapped variable. Let vi be the swapped
variable of a swap (o, ô). Let u be the context of Pa(vi) in both o and ô.
Then, o ≻ ô iff o[vi] ≻vi

u ô[vi]. A general dominance query is of the form:
given two outcomes o, ô ∈ O, is o ≻ ô? The answer is yes, iff o is preferred to

5

A

B C

a ≻ ā

ac : b ≻ b̄
ac̄ : b ≻ b̄
āc : b̄ ≻ b
āc̄ : b ≻ b̄

ab : c ≻ c̄
ab̄ : c̄ ≻ c
āb : c̄ ≻ c
āb̄ : c̄ ≻ c

(a) The network.

ab̄c̄ ābc̄ āb̄c

abc̄ ab̄c ābc

abc

āb̄c̄

(b) The induced preference
graph.

Figure 2: An example of a consistent cyclic CP-net.

ô, i.e., there is a sequence (λ1, . . . , λn) of improving flips from ô to o, where
ô = λ1, o = λn, and (λi, λi+1) is an improving flip for all i ∈ {1, . . . , n − 1}
[1].

Example 4. In Figure 1b, abc ≻ āb̄c, as witnessed by the sequence āb̄c →
ab̄c → abc of improving flips.

Definition 2 (Induced Preference Graph [1]). The induced preference graph
of a CP-net N is a directed graph G where each vertex represents an outcome
o ∈ O. An edge from ô to o exists iff (o, ô) ∈ O × O is a swap w.r.t. some
vi ∈ V and o[vi] precedes ô[vi] in ≻vi

o[Pa(vi)]
.

Therefore, a CP-net N defines a partial order ≻ over O that is given
by the transitive closure of its induced preference graph. If o ≻ ô we say
N entails (o, ô). N is consistent if there is no o ∈ O with o ≻ o, i.e., if
its induced preference graph is acyclic. Acyclic CP-nets are guaranteed to
be consistent while such guarantee does not exist for the cyclic CP-nets
and their consistency depends on the actual values of the CPTs [1]. Lastly,
the complexity of finding the best outcome in an acyclic CP-net has been
shown to be linear [1] while the complexity of answering dominance queries
depends on the structure of CP-nets: PSPACE-complete for arbitrary (cyclic
and acyclic) consistent CP-nets [16] and linear in case of trees [17].

Example 5. Figure 2 shows an example of a cyclic CP-net that is consistent
while Figure 3 shows an inconsistent one. Note that both share the same
CPTs except for CPT(C). The dotted edges in the induced preference graph
of Figure 3 represent a cycle.

6

A

B C

a ≻ ā

ac : b ≻ b̄
ac̄ : b ≻ b̄
āc : b̄ ≻ b
āc̄ : b ≻ b̄

b : c ≻ c̄
b̄ : c̄ ≻ c

(a) The network.

ab̄c̄ ābc̄ āb̄c

abc̄ ab̄c ābc

abc

āb̄c̄

(b) The induced preference
graph.

Figure 3: An example of an inconsistent cyclic CP-net.

2.2 Concept Learning

The first part of our study is concerned with determining—for the case of
acyclic CP-nets—the values of information complexity parameters that are
typically studied in computational learning theory. By information com-
plexity, we mean the complexity in terms of the amount of information a
learning algorithm needs to identify a CP-net. Examples of such complexity
notions will be introduced below.

A specific complexity notion corresponds to a specific formal model of
machine learning. Each such learning model assumes that there is an infor-
mation source that supplies the learning algorithm with information about
a hidden target concept c∗. The latter is a member of a concept class, which
is simply the class of potential target concepts, and, in the context of this
paper, also the class of hypotheses that the learning algorithm can formulate
in the attempt to identify the target concept c∗.

Formally, one fixes a finite set X , called instance space, which contains
all possible instances (i.e., elements of) an underlying domain. A concept c
is then defined as a mapping from X to {0, 1}. Equivalently, c can be seen as
the set c = {x ∈ X | c(x) = 1}, i.e., a subset of the instance space. A concept
class C is a set of concepts. Within the scope of our study, the information
source (sometimes called oracle), supplies the learning algorithm in some
way or another with a set of labelled examples for the target concept c∗ ∈ C.
A labelled example for c∗ is a pair (x, b) ∈ X × {0, 1} where x ∈ X and
b = c(x). Under the set interpretation of concepts, this means that b = 1 if
and only if the instance x belongs to the concept c∗. A concept c is consistent
with a set S ⊆ X × {0, 1} of labelled examples, if and only if c(x) = b for
all (x, b) ∈ S, i.e., if every element of S is an example for c.

In practice, a concept is usually encoded by a representation σ(c) defined
based on a representation class R [18]. Thus, one usually has some fixed

7

representation class R in mind, with a one-to-one correspondence between
the concept class C and its representation class R. We will assume in what
follows that the representation class is chosen in a way that minimizes the
worst case size of the representation of any concept in C. Generally, there
may be various interpretations of the term “size;” since we will focus on
learning CP-nets, we use CP-nets as representations for concepts, and the
size of a representation is simply the size of the corresponding CP-net as
defined above.

At the onset of a learning process, both the oracle and the learning
algorithm (often called learner for short) agree on the representation class
R (and thus also on the concept class C), but only the oracle knows the
target concept c∗. After some period of communication with the oracle,
the learner is required to identify the target concept c∗ either exactly or
approximately.

Many learning models have been proposed to deal with different learn-
ing settings [18, 8, 14, 19]. These models typically differ in the constraints
they impose on the oracle and the learning goal. One also distinguishes
between learners that actively query the oracle for specific information con-
tent and learners that passively receive a set of examples chosen solely by
the information source. One of the best known passive learning models is
the Probably Approximately Correct (PAC) model [19]. The PAC model
is concerned with finding, with high probability, a close approximation to
the target concept c∗ from randomly chosen examples. The examples are
assumed to be sampled independently from an unknown distribution. On
the other end of the spectrum, a model that requires exact identification of
c∗ is Angluin’s model for learning from queries [8]. In this model, the learner
actively poses queries of a certain type to the oracle.

In this paper, we consider specifically two types of queries introduced
by Angluin [8], namely membership queries and equivalence queries. A
membership query is specified by an element x ∈ X of the instance space,
and it represents the question whether or not c∗ contains x. The oracle
supplies the learner with the correct answer, i.e., it provides the label c∗(x)
in response to the membership query for x. In an equivalence query, the
learner specifies a hypothesis c. If c = c∗, the learning process is completed
as the learner has then identified the target concept. If c 6= c∗, the learner
is provided with a labelled example (x, c∗(x)) that witnesses c 6= c∗. That
means, c∗(x) 6= c(x). Note that x in this case can be any element in the
symmetric difference of the sets associated with c and c∗.

A class C ⊆ {0, 1}n is learnable from membership and/or equivalence
queries via a representation class R for C, if there is an algorithm A such

8

that for every concept c∗ ∈ C, A asks polynomially many adaptive mem-
bership and/or equivalence queries and then outputs a hypothesis h that
is equivalent to c∗. By adaptivity, we here mean that learning proceeds in
rounds; in every round the learner asks a single query and receives an an-
swer from the oracle before deciding on its subsequent query. The number
of queries to be polynomial means that it is upper-bounded by a polynomial
in n and size(c∗) where size(c∗) is the size of the minimal representation of
c∗ w.r.t. R.

The above definition is concerned only with the information or query
complexity, i.e., the number of queries required to exactly identify any tar-
get concept. Moreover, C is said to be efficiently learnable from membership
and/or equivalence queries if there exists an algorithm A that exactly learns
C, in the above sense, and runs in time polynomial in n and size(c∗). Every
one of the query strategies we describe in Section 5 gives an obvious polyno-
mial time algorithm in this regard, and thus we will not explicitly mention
run-time efficiency of learning algorithms henceforth.

The combinatorial structure of a concept class C has implications on
the complexity of learning C, in particular on the sample complexity (some-
times called information complexity), which refers to the number of labelled
examples the learner needs in order to identify any target concept in the
class under the constraints of a given learning model. One of the most im-
portant complexity parameters studied in machine learning is the Vapnik-
Chervonenkis dimension (VCD). In what follows, let C be a concept class
over the (finite) instance space X .

Definition 3. [9] A subset Y ⊆ X is shattered by C if the projection of C
onto Y has 2|Y | concepts. The VC dimension of C, denoted by VCD(C), is
the size of the largest subset of X that is shattered by C.

The number of randomly chosen examples needed to identify concepts
from C in the PAC-learning model is linear in VCD(C) [20]. By contrast to
learning from random examples, in teaching models, the learner is provided
with well-chosen labelled examples.

Definition 4. [11, 21] A teaching set for a concept c∗ ∈ C with respect to
C is a set S = {(x1, ℓ1), . . . , (xz, ℓz)} of labelled examples such that c∗ is
the only concept c ∈ C that satisfies c(xi) = ℓi for all i ∈ {1, . . . , z}. The
teaching dimension of c with respect to C, denoted by TD(c, C), is the size
of the smallest teaching set for c with respect to C. The teaching dimension
of C, denoted by TD(C), is given by TD(C) = max{TD(c, C) | c ∈ C}.

9

Table 1: The class C of all singletons and the empty concept over a set
of t instances, along with the teaching dimension value of each individual
concept.

C x1 x2 x3 x4 . . . xt TD

c0 0 0 0 0 . . . 0 t

c1 1 0 0 0 . . . 0 1

c2 0 1 0 0 . . . 0 1

c3 0 0 1 0 . . . 0 1
...

...
...

...
...

...
...

...

ct 0 0 0 0 . . . 1 1

TDmin(C) = min{TD(c, C) | c ∈ C} denotes the smallest TD of any
c ∈ C. A well-studied variation of teaching is called recursive teaching.
Its complexity parameter, the recursive teaching dimension, is defined by
recursively removing from C all the concepts with the smallest TD and then
taking the maximum over the smallest TDs encountered in that process. For
the corresponding definition of teachers, see [12].

Definition 5. [12] Let C0 = C and, for all i such that Ci 6= ∅, define Ci+1 =
Ci \ {c ∈ Ci | TD(c, Ci) = TDmin(Ci)}. The recursive teaching dimension of
C, denoted by RTD(C), is defined by RTD(C) = max{TDmin(Ci) | i ≥ 0}.

As an example, consider C′ = {c1, c2, . . . , ct} to be the class of singletons
defined over the instance space X = {x1, x2, . . . , xt} where ci = {xi} and let
C = C′∪{c0}, where c0 is the empty concept, i.e., c0(x) = 0 ∀x ∈ X . Table 1
displays this class along with TD(c, C) for every c ∈ C. Since distinguishing
the concept c0 form all other concepts in C requires t labelled examples,
one obtains TD(C) = t. However, RTD(C) = 1 as witnessed by C0 = C′

(each concept in C′ can be taught with a single example) and C1 = {c0} (the
remaining concept c0 has a teaching dimension of 0 with respect to the class
containing only c0).

As opposed to the TD, the RTD exhibits interesting relationships to the
VCD. For example, if C is a maximum class, i.e., its size |C| meets Sauer’s

upper bound
(

|X |
0

)

+
(

|X |
1

)

+ . . . +
(|X |
VCD(C)

)

[22], and in addition C can be

“corner-peeled”3, then C fulfills RTD(C) = VCD(C) [24]. The same equality
holds if C is intersection-closed or has VCD 1 [24].

3Corner peeling is a sample compression procedure introduced by Rubinstein and Ru-
binstein [23]; the actual algorithm or its purpose are not of immediate relevance to our
paper.

10

We will further determine complexity parameters for online prediction,
namely the self-directed learning complexity and the optimal mistake bound.
A self-directed learner passes a prediction (x, ℓ) ∈ X × {0, 1} to an oracle,
which responds with the information whether or not the target concept c∗

fulfills c∗(x) = ℓ. In case c∗(x) 6= ℓ, the learner has made a mistake. The
self-directed learning complexity SDC(C) is the smallest number z for which
some self-directed learner exists that makes no more than z mistakes on any
concept in C [13]. In classical online learning [14], the sequence of instances x
for which the learner makes label predictions is determined by an adversary.
The best worst-case number of mistakes achievable in this model, where
again the worst case is taken over all concepts in C, is called the optimal
mistake bound of C, denoted by OPT(C).

In the example in Table 1, a best possible self-directed learner would
guess 0 on any unseen instance and may predict labels for instances in any
order. Obviously, such a learner makes at most one mistake, and hence
SDC(C) = 1. Likewise, OPT(C) = 1. Note that also VCD(C) = 1, since
there is no set of two examples that is shattered by C.

3 The Complexity of Learning CP-nets

Assuming a user’s preferences are captured in a target CP-net N∗, an inter-
esting learning problem is to identify N∗ from a set of observations repre-
senting the user’s preferences, i.e., labelled examples, of the form o ≻ o′ or
o ⊁ o′ where ≻ is the relation induced by N∗.

As CP-net semantics are completely determined by the preference rela-
tion over swaps, one may consider the set X ∗

swap = {(o, o′) ∈ O×O | (o, o′) is
a swap} as the instance space.4 The size of this instance space is nmn(m−1):
every variable has mn−1 different assignments of the other variables and fix-
ing each assignment of these we have m(m − 1) instances. For complete
CP-nets, this, however, has a lot of redundant instances as if c((o, o′)) = 0
then we know for certain that c((o′, o)) = 1. However, in the case of in-
complete CP-nets, c((o, o′)) = 0 does not necessarily mean c((o′, o)) = 1
as there could be no relation between the two outcomes, i.e., o and o′ are
incomparable. As we are focusing on the complete case, we consider the in-
stance space Xswap where those redundant instances are removed and thus

|Xswap| = nmn−1
(

m
2

)

= mnn(m−1)
2 . Thus, for any two swap outcomes o, o′,

exactly one of the two pairs (o, o′), (o′, o) is included here.

4As explicated in Section 7, it is very common in the literature to use swap examples
for learning CP-nets.

11

Xswap (abc, ābc) (abc̄, ābc̄) (ab̄c, āb̄c) (ab̄c̄, āb̄c̄) (abc, ab̄c) (abc̄, ab̄c̄) (ābc, āb̄c) (ābc̄, āb̄c̄) (abc, abc̄) (ab̄c, ab̄c̄) (ābc, ābc̄) (āb̄c, āb̄c̄)

c1 1 1 1 1 1 1 1 1 1 0 1 0

c2 1 1 1 1 1 1 0 1 1 0 0 0

Figure 4: The concepts c1 and c2 represent the CP-nets in Figures 1 and 2,
respectively, over Xswap.

For x = (o, o′) ∈ Xswap, let V (x) denote the swapped variable of x.
We refer to the first and second outcomes of an example x as x.1 and x.2,
respectively. We use x[Γ] to denote the assignments (in both x.1 and x.2)
of Γ ⊆ V \{V (x)}. Note that x[Γ] is guaranteed to be the same in x.1 and
x.2, otherwise x will not form a swap instance.

Let Nk be the set of all complete acyclic CP-nets with indegree at most
k. Nk serves as a representation class for concepts of the form c : Xswap →
{0, 1}. A concept c is representable by Nk if there is a CP-net N ∈ Nk such
that c(x) = 1 if and only if N entails the pair (x.1, x.2). In other words, a
CP-net N with induced order ≻ represents a concept c if and only if, for
every x ∈ Xswap, the following holds:

c(x) =

{

1 if x.1 ≻ x.2

0 otherwise

The concept class is then defined as Ck
ac = { c | c is representable by a CP-net N ∈

Nk}, that is, the set of all concepts that are representable by Nk. It is not
hard to see that, in the complete case, every concept c ∈ Ck

ac is representable
by exactly one CP-net N . Otherwise, there exists two distinct complete
CP-nets N and N ′ with exactly the same set of swap entailments which is
impossible. We, therefore, use c and its representation N interchangeably.

Figure 4 shows two concepts c1 and c2 that correspond to the CP-nets
shown in Figures 1 and 2, respectively, along with one choice of Xswap. It
is important to restate the fact that c(x) is actually a dominance relation
between x.1 and x.2, i.e., c(x) is mapped to 1 (resp. to 0) if x.1 ≻ x.2 (resp.
x.2 ≻ x.1) holds. Thus, we sometimes talk about the value of c(x) in terms
of the relation between x.1 and x.2 (x.1 ≻ x.2 or x.2 ≻ x.1).

In the remaining part of this work, we fix k ∈ {0, . . . , n−1} and consider
the class Ck

ac of all acyclic CP-nets whose nodes have an indegree of at most
k. A concept c contains a swap pair x iff the corresponding CP-net entails
(x.1, x.2). By size(c), we refer to the size of the CP-net represented by c.
Lastly, Mk = max{size(c) | c ∈ Ck

ac} is the maximum number of statements
in any concept in Ck

ac. It can be verified that Mk = (n − k)mk +
∑k−1

i=0 mi

(see AppendixA for constructing a CP-net withMk statements in the binary

12

Table 2: Summary of complexity results. Mk = (n − k)mk +
∑k−1

i=0 mi; Uk

is defined after Theorem 2.

class VCD TD RTD SDC OPT

Ck
ac ≥ (m− 1)Mk n(m− 1)Uk (m− 1)Mk (m− 1)Mk ≥ ⌈log(m!)⌉Mk

Cn−1
ac mn − 1 n(m− 1)mn−1 mn − 1 mn − 1 ≥ ⌈log(m!)⌉mn

−1
m−1

C0
ac (m− 1)n (m− 1)n (m− 1)n (m− 1)n ≥ ⌈log(m!)⌉n

case).
Table 2 summarizes our complexity results for acyclic CP-nets whose

nodes have indegrees bounded by k. The two extreme cases are unbounded
acyclic CP-nets (k = n− 1) and separable CP-nets (k = 0).

The most striking observation from our results is that VCD, RTD, and
SDC are equal for all values of m in Cn−1

ac . Further, when m = 2 (the most
studied case in the literature), we have that TD equals the instance space
size n2n−1 and in general the ratio of the teaching dimension to the instance
space size is 2

m
. A close inspection of the case m = 2 shows that Xswap has

only n instances that are relevant for C0
ac, and C0

ac corresponds to the class
of all concepts over these n instances. Thus the values of VCD, TD, RTD,
SDC, and OPT are trivially equal to n in this special case.

In the case of online prediction, for m ≤ 11, ⌈log(m!)⌉ is known to be the
minimum number of comparisons needed to sort m elements [25]. However,
for most practical applications, m ≤ 11 is sufficient and thus our results are
still useful for judging the optimality of online learning algorithms. The fact
that SDC is asymptotically strictly smaller than OPT shows that actively
selecting examples strictly decreases the number of mistakes whenm is large.

The remainder of this section is dedicated to proving the statements
from Table 2.

3.1 VC Dimension

Our first theorem substantially improves on (and corrects) a result by Ko-
riche and Zanuttini (2010), who present a lower bound on VCD(Ck

ac); their
bound is in fact incorrect unless k ≪ n.

Theorem 1. VCD(Cn−1
ac) = mn−1, VCD(C0

ac) = (m−1)n and VCD(Ck
ac) ≥

(m− 1)Mk.

The proof of Theorem 1 relies on decomposing Ck
ac as a direct product

of concept classes over subsets of Xswap.

13

Definition 6. Let Ci ⊆ 2Xi and Cj ⊆ 2Xj be concept classes with Xi∩Xj = ∅.
The concept class Ci × Cj ⊆ 2Xi∪Xj is defined by Ci × Cj = {ci ∪ cj | ci ∈
Ci and cj ∈ Cj}. For concept classes C1, . . . , Cr, we define

∏r
i=1 Ci = C1 ×

· · · × Cr = (· · · ((C1 × C2)× C3)× · · · × Cr).

It is a well-known and obvious fact that VCD(
t
∏

i=1
Ci) =

t
∑

i=1
VCD(Ci).

For any vi ∈ V and any Γ ⊆ V \ {vi}, we define CΓ
CPT(vi)

to be the
concept class consisting of all preference relations corresponding to some
CPT(vi) where Pa(vi) = Γ and |Γ| ≤ k; here the instance space is the set
of all swap pairs x with V (x) = vi. Now, if we fix the context of vi by
fixing an assignment γ ∈ OΓ of all variables in Γ, we obtain a concept class
CΓ
≻

vi
γ
, which corresponds to the set of all preference statements concerning

the variable vi conditioned on the context γ. Its instance space is the set of
all swaps x with V (x) = vi and x[Γ] = γ.

Recall that V = {v1, . . . , vn}. By Sn we denote the class of all permuta-
tions of {1, . . . , n}.

Proof of Theorem 1.
Lemma 1 (below) states that

Ck
ac =

⋃

σ∈Sn

n
∏

i=1

⋃

Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

∏

γ∈OΓ

CΓ

≻
vσ(i)
γ

,

which yields the bound

VCD(Ck
ac) ≥ max

σ∈Sn

n
∑

i=1

max
Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

∑

γ∈OΓ

VCD(CΓ

≻
vσ(i)
γ

) .

Using VCD(CΓ

≻
vσ(i)
γ

) = m − 1 (see Lemma 2), independent of Γ and γ, one

obtains, for any σ ∈ Sn,

VCD(Ck
ac) ≥ (m− 1)

n
∑

i=1

max
Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

|OΓ|

= (m− 1)

n
∑

i=1

max
Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

m|Γ|

= (m− 1)Mk .

It remains to verify VCD(Ck
ac) ≤ (m− 1)Mk for k ∈ {0, n − 1}.

14

For k = 0, we have Mk = n, so let us consider any set Y of size greater
than (m− 1)n and argue why Y cannot be shattered by C0

ac. Clearly, there
exists a variable vi that is swapped in at least m instances in Y . In order
to shatter these ≥ m instances with the same swapped variable, a concept
class of CP-nets would need to contain CP-nets in which some variables
have non-empty parent sets, which is not the case for C0

ac. Thus Y is not
shattered, i.e., VCD(Ck

ac) ≤ (m− 1)Mk.
For k = n − 1, the upper bound VCD(Ck

ac) ≤ mn − 1 = (m − 1)Mn−1

follows immediately from an observation made by Booth et al. [26] (their
Proposition 3,) which states that any concept class corresponding to a set of
transitive and irreflexive relations (such as a class of acyclic CP-nets) over
{0, 1}n has a VC dimension no larger than 2n − 1. It is not hard to see
that their argument applies to the non-binary case as well, yielding a VC
dimension no larger than mn − 1 for any m ≥ 2. �

Lemma 1. Ck
ac =

⋃

σ∈Sn

n
∏

i=1

⋃

Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

∏

γ∈OΓ

CΓ

≻
vσ(i)
γ

.

Proof. By definition, for v ∈ V and Γ ⊆ V \ {v}, the class CΓ
CPT(v) equals

∏

γ∈OΓ
CΓ
≻v

γ
. (Any concept representing a preference table for v with Pa(v) =

Γ corresponds to a union of concepts each of which represents a preference
statement over Dv conditioned on some context γ ∈ OΓ.)

Any concept corresponds to choosing a set Γv of parent variables of size at
most k for each variable v, which means Ck

ac ⊆
∏n

i=1

⋃

Γ⊆V \{vi},|Γ|≤k CΓ
CPT(vi)

.

By acyclicity, vj ∈ Pa(vi) implies vi /∈ Pa(vj), so that for each concept
c ∈ Ck

ac some σ ∈ Sn fulfills

c ∈
n
∏

i=1

⋃

Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

CΓ
CPT(vσ(i))

.

Thus, Ck
ac ⊆

⋃

σ∈Sn

∏n
i=1

⋃

Γ⊆{vσ(1),...,vσ(i−1)},|Γ|≤k

∏

γ∈OΓ
CΓ

≻
vσ(i)
γ

.

Similarly, one can argue that every concept in the class on the right hand
side represents an acyclic CP-net with parent sets of size at most k. With
CΓ
CPT(vi)

=
∏

γ∈OΓ
CΓ
≻

vi
γ
, the statement of the lemma follows. �

Lemma 2. VCD(CΓ
≻

vi
γ
) = m− 1 for any vi ∈ V , Γ ⊆ V \ {vi}, and γ ∈ OΓ.

Proof. Let vi ∈ V , Γ ⊆ V \ {vi}, and γ ∈ OΓ. We show that CΓ
≻

vi
γ

shatters

some set of size m − 1, but no set of size m. Note first that, by definition,
CΓ
≻

vi
γ

is simply the class of all total orders over the domain Dvi of vi.

15

To show (CΓ
≻

vi
γ
) ≥ m−1, choose any set of m−1 swaps over Γ∪{vi} with

fixed context γ, in which the pairs of swapped values in vi are (vi1, v
i
2),. . . ,

(vim−1, v
i
m).

Fix any set S ⊆ Xswap of m swaps over Γ∪{vi} with fixed context γ. To
show that S is not shattered, consider the undirected graph G with vertex
set Dvi in which an edge between vir and vis exists iff S contains a swap
pair flipping vir to vis or vice versa. G has m vertices and m edges and thus
contains a cycle. The directed versions of G correspond to the labellings of
S; therefore some labelling ℓ of S corresponds to a cyclic directed version
of G, which does not induce a total order over Dvi . Hence the labelling ℓ is
not realized by CΓ

≻
vi
γ
, so that S is not shattered by CΓ

≻
vi
γ
. �

It is worth observing that, for the case k = n − 1, we can generalize
our result on the VC dimension to the class of all consistent (acyclic or
cyclic) CP-nets. As any consistent CP-net (whether acyclic or cyclic) de-
fines an irreflexive, transitive relation, the result from [26] that we use to
upper-bound the VC dimension of Cn−1

ac by mn− 1 also applies to the larger
class of all consistent unbounded CP-nets, even when allowing incomplete
CP-nets (and, in the latter case, even when extending the instance space
X ′

swap = Xswap ∪ {(o′, o) | (o, o′) ∈ X}, so that incomplete CP-nets can be
represented). Hence the VC dimension of the class of all consistent CP-nets
is at most mn−1. Our Theorem 1 shows that a subclass of this class already
has a VC dimension of mn − 1, so that we obtain the following corollary.

Corollary 1. Over the instance space X ′
swap, the VC dimension of the

class of complete and incomplete consistent CP-nets with unbounded indegree
equals mn − 1.

Sauer’s Lemma [22] then bounds the number of consistent CP-nets from
above by

mn−1
∑

i=0

(|Xswap|
i

)

.

One possible interpretation of Theorem 1 and Corollary 1 is that acyclic
CP-nets, while less expressive, are in some sense as hard to learn as all
consistent CP-nets.

To conclude our discussion of the VC dimension, we would like to remark
that our results contradict a lower bound on the VC dimension of the class of
all complete and incomplete acyclic CP-nets with bounded indegree that was
presented in [2]. In AppendixA, we argue why the latter bound is incorrect.

16

A

BC

a ≻ ā

a : b ≻ b̄
ā : b̄ ≻ b

āb̄ : c̄ ≻ c
otherwise: c ≻ c̄

N1

A

BC

a ≻ ā

a : b ≻ b̄
ā : b̄ ≻ b

a : c ≻ c̄
ā : c̄ ≻ c̄

N2

A

BC

a ≻ ā

a : b ≻ b̄
ā : b̄ ≻ b

c ≻ c̄

N3

Figure 5: Three networks each of which is subsumed by the ones to its left.

3.2 (Recursive) Teaching Dimension

For studying teaching complexity, it is useful to identify concepts that are
“easy to teach.” To this end, we use the notion of subsumption [2]: given
CP-nets N,N ′, we say N subsumes N ′ if for all vi ∈ V the following holds:
If y1 ≻ y2 is specified in CPT(vi) in N ′ for some context γ′, then y1 ≻ y2
is specified in CPT(vi) in N for some context containing γ′. If in addition
N 6= N ′, we say that N strictly subsumes N ′.

Now let C ⊆ Ck
ac. A concept c ∈ C is maximal in C if no c′ ∈ C strictly

subsumes c. Note that maximal concepts in Ck
ac are of size Mk.

Example 6. Let C2
ac be the class of all unbounded complete acyclic CP-nets

over three variables V = {A,B,C}. Consider the three CP-nets in Figure 5.
Clearly, N3 is subsumed by N2 and N1, and N2 is subsumed by N1. Further,
N1 is maximal with respect to C2

ac.

The following two lemmas formalize the intuition that maximal concepts
are “easy to teach.” Lemma 3 gives an upper bound on the size of a smallest
teaching set of any maximal concept, while Lemma 4 implies that a maximal
concept is never harder to teach than any concepts it subsumes.

Lemma 3. For any maximal concept c in a concept class C ⊆ Ck
ac, we have

TD(c, C) ≤ (m− 1)size(c).

Proof. Every statement in the CP-net N represented by c corresponds to
an order of m values for some variable vi under a fixed context γ. For every
such order y1 ≻vi

γ . . . ≻vi
γ ym, we include m − 1 positively labelled swap

examples in a set T . For 1 ≤ j ≤ m − 1, the jth such example labels a
pair x = (x.1, x.2) of swap outcomes with V (x) = vi, the projection of x
onto {vi} is (yj, yj+1), and the projection of x onto the remaining variables
contains γ. The set T then has cardinality (m − 1)size(c) and is obviously
consistent with N .

17

It remains to show that no other CP-net in C is consistent with T .
Suppose some c′ 6= c in C is consistent with T . Since c′ 6= c, there is some
vi ∈ V , γ ∈ OV \{vi}, and y, y′ ∈ Dvi such that y ≻vi

γ y′ holds in c′ while
y′ ≻vi

γ y holds in c. Thus (i) c′ disagrees with some statement in a preference
table of c, or (ii) c′ has a statement in one of its preference tables that is
not contained in c. (i) is impossible since c′ is consistent with T , and (ii) is
impossible since c is maximal in C. �

Lemma 4. Each non-maximal c′ ∈ Ck
ac is strictly subsumed by some c ∈ Ck

ac

s.t. TD(c′, Ck
ac)≥TD(c, Ck

ac).

Proof. From the graph G′ for c′, we build a graph G by adding the maximum
possible number of edges to a single variable v. As c′ is not maximal, it is
possible to add at least one edge. The CP-nets corresponding to G and G′

differ only in CPT(v). Let c be the concept representing G and z be the
size of its CPT for v. A smallest teaching set T ′ for c′ can be modified
to a teaching set for c by replacing only those examples that refer to the
swapped variable v; (m− 1)z examples suffice. To distinguish c′ from c, T ′

must contain at least (m− 1)z examples referring to the swapped variable v
(m−1 for each context in CPT(v) in c). Hence TD(c′, Ck

ac) ≥ TD(c, Ck
ac). �

Using these lemmas, one can show that TD(Ck
ac) equals the TD of the

class of separable CP-nets within Ck
ac and RTD(Ck

ac) is the TD of maximal
concepts within Ck

ac. The latter is at most (m−1)Mk by Lemma 3, and can
be verified to be at least (m − 1)Mk when arguing that a teaching set for
a maximal concept must contain m − 1 examples for each statement in its
CPTs, so as to determine the preferences for each context. We thus obtain
the following theorem.

Theorem 2. RTD(Ck
ac)=(m− 1)Mk.

To compute TD(Ck
ac), i.e., the teaching dimension of any separable CP-

net with respect to the class Ck
ac, consider any unconditional CPT(vi) =

{y1 ≻ · · · ≻ ym}. For every R ⊆ V \{vi}, |R| = k, we create the dummy
CPT(vi) where Pa(vi) = R with the same statement y1 ≻ · · · ≻ ym in every
context of OR. Any teaching set must show that under any context, we have
the same statement y1 ≻ · · · ≻ ym.

Thus, a minimal teaching set restricted to CPT(vi) is a smallest set
of examples Uk[i] such that if projected to any subset R of size k, Uk[i]
contains mk contexts. Each of the statements of the form y1 ≻ · · · ≻ ym can
be taught by (m − 1) labelled examples, and one does so for each element
of Uk[i]. For each variable vi, a respective set of examples is included in

18

the teaching set. Obviously, fewer examples are not sufficient for teaching a
separable CP-net. We denote the cardinality of Uk[i], which is independent
of i, by Uk. In the binary case, Uk[i] is known as a “(n − 1, k)-universal set
of minimum size” [27, 28].

In combination with some obvious bounds, we obtain the following the-
orem.

Theorem 3. For 0 ≤ k ≤ n− 1, we have n(m− 1)mk ≤ TD(Ck
ac) = n(m−

1)Uk ≤ n(m−1)
(

n−1
k

)

mk. If k = 0, then Uk = 1, so that TD(C0
ac) = (m−1)n.

If k = 1, then Uk = m, so that TD(C1
ac) = (m − 1)mn. If k = n − 1, then

Uk = mn−1, so that TD(Cn−1
ac) = (m− 1)nmn−1.

Theorem 3 implies that, for Cn−1
ac , the ratio of TD over instance space

size |Xswap| is 2
m
. In particular, in the case of binary CP-nets (i.e., when

m = 2), which is the focus of most of the literature on learning CP-nets, the
TD equals the instance space size. However, maximal concepts have a TD
far below the worst-case TD.

3.2.1 An Example Illustrating Teaching Sets

We will now illustrate our results on the teaching dimension and recursive
teaching dimension through examples. Let us consider the case where V =
{A,B,C}, DA = {a, ā}, DB = {b, b̄}, and DC = {c, c̄}. We consider the
class Cn−1

ac of all complete acyclic CP-nets defined over V . Figure 5 shows
three concepts, N1, N2, and N3, from this class.

In order to illustrate Lemma 3, let us first compute an upper bound
on the teaching dimension of the maximal concept N1. The claim is that
TD(N1, Cn−1

ac) is less than or equal to the size of N1, which is 7. Consider
a set of entailments E corresponding to the teaching set T as described
in the proof of Lemma 3. One possibility for E is the set consisting of the
entailments abc ≻ ābc, abc ≻ ab̄c, ābc̄ ≺ āb̄c̄, abc ≻ abc̄, ab̄c ≻ ab̄c̄, ābc ≻ ābc̄,
and āb̄c ≺ āb̄c̄. E is obviously consistent with N1. A closer look shows that
it is also a teaching set for N1 with respect to Cn−1

ac . To see why, consider
the partition E = EA ∪ EB ∪ EC , where

• EA = {abc ≻ ābc},

• EB = {abc ≻ ab̄c, ābc̄ ≺ āb̄c̄}, and

• EC = {abc ≻ abc̄, ab̄c ≻ ab̄c̄, ābc ≻ ābc̄, āb̄c ≺ āb̄c̄}.
The set EC shows that C has at least two parents, which, in our case, have to
be A and B. As a result, Pa(C) = {A,B} and CPT(C) is defined precisely:

19

it is the CPT with the maximum possible parent set {A,B} and EC contains
a statement for every context over this parent set. Similarly, EB shows that
there must be at least one parent for B. Given the fact that B ∈ Pa(C)
we conclude that Pa(B) = A as there is no other way to explain EC and
EB together. Therefore, we have identified CPT(B) precisely. To this end,
there is no way for CPT(A) except to be unconditional (which is consistent
with EA having one entailment only). Thus, E is a teaching set for N1 and
TD(N1) ≤ size(N1) = 7.

Now, let us illustrate Lemma 4. For this purpose, consider the teaching
dimension of N3 which is not maximal w.r.t. Cn−1

ac . According to Lemma
4, there exists a concept N that subsumes N3 and with which TD(N3) ≥
TD(N). We follow the proof of Lemma 4. If G′ is the graph of N3, we con-
struct a new graph G as follows: G results from G′ by selecting the variable
C and adding two incoming edges (i.e., the maximum possible number of
edges) to the node labeled by this variable. A concept with such graph is
N1. Let E be a set of entailments corresponding to a teaching set for N3 with
size equal to TD(N3, Cn−1

ac). We claim that the number of entailments in E
whose swapped variable is C has to be greater than or equal 4. To see this,
consider the CP-net N with graph G where CPT(A) and CPT(B) are iden-
tical to the corresponding conditional preference tables in N3. Moreover, for
CPT(C) in N , for every entailment in e ∈ E whose swapped variable is C,
a statement u : c ≻ c̄ or u : c̄ ≻ c is created in agreement with e, where u
provides the values of A and B in e. For instance if the subset of E referring
to swapped variable C is {abc ≻ abc̄, ābc ≻ ābc̄}, then one possible table for
CPT(C) in N is {b : c ≻ c̄, b̄ : c̄ ≻ c}. (Alternatively, the CPT for C in N1

can also be used.)
Note that TD(N3, Cn−1

ac) ≤ TD(Cn−1
ac). By Theorem 3, TD(Cn−1

ac) equals
(m− 1)nmn−1 which, for m = 2 and n = 3 evaluates to 12.

In the sum, we discussed why TD(N1, Cn−1
ac) ≤ 7 and TD(N1, Cn−1

ac) ≤
TD(N3, Cn−1

ac) ≤ 12. It is actually the case that TD(N1) = 7, TD(N2) =
9 and TD(N3) = 10. Figure 6 shows one possible example of minimum
teaching sets for the three networks. In the displayed choice of teaching sets,
we selected 10 instances for teaching N3, use all but one of them (some with
flipped labels) to teach N2 and use seven of them (some with flipped labels)
to teach N1. While this is not the only choice of smallest possible teaching
sets for these concepts, it illustrates that some subset of the instances that
are used to teach some concept, with appropriate labelling, can also be
used to teach a concept that subsumes it. In Figure 6, we show which
instances are removed from the teaching set of N3 by crossing them out.
For instance, the entailment abc̄ ≻ ābc̄ is not needed in the teaching set

20

N1 N2 N3

abc ≻ ābc

✭
✭
✭
✭✭❤

❤
❤
❤❤abc̄ ≻ ābc̄

abc ≻ ab̄c

✘
✘
✘
✘
✘❳

❳
❳
❳
❳

abc̄ ≻ ab̄c̄
ābc̄ ≺ āb̄c̄

✘
✘
✘
✘
✘❳

❳
❳
❳
❳

ābc ≺ āb̄c
abc ≻ abc̄
ab̄c ≻ ab̄c̄
āb̄c ≺ āb̄c̄
ābc ≻ ābc̄

abc ≻ ābc

✭
✭
✭
✭✭❤

❤
❤
❤❤abc̄ ≻ ābc̄

abc ≻ ab̄c
abc̄ ≻ ab̄c̄
ābc̄ ≺ āb̄c̄
ābc ≺ āb̄c
abc ≻ abc̄
ab̄c ≻ ab̄c̄
āb̄c ≺ āb̄c̄
ābc ≺ ābc̄

abc ≻ ābc
abc̄ ≻ ābc̄
abc ≻ ab̄c
abc̄ ≻ ab̄c̄
ābc̄ ≺ āb̄c̄
ābc ≺ āb̄c
abc ≻ abc̄
ab̄c ≻ ab̄c̄
āb̄c ≻ āb̄c̄
ābc ≻ ābc̄

Figure 6: Teaching sets for the three networks in Figure 5 w.r.t. the class
Cn−1
ac .

of N2 as the remaining examples provide enough evidence to conclude that
A ∈ Pa(B) and A ∈ Pa(C); thus one entailment for CPT(A) suffices for
teaching CPT(A).

3.3 Optimal Mistake Bound and Self-Directed Complexity

To conclude our study of information complexity parameters, we determine
the self-directed learning complexity as well as a lower bound on the optimal
mistake bound for classes of complete acyclic CP-nets.

Theorem 4. SDC(Ck
ac) = (m− 1)Mk.

Proof. From [24] and Theorem 2 we get SDC(Ck
ac) ≥ RTD(Ck

ac) = (m −
1)Mk. For the upper bound, note that any concept in Ck

ac, when fixing a
variable v and a context γ ∈ OV \{v}, induces a total order on Dv. Goldman
et al. (1993) discussed a prediction strategy (basically an insertion sort) to
learn a total order over m items while making at most m− 1 mistakes. Sep-
arately for each variable v, a self-directed learner fixes an arbitrary context
γ ∈ OV \{v} and learns a preference over Dv with Goldman et al.’s strategy.
For other contexts on v, the learner will assume the same preference relation
unless it makes a mistake (which will cause it to learn a new preference over
Dv). For each preference to be learned (at most Mk in total), the learner
makes at most (m− 1) mistakes, for a total of ≤ (m− 1)Mk mistakes. �

21

Theorem 5. OPT(Ck
ac) ≥ ⌈log(m!)⌉Mk.

Proof. Any learner must identify up toMk preference statements (for a fixed
variable and context) separately. Each such statement is a permutation of
m elements, and its identification requires at least ⌈log(m!)⌉ comparisons,
in the worst case. The adversary can force the learner to make as many
mistakes as comparisons are needed, yielding the lower bound.

�

4 Structural Properties of CP-net Classes

The class Cn−1
ac is interesting from a structural point of view, as its VC

dimension equals its recursive teaching dimension, see Table 2. In gen-
eral, the VC dimension can exceed the recursive teaching dimension by an
arbitrary amount, and it can also be smaller than the recursive teaching
dimension [24]. Simon and Zilles [29] posed the question whether the recur-
sive teaching dimension can be upper-bounded by a function that is linear
in the VC dimension. So far, the best known upper bound on the recursive
teaching dimension is quadratic in the VC dimension [30].

The computational learning theory literature knows of a number of struc-
tural properties under which the VC dimension and the recursive teaching
dimension coincide. The purpose of this section is to investigate which of
these structural properties apply to certain classes of acyclic CP-nets. The
main result is that the class Cn−1

ac does not satisfy any of the known gen-
eral structural properties sufficient for VCD and RTD to coincide; therefore
this class may serve as an interesting starting point for formulating new
general properties of a concept class C that are sufficient for establishing
RTD(C) = VCD(C).

A finite concept class C is said to be maximum if its cardinality meets
the Sauer bound with equality. That is, |C| = ∑d

i=0

(|X |
i

)

where |X | is the
instance space size and d is the VC dimension of C. C is maximal if adding
any concept c 6∈ C to the class will increase its VC dimension. For a given
VC dimension and a given instance space size, maximum classes are the
largest possible classes in terms of cardinality, while maximal classes are
largest with respect to inclusion. Every maximum class is also maximal but
the converse does not hold [18]. Moreover, C is said to be an extremal class
if C strongly shatters every set that it shatters. C strongly shatters S ⊆ X if
there is a subclass C′ of C that shatters S such that all concepts in C′ agree
on the labelling of all instances in X\S. Every maximum class is also an

22

Table 3: Structural properties of CP-net concept classes.

class maximum maximal intersection-closed extremal

C0
ac with m = 2 (over Xsep) yes yes yes yes

C0
ac with m > 2 (over Xsep or Xswap) no no no no

Ck
ac with m ≥ 2, 1 ≤ k ≤ n− 1 no no no no

extremal class, but not vice versa [31]. A concept class C is intersection-
closed if c ∩ c̄ ∈ C for any two concepts c, c̄ ∈ C.

It was proven that any finite maximum class C that can be corner-
peeled by the algorithm proposed by Rubinstein and Rubinstein [23] sat-
isfies RTD(C) = VCD(C) [24]. The same equality holds when C is of VC
dimension 1 or when C is intersection-closed [24].

Within this section, we assume that n ≥ 2. The main results of this
section are summarized in Table 3. For the proofs of some of these results,
the following lemma will be useful.

Lemma 5. Let m ≥ 2 and k ∈ {0, . . . , n − 1}. If c ∈ Ck
ac, then c̄ ∈ Ck

ac,
where c̄(x) = 1− c(x) for all x ∈ Xswap.

Proof. The CP-net N̄ corresponding to c̄ is obtained from the CP-net N
corresponding to c by reversing each preference statement in each CPT of
N . Obviously, in N̄ , each variable has the same parent set as in N , so that
c̄ ∈ Ck

ac. �

First of all, we discuss separable CP-nets. Note that there is a one-to-one
correspondence between separable CP-nets and n-tuples of total orders of
{1, . . . ,m}: since there are no dependencies between the variables, each sep-
arable CP-net simply determines an order over them domain values of a vari-
able, and it does so for each variable independently. This way, for a separable
CP-net, the swap example (v1i1v

2
i2
. . . vl−1

il−1
αvl+1

il+1
. . . vnin , v

1
i1
v2i2 . . . v

l−1
il−1

βvl+1
il+1

. . . vnin)
will always be labelled exactly the same way as any other swap example
x = (x.1, x.2) whose swapped variable is vl and for which the lth positions
of x.1 and x.2 are α and β, respectively. We may therefore consider separa-
ble CP-nets over an instance space that is a proper subset of Xswap, namely
one that contains exactly one swap example for each pair of domain values of
each variable. Assuming a fixed choice of such pairs, we denote this subset
of Xswap by Xsep and remark that |Xsep| =

(

m
2

)

n. Note that, for the class
of separable CP-nets, each instance x ∈ Xswap \ Xsep is redundant in the
following sense: there exists some instance x′ ∈ Xsep such that

23

• either c(x) = c(x′) for all c ∈ C0
ac,

• or c(x) = 1− c(x′) for all c ∈ C0
ac.

It is now easy to see the following for the binary case.

Proposition 1. Let m = 2. Over Xsep, the concept class C0
ac is maximum

(in particular, also maximal and extremal) and intersection-closed.

Proof. Given the instance space Xsep, the claim is immediate from the fact
that VCD(C0

ac) = (m − 1)n = n =
(

m
2

)

n = |Xsep|, which means that C0
ac is

the class of all possible concepts over Xsep.
�

In the non-binary case, we will see below that the situation is different.
We start by showing that the class of separable CP-nets is not intersection-
closed in the non-binary case.

Up to now, a subtlety in the definition of intersection-closedness has
been ignored in our discussions. This is best explained using a very simple
example. Consider a concept class C over X = {x1, x2} that contains the
concepts {x1}, {x2}, and the empty concept. Obviously, C is intersection-
closed. From a purely learning-theoretic point of view, and certainly for the
calculation of any of the information complexity parameters studied above,
C is equivalent to the class C′ = {{x2}, {x1}, {x1, x2}} that results from C
simply when flipping all labels. This class is no longer intersection-closed,
as it does not contain the intersection of {x2} and {x1}. Likewise, any two
concept classes C and C′ over some instance space X are equivalent if one is
obtained from the other by “inverting” any of its instances, i.e., by selecting
any subset X ⊆ X and replacing c(x) by 1−c(x) for all c ∈ C and all x ∈ X.

When defining the instance space Xswap, we did not impose any require-
ments, for any swap pair (o, o′), as to whether (o, o′) or (o′, o) should be
included in Xswap. So, in fact, Xswap could be any of a whole class of in-
stance spaces, all of which are equivalent for the purposes of calculating
the information complexity parameters we studied. Thus, to show that C0

ac

is not intersection-closed, we have to consider all possible combinations in
which the outcome pairs in Xswap could be arranged. In the proof of Propo-
sition 2 this requires a distinction of only two cases, while more cases need
to be considered when proving that Ck

ac is not intersection-closed for k > 0
(see Proposition 5 below.)

Proposition 2. Let m > 2. Then C0
ac is not intersection-closed (neither

over Xsep nor over Xswap).

24

Proof. Let v ∈ V be any variable. Since m > 2, the domain of v con-
tains three pairwise distinct values a1, a2, and a3 such that the instance
space (Xsep or Xswap) contains swap examples x1, x2, and x3, each with the
swapped variable v, and one of the following two cases holds:

• Case 1. The projections xi[v] of the swap pairs xi to the swapped
variable v are

x1[v] = (a1, a2), x2[v] = (a1, a3), x3[v] = (a2, a3) .

• Case 2. The projections xi[v] of the swap pairs xi to the swapped
variable v are

x1[v] = (a1, a2), x2[v] = (a3, a1), x3[v] = (a2, a3) .

It remains to show that, in either case, we can find two separable CP-
nets whose intersection (as concepts over the given instance space) is not a
separable CP-net.

In Case 1, let c1 be a CP-net entailing a1 ≻ a2, a1 ≻ a3, and a3 ≻ a2,
while c2 entails a2 ≻ a1, a1 ≻ a3, and a2 ≻ a3. Both these sets of entailments
can be realized by separable CP-nets. Both c1 and c2 label x2 with 1 (as
they both prefer a1 over a3), but they disagree in their labels for x1 and
x3. The intersection of c1 and c2 thus labels x2 with 1, while it labels both
x1 and x3 with 0. This corresponds to a preference relation in which a2 is
preferred over a1, then a1 is preferred over a3, but a3 is preferred over a2.
This cycle cannot be realized by a separable CP-net, i.e., c1, c2 ∈ C0

ac while
c1 ∩ c2 /∈ C0

ac.
In Case 2, let c1 be a CP-net entailing a1 ≻ a2, a3 ≻ a1, and a3 ≻ a2,

while c2 entails a2 ≻ a1, a1 ≻ a3, and a2 ≻ a3. Both these sets of entailments
can be realized by separable CP-nets. The concepts c1 and c2 disagree in
their labels for all of x1, x2, and x3. The intersection of c1 and c2 thus labels
all of x1, x2, and x3 with 0. This corresponds to a preference relation in
which a2 is preferred over a1, then a1 is preferred over a3, but a3 is preferred
over a2. This cycle cannot be realized by a separable CP-net, i.e., c1, c2 ∈ C0

ac

while c1 ∩ c2 /∈ C0
ac. �

Further, it turns out that the class of non-binary separable CP-nets is
neither maximal nor extremal (and thus not maximum either), independent
of whether or not Xsep or Xswap is chosen as the instance space. The proofs
of these claims rely on Lemma 5 and establish the same claims for the class
Ck
ac for any k ∈ {1, . . . , n − 1} and any m ≥ 2. Since for k > 0, the set

25

Xswap is the more reasonable instance space, in the remainder of this section
we always assume that a concept class is given over Xswap. For the class of
separable CP-nets though, every proof we provide will go through without
modification when Xswap is replaced byXsep.

First, we show that maximality no longer holds for the class of separable
CP-nets, when m > 2, and neither for Ck

ac, when k > 0 and m ≥ 2.

Proposition 3. Let m ≥ 2 and 0 ≤ k ≤ n− 1, where (m,k) 6= (2, 0).
Then the concept class Ck

ac is not maximal, and, in particular, Ck
ac is not

maximum.

Proof. We need to prove that there exists some concept c over Xswap (not
necessarily corresponding to a consistent CP-net) such that VCD(Ck

ac ∪
{c}) = VCD(Ck

ac). We will prove an even stronger statement, namely: for
every subsetX ⊆ Xswap with |X| = VCD(Ck

ac)+1 and every set C of concepts
such that Ck

ac ∪ C shatters X, we have |C| ≥ 2.
Let X ⊆ Xswap with |X| = VCD(Ck

ac) + 1. Such a set X exists, since
Xswap is not shattered by Ck

ac. Moreover, let ~x = (x1, . . . , x|X|) be any fixed
sequence of all and only the elements in X, without repetitions. Since X
is not shattered by Ck

ac, there is an assignment (l1, . . . , l|X|) ∈ {0, 1}|X| of

binary values to ~x that is not realized by Ck
ac, i.e., there is no concept c ∈ Ck

ac

such that c(xi) = li for all i. Since no concept in Ck
ac realizes the assignment

(l1, . . . , l|X|) on ~x, by Lemma 5, no concept in Ck
ac realizes the assignment

(1 − l1, . . . , 1 − l|X|) on ~x. Thus, to shatter X, one would need to add at

least two concepts to Ck
ac. �

Second, the following proposition establishes that, under the same con-
ditions as in Proposition 3, the class Ck

ac is not extremal.

Proposition 4. Let m ≥ 2 and 0 ≤ k ≤ n− 1, where (m,k) 6= (2, 0). Then
the concept class Ck

ac is not extremal.

Proof. Let X ⊆ Xswap be a set of instances that is shattered by Ck
ac, such

that |X| = VCD(Ck
ac. Since Xswap is not shattered by Ck

ac, we can fix some
x̂ ∈ Xswap \X. Moreover, let ~x = (x1, . . . , x|X|) be any fixed sequence of all
and only the elements in X, without repetitions.

Suppose Ck
ac were extremal. Then X is strongly shattered, so that,

in particular, there exists some l̂ ∈ {0, 1} such that, for each choice of
(l1, . . . , l|X|) ∈ {0, 1}|X|, the labelling (l1, . . . , l|X|, l̂) of the instance vector

(x1, . . . , x|X|, x̂) is realized by Ck
ac. Lemma 5 then implies that, for each

choice of (l1, . . . , l|X|) ∈ {0, 1}|X|, the labelling (1 − l1, . . . , 1 − l|X|, 1 − l̂)

26

of the instance vector (x1, . . . , x|X|, x̂) is realized by Ck
ac. This is equiva-

lent to saying that, for each choice of (l1, . . . , l|X|) ∈ {0, 1}|X|, the labelling

(l1, . . . , l|X|, 1 − l̂) of the instance vector (x1, . . . , x|X|, x̂) is realized by Ck
ac.

To sum up, for each choice of (l1, . . . , l|X|) ∈ {0, 1}|X|, both (l1, . . . , l|X|, l̂)

and (l1, . . . , l|X|, 1− l̂) as labellings of the instance vector (x1, . . . , x|X|, x̂) are

realized by Ck
ac. This means that X∪{x̂} is shattered by Ck

ac, in contradiction
to |X| = VCD(Ck

ac). �

As a last result of our study of structural properties of CP-net classes,
we show that Ck

ac is not intersection-closed, when k ≥ 1 or when m ≥ 3.

Proposition 5. Let m ≥ 2 and 0 ≤ k ≤ n− 1, where (m,k) 6= (2, 0). Then
the concept class Ck

ac is not intersection-closed.

Proof. Let A and B be two distinct variables. Let a1 and a2 be two distinct
values in DA, and b1 and b2 two distinct values in DB . Further, let γ be any
fixed context over the remaining variables, i.e., those in V \{A,B}. We will
argue over the possible preferences over outcomes of the form abγ, where
a ∈ {a1, a2} is an assignment to A and b ∈ {b1, b2} is an assignment to B.

Without loss of generality, suppose that Xswap contains the instance
(a1b1γ, a1b2γ) (instead of (a1b2γ, a1b1γ).) If that were not the case, one
could rename variables and values accordingly to make Xswap contains the
instance (a1b1γ, a1b2γ).

There are then various cases to consider for the swap pairs representing
the comparisons between outcomes of the form abγ, where a ∈ {a1, a2} and
b ∈ {b1, b2}. For each case, we provide two concepts c1, c2 ∈ C1

ac for which
c1 ∩ c2 is not acyclic and thus is not in Ck

ac for any k.

Case 1. Xswap contains (a1b1γ, a2b1γ), (a2b1γ, a2b2γ), and (a1b2γ, a2b2γ).
Case 2. Xswap contains (a1b1γ, a2b1γ), (a2b2γ, a2b1γ), and (a1b2γ, a2b2γ).
Case 3. Xswap contains (a1b1γ, a2b1γ), (a2b1γ, a2b2γ), and (a2b2γ, a1b2γ).
Case 4. Xswap contains (a1b1γ, a2b1γ), (a2b2γ, a2b1γ), and (a2b2γ, a1b2γ).
Case 5. Xswap contains (a2b1γ, a1b1γ), (a2b1γ, a2b2γ), and (a1b2γ, a2b2γ).
Case 6. Xswap contains (a2b1γ, a1b1γ), (a2b2γ, a2b1γ), and (a1b2γ, a2b2γ).
Case 7. Xswap contains (a2b1γ, a1b1γ), (a2b1γ, a2b2γ), and (a2b2γ, a1b2γ).
Case 8. Xswap contains (a2b1γ, a1b1γ), (a2b2γ, a2b1γ), and (a2b2γ, a1b2γ).

Cases 1 and 7 are discussed in Table 4. A violation of the property of
intersection-closedness in Cases 2, 3, and 4 can then be immediately deduced
from Case 1 by inverting the binary values in the table for column 3, column

27

Case 1 1 2 3 4 5 6
(a1b1γ, a1b2γ) (a1b1γ, a2b1γ) (a2b1γ, a2b2γ) (a1b2γ, a2b2γ) CPT(A) CPT(B)

c1 0 1 1 1 a1 ≻ a2 a1 : b2 ≻ b1
a2 : b1 ≻ b2

c2 1 0 1 1 b1 : a2 ≻ a1 b1 ≻ b2
b2 : a1 ≻ a2

c1 ∩ c2 0 0 1 1 b1 : a2 ≻ a1 a1 : b2 ≻ b1
b2 : a1 ≻ a2 a2 : b1 ≻ b2

Case 7 1 2 3 4 5 6
(a1b1γ, a1b2γ) (a2b1γ, a1b1γ) (a2b1γ, a2b2γ) (a2b2γ, a1b2γ) CPT(A) CPT(B)

c1 0 1 1 1 a2 ≻ a1 a1 : b2 ≻ b1
a2 : b1 ≻ b2

c2 1 0 1 1 b1 : a1 ≻ a2 b1 ≻ b2
b2 : a2 ≻ a1

c1 ∩ c2 0 0 1 1 b1 : a1 ≻ a2 a1 : b2 ≻ b1
b2 : a2 ≻ a1 a2 : b1 ≻ b2

Table 4: Cases 1 and 7 in the proof of Proposition 5. Columns 1 through
4 provide binary labels stating which of the four swap instances considered
are contained in a concept. Column 5 provides the statements in the corre-
sponding CPT for A, while column 6 does the same for B. Concepts c1 and
c2 belong to C1

ac, but c1 ∩ c2 has a cycle, in which A is a parent of B and
vice versa.

4, both columns 3 and 4, respectively. In the same way, Cases 8, 5, and 6
can be handled following Case 7. �

To conclude, there are no known structure-related theorems in the lit-
erature that would imply VCD(Cn−1

ac) = RTD(Cn−1
ac). Hence, the latter

equation, which we have proven in Section 3, is of interest, as it makes the
class of complete unbounded acyclic CP-nets the first “natural” class known
in the literature for which VCD and RTD coincide. A deeper study of its
structural properties might lead to new insights into the relationship be-
tween VCD and RTD and might thus address open problems in the field of
computational learning theory [29].

5 Learning from Perfect Membership Queries

In this section, we investigate the problem of learning complete CP-nets
from membership queries alone. The reason for choosing membership queries
alone is twofold. Firstly, from the cognitive perspective, answering member-
ship queries of the form “is o better than o′?” is more intuitive and poses

28

less burden upon the user than comparing a proposed CP-net to the true one
(which is the case when answering equivalence queries). Secondly, Koriche
and Zanuttini have shown that membership queries are powerful in the sense
that CP-nets are not efficiently learnable from equivalence queries alone but
they are from equivalence and membership queries [2]. Thus, an immedi-
ate question is whether membership queries alone are powerful enough to
efficiently learn CP-nets.

The complexity results presented in Section 3 have interesting conse-
quences on learning CP-nets from membership queries alone. In particular,
it is known that the query complexity of the optimal membership query algo-
rithm is lower-bounded by the teaching dimension of the class [32]. There-
fore, in this section, we propose strategies to learn CP-nets and use the
TD results to assess their optimality. In what follows, we show near-optimal
query strategies for tree CP-nets and generally for classes of bounded acyclic
CP-nets. This is followed by investigating the case of learning CP-nets
non-adaptively, that is, fixing the membership queries in advance without
adapting them to the answers received.

5.1 Tree CP-nets

Koriche and Zanuttini [2] present an algorithm for learning a binary tree-
structured CP-net N∗ that may be incomplete in that it may have empty
CPTs (i.e., it learns a superclass of C1

ac for m = 2.) Their learner uses at
most nN∗+1 equivalence queries and 4nN∗+eN∗ log(n) membership queries,
where nN∗ is the number of relevant variables and eN∗ the number of edges
in N∗. We present a method for learning any CP-net in C1

ac (i.e., complete
tree CP-nets) for any m, using only membership queries.

For a CP-netN , a conflict pair w.r.t. vi is a pair (x, x
′) of swaps such that

(i) V (x) = V (x′) = vi, (ii) x.1 and x′.1 agree on vi, (iii) x.2 and x′.2 agree
on vi, and (iv) N entails one of the swaps x, x′, but not the other. If vi has
a conflict pair, then vi has a parent variable vj whose values in x and x′ are
different. Such a variable vj can be found with log(n) membership queries
by binary search (each query halves the number of candidate variables with
different values in x and x′) [27].

We use this binary search to learn tree-structured CP-nets from member-
ship queries, by exploiting the following fact: if a variable vi in a tree CP-net
has a parent, then a conflict pair w.r.t. vi exists and can be detected by ask-
ing membership queries to sort m “test sets” for vi. Let (vi1, . . . , v

i
m) be an

arbitrary but fixed permutation of Dvi . Then, for all j ∈ {1, . . . ,m}, a test
set Ii,j for vi is defined by Ii,j = {(v1j , . . . , vi−1

j , vir, v
i+1
j , . . . , vnj) | 1 ≤ r ≤ m}.

29

Since vi has no more than one parent, determining preference orders over m
such test sets of size m is sufficient for revealing conflict pairs, rather than
having to test all possible contexts in OV \{vi}.

Example 7. Consider the set of variables V = {A,B,C} where DA =
{a, a′, a′′, a′′′}, DB = {b, b′, b′′, b′′′}, and DC = {c, c′, c′′, c′′′}. The following
is one possible collection of test sets for the variable A:

IA,1 = {abc, a′bc, a′′bc, a′′′bc}
IA,2 = {ab′c′, a′b′c′, a′′b′c′, a′′′b′c′}
IA,3 = {ab′′c′′, a′b′′c′′, a′′b′′c′′, a′′′b′′c′′}
IA,4 = {ab′′′c′′′, a′b′′′c′′′, a′′b′′′c′′′, a′′′b′′′c′′′}

Clearly, a complete target CP-net imposes a total order on every Ii,j,
which can be revealed by posing enough membership queries selected from
the

(

m
2

)

swaps over Ii,j; a total of O(m log(m)) comparisons suffice to de-
termine the order over Ii,j. This yields a simple algorithm for learning tree
CP-nets with membership queries:

Algorithm 1. For every variable vi, determine Pa(vi) and CPT(vi) as
follows:

1. For every value j ∈ {1, . . . ,m}, ask O(m log(m)) membership queries
from the

(

m
2

)

swaps over Ii,j to obtain an order over Ii,j.

2. If for all j1, j2 ∈ {1, . . . ,m} the obtained order over Ii,j1 imposes the
same order on Dvi as the obtained order over Ii,j2 does, i.e., there is
no conflict pair for vi, then Pa(vi) = ∅. In this case, CPT(vi) is fully
determined by the queries in Step 1, following the order over Dvi that
is imposed by the order over any of the Ii,j.

3. If there are some j1, j2 ∈ {1, . . . ,m} such that the obtained order over
Ii,j1 imposes a different order on Dvi than the obtained order over Ii,j2
does, i.e., there is a conflict pair (x, x′) for vi, then find the only parent
of vi by log(n) further queries, as described by Damaschke [27]. From
these queries, together with the ones posed in Step 1, CPT(vi) is fully
determined.

The procedure described by Damaschke [27] is a binary search on the
set of candidates for the parent variable. Let (x, x′) be the conflict pair over
variable vi, as found in Step 3, where

x = (a1 . . . ai−1aiai+1 . . . an, a1 . . . ai−1aiai+1 . . . an) ,

x′ = (a′1 . . . a
′
i−1aia

′
i+1 . . . a

′
n, a′1 . . . a

′
i−1aia

′
i+1 . . . a

′
n) .

30

Initially, each variable other than vi is a potential parent. The set of po-
tential parents is halved recursively by asking membership queries for swaps
(o, o′) over vi, with o(vi) = ai, o

′(vi) = āi, and half of the potential parent
variables in o and o′ having the same values as in x, while the other half of
the potential parent variables has values identical to those in x′. (The vari-
ables that have been eliminated from the set of potential parent variables
will all be assigned the same values as in x.)

Example 8. Suppose the queries on the test sets revealed a conflict pair
(x, x′) for the variable v5, where

x = (a1a2a3a4a, a1a2a3a4a) ,

x′ = (a′1a
′
2a

′
3a

′
4a, a′1a

′
2a

′
3a

′
4a) ,

and
a1a2a3a4a ≻ a1a2a3a4a ,

while
a′1a

′
2a

′
3a

′
4a ≻ a′1a

′
2a

′
3a

′
4a .

To find the only parent of v5, Damaschke’s procedure will check whether

a1a2a
′
3a

′
4a ≻ a1a2a

′
3a

′
4a .

If yes, then either v1 or v2 must be the parent of v5, and one will next check
whether

a1a
′
2a3a4a ≻ a1a

′
2a3a4a .

If yes, then v1 is the parent of v5, else v2 is the parent of v5. If, how-
ever, a1a2a

′
3a

′
4a ≺ a1a2a

′
3a

′
4a, then the second query would have been to test

whether a1a2a
′
3a4a ≻ a1a2a

′
3a4a, in order to determine whether the parent

of v5 is v3 or v4.

It is not hard to see that our algorithm learns a target CP-net N∗ ∈ C1
ac

with
O(nm2 log(m) + eN∗ log(n))

membership queries, where eN∗ is the number of edges in N∗. In particular,
for the binary case, it requires on the order of 2n + eN∗ log(n) queries at
most, i.e., compared to Koriche and Zanuttini’s method, when focusing only
on tree CP-nets with non-empty CPTs, our method reduces the number
of membership queries by a factor of 2, while at the same time dropping
equivalence queries altogether.

31

It is a well-known and trivial fact that the teaching dimension of a con-
cept class C is a lower bound on the worst-case number of membership
queries required for learning concepts in C. We have proven above that
TD(C1

ac) = n(m− 1)U1 = nm(m− 1). That means that our method uses no
more than on the order of m log(m) + eN∗ log(n) queries more than an op-
timal one, which means, asymptotically, it uses at most an extra eN∗ log(n)
queries when m = 2.

By comparison, Koriche and Zanuttini [2] provide an algorithm that
learns the class C of complete and incomplete (binary) acyclic CP-nets with
nodes of bounded indegree from equivalence and membership queries. To
evaluate their algorithm, they compare its query consumption to log(4/3)VCD(C),
which is a lower bound on the required number of membership and equiv-
alence queries, known from fundamental learning-theoretic studies [33]. In
lieu of an exact value for VCD(C), Koriche and Zanuttini plug in a lower
bound on VCD(C), cf. their Theorem 6. We show in AppendixA that this
lower bound is not quite correct; consequently, here we re-assess the query
consumption of Koriche and Zanuttini’s algorithm.

For any k, their algorithm uses at most sN∗ + eN∗ log(n) + eN∗ + 1
queries in total, for a target CP-net N∗ with sN∗ statements and eN∗ edges.
In the worst case sN∗ = Mk ≤ VCD(C) and eN∗ =

(

k
2

)

+ (n − k)k (i.e.,
N∗ is maximal w.r.t. C). This yields Mk + eN∗(log(n) + 1) queries for
their algorithm, which exceeds the lower bound log(4/3)VCD(C) by at most
log(3/2)VCD(C) + eN∗ log(n). This is a more refined assessment compared
to the term eN∗ log(n) that they report, and it holds for any value of k.

5.2 Bounded Acyclic CP-nets

So far, our arguments for bounded acyclic CP-nets in general have been
information-theoretic with no investigation of their query complexity. In this
section, we show that the teaching dimension results for Ck

ac (cf. Theorem
3) immediately yield a general strategy for learning acyclic CP-nets from
membership queries alone. Recall that TD(Ck

ac) = n(m− 1)Uk, where Uk is
the size of an (n− 1, k)-universal set F of minimum size.

Let us first consider the binary case, i.e., m = 2. Then, for k ≥ 2, the
quantity Uk is known to be Ω(2k log(n−1)) and O(k2k log(n−1)) [34]. Thus,

Ω(n2k log(n− 1)) ∋ TD(Ck
ac) ∈ O(nk2k log(n− 1)) .

For simplicity, assume all variables have the same domain {0, 1}; all one
would need is an explicit list of all the elements in F . Then, for every
variable vi, one can query the elements of F . Technically, every element of

32

F is a context γ ∈ OV \vi and one queries the instance x where V (x) = vi
and x[V \vi] = γ. For example, assume n = 4 and one tries to identify
CPT(v2). If γ = (0, 0, 0) is the element of F assigning values to v1, v3, and
v4, then the corresponding instance is ((0, 0, 0, 0), (0, 1, 0, 0)), where the ith
value represents the ith variable.

Algorithm 2. For every variable vi, determine Pa(vi) and CPT(vi) as
follows:

1. Ask membership queries for all the elements of F .

2. If all of the queried instances for vi together yield only a single state-
ment, then vi has no parents. (Since there are at most k parents for vi
and the same statement appears in every context of all potential par-
ent sets of size k, we know that CPT(vi) is unconditional.) Otherwise,
for any j 6= i, the variable vj is included in Pa(vi), if and only if there
exists a conflict pair (x, x′) “caused by vj,” i.e., in which vj is the only
variable (other than vi) for which the value in x is different than the
value in x′.

3. From the queries posed in Step 1, CPT(vi) is fully determined.

The correctness of this algorithm follows by the same arguments that
were used to establish Theorem 3. Thus, one can identify any concept
c ∈ Ck

ac with nUk membership queries, where Uk ∈ O(nk2k log(n − 1)). A
universal set of such size was proven to exist by a probabilistic argument
with no explicit construction of the set [28]. However, a construction of
an (n − 1, k)-universal set of size 2k log(n − 1)kO(log k) is reported in the
literature [34]. Therefore, one can effectively learn any concept in Ck

ac with
a number of queries bounded by n2k log(n − 1)kO(log k), which is at most
kO(log k) away from the teaching dimension. Moreover, when k2k <

√
n,

there is an explicit construction of a (n, k)-universal set of size n, e.g., for
n = 800 this construction is guaranteed to work with an indegree up to 3
and for n = 1500 with an indegree up to 4. This can be utilized if one is
interested in learning sparse CP-nets over a large number of variables. Note
that the same techniques can be applied to the multi-valued case, i.e., when
m > 2.

6 Learning from Corrupted Membership Queries

So far, we have assumed that all membership queries are answered correctly.
This assumption is unrealistic in many settings, especially when it comes to

33

dealing with human experts that may have incomplete knowledge of the
target function. For instance, when eliciting CP-nets from users, it could be
the case that the user actually does not know which of two given outcomes
is to be preferred.

In this section, we consider the situation in which there is a fixed set L
of instances x for which the oracle does not provide the true classification
c∗(x). The set L is assumed to be chosen in advance by an adversary. There
are two ways in which the oracle could deal with queries to elements in L:

• A limited oracle returns “I don’t know” (denoted by ⊥) when queried
for any x ∈ L, and returns the true label c∗(x) for any x 6∈ L [35, 36].

• A malicious oracle returns the wrong label 1− c∗(x) when queried for
any x ∈ L, and returns the true label c∗(x) for any x 6∈ L [35, 37].

In either case, the oracle is persistent in the sense that it will return the same
answer every time the same instance is queried. A concept class C is exactly
learnable with membership queries to a limited (malicious, resp.) oracle if
there is an algorithm that exactly identifies any target concept c∗ ∈ C by
asking a limited (malicious, resp.) oracle a number of membership queries
that is polynomial in n, the size of c∗, and |L| [35, 36]5.

While we assume that the learner has no prior information on the size or
content of L, we will study under which conditions on L learning complete
acyclic CP-nets from limited or malicious oracles is possible. We will restrict
our analysis to the case of binary CP-nets.

In our analysis, we will make use of the trivial observation that exact
learnability with membership queries to a malicious oracle implies exact
learnability with membership queries to a limited oracle.

6.1 Limitations on the Corrupted Set

We first establish that learning Ck
ac is impossible, both from malicious and

from limited oracles, when |L| ≥ 2n−1−k.

Proposition 6. Let m = 2 and 1 ≤ k ≤ n − 1. If |L| ≥ 2n−1−k, then the
class Ck

ac is not exactly learnable with membership queries to a limited oracle
and not exactly learnable with membership queries to a malicious oracle.

Proof. It suffices to prove non-learnability from limited oracles.
Consider a CP-net N in which all the variables are unconditional, except

for one variable vi, which has exactly k parents. Furthermore, let CPT(vi)

5This corresponds to the strict learning model discussed in [35, 36].

34

.

vi
γ : vi0 ≻ vi1
otherwise: vi1 ≻ vi0

Figure 7: A CP-net N ∈ Ck
ac that, for |L| ≥ 2n−1−k, cannot be distinguished

from any CP-net N ′ that differs from N only in CPT(vi).

impose the same order on the domain of vi for all contexts over Pa(vi),
except for one context γ over Pa(vi) for which CPT(vi) imposes the reverse
order over the domain of vi. Figure 7 shows an example of such a CP-
net. The adversary can choose L = {x = (x1, x2) ∈ Xswap | V (x) = vi
and x1[Pa(vi)] = x2[Pa(vi)] = γ}. Then, in communication with a limited
membership oracle, the learner will not be able to distinguish N from the
CP-net N ′ that is equivalent to N except for having the orders over the
domain of vi swapped in CPT(vi).

�

In essence, this negative result is due to the fact that the number of in-
stances supporting a statement in a CPT with k parents is 2n−1−k—having
all these corrupted makes learning hopeless. In the remainder of this section,
we will study assumptions on the structure of L that will allow a learning
algorithm to overcome the corrupted answers from limited or malicious ora-
cles at the expense of a bounded number of additional queries. That means,
we will constrain the adversary in its options for selecting L, without di-
rectly limiting the size of L. The goal is to be able to obtain the correct
answer for any query x made by our algorithms that learn from perfect or-
acles, simply by taking majority votes over a bounded number of additional
“verification queries.” If we know that the corrupted oracle will affect only a
small subset of these verification queries (small enough so that the majority
vote over them is guaranteed to yield the correct label for x,) we can use
the same learning procedures as in the perfect oracle case, supplemented by
a bounded number of verification queries.

Suppose that, for each x ∈ Xswap, we could efficiently compute a small set
VQ(x) ⊆ Xswap such that the limited/malicious oracle would be guaranteed
to return the correct label for x on more than half of the queries for elements
in VQ(x). In the case of membership queries to a limited oracle, we could

35

then simulate Algorithms 1 or 2 with the following modification:

LIM If a query for x ∈ Xswap made by Algorithm 1 (or 2) is answered with
⊥, replace this response by the majority vote of the limited oracle’s
responses to all queries over the set VQ(x).

In the case of learning from malicious oracles, every query made by Algo-
rithms 1 or 2 would have to be supplemented by verification queries:

MAL If a query for x ∈ Xswap is made by Algorithm 1 (or 2), respond to that
query by taking the majority vote over the malicious oracle’s responses
to all queries over the set VQ(x).

If q is an upper bound on the size of the set VQ(x), for any x ∈ Xswap, the
modified algorithms then would need to ask at most qz membership queries,
where z is the number of queries asked by Algorithms 1 or 2.

It remains to find a suitable set VQ(x) of verification queries for any
swap pair x, so that

• the size of VQ(x) is not too big, and

• it is not too unreasonable an assumption that the corrupted oracle will
return the true label for x on the majority of the swap pairs in VQ(x).

To this end, we introduce some notation.

Definition 7. Let x = (x1, x2) ∈ Xswap and 1 ≤ t ≤ n− 1. Then we denote
by F t(x) the set of all swap instances x′ = (x′1, x

′
2) with the swapped variable

V (x′) = V (x) and with a Hamming distance of exactly t between xi and x′i
when restricted to V \ {V (x)}, i.e.

F t(x) = {x′ ∈ Xswap | V (x) = V (x′) = vs and |{v ∈ V \{vs} | x[{v}] 6= x′[{v}]}| ≤ t} .

There is a relationship between the entailment of an instance x and the
entailments of the elements of F t(x) for any t: Given a preference table
CPT(vi), where vi has k parents, and given t, it is not hard to see that

• |F t(x)| =
(

n−1
t

)

, and

• the set F t(x) contains
(

n−1−k
t

)

elements with the same entailment
w.r.t. V (x) as in x itself. These are the instances that share the same
values in the parent variables of V (x) and, hence, their entailments
have to be identical.

36

abcde ≻ abcdē

abc̄de ≻ abc̄dēabcd̄e ≻ abcd̄ē ab̄cde ≻ ab̄cdē ābcde ≺ ābcdē

Figure 8: An example of the entailments of an instance x and F 1(x) for
x = (abcde, abcdē) with Pa(v5) = {v1} and CPT(v5) is {a : e ≻ ē, ā : ē ≻ e}.

If most of the elements in F t(x) share the same entailment, they could
be used to compensate the oracle corruption. However, queries to elements
of F t(x) again might receive corrupted answers. We will therefore impose
a restriction on the overlap between the set L of instances with corrupted
responses and any set F t(x), specifically for t = 1.

We would like to constrain L so that querying the elements of F 1(x),
and then picking the most frequent answer, yields the true classification of
instance x. Figure 8 shows an example of an instance x with V (x) = v5,
its entailment and the entailments of the elements of F 1(x) assuming k = 1
and Pa(v5) = {v1}.

We then obtain the following learnability result for the case that the
indegree k is bounded to be sufficiently small.

Theorem 6. Suppose n > 2k + 2.

1. If |F 1(x)∩L| ≤ n− 2− 2k for every x ∈ Xswap, then the strategy LIM
will be successful in interacting with a limited oracle.

2. If |F 1(x) ∩ L| ≤ ⌊n−1
2 ⌋ − k − 1 for every x ∈ Xswap, then the strategy

MAL will be successful in interacting with a malicious oracle.

Proof. Note that there are n−1 elements in F 1(x), of which at least n−1−k
have the same label in the target concept as x and at most k have the
opposite label.

First, suppose |F 1(x)∩L| ≤ n−2−2k for every x ∈ Xswap, in the case of
a limited oracle. Then, for every x ∈ Xswap, the limited oracle will correctly
respond to at least |F 1(x)| −n+2+2k = 2k+1 of the queries for elements
in F 1(x). Since at most k of these elements have the opposite label as x,
the majority of these queries will return the correct label.

Second, suppose |F 1(x) ∩ L| ≤ ⌊n−1
2 ⌋ for every x ∈ Xswap, in the case

of a malicious oracle. Then, for every x ∈ Xswap, the limited oracle will
correctly respond to at least |F 1(x)| − ⌊n−1

2 ⌋ + k + 1 = ⌈n−1
2 ⌉ + k + 1 of

the queries for elements in F 1(x). In the worst case, these ⌈n−1
2 ⌉ + k + 1

correctly answered queries contain all of the k elements of F 1(x) that have

37

the opposite label of x. That means that at least ⌈n−1
2 ⌉ + 1 of the n − 1

queries over F 1(x) (and thus a majority) return the correct label for x. �

7 Related Work

The problem of learning CP-nets has recently gained a lot of attention [3,
38, 4, 2, 10, 5, 6, 39, 40, 41, 7].

Both in active and in passive learning, a sub-problem to be solved by
many natural learning algorithms is the so-called consistency problem. This
problem is to decide, given a set S ⊆ O × O × {0, 1} of labelled examples
and a CP-net N , whether or not N is consistent with S, i.e., whether N
entails o ≻ o′ if (o, o′, 1) ∈ S and N entails o 6≻ o′ if (o, o′, 0) ∈ S. The
consistency problem was shown to be NP-hard even if N is restricted to
be an acyclic CP-net whose nodes are of indegree at most k for some fixed
k ≥ 2 and even when, for any (o, o′, b) ∈ S, the outcomes o and o′ dif-
fer in the values of at most two variables [3]. Based on this, Dimopoulos
et al. [3] showed that complete acyclic CP-nets with bounded indegree are
not efficiently PAC-learnable, i.e., learnable in polynomial time in the PAC
model. The authors, however, then showed that such CP-nets are efficiently
PAC-learnable from examples that are drawn exclusively from the set of
so-called transparent entailments. Specifically, this implied that complete
acyclic CP-nets with indegree at most k are efficiently PAC-learnable from
swap examples. Michael and Papageorgiou [40] then provided a comprehen-
sive experimental view on the performance of the algorithm proposed in [3].
Their work also proposed an efficient method for checking whether a given
entailment is transparent or not.

Lang and Mengin [4] considered the complexity of learning binary separa-
ble CP-nets in various learning settings. The literature also includes results
on learning CP-nets from noisy examples [5, 39, 7], or from inconsistent
training sets, which entail that some outcome is preferred over itself [5, 7].

As for active learning, Guerin et al. [6] proposed a heuristic online algo-
rithm that is not limited to swap comparisons. The algorithm assumes the
user is able to provide explicit answers of the form o ≻ o′, o′ ≻ o or o ⊲⊳ o′

to any query (o, o′).
To the best of our knowledge, the only studies of learning CP-nets in An-

gluin’s query model are one by Koriche and Zanuttini [2] and one by Labernia
et al. [42]. Koriche and Zanuttini assumed perfect oracles and investigated
the problem of learning complete and incomplete bounded CP-nets from
membership and equivalence queries over the swap instance space. They

38

showed that complete acyclic CP-nets are not learnable from equivalence
queries alone but are attribute-efficiently learnable from membership and
equivalence queries. Attribute-efficiency means that the number of queries
required is upper-bounded by a function that is logarithmic in the number
of variables. In the case of tree CP-nets, their results hold true even when
the equivalence queries may return non-swap examples. The setting con-
sidered in their work is more general than ours and exhibits the power of
membership queries when it comes to learning CP-nets. Labernia et al. [42]
investigated the problem of learning an average CP-net from multiple users
using equivalence queries alone. However, neither study addresses the prob-
lem of learning complete acyclic CP-nets from membership queries alone,
whether corrupted or uncorrupted.

Information complexity parameters of classes of CP-nets have been in-
vestigated in only two publications, both of which were concerned mainly
with finding the VC dimension value [10, 2]. We discussed our work in
relation to theirs already above, see, for example, Section 1.

8 Conclusion

We determined exact values or non-trivial bounds on the parameters VCD,
TD, RTD, SDC, and OPT for the classes of complete k-bounded acyclic
CP-nets for any k, and used some of the insights gained thereby for the
design of algorithms for learning CP-nets from membership queries. The
VCD values we determined still apply to the class of potentially incomplete
k-bounded acyclic CP-nets, and thus correct a mistake in [2]. Further, we
used the calculated TD values in order to show that our proposed algorithm
for learning complete tree CP-nets from membership queries alone is close
to optimal.

To the best of our knowledge, Cunb is the first known non-maximum (and
not intersection-closed) class that is interesting from an application point of
view and satisfies RTD = VCD. Thus further studies on the structure of
CP-nets may be helpful toward the solution of an open problem concerning
the general relationship between RTD and VCD [29].

Our results may also have implications on the study of consistent CP-
nets. Since the class of acyclic CP-nets is less expressive than that of all
consistent CP-nets, while having the same information complexity in terms
of VCD, it would be interesting to find out whether learning algorithms for
acyclic CP-nets can be easily adapted to consistent CP-nets in general.

39

References

[1] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, D. Poole, CP-
nets: A tool for representing and reasoning with conditional ceteris
paribus preference statements, Journal of Artificial Intelligence Re-
search 21 (2004) 135–191.

[2] F. Koriche, B. Zanuttini, Learning conditional preference networks, Ar-
tificial Intelligence 174 (11) (2010) 685–703.

[3] Y. Dimopoulos, L. Michael, F. Athienitou, Ceteris paribus preference
elicitation with predictive guarantees, in: IJCAI, 2009, pp. 1890–1895.

[4] J. Lang, J. Mengin, The complexity of learning separable ceteris paribus
preferences, in: IJCAI, 2009, pp. 848–853.

[5] J. Liu, Y. Xiong, C. Wu, Z. Yao, W. Liu, Learning conditional pref-
erence networks from inconsistent examples, IEEE Transactions on
Knowledge and Data Engineering 99 (2012) 1.

[6] J. T. Guerin, T. E. Allen, J. Goldsmith, Learning CP-net preferences
online from user queries, in: ADT, 2013, pp. 208–220.

[7] T. E. Allen, C. Siler, J. Goldsmith, Learning tree-structured cp-nets
with local search, in: Proceedings of the Thirtieth International Florida
Artificial Intelligence Research Society Conference, 2017, pp. 8–13.

[8] D. Angluin, Queries and concept learning, Machine Learning 2 (4)
(1988) 319–342.

[9] V. N. Vapnik, A. Y. Chervonenkis, On the uniform convergence of rel-
ative frequencies of events to their probabilities, Theory of Probability
and its Applications 16 (2) (1971) 264–280.

[10] Y. Chevaleyre, F. Koriche, J. Lang, J. Megine, B. Zanuttini, Learning
ordinal preferences on multiattribute domains: the case of CP-nets, in:
Preference Learning, Springer-Verlag, 2010, pp. 273–296.

[11] S. A. Goldman, M. J. Kearns, On the complexity of teaching, Journal
of Computer and System Sciences 50 (1995) 20–31.

[12] S. Zilles, S. Lange, R. Holte, M. Zinkevich, Models of cooperative teach-
ing and learning, Journal of Machine Learning Research 12 (2011) 349–
384.

40

[13] S. A. Goldman, R. L. Rivest, R. E. Schapire, Learning Binary Relations
and Total Orders, SIAM Journal on Computing 22 (5) (1993) 1006–
1034.

[14] N. Littlestone, Learning quickly when irrelevant attributes abound: a
new linear threshold algorithm, Machine Learning 2 (4) (1988) 245–
–318.

[15] E. Alanazi, M. Mouhoub, S. Zilles, The complexity of learning acyclic
CP-nets, in: Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI), 2016, pp. 1361–1367.

[16] J. Goldsmith, J. Lang, M. Truszczynski, N. Wilson, The computational
complexity of dominance and consistency in cp-nets, J. Artif. Intell.
Res. (JAIR) 33 (2008) 403–432.

[17] D. Bigot, B. Zanuttini, H. Fargier, J. Mengin, Probabilistic conditional
preference networks, in: Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA,
August 11-15, 2013, 2013.

[18] M. J. Kearns, U. V. Vazirani, An Introduction to Computational Learn-
ing Theory, MIT Press, Cambridge, MA, USA, 1994.

[19] L. G. Valiant, A theory of the learnable, Commun. ACM 27 (11) (1984)
1134–1142.

[20] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Learnability
and the Vapnik-Chervonenkis dimension, Journal of the ACM 36 (4)
(1989) 929–965.

[21] A. Shinohara, S. Miyano, Teachability in computational learning, New
Generation Computing 8 (4) (1991) 337–347.

[22] N. Sauer, On the density of families of sets, Journal of Combinatorial
Theory, Series A 13 (1) (1972) 145–147.

[23] B. I. P. Rubinstein, J. H. Rubinstein, A geometric approach to sample
compression, Journal of Machine Learning Research 13 (2012) 1221–
1261.

[24] T. Doliwa, G. Fan, H. U. Simon, S. Zilles, Recursive teaching dimension,
VC-dimension and sample compression, Journal of Machine Learning
Research 15 (2014) 3107–3131.

41

[25] N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://oeis.org, sequence A036604.

[26] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, C. Sombattheera, Learn-
ing conditionally lexicographic preference relations, in: ECAI, 2010, pp.
269–274.

[27] P. Damaschke, Adaptive versus nonadaptive attribute-efficient learning,
Machine Learning 41 (2) (2000) 197–215.

[28] S. Jukna, Extremal Combinatorics: With Applications in Computer
Science, 1st Edition, Springer Publishing Company, Incorporated, 2010.

[29] H. U. Simon, S. Zilles, Open problem: Recursive teaching dimension
versus VC dimension, in: COLT, 2015, pp. 1770–1772.

[30] T. L. Lunjia Hu, Ruihan Wu, L. Wang, Quadratic upper bound for
recursive teaching dimension of finite VC classes, in: COLT, 2017.

[31] S. Moran, M. K. Warmuth, Labeled compression schemes for extremal
classes, CoRR abs/1506.00165.

[32] D. Angluin, Queries revisited, in: N. Abe, R. Khardon, T. Zeugmann
(Eds.), Algorithmic Learning Theory, Vol. 2225 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2001, pp. 12–31.

[33] P. Auer, P. Long, Structural results about on-line learning models with
and without queries, Machine Learning 36 (3) (1999) 147—-181.

[34] G. Seroussi, N. H. Bshouty, Vector sets for exhaustive testing of logic
circuits, IEEE Trans. Information Theory 34 (3) (1988) 513–522.

[35] D. Angluin, M. Krikis, R. H. Sloan, G. Turán, Malicious omissions and
errors in answers to membership queries, Machine Learning 28 (2-3)
(1997) 211–255.

[36] L. Bisht, N. H. Bshouty, L. Khoury, Learning with errors in answers to
membership queries, J. Comput. Syst. Sci. 74 (1) (2008) 2–15.

[37] R. Bennet, N. H. Bshouty, Learning attribute-efficiently with corrupt
oracles, Theor. Comput. Sci. 387 (1) (2007) 32–50.

[38] F. Koriche, B. Zanuttini, Learning conditional preference networks with
queries, in: IJCAI, 2009, pp. 1930–1935.

42

[39] J. Liu, Z. Yao, Y. Xiong, W. Liu, C. Wu, Learning conditional prefer-
ence network from noisy samples using hypothesis testing, Knowledge-
Based Systems 40 (2013) 7–16.

[40] L. Michael, E. Papageorgiou, An empirical investigation of ceteris
paribus learnability, in: IJCAI, 2013.

[41] D. Bigot, J. Mengin, B. Zanuttini, Learning probabilistic cp-nets from
observations of optimal items, in: STAIRS 2014 - Proceedings of the 7th
European Starting AI Researcher Symposium, Prague, Czech Republic,
August 18-22, 2014, 2014, pp. 81–90.

[42] F. Labernia, F. Yger, B. Mayag, J. Atif, Query-based learning of acyclic
conditional preference networks from noisy data, in: DA2PL, 2016.

A Revising a Lower Bound on VCD from [2]

Let C∗,k,e
ac be the class of all binary acyclic CP-nets with indegree at most k

and at most e edges, where 0 ≤ k < n and k ≤ e ≤
(

n
2

)

(note that this class
includes both complete and incomplete CP-nets, whereas our study focused
on complete CP-nets.) Koriche and Zanuttini [2, Theorem 6] gave a lower

bound on VCD(C∗,k,e
ac) over the swap instance space. In particular, setting

u = ⌊ e
k
⌋ and r = ⌊log n−u

k
⌋, they claimed that VCD(C∗,k,e

ac) is lower-bounded
by

LB =

1 , if k = 0 ,

u(r + 1) , if k = 1 ,

u(2k + k(r − 1)− 1) , if k > 1 .

We claim that this bound is not generally correct for large values of k and
e.

For any given k, it is easy to see that there is a target concept in C∗,k,e
ac

whose graph has emax =
(

k
2

)

+(n−k)k edges. We can always construct such
a graph G as follows: Let V1 and V2 be a partition over the n vertices of
G where |V1| = n − k and |V2| = k. Add an edge from each node in V2 to
each node in V1. This results in (n− k)k edges and G is clearly acyclic with
indegree exactly k for every element in V1. For the remaining

(

k
2

)

edges, let
< be any total order on V2; now the edge (v,w) is added to G if and only if
v < w.

Next, we evaluate the lower bound LB for k > 1 when the target concept
has emax edges in its graph:

43

u(2k + k(r − 1)− 1)

= ⌊ e
k
⌋(2k + k(⌊log(n− ⌊ e

k
⌋

k
)⌋ − 1)− 1) (setting e = emax)

=

(

k
2

)

+ (n − k)k

k
(2k + k(⌊log(n− (k2)+(n−k)k

k

k
)⌋ − 1)− 1)

=
1

2
(2n− k − 1)(2k + k(⌊log(k + 1

2k
)⌋ − 1)− 1)

=
1

2
(2n− k − 1)(2k − 2k − 1)

When k = n − 1, this term evaluates to n2n−2 − n2 + n
2 which becomes

larger than 2n − 1 for n > 6. More generally, given k = n − c for some
constant 0 < c < n− 1, the term equals

(n+ (c− 1))2n−(c+1) − n2 − (c− 1)n +
(2c − 1)(n + (c− 1))

2

which exceeds 2n − 1 for small values of c and n > 6. Booth et al. [26],
however, proved that 2n − 1 is an upper bound on the VC dimension of
any class of irreflexive transitive relations over {0, 1}n, and thus also an

upper bound on VCD(C∗,k,e
ac). Consequently, there must be a mistake in the

bound LB. It appears that the mistake was caused by Koriche and Zanuttini
assuming that there are acyclic CP-nets with e

k
2k statements, which is not

true for large values of k and e.

44

	1 Introduction
	2 Background
	2.1 Conditional Preference Networks (CP-nets)
	2.2 Concept Learning

	3 The Complexity of Learning CP-nets
	3.1 VC Dimension
	3.2 (Recursive) Teaching Dimension
	3.2.1 An Example Illustrating Teaching Sets

	3.3 Optimal Mistake Bound and Self-Directed Complexity

	4 Structural Properties of CP-net Classes
	5 Learning from Perfect Membership Queries
	5.1 Tree CP-nets
	5.2 Bounded Acyclic CP-nets

	6 Learning from Corrupted Membership Queries
	6.1 Limitations on the Corrupted Set

	7 Related Work
	8 Conclusion
	A Revising a Lower Bound on VCD from Koriche2010685

