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Abstract

We consider the set of permutations that are sortable after two
passes through a pop stack. We characterize these permutations in
terms of forbidden patterns and enumerate them according to the
ascent statistic. Then we show these permutations to be in bijection
with a special family of polyominoes.

1 Introduction

In this paper we study the permutations that are sortable after two
passes through a pop stack. We first introduce necessary definitions
and notation and give a survey of related results. In Section 2.1 we
characterize the two-pop-stack sortable permutations, and in Section
2.2 we enumerate these permutations according to the number of as-
cents. The enumeration shows that the number of such permutations
follows a linear recurrence with constant coefficients, so we give a sec-
ond enumeration argument that reflects this recursive structure. In
Section 3 we show these permutations to be in bijection with a special
family of polyominoes.

We also note that pop stacks can be used to model genome rear-
rangements as the most common rearrangement on genomes is rever-
sal. Rather than the traditional greedy model which reverses only one
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decreasing sequence at a time, a pop stack reverses all maximal de-
creasing subsequences of the permutation at each stage. Our particu-
lar algorithm for networking pop stacks makes this greedier algorithm
apply at each pass. While certainly not an optimal algorithm, the
structure involved with pop stacks makes it easier to handle multiple
reversals at once.

1.1 Permutations

Let Sn be the set of permutations of [n] = {1, 2, . . . , n}. Given π ∈ Sn

and ρ ∈ Sk we say that π contains ρ as a pattern if and only if there
exist 1 ≤ i1 < · · · ≤ ik < n such that πia < πib if and only if ρa < ρb; in
this case we say that πi1πi2 · · · πik is order-isomorphic to ρ. Otherwise,
π avoids ρ. Alternatively, let the reduction of word w, denoted red(w),
be the word formed by replacing the ith smallest letter(s) of w with i.
Then π contains ρ if there is a subsequence of π whose reduction is ρ.

Example 1. The permutation π = 35841726 contains the permutation

ρ = 3241 since the reduction of the subsequence 5472 is red(5472) =
3241.

Our results also require a second kind of permutation pattern. A
barred pattern is a permutation ρ ∈ Sk where each letter may or may
not have a bar over it. For example, the barred patterns of length 2
are:

{

12, 12, 12, 12, 21, 21, 21, 21
}

.

Given a barred pattern ρ, let ρ∗ be the permutation formed by ignoring
the bars of ρ and let ρ′ be the permutation pattern formed by deleting
the barred letters of ρ. For example, if ρ = 132, then ρ∗ = 132 and
ρ′ = red(32) = 21. Permutation π contains barred pattern ρ if and
only if there is a copy of ρ′ in π that does not extend to a copy of ρ∗;
equivalently, π avoids barred pattern ρ if and only if every copy of ρ′

in π extends to a copy of ρ∗ in π.

Example 2. The permutation π = 35841726 avoids the permutation

ρ = 35241 as the only occurrence of 3241 comes from the subsequence

5472 which is also a subsequence of 58472, a 35241 pattern.

Given two permutations α ∈ Sk and β ∈ Sℓ, the direct sum, de-
noted α⊕β is the permutation formed by incrementing all digits of β
by k. For example, 321 ⊕ 1⊕ 21⊕ 321 = 321465987.
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Figure 1: The graph of π = 321465987

An ascent of permutation π is an index i where πi < πi+1, while
a descent is an index i where πi > πi+1. We denote the number of
ascents of π by asc(π) and the number of descents by des(π).

Finally, the graph of a permutation π ∈ Sn is the set of points

{(i, πi)|1 ≤ i ≤ n} .

For example, the graph of 321465987 is given in Figure 1.

1.2 Sorting Networks

A stack is a last-in first-out data structure with push and pop opera-
tions. Knuth [8] studied permutations that are sortable after one pass
through a stack; in other words, there is a sequence of push and pop
operations to transform the permutation π ∈ Sn into the increasing
permutation 1 · · · n as output. Knuth showed that a permutation is
sortable after one pass through a stack if and only if π avoids the

pattern 231; there are

(2n
n

)

n+ 1
such permutations of length n. Other

researchers have studied networks with multiple stacks in series or in
parallel, including [7, 10, 12].

Let S(π) be the output from passing π through a single stack.
Knuth’s result shows that S(π) = 12 · · · n if and only if π avoids 231.
If we keep the convention that the stack must be increasing from top
to bottom, then S(π) is well-defined. We push a new element onto
the stack when the stack is empty or when the next available input is
smaller than the top element of the stack. We pop an element to out-
put when the top element of the stack is smaller than the next available
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input or when the input is empty. With this convention, S(1) = 1 and
for n > 1, S(π1 · · · πi−1nπi+1 · · · πn) = S(π1 · · · πi−1)S(πi+1 · · · πn)n.
Julian West [13] defined two-stack-sortable permutations as those for
which S(S(π)) = 12 · · · n. He showed that a permutation is sortable
after two passes through a stack if and only if π avoids 2341 and 35241,

and Zeilberger [14] showed that there are
2(3n)!

(n+ 1)!(2n + 1)!
such per-

mutations of length n.
Notice that West’s definition is not the most efficient sorting algo-

rithm since it does not look ahead to use the second pass through the
stack strategically. However, in addition to requiring substantially less
memory to implement, this approach also never creates new inversions

along the way. That is, if entries πi and πj are in the correct (i.e.,
increasing) relative order at some stage in the stack sorting process,
they will remain that way in all future iterations. We also note this
sorting algorithm is distinct from sorting with stacks in parallel or in
series.

In this paper, we consider the analogous characterization and enu-
meration results for pop stacks. A pop stack is a stack where the only
way to move an element from the stack to the output is to pop every-
thing in the stack (in last-in first-out order). Both Avis and Newborn
[5] and Atkinson and Stitt [4] studied pop stacks in series. Atkinson
and Sack [3] and Smith and Vatter [11] also considered pop stacks in
parallel. It follows from the work of Avis and Newborn that a permu-
tation π is sortable after one pass through a pop stack if and only if
π avoids 231 and 312. There are 2n−1 such permutations. Permuta-
tions that avoid 231 and 312 are known as layered permutations since
they are the direct sum of decreasing permutations. Further, layered
permutations of length n are in bijection with compositions (that is,
ordered integer partitions) of n since these permutations are uniquely
determined by the lengths of the layers.

Example 3. The permutation 321465987, whose graph is shown in

Figure 1, is a layered permutation with layers of size 3, 1, 2, and 3, so
it corresponds to the composition 3 + 1 + 2 + 3.

2 Two Pop Stacks

Our main concern is permutations which are sortable after two passes
through a pop stack. Let P (π) be the output from running π through
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a single pop stack. Keeping the convention of West, if the stack is
increasing from top to bottom, then P (π) is well-defined. Let π1 · · · πi
be the longest decreasing prefix of π ∈ Sn. Then P (1) = 1 and for
n > 1, P (π) = πi · · · π1P (πi+1 · · · πn). If P (P (π)) = 12 · · · n, we say
that π is two-pop-stack sortable and write π ∈ P2,n. Further, we let
P2 =

⋃

n≥1 P2,n. We characterize and enumerate the permutations in
P2,n below. Both results rely on the following definition and lemma.

A block of a permutation is a maximal contiguous decreasing sub-
sequence. For example if π = 21534, there are three blocks: B1 = 21,
B2 = 53, and B3 = 4. Conceptually, a block is a set of letters that get
output at the same time when we run π through a pop stack. Blocks
characterize P2 in the following way:

Lemma 1. Let π be a permutation with blocks B1, . . . , Bℓ. Then,

π is two-pop-stack sortable if and only if for 1 ≤ i ≤ ℓ − 1 either

max(Bi) < min(Bi+1) or max(Bi) = min(Bi+1) + 1.

Proof. Suppose π has blocks B1, . . . , Bℓ. By definition, each block
consists of a decreasing sequence of elements and so max(Bi) is the
first element in block i while min(Bi+1) is the last element in block
i + 1. By definition of P (π), max(Bi) and min(Bi+1) are adjacent
letters in P (π).

If π ∈ P2, then P (π) is layered. This means that adjacent elements
in P (π) have one of two relationships. Either they form an ascent
(in which case max(Bi) < min(Bi+1)) or they form a descent. If
two letters form a descent in a layered permutation, they must have
consecutive values (that is, max(Bi) = min(Bi+1) + 1).

Figure 2 gives an illustration of the lemma using graphs. Blocks
1 and 2 show the behavior where max(B1) < min(B2) while blocks
2 and 3 have max(B2) = min(B3) + 1. In either event, applying the
pop stack algorithm causes the consecutive blocks to form layered
subpermutations. Hence P (π) is a layered permutation.

2.1 Characterization

In Lemma 1, we characterized two-pop-stack sortable permutations in
terms of blocks. Here, we characterize these permutations in the more
conventional language of pattern avoidance. Lemma 1 is equivalent to
the following theorem.
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B1 B2 B3 B1 B2 B3

π P (π)

Figure 2: The permutation 215364 before and after one pass through a pop
stack

Theorem 1. Permutation π is two-pop-stack sortable if and only

if π avoids the patterns 2341, 3412, 3421, 4123, 4231, 4312, 41352, and
41352.

Proof. Suppose that π is not two-pop-stack sortable. By Lemma 1,
there exist two adjacent blocks of π, Bi andBi+1, such that max(Bi) ≥
min(Bi+1) + 2. Let a = max(Bi) and b = min(Bi+1). Clearly a > b.
Further since a and b are in different blocks, there must be one ascent
between them; that is, a and b are the first and last letters of either a
231 pattern, a 312 pattern, or a 4231 pattern.

If a and b are the first and last letters in a 231 pattern and a ≥ b+2,
there must be another digit c such that a > c > b. If c appears before
a, then c together with the 231 pattern forms a 2341 pattern. If c
appears in block Bi, then c together with the 231 pattern forms a
3241 pattern. If c appears in block Bi+1, then c together with the 231
pattern forms a 3421 pattern. If c appears after b, then c together
with the 231 pattern forms a 3412 pattern.

If a and b are the first and last letters in a 312 pattern and a ≥ b+2,
there must be another digit c such that a > c > b. If c appears before
a, then c together with the 312 pattern forms a 3412 pattern. If c
appears in block Bi, then c together with the 312 pattern forms a
4312 pattern. If c appears in block Bi+1, then c together with the 312
pattern forms a 4132 pattern. If c appears after b, then c together
with the 312 pattern forms a 4123 pattern.

If a and b are the first and last digits in a 4231 pattern, then
a ≥ b+ 2 already.

Therefore, if there exist two adjacent blocks of π, Bi and Bi+1, such
that max(Bi) ≥ min(Bi+1) + 2, then π contains at least one of 2341,
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3241, 3412, 3421, 4123, 4132, 4231, or 4312 as a pattern. However,
the digits serving as a and b in are in adjacent blocks. If we have a
3241 pattern where a plays the role of ‘3’ and b plays the role of ‘1’,
then there can be no letter less than b that appears between ‘3’ and ‘2’
as there is only one ascent, namely from Bi to Bi+1. In other words,
π contains a copy of 3241 that does not extend to a 41352 pattern;
that is π contains 41352. Similarly, if we have a 4132 pattern where
a plays the role of ‘4’ and b plays the role of ‘2’, then there can be no
letter greater than a that appears between ‘3’ and ‘2’. In other words,
π contains a copy of 4132 that does not extend to a 41352 pattern;
that is, π contains 41352.

Therefore, if π is not two-pop-stack-sortable, π contains at least
one of the patterns 2341, 3412, 3421, 4123, 4231, 4312, 41352, and
41352.

For the converse, notice that if π is two-pop-stack sortable, by
the lemma, there are no two adjacent blocks of π where max(Bi) ≥
min(Bi+1) + 2. We have shown that the given list of 8 patterns com-
pletely characterize permutations with this block behavior, so if π has
no such blocks, π avoids the given list of patterns.

2.2 Enumeration

Next, we determine |P2,n|. By definition, a permutation has an as-
cent at position i exactly when πi and πi+1 are in different blocks.
Therefore, the number of blocks of π is one more than the number of
ascents of π. In light of Lemma 1 it is natural to consider two-pop-
stack sortable permutations with a fixed number of ascents.

Proposition 1. Let a(n, k) = |{π ∈ P2,n|asc(π) = k}| and let

b(n, k) = |{π ∈ P2,n|asc(π) = k and the last block of π has size 1}|.
For n ≥ 1,

a(n, k) =























0 k < 0 or k ≥ n

1 k = 0 or k = n− 1

2

n−1
∑

i=1

a(i, k − 1)− b(n− 1, k − 1) otherwise

b(n, k) =











0 k < 1 or k ≥ n

1 k = n− 1

2a(n− 1, k − 1)− b(n− 1, k − 1) otherwise
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Proof. For a(n, k), we first note that a permutation of length n must
have at least zero ascents and no more than n − 1 ascents. There is
one way to have no ascents (the decreasing permutation) and one way
to have all n− 1 possible ascents (the increasing permutation).

More generally, Lemma 1 shows that there are two ways for adja-
cent blocks to interact:

max(Bi) < min(Bi+1) or max(Bi) = min(Bi+1) + 1.

This first situation may occur no matter the sizes of blocks Bi and
Bi+1. However, the second case may only happen if at least one of
the blocks has size greater than 1; if both blocks have size 1 and
max(Bi) = min(Bi+1)+1 then max(Bi) and min(Bi+1) form a descent
and are actually in the same block.

Suppose that we wish to build a permutation of length n with
k > 0 ascents. Consider the permutation formed by the first k blocks
of the permutation, which has length i (1 ≤ i ≤ n − 1) and k − 1
ascents. There are two ways to add a new block of size n − i and
produce a two-pop-stack sortable permutation, with one exception: if
i = n− 1, and the permutation formed by the first k blocks ends in a
block of size 1, then there is a unique way to add a final block of size
1. The 2

∑n−1
i=1 a(i, k−1) term reflects the fact that there are generally

two ways to add a final block to achieve a permutation of length n
with k ascents. The b(n − 1, k − 1) term subtracts off the number of
permutations for which there was only one way to add a final block
to achieve a permutation of length n with k ascents.

The argument for b(n, k) is similar. Since permutations counted
by b(n, k) end in a block of size 1, the only way to have no ascents is
for n = 1 and k = 0, which is covered in the k = n− 1 case. Then, as
before a permutation of length n cannot have less than zero ascents
and can have no more than n − 1 ascents. There is still one way to
have all n− 1 possible ascents (the increasing permutation).

More generally, suppose that we wish to build a permutation of
length n with k > 0 ascents and that ends in a block of size 1. Consider
the permutation formed by the first k blocks of the permutation, which
has length n − 1. There are two ways to add a new block of size 1
to produce a permutation of length n, unless the last block of the
permutation on n− 1 letters already ended in a block of size 1.

Proposition 1 implies following result:

8



Theorem 2.

∑

π∈P2

x|π|yasc(π) =

∞
∑

n=1

n−1
∑

k=0

a(n, k)xnyk =
x(x2y + 1)

1− x− xy − x2y − 2x3y2

Proof. Consider

A(x, y) =
∑

n≥1

∑

k≥0

a(n, k)xnyk

and
B(x, y) =

∑

n≥1

∑

k≥0

b(n, k)xnyk.

From the recurrences in Proposition 1 we obtain

A(x, y) = x+ x(1 + 2y)A(x, y) − xy(1− x)B(x, y)

and
B(x, y) = x+ 2xyA(x, y)− xyB(x, y).

Solving this system for A(x, y) yields the multivariate generating func-
tion in the theorem.

Expanding the generating function in Theorem 2 to see low-order
terms, we have:

x(x2y + 1)

1− x− xy − x2y − 2x3y2
=x+ (y + 1)x2 + (y2 + 4y + 1)x3

+ (y3 + 8y2 + 6y + 1)x4

+ (y4 + 12y3 + 20y2 + 8y + 1)x5

+ (y5 + 16y4 + 48y3 + 36y2 + 10y + 1)x6

+ · · ·

Plugging in y = 1 yields the enumeration of two-pop-stack sortable
permutations.

Corollary 1.
∑

π∈P2

x|π| =
x(x2 + 1)

1− 2x− x2 − 2x3

9



This generating function corresponds to sequence A224232 in the
On-Line Encyclopedia of Integer Sequences [9]. From this rational
generating function, we see that the number of two-pop-stack sortable
permutations follows a linear recurrence with constant coefficients;
that is,

|P2,n| = 2 |P2,n−1|+ |P2,n−2|+ 2 |P2,n−3| . (1)

This sequence also enumerates a different family of combinatorial ob-
jects which we explore in Section 3. First, we give an alternate con-
struction for P2,n that illustrates the structure encoded by Equation
1.

Let In = 1 · · · n be the increasing permutation of length n and let

Jn = n · · · 1 be the decreasing permutation of length n. Let J
(+k)
n =

(n+ k) · · · (1+ k) be the decreasing permutation of length n where all
digits have been incremented by k. Then, we can decompose the set
P2,n as described in Theorem 3.

Theorem 3. Suppose π ∈ Sn where n ≥ 4. Then π ∈ P2,n if and only

if one of the following is true:

1. π = 1⊕ π̂ where π̂ ∈ P2,n−1,

2. πi = 1 for some i ≥ 2 where π1 · · · πi−1 is the longest decreasing

prefix of π1 · · · πi−1πi+1 · · · πn, and π̂ = red(π1 · · · πi−1πi+1 · · · πn) ∈
P2,n−1,

3. π1π2π3 = 312 and π̂ = red(π4 · · · πn) ∈ P2,n−3.

4. π1π2π3 = 413, π4 · · · πn begins with a decreasing prefix of length

at least 2 that ends in the digit 2, and π̂ = red(π4 · · · πn) ∈
P2,n−3,

5. π = 2π21(π2 − 1)π5 · · · πn where π5 > π2 and red(π2π5 · · · πn) ∈
P2,n−3

6. π = 2π2 · · · πi−11πi+1 · · · πn for some i ≥ 3 where π2 · · · πi−1 is

decreasing and red(π2 · · · πi−1πi+1 · · · πn) ∈ P2,n−2, and if i = 3,
then π2 < π4.

For example, |P2,4| = 16. Here are the 16 permutations separated
according to the six cases in Theorem 3:

1. 1234, 1243, 1324, 1432, 1342, 1423

2. 2134, 2143, 3142, 3214, 4213, 4321

3. 3124

10



4. (none)

5. 2413

6. 2314, 2431

Proof. First, we claim that 1 must appear in the first two blocks of π.
Suppose to the contrary that the digit 1 appears in block 3 or later,
and let π∗ = P (π). If the first two blocks of π have size 1, they will
still be the first two blocks in π∗ and there will be an ascent between
these blocks. If either of the first two blocks of π has size greater than
1, then in π∗ this block will be reversed to an increasing sequence.
Either way, there will be an ascent in π∗ before the digit 1. On the
other hand, since π∗ is one-pop-stack sortable, it must be the direct
sum of decreasing permutations, so the first block of π∗ = Ji for some
i ≥ 1. This means there cannot be an ascent in π∗ before the digit 1.
Therefore, the digit 1 must appear in the first two blocks of π.

Suppose 1 is in the first block of π, and consider the various sizes
of the first block.

If the first block has size 1, then π = 1 ⊕ π̂ for some π̂ ∈ P2,n−1.
This is case 1.

If the first block has size i ≥ 2, then πi = 1 and either πi−1 < πi+1

or πi−1 > πi+1. πi−1 < πi+1 is case 2. Case 3 is πi−1 > πi+1 where
πi−1 = 3 and case 4 is πi−1 > πi+1 where πi−1 = 4. In both case 3
and case 4, notice that Lemma 1 implies that i = 2 and |B2| = 1 since
we have the case that max(B1) = min(B2) + 1. In case 4, the lemma
further implies that B3 consists of a decreasing sequence ending in 2.
If πi−1 > πi+1 and a = πi−1 > 4, then π /∈ P2,n since block 2 of π∗

would need to be equal to J
(+1)
a−1 but it is impossible to construct a

decreasing subsequence of consecutive values of length four or more
after one pass through a pop stack.

Finally, suppose 1 is in the second block of π. Then by Lemma 1,
the maximum element of the first block is 2. If the second block has
size 2 and π2 > π4, we are in case 5. Otherwise, we are in case 6.

Notice that cases 1 and 2 give two different ways to build a member
of P2,n from a member of P2,n−1. Case 6 gives 1 way to build a member
of P2,n from any member of P2,n−2. Case 3 gives 1 way to build a
member of P2,n from any member of P2,n−3. Case 4 gives a way to
build a member of P2,n from any member of P2,n−3 that begins with
a descent, and case 5 gives a way to build a member of P2,n from any
member of P2,n−3 that begins with an ascent.

11



Together, we have that

|P2,n| = 2 |P2,n−1|+ |P2,n−2|+ 2 |P2,n−3| .

3 Polyominoes

Both one-pop-stack sortable and two-pop-stack sortable permutations
are in bijection with special families of polyominoes. Although the fact
that these sets are equinumerous has been shown computationally, the
bijections given in this section are new. Moreover, they map ascents
and descents of the appropriate permutations to nice features of the
polyominoes.

Recall that a polyomino is an edge connected set of cells on the
lattice Z2. The size of a polyomino P is the number of cells in P . The
polyominoes of size at most 3 are given in Figure 3. In particular there
is one polyomino of size 1, two of size 2, and six of size 3. In general,
the number of polyominoes of size n for large n remains an open
problem. However, we will consider a modified type of polyomino.

Figure 3: Small polyominoes in the plane

Following [1] and [2], we consider polyominoes on a twisted cylinder
of width w ∈ Z. These polyominoes are drawn in the first quadrant
of Z2 by identifying all pairs of cells with coordinates (x, y) and (x+
kw, y + k) for k ∈ Z. Visually, instead of drawing polyominoes in the
plane, we draw them on the surface shown in Figure 4. Notice that
this surface is a cylinder with a helix wrapped around it. Vertical
lines together with the helix partition the surface into cells. If we
begin at cell (x, y) and move one cell to the right w times, we end
up in cell (x, y + 1), one cell above (x, y). Rather than drawing the
twisted cylinder embedded in R3, we may visualize it in R2 as shown
in Figure 5, where we show both the twisted cylinder of width 2 and
the twisted cylinder of width 3. With this convention, there are only

12



Figure 4: A twisted cylinder

1 2

2 3 4

4 5 6

1 2 3

3 4 5 6

6 7 8 9

width 2 width 3

Figure 5: Twisted cylinders of width 2 and width 3

four polyominoes of size 3 on a twisted cylinder of width 2; notice that
, , and are all the same polyomino on the twisted cylinder

of width 2 since they all cover cells 1, 2, and 3 in the appropriate
part of Figure 5. Polyominoes on twisted cylinders were introduced to
find improved bounds on the number of polyominoes in the plane. The
polyominoes on width 2 and width 3 cylinders also are in bijection with
one-pop-stack and two-pop-stack sortable permutations in a natural
way.

From Avis and Newborn [5], π is one-pop-stack sortable if and
only if π is layered and there are 2n−1 such permutations of length n.
Similarly, Aleksandrowich, Asinowski, and Barequet [1] observe that
there are 2n−1 polyominoes of size n on a twisted cylinder of width
2. The bijection is as follows. Consider a layered permutation π of
length n. Let bi be the length of block i of π. For each bi, construct
a 1 × bi rectangular polyomino. Place these rectangles on a strip of
height 1, leaving one empty square between each rectangle. Wrap the
resulting strip around the twisted cylinder of width 2. In Figure 6

13



Figure 6: The one-pop-stack sortable permutation 4321657(10)98 and its
corresponding polyomino

we see the permutation 4321657(10)98. In this case b1 = 4, b2 = 2,
b3 = 1, and b4 = 3. We construct rectangular polyominoes of widths
4, 2, 1, and 3 and wrap them around the helix of width 2, leaving an
empty square between each adjacent pair of rectangles. Here, descents
(i.e. adjacent letters in the same block of π) correspond to left-right
adjacent pairs of squares in the corresponding polyomino. Ascents
correspond to squares of the polyomino with no square to their right
(other than the last square of the polyomino).

We showed in Corollary 1 that two-pop-stack sortable permuta-
tions are counted by sequence A224232 in the On-Line Encyclopedia
of Integer Sequences. Aleksandrowich, Asinowski, and Barequet [1]
showed that polyominoes on a twisted cylinder of width 3 have this
same enumeration. They counted these polyominoes via a recurrence
in cases, of a similar flavor to the proof of Theorem 3. We now give a
bijection between the two sets of objects. As in the bijection for one-
pop-stack sortable permutations, descents of π are sent to left-right
adjacent pairs of squares in the corresponding polyomino and ascents
are sent to squares with no square to the right (other than the last
square of the polyomino).

Consider a two-pop-stack sortable permutation π. Let bi be the
length of block i of π. For each bi, construct a 1 × bi rectangular
polyomino. As before, we place these rectangles on a strip of height
1 with an extra consideration. For blocks Bi and Bi+1, by Lemma 1,

14



Figure 7: The two-pop-stack sortable permutation
64321587(12)(10)9(14)(13)(11) and its corresponding polyomino

either max(Bi) < min(Bi+1) or max(Bi) = min(Bi+1) + 1. The first
case may happen no matter the size of the blocks, but max(Bi) =
min(Bi+1) + 1 requires that at least one of the blocks has size greater
than 1. Accordingly, if max(Bi) < min(Bi+1), the corresponding 1 ×
bi and 1 × bi+1 rectangles should have two empty squares between
them. This guarantees that the last square in the 1 × bi rectangle is
below the first square in the 1 × bi+1 rectangle. On the other hand,
if max(Bi) = min(Bi+1) + 1, the corresponding 1 × bi and 1 × bi+1

rectangles should have one empty square between them. Since at
least one of the blocks has size greater than one, the two blocks still
form part of a connected polyomino. Wrap the resulting strip around
the twisted cylinder of width 3. In Figure 7 we see the permutation
64321587(12)(10)9(14)(13)(11). In this case b1 = 5, b2 = 1, b3 = 2,
b4 = 3, and b5 = 3. We construct rectangular polyominoes of widths
5, 1, 2, 3, and 3. Blocks 1 and 2 as well as blocks 4 and 5 have
max(Bi) = min(Bi+1) + 1 so we leave one empty square between the
corresponding rectangles. Blocks 2 and 3 as well as blocks 3 and 4
have max(Bi) < min(Bi+1) so we leave two empty squares between
the corresponding rectangles. Then, we wrap the resulting strip of
separated rectangles around the twisted cylinder of width 3.

Despite the naturalness of this bijection, it turns out that these
are not two special cases of a more general phenomenon. One might
conjecture that three-pop-stack sortable permutations are in bijection
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with polyominoes on a twisted cylinder of width 4. However, all 24
permutations of length 4 are k-pop-stack sortable when k ≥ 3 and
there are only 19 polyominoes of size 4 in the plane (and thus on a
a twisted cylinder of width w ≥ 4). The enumeration of k-pop-stack-
sortable permutations for k ≥ 3 is considered in a recent paper of
Claesson and Guðmundsson [6], without bijective correspondences.
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