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Abstract. We describe our adventures in creating a new first-year course
in Experimental Mathematics that uses active learning. We used a state-
of-the-art facility, called The Western Active Learning Space, and got
the students to ‘drive the spaceship’ (at least a little bit). This paper de-
scribes some of our techniques for pedagogy, some of the vignettes of ex-
perimental mathematics that we used, and some of the outcomes. EYSC
was a student in the simultaneously-taught senior sister course “Open
Problems in Experimental Mathematics” the first time it was taught
and an unofficial co-instructor the second time. Jon Borwein attended
the Project Presentation Day (the second time) and gave thoughtful
feedback to each student. This paper is dedicated to his memory.
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1 Introduction

It has been known at least since the nineties that active learning is the most
effective method for teaching science [13]. It is also clear to many people that
the corpus of mathematical knowledge has changed dramatically since the intro-
duction of computers. It is less widely acknowledged that this ought to change
not only how we teach mathematics, but what mathematics we should teach in
the first place.

Of course, there have been vocal advocates of just this, including for instance
Gilbert Strang [21] and, very notably, Jon Borwein and co-workers. One of the
present authors has held this view for decades, and put it into practice on several
occasions, see e.g. [6], [7], and [10].

A major problem, pointed out by Hamming in his iconoclastic Calculus text-
book [12], is that making only minor changes to our practice can only make
things worse, if we’re at a local optimum. To really do better, we have to make
very large changes, basically all at once.

The difficulties with that are probably obvious, but we’ll list some of them
anyway: first, resources (it takes time and effort to design from scratch, not to
mention to learn enough to use best pedagogical practices); second, inertia (the
standard calculus, linear algebra, higher math sequence has enormous installed
infrastructure including expectations); and finally outright hostility to change,
amounting to denial.
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In this paper, we’ll talk about how we took advantage of an unusual con-
fluence of opportunities to make a serious attempt, serious enough that we feel
that this description will be useful for the next attempt.

1.1 The confluence of opportunities

In May 2014, David Jeffrey (then Chair of Applied Mathematics at Western)
was lamenting the invisibility of our program to students in their first year of
study. A decade previously, you see, the first year calculus and linear algebra of-
ferings of the separate Mathematics Department and of ours had been merged,
so students only saw “Calculus” or “Linear Algebra.” The Applied Math under-
graduate program slowly declined, afterwards. In response to the Chair’s lament,
RMC simply wrote “Introduction to Experimental Mathematics”—just that—on
the whiteboard. The Chair and subsequently surveyed students were very enthu-
siastic, and so, with a verbal promise of a two-year trial both from the Chair and
from the Dean of Science, RMC designed the course over June, July and Au-
gust, making (with undergraduate student help) the recruiting video https://
vimeo.com/itrc/review/99140780/68995faea3 and taught the newly-christened
AM 1999 September–December, of that same year, 2014.

With such short notice, enrolment was going to be an issue—Western does
not give teaching credit for undergraduate courses with 9 or fewer students, or
graduate courses with 4 or fewer students. Therefore, RMC invented and de-
signed the sister course AM 9619 intended for graduate students and senior un-
dergraduate students (such as EYSC, then—she’s now a PhD student of RMC’s
at this time of writing). Again a verbal promise of a two-year trial was given by
the Chair and Dean. These were to be taught simultaneously, and credit given
for one course taught.

“[on seeing the video] This is a wonderful course! It should be profiled!”
— Charmaine Dean, Dean of Science

The major resources available for this were first RMC’s time—he used a
(northern) summer, normally used for research, to design the course, make the
video, socialize it with students, design the grad course, attend the ICERM
conference on Experimental Mathematics organized by Jon Borwein and David
Bailey to seek advice there—Neil Calkin was especially helpful—explain the
course to academic counselors, make a poster for Fall Preview Day, etc. Another
task was to formally write up the course design and get it approved by Senate.
Later, the Course Learning Outcomes had to be drafted for the undergraduate
program description and harmonized with the Program Learning Outcomes.
Second, RMC had some discretionary money he had available to pay the first TA,
Steven Thornton, and an assistant, Torin Viger, to construct course materials
(and to travel to the ICERM conference). The third resource was the $400,000
Western Active Learning Space, which had just been built (RMC gave the very
first class in it). We’ll talk more about this space and how we used it later. Details
of the space can be found at http://www.uwo.ca/wals/. The fourth resource was

https://vimeo.com/itrc/review/99140780/68995faea3
https://vimeo.com/itrc/review/99140780/68995faea3
http://www.uwo.ca/wals/
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RMC’s record in Experimental Mathematics and in the use of technology for
teaching mathematics, which helped sell the course (both to the students and to
the higher administration).

The members of the Undergraduate Society of Applied Mathematics (USAM)
constituted a crucial fifth resource. They were consulted frequently in the “sum-
mer of design” and many of them helped to make the recruitment video linked
above. Their enthusiastic support for the course was very heartening.

1.2 The Western Active Learning Space

The advanced features of WALS that we utilized included, first, the “Air Me-
dia” by which students or the TA could share their computer screens with their
7-member pods or with the whole class. This feature is not so expensive and one
could imagine classes less richly furnished that still had it. WALS had multi-
ple screens (one per pod) that could be used independently, and this was more
expensive (but still useful). We also used the document camera frequently. How-
ever, we did not utilize the classroom’s sound system or SMART Board pens.

We did use the low-tech whiteboards—there were three sizes: main boards,
portable boards in A-frames and small “huddle boards” that could be placed at
will on the main boards.

WALS came with eight recent vintage laptops each equipped with Maple. We
used these each class; they were intended to be one per pod, plus the instructor’s
station, but we didn’t always use them that way. The senior students had Maple
on their personal laptops but the undergraduates did not. Therefore, priority of
the classroom laptops was given to the undergraduate students.

1.3 Active learning techniques

Active learning techniques run from the obvious (get students to choose their
own examples, and share) through the eccentric (interrupt students while pro-
gramming similar but different programs and have them trade computers and
problems) to the flaky (get them to do an interpretive dance or improvisational
skit about their question). We tried to avoid the extremely flaky, but we did
mention them, so that these introverted science students knew that this was
within the realm of possibility.

The simplest activity was typing Maple programs that were handwritten on
a whiteboard into a computer: this was simple but helpful because students
learned the importance of precision, and had immediate help from their fellow
students and from the TA.

Next in complexity was interactive programming exercises (integrated into
the problems). Mathematicians tend to under-value the difficulty of learning
syntax and semantics simultaneously.

We describe our one foray into eccentricity. The paper Strange Series and
High Precision Fraud by Borwein and Borwein [4] has six similar sums. We had
six teams program each sum, at a stage in their learning where this was difficult
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(five weeks into the course). After letting the teams work for twenty minutes,
we forced one member of each team to join a new team; each team had to
explain their program (none were working at this stage) to the new member.
This exercise was most instructive. The lessons learned included:

– people approach similar problems very differently
– explaining what you are doing is as hard as doing it (maybe harder)
– basic software engineering (good variable names, clear structure, economy

of thought) is important
– designing on paper first might be a good idea (nobody believed this, really,

even after)
– social skills matter (including listening skills).

Perhaps the most important “active learning” technique used, and the hardest
to describe accurately, was a shift in perspective: the instructor attempted to
listen carefully to students’ wishes, and alter the activity, discussion, or topic
depending on what their questions were. Waiting long enough for students to
actually ask questions was often uncomfortable for everyone. The students were,
at least initially, reluctant to use their freedom.

1.4 Active learning in mathematics

It is widely accepted that “true” or “deep” learning only happens when students
are actively engaged. The old saying goes, “I hear, and I forget. I see, and I
remember. I do, and I understand.” There is a lot of argument as to how best
to make the students active, engaged, and make them do the work. There is
a lot of discussion of the value of “discovery” versus the apparent efficiency of
simple delivery of a lecture, or reading. We won’t settle those arguments here
because in our course, a mix was employed: some actual lectures (most often
short, usually explaining how to program something in Maple), some individual
activities, some partner work, some games, some peer assessment, a structured
project, and giving them choices. RMC found it very hard (sometimes) to let
the students make mistakes. There was an improvisational element: every class
had a plan, and a goal (a “planned learning outcome”) even if only a modest
one, but at any moment tangential discussions could be seized as opportunities.

Another precious resource for this course was that it was not a prerequisite
for anything—it had no required specific topics to cover—and thus the learning
outcomes could be quite general, such as achieving the precision of thought
necessary to program computers. Therefore, the class could afford to sail off on
tangents, chosen by members of the class.

The students found this freedom (“lack of structure”) frightening at first,
but exhilarating at the same time. They learned to trust the instructor, and the
instructor learned to trust them.

This is not to say that there was no structure: there certainly was. The main
theme of the course was that of discrete dynamical systems, normally taught long
after calculus and analysis. But one of the major achievements of computers for



Experimental Maths 5

mathematics research (and education) is in making deep questions immediately
accessible to students, questions such as “which initial guesses for Newton’s
method converge to which roots?” This question immediately gives access to
fractals, and their compelling images.

It is less appreciated that computers, via symbolic computation programs
such as Maple or Mathematica, give students the same (or greater!) computa-
tional power to perform mathematical experiments that the giants of mathemat-
ical history had; Lagrange, Stirling, or even Euler, Gauss, and Newton [2]. The
students can explore classical topics such as continued fractions experimentally
and make deep discoveries themselves.

We ended the course with the Chaos Game Representation of DNA sequences.
This has recently been used to generate an objective “Map of Life” [17]. We
point out that at the time the course was first taught, this was new (not yet
published) frontier research. The students understood it. We got them from
entering university to front-line research results. The rest of this paper gives
some examples of what we did, to do so.

One final introductory point: what did the students say they needed from
our program, that we weren’t delivering? The number one request (in our survey
results, prior to designing the course) was “more programming.” The number two
consideration was “more say in the syllabus,” that is, student-centred curriculum
design. We aimed to address both needs with this course.

2 Choices of Topics

As previously stated, the theme of the course was “discrete dynamical systems.”
This was chosen because it benefits massively from computer support, it’s out-
side the normal curriculum (relieving pressure to teach to a specific goal), and
it’s accessible, beautiful, interesting, has applications, and because it has deep
connections to classical topics in number theory (itself outside our standard cur-
riculum). Before starting to teach, RMC drew up a list of potential vignettes. The
top of the list was the classical theory of simple continued fractions. This topic is
extremely accessible (we will give the first vignette in Section 2.1 below) and at
the same time interesting, deep, and demanding of introductory programming
skills (iteration, conditionals, and induction for proof of correctness). The next
was the solution of nonlinear equations by Newton’s method and its generaliza-
tions. Other topics included the Thue-Morse sequence, the Online Encyclopedia
of integer sequences, computation of π, the game of life, the numerical solution
of differential equations by Euler’s method, visualization of complex functions
by phase plots, and chaos game representation of DNA sequences. We sample
from these below.

The graduate course AM 9619 had an extra lecture per week (the senior
students attended the AM 1999 activities together with the first year students,
but they got some advanced material every week that the AM 1999 students did
not). We will give one sample below.
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2.1 Continued Fractions and Rational approximations of
√

2

How does one give control over the pedagogy to the students? RMC could only
think to do it gradually, by doing an example and then asking students to
choose their own examples which we would (first) do together and then (for
other choices) they would do themselves. The students were presented with the
sequence

1 ,
3

2
,

17

12
,

577

408
,

665857

470832
, · · · , (1)

which at that point was plucked from thin air. Each term xn is generated from
its predecessor1 by the rule xn =

(
xn−1 + 2/xn−1

)
/2. What means the same thing,

if we label the numerators and denominators by xn = pn/qn, in other words

pn = p2n−1 + 2q2n−1

qn = 2pn−1qn−1 . (2)

“At first glance, nothing seems simpler or less significant than writing a
number, say 9/7, in the form

9

7
= 1 +

2

7
= 1 +

1
7/2

= 1 +
1

3 + 1/2
= 1 +

1

3 +
1

1 + 1/1

. (3)

It turns out, however, that fractions of this form, called continued frac-
tions, provide must insight...” — from p. 3 of C. D. Olds, “Continued
Fractions” [19].

Carl Douglas Olds won the 1973 Chauvenet Prize, the highest award for math-
ematical exposition, for his paper “The Simple Continued Fraction for e.” The
book cited above is likewise a model of lucidity, and reads very well today. A
new book [3] is similarly valuable to students.

What follows is a simulation of a whiteboard discussion.

What’s happening [in Olds’ example]? Let’s do the same thing with each xn.
First, we take out the integer part. For our first two numbers, nothing much
happens:

x0 = 1 (4)

x1 =
3

2
= 1 +

1

2
= 1 +

1

1 + 1/1
, (5)

but this last isn’t much use.

1 Here, x0 = 1, x1 = 3/2, so on and so forth.
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The next number is more interesting:

x2 =
17

12
=

12 + 5

12
= 1 +

5

12

= 1 +
1

12/5
= 1 +

1

2 + 2/5
= 1 +

1

2 +
1
5/2

= 1 +
1

2 +
1

2 + 1/2

. (6)

The crucial step in this process is writing the fractional part that we get, after
taking out the integer part, as a reciprocal of another fraction, i.e.:

5

12
=

1
12/5

. (7)
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Now a longer example:

x3 =
577

408
=

408 + 169

408
= 1 +

169

408
= 1 +

1
408/169

= 1 +
1

2 + 70/169
= 1 +

1

2 +
1

169/70

= 1 +
1

2 +
1

2 + 29/70

= 1 +
1

2 +
1

2 +
1

70/29

= 1 +
1

2 +
1

2 +
1

2 + 12/19

= 1 +
1

2 +
1

2 +
1

2 +
1

29/12

= 1 +
1

2 +
1

2 +
1

2 +
1

2 + 5/12

= 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

12/5

= 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2 + 2/5

= 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2 + 1/2

= 1 + [2 , 2 , 2 , 2 , 2 , 2 , 2] for short. (8)

At this point, you may feel like sticking out your tongue and giving us a raspberry
for such obvious cheating. Think of it like “television wrestling” and give the
entertainment a chance!

When you think about it, it is a bit mysterious that the simple rule

xn =
(xn−1 + 2/xn−1)

2
(9)

can generate the continued fractions

1 , 1 + [2] , 1 + [2 , 2 , 2] , and 1 + [2 , 2 , 2 , 2 , 2 , 2 , 2] . (10)
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The next one,

x4 =
665857

470832
= 1 + [2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2] (11)

has fifteen 2’s in it. (By the way; don’t worry, we’ll check that by computer
later.) That’s one, three, seven, and fifteen twos. What’s next? We’ll leave that
for now and go back to the first question, about x2n = p2

n/q2n.

The squares of our sequence are

1 ,
9

4
= 2

1

4
,

(
17

12

)2

=
289

144
=

288 + 1

144
= 2 +

1

144
= 2 +

1

122
,(

577

408

)2

=
332929

166464
=

332928 + 1

166464
= 2 +

1

166464
= 2 +

1

4082
(12)

and at this point, we might be prepared to bet that

x24 =

(
665857

470832

)2

= 2 +
1

4708322
.
= 2 + 4.5× 10−12 . (13)

Checking using RMC’s phone (a Nexus 5), we see that this is, in fact, true. But
what does it mean?

One thing it means is that our sequence can be written as√
2− 1

12
,

√
2 +

1

22
,

√
2 +

1

122
,

√
2 +

1

4082
,

√
2 +

1

4708322
.
=
√

2 + 4.5× 10−12,

(14)
that is a sequence of square roots of numbers that rapidly approach 2. The
denominator of x5 is

q5 = 2p4q4 = 2 · 470832 · 665857
.
= 6.5× 1011 ; (15)

the next (
p5
q5

)2

= 2 +
1

q25

.
= 2 + 2× 10−24 , (16)

about as close to 2 as one molecule in a mole2.

Here ends our simulated whiteboard discussion. Some more questions present
themselves. Does this continue? Is x5 = 1 + [2 , 2 , . . . , 2] with thirty-one 2’s
in the continued fraction? Does x6 have sixty-three 2’s in it? Is x2n = 2 + 1/q2n
always? Does this mean that xn

.
=
√

2?

2 Avogadro’s number is 6 · 1023, about.
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Here’s another question. What is

1 +
1

2 +
1

2 +
1

2 +
1

2 + ...

(17)

where the 2’s continue forever? Does this make sense? At this point, many stu-
dents were surprised at the perfect predictability, and repeating nature, of this
continued fraction, because it is indeed true that with quite natural definitions,
this infinite continued fraction can only be

√
2.

But “everybody knows” that the decimal expansion for
√

2 does not repeat,
because

√
2 is irrational! Why is this different? Is it something special about√

2? (Of course a continued fraction is not a decimal expansion.)
The students were then asked to choose their own examples. Predictably,

they chose only other square roots (
√

3,
√

5, etc. ) until prodded.
After enough hand calculation, Maple was introduced as a calculator. Some

hand calculation is necessary, at first, because the students need to feel that they
are connected to the mathematics; they need to own it. Once they feel ownership
(and once the computations get tedious) then computer assistance is welcomed.

Over the next three classes, the pace gradually increased until the Gauss
map G : x 7→ frac(1/x) mapping (0, 1) to [0, 1) seemed natural; patterns were
identified by the students, such as termination implies rationality, ultimate pe-
riodicity implies that the number is a quadratic irrational. This is Lagrange’s
classical result, and not easy to prove. No proofs are given in this section, only
computation; Galois’ result that purely periodic continued fractions arise from
reduced quadratic irrationals is mentioned but not emphasized—we concentrate
on the interval [0, 1).

By this time the students are engaged, talking to each other, choosing dif-
ferent numbers. The number e causes amazement with its pattern: e = 2 +
[1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]. The fact that the continued fraction for π is not
known and has no apparent pattern, causes astonishment: in the first two weeks
we have arrived at a deep open problem.

By now the students are hooked. They’ve learned some Maple; they’ve learned
some mathematics. They’ve learned about fixed points (equal points of period
1, including the golden ratio φ = 1 + [1, 1, 1, . . .]) and about periodic points. the
journey has begun.

2.2 Newton’s method,
√

2, and solving nonlinear equations

In the first vignette, we met with the sequence

1 ,
3

2
,

17

12
,

577

408
,

665857

470832
, . . . (18)
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which was generated by xn+1 = (xn + 2/xn)/2; in words, the average of the number
and two divided by the number. This vignette explores where that sequence came
from, and its relationship to

√
2. We approached this algebraically, as Newton

did. Consider the equation
x2 − 2 = 0 . (19)

Clearly the solutions to this equation are x =
√

2 and x = −
√

2. Let us shift the
origin by putting x = 1 + s; so s = 0 corresponds to x = 1. Then

(1 + s)
2 − 2 = 1 + 2s+ s2 − 2 = −1 + 2s+ s2 = 0 . (20)

we now make the surprising assumption that s is so small that we may ignore
s2 in comparison to 2s. If it turned out that s = 10−6, then s2 = 10−12, very
much smaller than 2s = 2 · 10−6; so there are small numbers s for which this is
true; but we don’t know that this is true, here. We just hope.

Then if s2 can be ignored, our equation becomes

− 1 + 2s = 0 (21)

or s = 1/2. This means x = 1 + s = 1 + 1/2 = 3/2.
We now repeat the process: shift the origin to 3/2, not 1: put now

x = 3/2 + s (22)

so
(3/2 + s)

2
= 9/4 + 3s+ s2 − 2 = 0 . (23)

This gives 3s + s2 + 1/4 = 0 and again we ignore s2 and hope it’s smaller than
3s. This gives

3s+ 1/4 = 0 (24)

or s = −1/12. This means x = 3/2 − 1/12 or x = 17/12. Now we see the process.
Again, shift the origin: x = 17/12 + s. Now(

17

12
+ s

)2

=
289

144
+

17

6
s+ s2 − 2 = 0 . (25)

Ignoring s2,
17

6
s+

1

144
= 0 (26)

or

s =
−6

17 · 144
=
−1

17 · 24
=
−1

408
. (27)

Thus,

x =
17

12
− 1

408
=

577

408
. (28)

As we saw in the previous vignette, there are the exact square roots of numbers
ever more close to 2. For instance,

577

408
=

√
2 +

1

4082
. (29)
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It was Euler who took Newton’s “shift the origin” strategy and made a general
method—that we call Newton’s method—out of it. In modern notation, Euler
considered solving f(x) = 0 for differentiable function f(x), and used the tangent
line approximation near an initial guess x0: if x = x0 + s then, using f ′(x0) to
denote the slope at x0, 0 = f(x) = f(x0 + s)

.
= f(x0) + f ′(x0)s ignoring terms

of order s2 or higher. Then

s = − f(x0)

f ′(x0)
(30)

so

x
.
= x0 + s = x− f(x0)

f ′(x0)
. (31)

The fundamental idea of Newton’s method is that, if it worked once, we can do
it again: pass the parcel! Put

x1 = x0 −
f(x0)

f ′(x0)
(32)

x2 = x1 −
f(x1)

f ′(x1)
(33)

x3 = x2 −
f(x2)

f ′(x2)
(34)

and keep going, until f(xk) is so small that you’re happy.

Notice that each xk solves

f(x)− f(xk) = 0 (35)

not f(x) = 0. But if f(xk) is really small, you’ve solved “almost as good” an
equation, like finding

√
2 + 1/4082 instead of

√
2. So where did (xn + 2/sn)/2 come

from?

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

(
x2n − 2

)
2xn

(36)

because if f(x) = x2 − 2, f ′(x) = 2x− 0 = 2x. Therefore,

xn+1 = xn −
(
x2n − 2

)
2xn

=
2x2n − x2n + 2

2xn

=
x2n + 2

2xn
=

1

2

(
xn +

2

xn

)
(37)

as claimed3.

3 For more complicated functions one shouldn’t simplify for numerical stability rea-
sons. But for x2 − a, it’s okay.
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Executing this process in decimals, using a calculator (our handy HP48G+
again), with x0 = 1, we get

x0 = 1

x1 = 1.5

x2 = 1.41666 . . .

x3 = 1.41421568628

x4 = 1.41421356238

x5 = x4 to all 11 places in the calculator (38)

Now
√

2 = 1.41421356237 on this calculator. We see (approximately) 1, 2, 5 then
10 correct digits. The convergence behaviour is clearer in the continued fraction
representation:

1 , 1 + [2] , 1 + [2 , 2 , 2] , 1 + [2 , 2 , 2 , 2 , 2 , 2 , 2] ,

1 + [2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2] (39)

with 0, 1, 3, 7, 15 twos in the fraction part: each time doubling the previous
plus 1, giving 20 − 1, 21 − 1, 22 − 1, 23 − 1, 24 − 1 correct entries. This “almost
doubling the number of correct digits with each iteration” is quite characteristic
of Newton’s method. This clearly demonstrates quadratic convergence.

We then look at the secant method and Halley’s method, which in continued
fractions notation generate a Fibonacci number of convergents (by the secant
method) andO(3n) convergents showing cubic convergents (by Halley’s method).
This is not part of any standard numerical analysis curriculum, by the way, that
we know of.

We have a fine opportunity for a digression on Fibonacci numbers; another
for a digression on Schröder iteration [20].

Remark 1. We avoid discussion of “convergence” and note that each iterate
solves f(x)− f(xn) = 0; we interpret residuals in context.

2.3 Backward Error

The reader will have noticed that we used 17/12 as the exact square root of 2 1/144;
similarly 577/408 is the exact square root of 2 1/4082. The is an example of what
is called “Backward Error Analysis.” Instead of an approximate answer to the
reference problem, we have an exact answer to a nearby problem.

This is a very powerful old idea, used by von Neumann, by Turing, and
others. It was popularized in numerical analysis by Wilkinson. The book [8] uses
it in every chapter.

It is a useful idea pedagogically, as well due to its ease of understanding for
most students. Students do understand it. If the course you’re teaching the idea
in has a formative assesment, the sly question comes up “Is it all right if I give
an answer to a slightly different question on the midterm?” They get the idea.
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p5
q5

p5
q5

= 886731088897
6270135660482

+
ε

Fig. 1: Example for backward error: instead of a 2 light year hypotenuse, we have
a 2 + ε one, where ε < 10−24 light years or 10−6 mm.

Of course some problems are sensitive to changes in their formulation. This
is also not quite mathematics: mathematics gains leverage by abstracting away
context, and backward error needs problem context to be directly useful, but it
can be done. If forward error (e.g.

∣∣xn −√2
∣∣) is needed, then one can introduce

the notion of derivative and relative derivative (also known as logarithmic deriva-
tive or “condition number”—von Neumann and Goldstine called it a “figure of
merit” [22]).

But in this first year course, a direct interpretation allows one to avoid infinity
and to avoid the calculus. If x = p5/q5, then the difference between x2 and 2 is
less than 2 ·10−24 light years or ∼ 10−6mm; that is, we’ve found the exact length
of triangle whose hypotenuse is not 2 light years, but 2 light years + less than a
millionth of a millimeter. Students get this.

The next section, on modified equations applies this idea in an advanced
context for graduate students.

2.4 Modified Equations

As an example lecture for the senior students, consider the construction of a
so-called modified equation. This was done in lecture format. In an attempt to
understand a very simple numerical method (fixed time-step Euler’s method) on
a very simple but nonlinear initial-value problem, namely ẏ = y2, y(0) = y0, one
might attempt to use a technique called “the method of modified equations”.
This leads to the series

1− v +
3

2
v2 − 8

3
v3 + · · · − 9427

210
v7 + · · · . (40)

Computation of the series coefficients is somewhat involved but automatable.
Consulting the Online Encyclopedia of Integer Sequences leads us to the work
of Labelle [18], in combinatorics; this connection is powerful and unexpected.

The idea of this lecture is that we begin with “brute force”; then consult the
OEIS or some other resource to try to identify our results and find faster/better
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ways, and to make connections to other works. Then we extract other useful
materials from the results, proving what we can. We give some more details of
the lecture, below.

The method of modified equations is a neat idea: if we solve a DE, say
ẏ = f(y), by a numerical method, say yn+1 = yn + hẏn (Euler’s method), then
in order to explain the numerics we look for a modified equation

Ẏ = F (Y ;h) (41)

which (more nearly) has Y (tn)
.
= yn. References include [8, pp. 662–671], and [11]

as well as [5], and [9]. It’s best explained by example. Consider f(y) = y2. Then

ẏ = y2, y(t0) = y0 is actually easy to solve: ẏ
y2 = 1 so

∫ t

t0

ẏdt
y =

∫ t

t0
dt = t− t0 or

− 1
y |

t
t0 = 1

y(t0)
− 1

y(t) = t− t0 or

y(t) =
y0

1− y0 · (t− t0)
. (42)

This is singular at t = t0 + 1
y0

.
Let’s pretend we don’t know this, and instead solve the problem using Euler’s

method with a small fixed time step n:

yn+1 = yn + hy2n n = 0, 1, 2, . . . . (43)

The key step in the method of modified equations is to replace this discrete recur-
rence relation with a functional equation: Y (t) interpolating the data (tn, yn) so
Y (tn) = yn; since tn+1 = tn+h we have necessarily Y (tn+h) = Y (tn)+hY (tn)2.

We now insist that

Y (t+ h) = Y (t) + hY 2(t) (44)

everywhere, not just at t = tn. This is a weird thing to do. Even weirder, we
now look for a differential equation for Y (t), to replace the (harder) functional
equation. Using Taylor expansion we have

Y (t+ h) = Y (t) + Ẏ (t)h+ Ÿ (t)
h2

2
+

...
Y (t)

h3

6
+ · · · (45)

so we have (in a statement with a breathtaking lack of rigour)

Y (t) + hẎ (t) +
h2

2
Ÿ (t) +

h3

6

...
Y (t) + · · · = Y (t) + hY 2(t) (46)

or

Ẏ (t) +
h

2
Ÿ (t) +

h2

3!

...
Y (t) + · · · = Y 2(t) . (47)

This is a singular perturbation of the original. It’s not very helpful. We can
truncate:

N∑
k=1

Y (k)(t)
hk−1

k!
= Y 2(t) +O(hN ) . (48)



16 Chan and Corless

We can differentiate (no breath left!)

Ÿ +
h

2

...
Y +

h2

3!
Y IV + · · · = 2Y Ẏ (49)

and again
...
Y +

h

2
Y IV +O(h2) = 2(Ẏ )2 + 2Y Ÿ (50)

as many times as we need to.
Noticing that we need one less order in h with each derivative we have

Ẏ +
h

2
Ÿ +

h2

6

...
Y = Y 2 +O(h3) (51)

Ÿ +
h

2

...
Y = 2Y Ẏ +O(h2) (52)

...
Y = 2(Ẏ )2 + 2Y Ÿ +O(h) . (53)

Since the second equation implies Ÿ = 2Y Ẏ + O(h), and the first equation
implies Ẏ = Y 2 +O(h), the third equation can be simplified to

...
Y = 2Y 2Ẏ + 2Y (2Y Ẏ ) +O(h)

= 6Y 2Ẏ +O(h). (54)

Using this in the second equation gives

Ÿ +
h

2
(6Y 2Ẏ ) = 2Y Ẏ +O(h2) (55)

and using both of these in the first equation gives

Ẏ +
h

2
(2Y Ẏ − 3hY 2Ẏ ) +

h2

6
(6Y 2Ẏ ) = Y 2 +O(h3) (56)

or

Ẏ + hY Ẏ − 3

2
h2Y 2Ẏ + h2Y 2Ẏ = Y 2 +O(h3) (57)

or

(1 + hY − 1

2
h2Y 2)Ẏ = Y 2 +O(h3) (58)

or

Ẏ = (1 + hY − 1

2
h2Y 2)−1Y 2 +O(h3) (59)

or

Ẏ = (1− hY +
3

2
h2Y 2)Y 2 +O(h3) . (60)

What does this mean? It means that Euler’s method applied to ẏ = y2 gives
a better solution to

ẏ = (1− hy +
3

2
h2y2)y2 (61)
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(which wasn’t intended); indeed it’s O(h3) accurate on that one.
Why is this our first senior lecture on Open Problems for Experimental

Maths? Because it was among RMC’s first forays into the subject. He wrote
a Maple program to compute more terms; then tried to use “gfun” in Maple
(which failed) and the Online Encyclopedia of Integer Sequences (which worked)
to identify B(v) where

ẏ = B(hy)y2 (62)

with B(v) = 1− v+ 3
2v

2 + · · · is the modification. From the OEIS we are led to
[18] which gives (in another context)

B(v) =
∑
n≥0

cnv
n (63)

with c0 = 1 and cn = − 1
n

∑n
i=1

(
n−i+2
i+1

)
cn−i. This series diverges.

“Therefore, we may do something with it” — O. Heaviside [14].

For very small v,

B(v) ∼ 1− v +
3

2
v2 − 8

3
v3 +O(v4) . (64)

Note: yn+1 = yn + hy2n → hyn+1 = hyn + (hyn)2 so putting v(t) = hy(t) gives
(with τ = t−t0

h )

v(τ + 1) = v(τ) + v2(τ) (65)

dv

dτ
= B(v)v2 (66)

∴
dv(τ + 1)

dτ
= B(v(τ + 1) · v(τ + 1)2 (67)

and
dv(τ + 1)

dτ
=

dv

dτ
+ 2v

dv

dτ
= (1 + 2v) ·B(v) · v2 (68)

∴ B(v + v2) · (v + v2)2 = (1 + 2v)B(v)v2 (69)

or B(v + v2) · (1 + v)2 = (1 + 2v)B(v) when v ≡ 0 . (70)

Therefore, we have a functional equation for B.

B(v) =
(1 + v)2

(1 + 2v)
·B(v + v2) (71)

or

B(v + v2) =
(1 + 2v)

(1 + v)2
B(v) (72)

dv

dt
= B(v)v2 (73)

dv/dt

B(v)v2
= 1 (74)∫ t

t0

dv/dτ

B(v)v2
dτ = t− t0 (75)
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if we can evaluate B(v), we can numerically integrate this to get F (v(t)) −
F (v(τ0)) = τ − τ0 which will allow us to plot v(τ).

What happens in the iteration vn+1 = vn + v2n?

– vn →∞ as n→∞
– vn → 0 as n→∞
– sometimes neither

We can see this experimentally. Notice that B has a pole if v = − 1
2 or if v+v2 =

− 1
2 and so on. Therefore, the pre-images of vn = − 1

2 are all poles. Therefore,
poles approach 0 arbitrarily closely. Therefore, the series at 0 cannot converge.

The Maple code to plot the pre-images is as follows:
> Digits := 15;

Digits := 15

> Wanted := 100000;

Wanted := 100000

> preimages := Array(0 ..Wanted);

preimages :=


0 .. 100000 Array

Data Type: anything
Storage: rectangular
Order: Fortran order
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> iworking := 0;

iworking := 0

> ifree := 1;

ifree := 1

> preimages[0] := 0.5;

preimages0 := -0.5

> while ifree < Wanted do

p := preimages[iworking];

preimages[ifree] := − (1 +
√

1 + 4 · p)
2

;

ifree := ifree + 1;

preimages[ifree] := − p

preimages[ifree - 1]
;

ifree := ifree + 1;

iworking := iworking + 1;

end do:

> plot(map(t→[Re(t), Im(t)], [seq(preimages[k], k = 0 ..Wanted)]),

style=point, colour=black, symbol=point, symbolsize=1)

Remarks

– The pre-images of − 1
2 are a subset of the Julia set. B(v) is singular on all

of those!

B(pN ) =

N−1∏
j=0

(1 + vj)
2

(1 + 2vj)
B(vN ) = B(−1

2
) =∞ (76)

– The set of pre-images of − 1
2 is an infinite set and is a fractal (looks like a

cauliflower) and approaches 0 arbitrarily closely. Therefore, there are poles
of B(v) arbitrarily close to 0 and thus, the series B(v) = 1− v + · · · cannot
converge.

– The pre-images of −1 are zeros of B and they’re also dense in the Julia set.
Therefore, the Julia set forms a natural boundary for B(v) and dv

dt = B(v)v2

is nasty.
– The pre-images for the Mandelbrot derivation are computed similarly but

more simply.
– We re-used the pre-image code for the first-year course, for general Julia

sets.

2.5 Chaos Game Representation of DNA sequences

This final vignette shows that these dynamical idea are not just toys or idle
puzzles but useful tools for science. As mentioned in the previous section, when
the course was first taught, this research area was new and not yet published.
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Since then, [15], [16], and [17] have been published, in which the most recent
paper (June 2017) was published in a top journal, Bioinformatics.

It is general knowledge that DNA is a double helix and is made of four bases:
adenine (A), guanine (G), cytosine (C), and thymine (T). However, for DNA
sequencing, we only need to look at one of the two strands of the DNA since
the bases are paired: A with G, and C with T. This means that if we know
one strand, we automatically would know both strands (as long as there are
no mutations). DNA sequences are unique to each organism; therefore, using
chaos game representation, the goal is to be able to quantitatively classify the
organisms by their classes (in this case, animal classes; the five most well-known
classes of vertebrates are mammals, birds, fish, reptiles, and amphibians).

We start with a plot with four corners, each of which represents one of the four
bases in DNA, as shown in figure 2. The algorithm for chaos game representation
is outlined in the following steps.

1. Put a dot in the center; this is the “current dot” at the beginning.
2. Pick the next letter in the sequence (if none, stop), and draw a invisible line

from the current dot towards the corner representing the base.
3. Put a dot halfway on the line; this becomes the new “current dot.”
4. Return to step 2

The short Maple code below explains this precisely.

(-1, -1)

A

(-1, 1)

C

(1, -1)

T

(1, 1)

G

Fig. 2: Chaos game representation setup

However, for the course, we did not use any DNA sequences; instead, we
generated a sequence of (not so) random numbers, in which each number rep-
resents an index of our variable ACGT, which corresponds to a coordinate point
(representing a base). The following is the Maple procedure that was used to
generate chaos game representation plots.
> CGR := proc(s::list)

local ACGT, k, n, p;
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ACGT := table();

ACGT[0] := [-1, -1];

ACGT[1] := [-1, 1];

ACGT[2] := [1, 1];

ACGT[3] := [1, -1];

n := nops(s);

p := Array(0 ..n);

p[0] := [0, 0];

for k to n do

p[k] := (ACGT[s[k]] + p[k-1])/2.0;

end do:

plots[pointplot]([seq(p[k], k=1..n)], colour=black, axes=none);

end proc:

We can see that in the code, instead of using letters for the bases, we have used
the numbers 0, 1, 2, 3 instead.

The first sequence the class looked at was the ith prime number (actually, we
took the 103 +kth prime). The result, a diagonal line (figure 3a), was surprising
at first. But in actually, it is not that surprising in hindsight. As we all know,
prime numbers bigger than 2 will never be even, so the coordinate points (in this
case (1, 1) and (−1,−1)) that represented “even” values would never occur, thus
creating a straight diagonal line. If we had reassigned the values the coordinate
points represent, the plot would turn out different; instead of a diagonal line, it
could possibly be a horizontal or vertical line. One needs to be mindful of how
the coordinate points are assigned.

The students were then encouraged to try other sequences. Some started
with something familiar: one recurring theme of this course was

√
2, so with

this in mind, some students jumped on the opportunity to plot the chaos game
representation of the quotients of the continued fraction of

√
2. As we have seen

earlier in the course, the sequence goes like

1 + [2, 2, 2, 2, . . . , 2] . (77)

Because all elements of the sequence (apart from the first one) are 2’s, it is not
surprising to see a (faint) diagonal line with most of the points in the upper right
corner, shown in figure 3b. The students also tried the partial quotient of e, shown
in figure 3c. What is seen here makes sense as the sequence mostly contains 1’s
and these alternates with even values, so in this case, either 0 or 2. Therefore, it
is clear that there are no points in the lower right corner since that represents the
value 3. Unfortunately, these two plots do not look all that impressive; in fact,
it is pretty underwhelming. Disappointed with this result, the students decided
to experiment with other sequences in which all four coordinates occur.

The students then thought, “Why not take the partial quotients of the con-
tinued fraction of π? The results must be random.” As shown in figure 3d,
unexpectedly, there is a indeed pattern, which shows that the sequence of par-
tial quotients of the continued fraction of π is not as random as we thought at
the beginning of the course. Although the continued fraction quotients of π may



22 Chan and Corless

(a) 103 + kth prime mod 4 (b) Partial quotients of continued frac-
tion of

√
2

(c) Partial quotients of continued frac-
tion of e

(d) Partial quotients of continued frac-
tion of π

(e) Digits of π (f) Random numbers

Fig. 3: Examples of chaos game representations (all examples are mod 4)
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not actually be random, it is known that the digits of π themselves are. The
chaos game representation plot (figure 3e) of this shows some randomness. This
can be compared to the chaos game representation plot of randomly-generated
values mod 4 (figure 3f).

Additionally, this brings up the thought of whether this idea can be extended
to other figures—base 6, base 8, base 3. This could possibly be explored in a
future version of the course. This connects interestingly with the random walk
on the digits of π [1].

3 Concluding Remarks

There were many successful outcomes from this course. The most political achieve-
ment was meeting the Hon. Kathleen Wynne, Premier of Ontario, at the time of
publication as part of a WALS demo (she said that she was frightened of math-
ematics). Secondly, two undergraduate students who participated in the first
year of the course (Alex Wu and Tiam Koukpari) founded Mustang Capital,
initially known as The Algorithm Trading Club, which has over 100 members.
They use the pedagogical principles of this course to teach themselves about al-
gorithmic trading. There were also many academic achievements that came from
this course: beautiful and prize-winning posters (in ISSAC 2016) were created,
and two students (Yang Wang and Ao Li) published papers from their projects.
In addition to this, RMC recruited at least one PhD student (possibly more
are pending). Lastly, interest in the course has been generated for The Digital
Humanities Program.

A less happy outcome

The course AM 1999 was taught only once, in spite of the promises from the
outgoing Chair and the Dean to run it for two years. RMC had failed to get the
Dean’s promise in writing, and the incoming acting Chair cancelled the second
offering, owing to an important misunderstanding on the part of some colleagues.
Jon Borwein was scathing about this decision—any new program needs time for
growth of awareness, and this was especially acute here given the short period
from conception (May 2014) to first delivery (Sept 2014). The senior course AM
9619 was offered a second time, which would have made the second offering of
AM 1999 “free”; this makes the lost opportunity even more sharp.

This bit of data is not included here as a lament, but rather for clarity and
as a recommendation: before undertaking such a serious undertaking, get your
promised support in writing, and be sure to tell your colleagues what you are
doing.
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